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Abstract

The structured saddle-point problem involving the infimal convolution in real Hilbert spaces
finds applicability in many applied mathematics disciplines. For this purpose, we develop
a stochastic primal-dual splitting algorithm with loopless variance-reduction for solving this
generic problem. We first prove the weak almost sure convergence of the iterates. We then
demonstrate that our algorithm achieves linear convergence in expectation of its iterates as
well as convergence of the (smoothed primal-dual and duality) gap function value under the
assumption of strong convexity. We also derive the total average complexity and compare it to
the most recent advances developed in the available literature.

Keywords: Stochastic optimization, Variance reduction, Duality, Saddle point problem, Sublinear
convergence, Linear convergence.

Mathematics Subject Classifications (2010): 49M29, 65K10, 65Y20, 90C25.

1 Introduction

In this paper, we revisit the following structured saddle point problem in real Hilbert spaces.

Problem 1.1 Let H, G be separable real Hilbert spaces. Let L : H → G be a bounded linear
operator. Let f : H → ]−∞,+∞] and g : G → ]−∞,+∞] be proper lower semicontinuous convex
functions. Let np and nd be strictly positive integers. Let (µi)1≤i≤np and (νi)1≤i≤nd

be non-negative
sequences. Let (hi)1≤i≤np be a sequence of convex differentiable functions from H to R such that
∇hi is µi-Lipschitz continuous. Let (ℓj)1≤j≤nd

be a sequence of convex functions from H to R such
that ℓj is 1/νj-strongly convex. Let h : H → R and ℓ : G → R be convex differentiable functions
defined, respectively, by

h :=
1

np

np∑
i=1

hi and ℓ⋆ :=
1

nd

nd∑
i=1

ℓ⋆i . (1.1)
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The primal problem is to

minimize
x∈H

h(x) + (ℓ□ g)(Lx) + f(x), (1.2)

where ℓ□ g denotes the infimal convolution of the functions ℓ and g (see Section 2 for its definition).
The dual problem (in the sense of Fenchel-Rockafellar) is to

minimize
v∈G

(h+ f)⋆(L⋆v) + g⋆(−v) + ℓ⋆(−v) (1.3)

where, f⋆ and ℓ⋆ denote the Fenchel conjugate of the function f and ℓ, respectively (see Section 2
for the definition) and L⋆ is the adjoint of the linear operator L.

Prior and related work: Stochastic numerical methods for solving saddle points problems have
been extensively investigated in the literature, see [3, 5, 11, 12, 21, 23, 24] and [15, 17, 18, 31, 32, 37]
for more recent developments. In these papers, the proposed methods find applicability to vari-
ous problems arising from machine learning, statistical learning, transport optimization, portfolio
optimization, eigenvalue optimization as well as many another problems in applied mathematics.
Over the last decade, many of these stochastic methods have also exploited the variance reduction
(class of) techniques in order to increase the precision of the gradient estimates while decreasing the
computation time to obtain them; see for instances [3, 5, 11, 15, 17, 18, 31, 32, 37] and references
therein. In this context, Problem 1.1 was first investigated in [12] and then in [33, 6, 7, 16] for the
case where np = nd = 1. In the case where np + nd > 2, the problem has been recently resolved in
[31, 24, 25] by means of stochastic variants of primal-dual splitting methods. Let us emphasize that
when np and nd are (very) large, the evaluation of the full gradient of h and ℓ becomes prohibitive.
In turn, stochastic primal-dual splitting methods are often used as alternative to their deterministic
counterpart. Comparatively,

(i) The algorithm in [31] can be viewed as a stochastic extension of [13] by using the Bregman
distance. The main advantage of this work is that Hilbert spaces are relaxed to reflexive
Banach spaces. Although enabling interesting applications such as the linear inverse problems
on the simplex, the condition on the variables is much stronger than expected; moreover, the
method does not exploit any variance reduction technique.

(ii) A stochastic method is developed in [24] for solving the Problem 1.1 with Bregman distance.
The method exploits the variance reduction technique of [35] in finite dimensional Banach
space. It reaches a linear convergence rate in expectation under constraining conditions as
the strong convexity relative to Bregman functions.

(iii) The method in [24] was further developed in [25] by partially relaxing the fixed setting of
the extrapolation parameters, and exploiting the double-loop variance reduction technique of
[35] but still restricted to the usual duality gap function.

The present work is motivated by the recent development in [19] of the loopless variance reduc-
tion method which obtains the optimal total average complexity. Their framework is nevertheless
less general than the method proposed in this paper because it is concerned by the minimization of
the function h only. This limitation has been removed in [1] where authors developed the idea of
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loopless variance reduction for solving monotone inclusions which can apply to solve primal-dual
problems (1.2)-(1.3). The resulting algorithm does not improve the complexity over its determin-
istic counterpart as confirmed by [2]. The total average complexity of the method proposed in [2]
(but also those developed in [8, 18, 5]) remains far from the one obtained in [19]. Instead, this work
fills this gap by developing a stochastic primal-dual splitting algorithm for Problem 1.1 that relies
on loopless variance reduction and that obtains the optimal total average complexity as in [19].

Contribution: The main contributions of this paper are:

(i) The development of a primal-dual full-splitting method with loopless variance reduction as
well as the proof of the almost sure weak convergence of the generated sequences and the
convergence of the smoothed primal-dual gap function introduced in [14].

(ii) The proof of the linear convergence in expectation of the iterations as well as of the duality
gap and the smoothed primal-dual gap function.

(iii) Under the strong convexity assumption, the method obtains the total average complexity as
in [19] that focuses on minimizing a single function objective (referring to primal problem
(1.2), the function h).

Structure: Section 2 is devoted to the definition of the notations and the introduction of basic
notions This section also includes the basic results used in the next sections of this paper. We
present the algorithm and prove its convergence properties in Section 3. The complexity analysis
is detailed in Section 4. The last section consists of a brief conclusion.

2 Preliminaries

Notations. The inner product and norm of all Hilbert spaces are denoted by ⟨· | ·⟩ and ∥ · ∥. The
adjoint of the linear operator L is denoted by L⋆. The effective domain of a function f : H →
]−∞,+∞] is dom(f) =

{
x ∈ H | f(x) < +∞

}
. This function is proper if dom(f) ̸= ∅. We denote

by Γ0(H) the class of all proper lower semicontinuous convex functions f from H to ]−∞,+∞].
For f ∈ Γ0(H), the conjugate (or Fenchel conjugate) of the function f denoted by f⋆ is defined as

f⋆(x) = sup
y∈H

(⟨x | y⟩ − f(y)). (2.1)

We also use ∂f to refer to the subdifferential of f . Given the functions f and g from H to
]−∞,+∞], their infimal convolution f □ g,

ℓ □ g : x 7→ inf
y∈H

(ℓ(y) + g(x− y)). (2.2)

The proximity operator of the scaled function λf from H to ]−∞,+∞] with parameter λ > 0 is
defined by

proxλf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2λ
∥x− y∥2

)
. (2.3)
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Let U, V be two self-adjoint bounded linear operators from H to H, we write U ⪰ V to indicate
that (∀x ∈ H) ⟨x | Ux⟩ ≥ ⟨x | V x⟩. We denote the semi-norm of x ∈ H on U by ∥x∥U =

√
⟨x | Ux⟩

where U is semi-definite. We also use the following notation

⟨· | ·⟩U : (x, y) 7→ ⟨x | Uy⟩ ,

which defines a scalar product on H if U is self-adjoint, positive definite. The following simple
properties of the semi-norm will be used:

(∀x ∈ H) ∥x∥2U + ∥x∥2V = ∥x∥2U+V and (∀α ∈ [0,+∞[) α∥x∥2U = ∥x∥2αU . (2.4)

Moreover, if U ⪰ V then (∀x ∈ H) ∥x∥2U ≥ ∥x∥2V .

Assumptions. As in [12], throughout this paper, we assume that the set S is defined by

S =
{
x ∈ H | 0 ∈ ∂f(x) +∇h(x) +

(
L⋆ ◦ (∂ℓ□ ∂g) ◦ L

)
(x)
}
̸= ∅, (2.5)

where
∂f : H → 2H : x 7→

{
u ∈ H | (∀y ∈ H) ⟨y − x | u⟩+ f(x) ≤ f(y)

}
, (2.6)

and
∂ℓ□ ∂g = (∂ℓ⋆ + ∂g⋆)−1. (2.7)

As demonstrated in [12], under some qualification conditions, the primal problem (1.2) can be
reduced to find a point in the set S (2.5). If we denote by

M : (x, v) 7→ ∂f(x)× ∂g⋆(v) and C : (x, v) 7→ (∇h(x) + L⋆v)× (∇ℓ⋆(v)− Lx), (2.8)

where the (Fenchel) conjugate g⋆ of the function g is defined by (2.1). Then, under the condition
(2.5), this problem becomes equivalent to

S =
{
(x, v) ∈ H × G | 0 ∈ (M +C)(x, v)

}
̸= ∅. (2.9)

We recall the definition and properties of the smoothed primal-dual gap function as introduced
in [14].

Definition 2.1 Let β ∈ [0,+∞[ and (τ, σ) ∈ ]0,+∞[2. Let x = (x, v) and ẋ = (ẋ, v̇) be in H× G,
where × denotes the Cartesian product. The smoothed primal-dual gap function Gβ(x; ẋ) centered
at ẋ is defined by

Gβ(x; ẋ) := sup
x′∈H,v′∈G

(
K(x, v′)−K(x′, v)− β

2τ
∥x′ − ẋ∥2 − β

2σ
∥v′ − v̇∥2

)
, (2.10)

where the Lagrangian function K(x, v) is given by

K(x, v) := h(x) + f(x) + ⟨Lx | v⟩ − g⋆(v)− ℓ⋆(v). (2.11)

Observe that setting β = 0 yields the conventional duality gap function defined as

Gβ=0(x) := sup
x′∈H,v′∈G

(
K(x, v′)−K(x′, v)

)
. (2.12)

Moreover, [16] shows that the smoothed primal-dual gap function Gβ(x; ẋ) as defined by (2.10) can
be used as a measure of optimality in the following sense:
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Lemma 2.2 [16, Proposition 8] Let β ∈ [0,+∞[ and (τ, σ) ∈ ]0,+∞[2. Let x† = (x†, v†) ∈ S,
where S is defined by (2.9), and x = (x, v) ∈ H × G. Then,

Gβ(x; x
†) = 0 if and only if x ∈ S. (2.13)

Moreover, define {
xβ(x) := proxτ(f+h)/β(x

† − τL⋆v/β)

vβ(x) := proxσ(g⋆+ℓ⋆)/β(v
† + σLx/β).

(2.14)

Then, the following holds,

Gβ(x; x
†) ≥ K(x, v†)−K(x†, v) +

β

σ
∥vβ(x)− v†∥2 + β

τ
∥xβ(v)− x†∥2. (2.15)

We provide the main probability theory definitions and notations used throughout this
manuscript. We refer the reader to [22] for more details on probability Theory in Hilbert spaces.

Definition 2.3 Let (Ω1,F1,P1) be a probability space where Ω1 = {1, . . . , nP }, F1 = 2Ω1, and
P1 = {p1, p2, . . . , pnp} with uniformly selected random index pi = 1/nP ∈ ]0, 1]. Let (Ω2,F2,P2) be
a probability space where Ω2 = {1, . . . , nD}, F2 = 2Ω2, and P2 = {q1, q2, . . . , qnd

} with qj = 1/nD ∈
]0, 1]. Then (Ω,F,P) = (Ω1 × Ω2,F1 ⊗ F2,P1 × P2) defines a probability space.

Definition 2.4 A H-valued random variable is a measurable function X : Ω → H, where H is
endowed with the Borel σ-algebra. The expectation of a random variable X is denoted by E [X].
The conditional expectation of X given a σ-field A ⊂ F is denoted by E[X|A]. The abbreviation
a.s. stands for ”almost surely”.

The proposed method developed in Section 3 obeys the general characterization of variance
reduction as in the following definition.

Definition 2.5 [17, Section D.] Variance reduction (VR): method used to increase the precision
of the (gradient) estimates and to improve the speed to obtain them. Formally, assume ĥk is an
estimate of the gradient ∇h(xk). A method which verifies the property E[∥ĥk −∇h(xk)∥2] −−−→

k→∞
0

is referred to as a VR method.

In turn, variance reduction implies to specify the rate of improvement of the gradient estimate
against the deterministic variant. The total average (computational) complexity is further devel-
oped in Section 4.

Note that although stricto sensu a VR method does not require ĥk being an unbiased estimate
of the gradient ∇h(xk), the proposed algorithm relies on this property (see Lemma 3.3).

Lemma 2.6 ([28, Theorem 1]) Let (Fk)k∈N be an increasing sequence of sub-σ-algebras of the
σ-algebra F. Let (zk)k∈N, (λk)k∈N, (ζk)k∈N and (tk)k∈N be sequences of [0,+∞[-valued random
variables such that, for every k ∈ N, zk, ξk, ζk and tk are Fk-measurable. Assume moreover that∑

k∈N tk < +∞,
∑

k∈N ζk < +∞ a.s. and

(∀k ∈ N) E[zk+1|Fk] ≤ (1 + tk)zk + ζk − λk a.s..
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Then, the sequence (zk)k∈N converges a.s. to a [0,+∞[-valued random variable and the sequence
(θk)k∈N is summable a.s..

3 Algorithm and Convergence properties

3.1 Algorithm

In this section, we detail our algorithm to solve the primal-dual problem (1.2)-(1.3) where we use the
stochastic estimation of the full-gradient incorporating auxiliary variables with priority updating
probabilities. Hence, the Algorithm 3.1 does not involve the full gradients ∇h(yk) and ∇ℓ⋆(uk).
Nonetheless, in our convergence analysis (see Section 3.2), we also use the full gradients at each
iteration k through {

x̂k+1 = proxτkf (xk − τk∇h(yk)− τkL
⋆uk)

v̂k+1 = proxσkg⋆
(vk − σk∇ℓ⋆(uk) + σkLyk),

(3.1)

where τk the primal stepsize and σk the dual stepsize.

Algorithm 3.1 Let (τk, σk)k∈N be (stepsize) sequences in ]0,+∞[2. Let the priority updating
probability (p, q) be in ]0, 1]2. Let (x0, x−1) ∈ H2 and (v0, v−1) ∈ G2.
Set auxiliary variables w1 ∈ H and w2 ∈ G at k = 0 : w1,0 = w1,−1 = x0 and w2,0 = w2,−1 = v0.
Iterate
▷ Step 1. Compute {

yk = 2xk − xk−1

uk = 2vk − vk−1

(3.2)

▷ Step 2. Pick ik ∈ {1, . . . , nP } and jk ∈ {1, . . . , nD} uniformly at random, and compute{
zk = −∇hik(w1,k) +∇hik(yk) +∇h(w1,k)

dk = −∇ℓ⋆jk(w2,k) +∇ℓ⋆jk(uk) +∇ℓ⋆(w2,k)
(3.3)

where

w1,k =

{
yk with probability p

w1,k−1 with probability 1− p
and w2,k =

{
uk with probability q

w2,k−1 with probability 1− q
(3.4)

▷ Step 3. Update {
xk+1 = proxτkf (xk − τkzk − τkL

⋆uk)

vk+1 = proxσkg⋆
(vk − σkdk + σkLyk).

Remark 3.2 Here are some remarks concerning this algorithm.

(i) The extrapolation Step 1 of Algorithm 3.1 was introduced in [20] for solving the classical
variational inequality problem over a closed convex set in H. Then, it was extended by [9]
to solve a monotone inclusion. A stochastic development of [9] has been recently obtained in
[26].
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(ii) The idea of using the auxiliary variables w1,k and w2,k (as part of Step 2) was presented in
[19] with the purpose of finding a minimizer of a single function h, without extrapolation Step
(i.e., yk = xk, uk = vk). This idea was further developed in [1] for the method introduced in
[20]. Algorithm 3.1 can be viewed as combining the auxiliary variables as proposed in [19]
with the method developed in [9]. In particular, if nP = nD = 1, then we obtain the method
in [9] for finding a point in S, see (2.9).

(iii) The main differences of Algorithm 3.1 compared to recently published works [24, 26] consists
of i) the involvement of auxiliary variables with priority updating probabilities (p, q) and ii)
the loopless variance reduction step compared to double-loop variance reduction structure
where the outer loop is replaced by a probabilistic switch between two types of updates: with
probability (p, q) a full/stochastic gradient computation is performed on the primal/dual,
while with probability (1− p, 1− q) the previous gradient is reused with an adjustment.

We first demonstrate that, for all k ∈ N, the random variables zk and dk as defined by this algo-
rithm are unbiased estimators of ∇h(yk) and ∇ℓ⋆(uk), and their variances are reduced progressively
along with the convergence of the full-gradient. More precisely, we have the following.

Lemma 3.3 Let Ek be the conditional expectations with respect to the history {yk, w1,k−1, uk, w2,k−1}.
Then, (∀k ∈ N) zk and dk are unbiased estimators of ∇h(yk) and ∇ℓ⋆(uk), respectively, i.e., we
have

(∀k ∈ N) Ek [zk] = ∇h(yk) and Ek [dk] = ∇ℓ⋆(uk). (3.5)

Moreover, let x† = (x†, v†) ∈ S (2.9) and define the mean square error (MSE) over nP and nD,
i.e., the average squared difference between the point-wise estimation of the gradient ∇hi(w1,k) and
∇ℓ⋆j (w2,k) (computed at the values the auxiliary variables w1,k and w2,k) and the actual gradient

value ∇hi(x
†) and ∇ℓ⋆j (v

†), respectively

Ξh(w1,k, x
†) :=

1

np

np∑
i=1

∥∇hi(w1,k)−∇hi(x
†)∥2, (3.6)

Ξℓ⋆(w2,k, v
†) :=

1

nq

nq∑
j=1

∥∇ℓ⋆j (w2,k)−∇ℓ⋆j (v
†)∥2. (3.7)

Then, we have {
Ek[∥zk −∇h(yk)∥2] ≤ 2(1− p)

(
Ξh(w1,k−1, x

†) + Ξh(yk, x
†)
)

Ek[∥dk −∇ℓ⋆(uk)∥2] ≤ 2(1− q)
(
Ξℓ⋆(w2,k−1, v

†) + Ξℓ⋆(uk, v
†)
)
.

(3.8)

Proof. The unbiased estimation in (3.5) follows directly from the fact that (∀x ∈ H) Ek[∇hik(x)] =
∇h(x) and (∀v ∈ G) Ek[∇ℓ⋆jk(v)] = ∇ℓ⋆(v). Let us prove (3.8). From (3.3), by substracting ∇h(yk)
on both left- and right-hand sides, we have

(∀k ∈ N) ∥zk −∇h(yk)∥2 = ∥∇h(w1,k)−∇hik(w1,k) +∇hik(yk)−∇h(yk)∥2. (3.9)
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This equality implies that the variance of the variable zk computed over ik samples is bounded by

Eik

[
∥zk −∇h(yk)∥2

]
= Eik

[
∥∇h(w1,k)−∇h(yk)− (∇hik(w1,k)−∇hik(yk))∥

2
]

= Eik

[
∥∇h(w1,k)−∇h(yk)∥2 + ∥∇hik(w1,k)−∇hik(yk)∥

2
]

− 2Eik [⟨∇h(w1,k)−∇h(yk) | ∇hik(w1,k)−∇hik(yk)⟩]
= Eik

[
∥∇hik(w1,k)−∇hik(yk)∥

2
]
− Eik

[
∥∇h(w1,k)−∇h(yk)∥2

]
≤ Eik

[
∥∇hik(w1,k)−∇hik(yk)∥

2
]
. (3.10)

Hence, since for any k ∈ N for which w1,k = yk with probability p, w1,k = w1,k−1 with probability
(1− p) and ∥x− y∥2 ≤ 2 ∥x− z∥2 + 2 ∥z − y∥2, the left-hand side of this inequality verifies

Eik

[
∥zk −∇h(yk)∥2

]
= (1− p)Eik

[
∥∇hik(w1,k−1)−∇hik(yk)∥

2
]

≤ 2(1− p)

(
Eik

[
∥∇hik(w1,k−1)−∇hik(x

†)∥2
]
+ Eik

[
∥∇hik(yk)−∇hik(x

†)∥2
])

=2
(1− p)

np

( np∑
i=1

∥∇hi(w1,k−1)−∇hi(x
†)∥2 + ∥∇hi(yk)−∇hi(x

†)∥2
)

= 2(1− p)
(
Ξh(w1,k−1, x

†) + Ξh(yk, x
†)
)
. (3.11)

From (3.2), by substracting ∇ℓ⋆(uk) on both left- and right-hand sides, we also have,

(∀k ∈ N) ∥dk −∇ℓ⋆(uk)∥2 =
∥∥∇ℓ⋆(w2,k)−∇ℓ⋆jk(w2,k) +∇ℓ⋆jk(uk)−∇ℓ⋆(uk)

∥∥2 . (3.12)

This equality implies that the variance of the variable dk computed over jk samples is bounded by

Ejk

[
∥dk −∇ℓ⋆(uk)∥2

]
≤ Ejk

[
∥∇ℓ⋆jk(w2,k)−∇ℓ⋆jk(uk)∥

2
]
. (3.13)

Hence, drawing a similar reasoning as for the variance of the variable zk, we obtain

Ejk [∥dk −∇ℓ⋆(uk)∥2] ≤ 2
(1− q)

nq

( nq∑
j=1

∥∥∥∇ℓ⋆j (w2,k−1)−∇ℓ⋆j (v
†)
∥∥∥2 + ∥∥∥∇ℓ⋆j (uk)−∇ℓ⋆j (v

†)
∥∥∥2)

= 2(1− q)
(
Ξℓ⋆(w2,k−1, v

†) + Ξℓ⋆(uk, v
†)
)
, (3.14)

which completes the proof.

Hence, this Lemma enables to state that the variance of the estimators zk and dk is bounded
and (being unbiased) is equal to their mean square error. The next Lemma provides an upper
bound on the values of the difference of the Lagrangian function. To simplify notations, we also
introduce the following definition

Definition 3.4 Set x = (x, v) ∈ dom(f)× dom(g⋆). Define

(
∀k ∈ N)


xk := (xk, vk), x̂k := (x̂k, v̂k), yk := (yk, uk),

rk := (zk, dk),

Rk := (∇h(yk),∇ℓ⋆(uk)),

(3.15)

and denote the infimal convolution and addition by{
g := g □ ℓ

f := f + h
(3.16)
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Lemma 3.5 Set µ = max1≤i≤np µi and ν = max1≤j≤nd
νj. Define

L =

(
0 −L⋆

L 0

)
, Uk =

(
Id/τk 0
0 Id/σk

)
, and D =

(
µId 0
0 νId

)
. (3.17)

Let x = (x, v) ∈ dom(f)× dom(g⋆). Define(
∀k ∈ N) bk(x) = ⟨xk − xk−1 | L(xk − x)⟩ (3.18)

where x̂k is defined in (3.1). Then,

K(xk+1, v)−K(x, vk+1) ≤
1

2
∥xk − x∥2Uk

+
1

2
∥xk − xk−1∥22D − bk(x)

−
(1
2
∥xk+1 − x∥2Uk

+
1

2
∥xk+1 − xk∥22D − bk+1(x)

)
+

1

2
∥xk+1 − xk∥24D+L⋆D−1L

− 1

2
∥xk+1 − xk∥2Uk

+ ∥rk −Rk∥2U−1
k

+ ⟨x̂k+1 − x | Rk − rk⟩ . (3.19)

Proof. Let k ∈ N. We have vk+1 = (Id+σk∂g
⋆)−1(vk − σkdk + σkLyk), which is equivalent to

Lyk − dk +
1

σk
(vk − vk+1) ∈ ∂g⋆(vk+1).

Since g⋆ is a convex function, it follows that

(∀v ∈ G) g⋆(v) ≥ g⋆(vk+1) +

〈
Lyk − dk +

1

σk
(vk − vk+1) | v − vk+1

〉
,

which implies that

g⋆(vk+1)− g⋆(v) ≤ ⟨dk − Lyk | v − vk+1⟩+
1

σk
⟨vk − vk+1 | vk+1 − v⟩

= ⟨dk − Lyk | v − vk+1⟩+
1

2σk

(
∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2

)
, (3.20)

where the last equality follows from the base identity in [4, Lemma 2.12(i)]. Since ℓ⋆ is convex and
continuously differentiable with ν-Lipschitz gradient, it follows from the descent lemma [4, Lemma
2.64] that {

ℓ⋆(uk)− ℓ⋆(v) ≤ ⟨uk − v | ∇ℓ⋆(uk)⟩
ℓ⋆(vk+1)− ℓ⋆(uk) ≤ ⟨vk+1 − uk | ∇ℓ⋆(uk)⟩+

ν

2
∥vk+1 − uk∥2.

Adding these two inequalities, we obtain

ℓ⋆(vk+1)− ℓ⋆(v) ≤ ⟨vk+1 − v | ∇ℓ⋆(uk)⟩+
ν

2
∥vk+1 − uk∥2. (3.21)

We derive from (2.11), (3.20), and (3.21) that, for every v ∈ G,

K(xk+1, v)−K(xk+1, vk+1) = ⟨Lxk+1 | v − vk+1⟩+ g⋆(vk+1)− g⋆(v)

≤ ⟨L(xk+1 − yk) | v − vk+1⟩+
1

2σk

(
∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2

)
+

ν

2
∥vk+1 − uk∥2 + ⟨∇ℓ⋆(uk)− dk | vk+1 − v⟩ . (3.22)
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Similar to (3.22), we have, for every x ∈ H,

K(xk+1, vk+1)−K(x, vk+1) = ⟨L(xk+1 − x) | vk+1⟩+ f(xk+1)− f(x)

≤ ⟨L(xk+1 − x) | vk+1 − uk⟩+
1

2τk

(
∥x− xk∥2 − ∥xk+1 − xk∥2 − ∥x− xk+1∥2

)
+

µ

2
∥xk+1 − yk∥2 + ⟨xk+1 − x | ∇h(yk)− zk⟩ . (3.23)

Adding (3.22) and (3.23), we obtain for every (x, v) ∈ H × G

K(xk+1, v)−K(x, vk+1) ≤
( α1,k︷ ︸︸ ︷
⟨L(xk+1 − x) | vk+1 − uk⟩+

α2,k︷ ︸︸ ︷
⟨L(xk+1 − yk) | v − vk+1⟩

)
+

1

2τk

(
∥x− xk∥2 − ∥xk+1 − xk∥2 − ∥x− xk+1∥2

)
︸ ︷︷ ︸

α5,k

+
1

2σk

(
∥v − vk∥2 − ∥vk+1 − vk∥2 − ∥v − vk+1∥2

)
︸ ︷︷ ︸

α6,k

+
µ

2
∥xk+1 − yk∥2 +

ν

2
∥vk+1 − uk∥2︸ ︷︷ ︸

α0,k

+ ⟨xk+1 − x | ∇h(yk)− zk⟩︸ ︷︷ ︸
α3,k

+ ⟨∇ℓ⋆(uk)− dk | vk+1 − v⟩︸ ︷︷ ︸
α4,k

.

(3.24)

Using (3.2), i.e., uk = vk+vk−vk−1, the first term in the right hand side of (3.24) can be expressed
as

α1,k = ⟨L(xk+1 − x) | vk+1 − vk − vk + vk−1⟩
= ⟨L(xk+1 − x) | vk+1 − vk⟩ − ⟨L(xk+1 − x) | vk − vk−1⟩
= ⟨L(xk+1 − x) | vk+1 − vk⟩ − ⟨L(xk+1 − xk) | vk − vk−1⟩ − ⟨L(xk − x) | vk − vk−1⟩ . (3.25)

Similar to (3.25), for the second term of (3.24), by expanding the expression of yk (see (3.2)), we
also have

α2,k = ⟨L(xk+1 − xk) | v − vk+1⟩ − ⟨L(xk − xk−1) | v − vk⟩ − ⟨L(xk − xk−1) | vk − vk+1⟩ . (3.26)

Observe that
⟨L(xk+1 − xk) | vk − vk−1⟩+ ⟨L(xk − xk−1) | vk − vk+1⟩ = ⟨xk − xk+1 | L(xk − xk−1)⟩
⟨L(xk+1 − x) | vk+1 − vk⟩+ ⟨L(xk+1 − xk) | v − vk+1⟩ = ⟨xk+1 − xk | L(xk+1 − x)⟩
⟨L(xk − x) | vk − vk−1⟩+ ⟨L(xk − xk−1) | v − vk⟩ = ⟨xk − xk−1 | L(xk − x)⟩ .

(3.27)

Hence, we can derive from (3.27), (3.26) and (3.25) that

α1,k + α2,k = bk+1(x)− bk(x)− ⟨xk − xk+1 | L(xk − xk−1)⟩ . (3.28)

Next we estimate α3,k and α4,k. Using the non-expansiveness property of proxτkf , we have

∥x̂k+1 − xk+1∥ =
∥∥proxτkf (xk − τk∇h(yk)− τkL

⋆uk
)
− proxτkf

(
xk − τkzk − τkL

⋆uk
)∥∥

≤ τk ∥zk −∇h(yk)∥ . (3.29)

10



In turn,

α3,k = ⟨xk+1 − x̂k+1 | ∇h(yk)− zk⟩+ ⟨x̂k+1 − x | ∇h(yk)− zk⟩
≤ ∥zk −∇h(yk)∥∥xk+1 − x̂k+1∥+ ⟨x̂k+1 − x | ∇h(yk)− zk⟩
≤ τk∥zk −∇h(yk)∥2 + ⟨x̂k+1 − x | ∇h(yk)− zk⟩ . (3.30)

In the same way, we also have

α4,k ≤ σk∥dk −∇ℓ⋆(uk)∥2 + ⟨∇ℓ⋆(uk)− dk | v̂k+1 − v⟩ . (3.31)

Adding (3.31) and (3.30), we obtain following definition (3.15)

α3,k + α4,k ≤ ∥rk −Rk∥2U−1
k

+ ⟨x̂k+1 − x | Rk − rk⟩ . (3.32)

In order to estimate α0,k, we deduce by expanding the expression of yk that

µ

2
∥xk+1 − yk∥2 =

µ

2
∥xk+1 − xk − (xk − xk−1)∥2

=
µ

2
∥xk+1 − xk∥2 +

µ

2
∥xk − xk−1∥2 − µ ⟨xk+1 − xk | xk − xk−1⟩ , (3.33)

and

ν

2
∥vk+1 − uk∥2 =

ν

2
∥vk+1 − vk − (vk − vk−1)∥2

=
ν

2
∥vk+1 − vk∥2 +

ν

2
∥vk − vk−1∥2 − ν ⟨vk+1 − vk | vk − vk−1⟩ . (3.34)

Adding (3.33) and (3.34), we obtain, since per (3.17), D = diag(µ Id, ν Id), the following expression
for α0,k

α0,k =
1

2
∥xk+1 − xk∥2D +

1

2
∥xk − xk−1∥2D − ⟨xk+1 − xk | D(xk − xk−1)⟩ . (3.35)

Therefore, adding (3.35) and (3.28), we get

α0,k + α1,k + α2,k =
1

2
∥xk+1 − xk∥2D +

1

2
∥xk − xk−1∥2D − ⟨xk+1 − xk | (D −L)(xk − xk−1)⟩

+ bk+1(x)− bk(x). (3.36)

We have

⟨xk+1 − xk | (D −L)(xk − xk−1)⟩ =
〈
D−1(D −L)⋆(xk+1 − xk) | xk − xk−1

〉
D

≤ 1

2
∥xk − xk−1∥2D +

1

2
∥D−1(D −L)⋆(xk+1 − xk)∥2D.

Following (3.17), since D⋆ = D and L⋆ = −L, we have

1

2
∥D−1(D −L)⋆(xk+1 − xk)∥2D =

1

2

〈
D−1(D −L)⋆(xk+1 − xk) | (D −L)⋆(xk+1 − xk)

〉
=

1

2

〈
(D +L⋆)(Id+D−1L)(xk+1 − xk) | xk+1 − xk

〉
=

1

2

〈
(D +L⋆D−1L)(xk+1 − xk) | xk+1 − xk

〉
=

1

2
∥xk+1 − xk∥2D+L⋆D−1L

,
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which implies that

⟨xk+1 − xk | (D −L)(xk − xk−1)⟩ ≤
1

2
∥xk − xk−1∥2D +

1

2
∥xk+1 − xk∥2D+L⋆D−1L

. (3.37)

Hence, by using (2.4), the expression (3.36) becomes

α0,k + α1,k + α2,k =
1

2
∥xk+1 − xk∥22D+L⋆D−1L

+
1

2
∥xk − xk−1∥22D + bk+1(x)− bk(x). (3.38)

Next, by using the definition of Uk, we can rewrite the sum α5,k and α6,k as

α5,k + α6,k =
1

2
∥xk − x∥2Uk

− 1

2
∥xk+1 − x∥2Uk

− 1

2
∥xk − xk+1∥2Uk

. (3.39)

Therefore, by combining (3.38), (3.39), (3.32) into (3.24), we obtain

K(xk+1, v)−K(x, vk+1) ≤
6∑

i=0

αi,k

≤ 1

2
∥xk − x∥2Uk

+
1

2
∥xk − xk−1∥22D − bk(x)

−
(1
2
∥xk+1 − x∥2Uk

+
1

2
∥xk+1 − xk∥22D − bk+1(x)

)
+

1

2
∥xk+1 − xk∥24D+L⋆D−1L

− 1

2
∥xk+1 − xk∥2Uk

+ ∥rk −Rk∥2U−1
k

+ ⟨x̂k+1 − x | Rk − rk⟩ . (3.40)

Hence, the proof is completed.

Remark 3.6 Suppose that f and g⋆ are strongly convex functions with constants θ1 and θ2,
respectively. Then, using the same notations as Lemma 3.5, we have

K(xk+1, v)−K(x, vk+1)+
min{θ1τk, θ2σk}

2
∥xk+1 − x∥2Uk

≤ 1

2
∥xk − x∥2Uk

+
1

2
∥xk − xk−1∥22D − bk(x)

−
(1
2
∥xk+1 − x∥2Uk

+
1

2
∥xk+1 − xk∥22D − bk+1(x)

)
+

1

2
∥xk+1 − xk∥24D+L⋆D−1L

− 1

2
∥xk+1 − xk∥2Uk

+ ∥rk −Rk∥2U−1
k

+ ⟨x̂k+1 − x | Rk − rk⟩ . (3.41)

Moreover, by replacing µ0 = ∥D −L∥ in (3.37), it follows

⟨xk+1 − xk | (D −L)(xk − xk−1)⟩ ≤
1

2
∥xk − xk−1∥2µ0 Id +

1

2
∥xk+1 − xk∥2µ0 Id. (3.42)
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Then, using the latter inequality, the expression (3.41) becomes

K(xk+1, v)−K(x, vk+1) +
min{θ1τk, θ2σk}

2
∥xk+1 − x∥2Uk

≤ 1

2
∥xk − x∥2Uk

− bk(x) +
1

2
∥xk − xk−1∥2D+µ0 Id

−
(
1

2
∥xk+1 − x∥2Uk

+
1

2
∥xk+1 − xk∥2D+µ0 Id − bk+1(x)

)
+ ∥xk+1 − xk∥2D+µ0 Id −

1

2
∥xk+1 − xk∥2Uk

+ ∥rk −Rk∥2U−1
k

+ ⟨x̂k+1 − x | Rk − rk⟩ . (3.43)

Remark 3.7 When p = 1 = q, Lemma 3.3 recovers the one provided in [35], and Lemma 3.5 is
similar to [24, Lemma 3.5] where µ0 is replaced by ∥D∥+ ∥L∥.

Next, we extend Lemma 3.5 to upper bound the smoothed gap Gβk
(2.10) as detailed in Defi-

nition 2.1.

Lemma 3.8 Let (βk)k∈N be a sequence in ]0,+∞[. Under the same setting as of Lemma 3.5, define

Sk =

(
2µ+ 4τk

βk
L⋆L 0

0 2ν + 4σk
βk

LL⋆

)
and

Tk+1 =

(
2µ+ 4

τkβk
+ 4( τkβk

+ 1
ν )L

⋆L 0

0 2ν + 4
βkσk

+ 4(σk
βk

+ 1
µ)LL

⋆

)
. (3.44)

Then, for every k ∈ N, the smoothed primal-dual gap Gβk
centered at x† ∈ S is bounded by

Gβk
(xk+1; x

†) ≤ 1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Sk

− bk(x
†)

−
(
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2Sk+1

− bk+1(x
†)

)
+

1

2
∥xk+1 − xk∥2Sk+1+Tk+1

− 1

2
∥xk+1 − xk∥2Uk

+ (1 + 2/βk)∥rk −Rk∥2U−1
k

+
〈
x̂k+1 − x† | Rk − rk

〉
. (3.45)

Proof. We fist observe that we can rewrite (3.44) as{
Sk = 2D + 4β−1

k L⋆U−1
k L

Tk+1 = Sk + 4β−1
k Uk + 4L⋆D−1L.

(3.46)

We have the following estimations

1

2
∥xk − x∥2Uk

− 1

2
∥xk+1 − x∥2Uk

=
1

2
∥xk − x†∥2Uk

− 1

2
∥xk+1 − x†∥2Uk

+
〈
Uk(xk − xk+1) | x† − x

〉
≤ 1

2
∥xk − x†∥2Uk

− 1

2
∥xk+1 − x†∥2Uk

+
2

βk
∥xk+1 − xk∥2Uk

+
βk
8
∥x− x†∥2Uk

, (3.47)
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and

bk(x)− bk+1(x) = bk(x
†)− bk+1(x

†) +
〈
L⋆(xk − xk−1) | x† − x

〉
−
〈
L⋆(xk+1 − xk) | x† − x

〉
= bk(x

†)− bk+1(x
†) +

2

βk
∥U−1

k L⋆(xk − xk−1)∥2Uk
+

2

βk
∥U−1

k L⋆(xk+1 − xk)∥2

+
βk
4
∥x− x†∥2Uk

= bk(x
†)− bk+1(x

†) +
1

2
∥xk − xk−1∥24β−1

k L⋆U−1
k L

+
1

2
∥xk+1 − xk∥24β−1

k L⋆U−1
k L

+
βk
4
∥x− x†∥2Uk

, (3.48)

and

⟨x̂k+1 − x | Rk − rk⟩ =
〈
x̂k+1 − x† | Rk − rk

〉
+
〈
x† − x | Rk − rk

〉
≤
〈
x̂k+1 − x† | Rk − rk

〉
+

2

βk
∥U−1

k (rk −Rk)∥2Uk
+

βk
8
∥x− x†∥2Uk

≤
〈
x̂k+1 − x† | Rk − rk

〉
+

2

βk
∥rk −Rk∥2U−1

k

+
βk
8
∥x− x†∥2Uk

. (3.49)

Therefore, (3.19) becomes

K(xk+1, v)−K(x, vk+1)−
βk
2
∥x− x†∥2Uk

≤ 1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥22D+4β−1

k L⋆U−1
k L

− bk(x
†)

−
(
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥22D − bk+1(x

†)

)
+

1

2
∥xk+1 − xk∥24D+L⋆D−1L+4β−1

k Uk+4β−1
k L⋆U−1

k L
− 1

2
∥xk+1 − xk∥2Uk

+ (1 + 2/βk)∥rk −Rk∥2U−1
k

+
〈
x̂k+1 − x† | Rk − rk

〉
. (3.50)

Taking the supremun over x ∈ dom(f)× dom(g⋆) and using (3.46), we obtain (3.45).

3.2 Convergence properties

In this section, we characterize the convergence properties of Algorithm 3.1. We start by studying
its (weak) convergence profile in Section 3.2.1. Then, in Section 3.2.2, we develop the conditions
and assumptions under which this algorithm converges linearly.

3.2.1 Weak convergence

The weak convergence of the iterate as well as the convergence of the smoothed primal-dual gap
function value to 0 rely on the following results that establish the bound of the variance Ek[∥rk −
Rk∥2U−1

k

] as well as the descent property of a suitable Lyapunov function.
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In view of (3.19) in Lemma 3.5, we need to estimate the variance Ek[∥rk −Rk∥2U−1
k

] by means

of the difference K(xk, v
†)−K(x†, vk) for some x† = (x†, v†) ∈ S, where S is defined by (2.9). For

this purpose, we introduce the following definition.

Definition 3.9 For every k ∈ N, let xk = (xk, vk) and wk = (w1,k, w2,k). For x† = (x†, v†) ∈ S,
the function Θ(xk) is defined by the difference

Θ(xk) := Θ(xk, vk) = K(xk, v
†)−K(x†, vk),

where the Lagrangian function K is defined by (2.11);

and the (total) MSE associated to the auxiliary variables (w1,k, w2,k) against (x
†, v†)

Q(wk) := Q(w1,k, w2,k) = Ξh(w1,k, x
†) + Ξℓ⋆(w2,k, v

†),

where Ξh and Ξℓ⋆ are defined by (3.6) and (3.7), respectively. (3.51)

Using this definition, we can bound the variance Ek[∥rk − Rk∥2U−1
k

] wherewith the following

Lemma.

Lemma 3.10 Let x† ∈ S and define

P = diag((1− p) Id, (1− q) Id) :=

(
(1− p) Id 0

0 (1− q) Id

)
.

Then, following Definition 3.9,

Ek

[
∥rk −Rk∥2U−1

k

]
≤ 2γk(1− p)

(
Q(wk−1) + 4µΘ(xk)

)
+ ∥xk − xk−1∥24D2PU−1

k

, (3.52)

where we set p = min{p, q} and µ = max{µ, ν}.

Proof. Using Lemma 3.3, we first have

Ek

[
∥rk −Rk∥2U−1

k

]
= τkEk[∥zk −∇h(yk)∥2] + σkEk[∥dk −∇ℓ⋆(uk)∥2]

≤ 2τk(1− p)
(
Ξh(w1,k−1, x

†) + Ξh(yk, x
†)
)

+ 2σk(1− q)
(
Ξℓ⋆(w2,k−1, v

†) + Ξℓ⋆(uk, v
†)
)
. (3.53)

By definition of Ξh and Ξℓ⋆ , using the triangle inequality, the Lipschitz continuity of ∇hi and
∇ℓ⋆j with respect to the constant µ and ν, respectively, as well as (3.2), we derive the following
inequalities

Ξh(yk, x
†) =

1

np

np∑
i=1

∥∇hi(yk)−∇hi(x
†)∥2

≤ 2

np

np∑
i=1

∥∇hi(yk)−∇hi(xk)∥2 +
2

np

np∑
i=1

∥∇hi(xk)−∇hi(x
†)∥2

≤ 2

np
µ2

np∑
i=1

∥yk − xk∥2 + 2Ξh(xk, x
†)
)

≤ 2
(
µ2∥xk − xk−1∥2 + Ξh(xk, x

†)
)
, (3.54)
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and similarly
Ξℓ⋆(uk, v

†) ≤ 2
(
ν2∥vk − vk−1∥2 + Ξℓ⋆(vk, v

†)
)
. (3.55)

Inserting (3.54) and (3.55) to (3.53), we can further estimate (3.53) as

Ek

[
∥rk −Rk∥2U−1

k

]
≤ 2τk(1− p)

(
Ξh(w1,k−1, x

†) + 2µ2∥xk − xk−1∥2 + 2Ξh(xk, x
†)
)

+ 2σk(1− q)
(
Ξℓ⋆(w2,k−1, v

†) + 2ν2∥vk − vk−1∥2 + 2Ξℓ∗(vk, v
†)
)

≤ 2γk(1− p)
((

Ξh(w1,k−1, x
†) + Ξℓ⋆(w2,k−1, v

†)
)
+ 2
(
Ξh(xk, x

†) + Ξℓ⋆(vk, v
†)
))

+ ∥xk − xk−1∥24D2PU−1
k

= 2γk(1− p)
(
Q(wk−1) + 2

(
Ξh(xk, x

†) + Ξℓ⋆(vk, v
†)
))

+ ∥xk − xk−1∥24D2PU−1
k

. (3.56)

The second term in (3.56) is bounded by Θ(xk), as indicated by Lemma 3.3 in [24],

Ξh(xk, x
†) + Ξℓ⋆(vk, v

†) ≤ 2µΘ(xk). (3.57)

Therefore, the variance is bounded by

Ek

[
∥rk −Rk∥2U−1

k

]
≤ 2γk(1− p)

(
Q(wk−1) + 4µΘ(xk)

)
+ ∥xk − xk−1∥24D2PU−1

k

, (3.58)

which proves (3.52).

Next, we introduce the following Lyapunov function

Definition 3.11 For every k ∈ N, the Lyapunov function Lk(x
†) is defined by

Lk(x
†) = Θ(xk) +Q(wk−1) +

1

2
∥xk − x†∥2Uk

− bk(x
†) +

1

2
∥xk − xk−1∥2V k

, (3.59)

where Θ(xk) and Q(wk−1) are defined following (3.51) and bk(x
†) by (3.18).

The following Theorem proves that the Lyapunov function verifies a descent property based on the
bound of the variance Ek[∥rk −Rk∥2U−1

k

] as obtained in Lemma 3.10.

Theorem 3.12 Let x† ∈ S, p = max{p, q}, V̂ = diag
(
(2µ+ 4pµ2) Id, (2ν + 4qν2) Id

)
and k ∈ N.

Define γk = max{σk, τk} and

Λk+1 =

(
( 1
τk

− 2µ− 8(1− p)τk+1µ
2) Id−L⋆L

ν 0

0 ( 1
σk

− 2ν − 8(1− q)σk+1ν
2) Id−LL⋆

µ

)
− V̂

V k = V̂ +

(
8(1− p)µ2τk Id 0

0 8(1− q)ν2σk Id

)
.

(3.60)
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Set ϵ ∈
]
0, p
[
, where p = min{p, q}. Let (ηk)k∈N be a sequence in ℓ1+(N). Suppose that the following

conditions are verified.
4µ
(
2γk(1− p) + p

)
+ ϵ ≤ 1 + ηk, with µ = max{µ, ν}

(2γk + 1)(1− p) + ϵ ≤ 1 + ηk,

Uk−1 ⪰ Uk ⪰ ϵ Id+∥L∥2V̂ −1
,

Λk ⪰ ϵ Id .

(3.61)

Then, for all k, the following descent property is verified by the Lyapunov function Lk(x
†) (3.59):

Ek

[
Lk+1(x

†)
]
+

1

2
Ek

[
∥xk+1 − xk∥2Λk+1

]
≤ (1 + ηk)Lk(x

†)− ϵ
(
Θ(xk) +Q(wk−1)

)
. (3.62)

Proof. Using the same notations as defined for Lemma 3.5 and Lemma 3.10, and the expression
(3.19) with x = x†, we obtain

Θ(xk+1) ≤
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥22D − bk(x

†)

−
(1
2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥22D − bk+1(x

†)
)

+
1

2
∥xk+1 − xk∥24D+L⋆D−1L

− 1

2
∥xk+1 − xk∥2Uk

+ ∥rk −Rk∥2U−1
k

+
〈
x̂k+1 − x† | Rk − rk

〉
. (3.63)

From Lemma 3.3, we deduce

Ek

[〈
x̂k+1 − x† | Rk − rk

〉]
= 0. (3.64)

Now, by taking the expectation Ek on both sides of (3.63) and invoking (3.52) in Lemma 3.10 as
well as (2.4), we obtain

Ek [Θ(xk+1)] ≤ 8γkµ(1− p)Θ(xk) + 2γk(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥22D +

1

2
∥xk − xk−1∥28D2PU−1

k

− bk(x
†)

− Ek

[
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥22D +

1

2
∥xk+1 − xk∥28D2PU−1

k+1

− bk+1(x
†)

]
+ Ek

[
1

2
∥xk+1 − xk∥24D+L⋆D−1L+8D2PU−1

k+1

− 1

2
∥xk+1 − xk∥2Uk

]
. (3.65)

Since following (3.51), Q(wk) = Ξh(w1,k, x
†)+Ξℓ⋆(w2,k, v

†), its expectation Ek[Q(wk)] can be upper
bounded by using inequalities (3.54), (3.55) and (3.57),

Ek [Q(wk)] = Ek

[
Ξh(w1,k, x

†) + Ξℓ⋆(w2,k, v
†)
]

= (1− p)Ξh(w1,k−1, x
†) + (1− q)Ξℓ⋆(w2,k−1, v

†) + pΞh(yk, x
†) + qΞℓ⋆(uk, v

†)

≤ (1− p)Q(wk−1) +
1

2
∥xk − xk−1∥24D2(Id−P )

+ 4µ pΘ(xk). (3.66)
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We note that the the definition of V k and Λk+1 in (3.60) can be rewritten as{
V k = 2D + 4D2(Id−P ) + 8D2PU−1

k

Λk+1 = Uk − 2D − V k+1 −L∗D−1L.
(3.67)

Therefore, adding (3.65) to (3.66), we obtain1 by using the first three conditions in (3.61)

Ek [Θ(xk+1)] + Ek [Q(wk)] ≤ 4µ
(
2γk(1− p) + p

)
Θ(xk) + (2γk + 1)(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†)

− Ek

[
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2V k+1

− bk+1(x
†)

]
− Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ (1 + ηk − ϵ)

(
Θ(xk) +Q(wk−1)

)
+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†)

−Ek

[
1

2
∥xk+1 − x†∥2Uk+1

+
1

2
∥xk+1 − xk∥2V k+1

− bk+1(x
†)

]
−Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
. (3.68)

Now using the definition of bk(x) (see (3.18)), we have

bk(x
†) =

〈
xk − xk−1 | L(xk − x†)

〉
= ⟨L(xk − x) | vk − vk−1⟩+ ⟨L(xk − xk−1) | v − vk⟩

≤ 1

2

(
∥L∥2

2µ+ 4pµ2
∥xk − x†∥2 + (2µ+ 4pµ2)∥xk − xk−1∥2

)
+

1

2

(
∥L∥2

2ν + 4qν2
∥vk − v†∥2 + (2ν + 4qν2)∥vk − vk−1∥2

)
.

=
1

2
∥xk − x†∥2

∥L∥2V̂ −1 +
1

2
∥xk − xk−1∥2V̂ . (3.69)

The inequality (3.69) implies that

1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†) ≥ 1

2
∥xk − xk−1∥2V k−V̂

+
1

2
∥xk − x†∥2

Uk−∥L∥2V̂ −1

≥ 0, (3.70)

where the last inequality follows from V k − V̂ = 8PU−1
k ⪰ 0 and Uk − ∥L∥2V̂ −1 ⪰ ϵ Id in (3.61).

Hence,
1
2∥xk − x†∥2Uk

+ 1
2∥xk − xk−1∥2V k

− bk(x
†) ≤ (1 + ηk)

(
1
2∥xk − x†∥2Uk

+ 1
2∥xk − xk−1∥2V k

− bk(x
†)

)
Lk(x

†) ≥ 1
2∥xk − x†∥2Uk−∥L∥2 Id /µ ≥ ϵ

2∥xk − x†∥2.
(3.71)

1Since both expectations exist, the LHS can be equivalently written as Ek [Θ(xk+1) +Q(wk)].

18



Moreover, in terms of the Lyapunov function defined by (3.59), we can rewrite (3.68) as

Ek

[
Lk+1(x

†)
]
+ Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ (1 + ηk)Lk(x

†)− ϵ
(
Θ(xk) +Q(wk−1)

)
, (3.72)

which proves (3.62).

We specify the condition (3.61) in the following examples.

Example 3.13 Assume the Lipschitz constants verify µ = ν; thus, µ = µ. Set ηk ≡ 0. Then the
conditions (3.61) are satisfied when the strictly positive stepsize sequence (τk, σk)k∈N verifies the
following conditions

(i) γk = max{τk, σk} ≤ min

{
p− ϵ

2(1− p)
,
1− ϵ− 4µ p

8µ(1− p)

}
.

(ii) τ−1
k−1 ≥ τ−1

k ≥ ϵ+
∥L∥2

2µ(1 + 2pµ)
and σ−1

k−1 ≥ σ−1
k ≥ ϵ+

∥L∥2

2ν(1 + 2qν)

(iii) τ−1
k ≥ 4µ+ 4pµ2 + 4µ2(p− ϵ) +

1

ν
∥L∥2 + ϵ and σ−1

k ≥ 4ν + 4qν2 + 4ν2(p− ϵ) +
1

µ
∥L∥2 + ϵ.

Example 3.14 Assume the stepsize τk = σk ≡ γ. Set ηk ≡ 0 and s = 2µ + 4pµ2. For simplicity,
further assume µ = ν and p = q, thus p = p = p. Then, Uk = γ−1 Id and D = µ Id. Then we can
simplify the conditions in Example 3.13 as

0 < γ ≤ min

{
p− ϵ

2(1− p)
,
1− ϵ− 4pµ

8µ(1− p)
,

s

∥L∥2 + sϵ
,

1

[4µ(1 + 4pµ+ µ(p− ϵ)) + µ−1∥L∥2] + ϵ

}
.

(3.73)

Remark 3.15 Note that the first term p−ϵ
2(1−p) appearing in (3.73) depends only on p. Let N be

the epoch and q = p = 1/N . We can take N large enough and ϵ = 1
2N such that

γ =
p− ϵ

2(1− p)
=

1

4(N − 1)
, (3.74)

which is much better than γ =
1

4N(µ+ ∥L∥)
used in [1] for Problem 1.1 whenever µ+ ∥L∥ > 1.

The main result of this Subsection can be now stated. The following theorem proves the almost
sure weak convergence of the sequence (xk)k∈N to a point x† ∈ S (2.9) and the convergence of the
sequence of (Θ(xk))k∈N to 0.

Theorem 3.16 Under the same setting as Theorem 3.12, the following hold for x† = (x†, v†) ∈ S.{
Θ(xk) = Θ(xk, vk) = K(xk, v

†)−K(x†, vk) → 0 almost surely;

Q(wk) = Q(wk,1, wk,2) = Ξh(w1,k, x
†) + Ξℓ⋆(w2,k, v

†) → 0 almost surely.
(3.75)

Moreover, if the following conditions (the lower boundedness of the primal stepsize τk and dual
stepsize σk) are verified

inf
k∈N

τk ≥ ϵ and inf
k∈N

σk ≥ ϵ, (3.76)

then (xk)k∈N= (xk, vk)k∈N converges weakly to some random variable x ∈ S almost surely (a.s.).
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Proof. Under the setting of Theorem 3.12, all the conditions stated in Lemma 2.6 are satisfied.
Consequently, there exists a random variable defined as L∞(x†) such that

Lk(x
†) → L∞(x†) a.s. as k → ∞, (3.77)

and

ϵ
∑
k∈N

Ek[
1

2
∥xk+1 − xk∥2] ≤

∑
k∈N

Ek[
1

2
∥xk+1 − xk∥2Λk

] < +∞ a.s., (3.78)

and ∑
k∈N

(
Θ(xk) +Q(wk−1)

)
< +∞. (3.79)

Hence, by [26, Corollary 2.6], we also obtain∑
k∈N

∥xk+1 − xk∥2 < +∞ (3.80)

as well as xk+1 − xk → 0, and Θ(xk) +Q(wk−1) → 0 a.s. (3.81)

Therefore, (3.75) is proved.

For the second part, we derive from (3.52) and (3.81) that∑
k∈N

Ek

[
∥rk −Rk∥2

]
< +∞ a.s.. (3.82)

Using [26, Corollary 2.6] again, we get by expanding rk and Rk following definition (3.15)

∥rk −Rk∥2 = ∥zk −∇h(yk)∥2 + ∥dk −∇ℓ⋆(uk)∥2 → 0 a.s., (3.83)

and thus, by (3.29), that{
∥x̂k+1 − xk+1∥2 ≤ τ2k∥zk −∇h(yk)∥2 + σ2

k∥tk −∇ℓ⋆(uk)∥2 → 0 a.s

∥x̂k+1 − xk∥ ≤ ∥x̂k+1 − xk+1∥+ ∥xk+1 − xk∥ → 0 a.s.
(3.84)

Moreover, (3.77) implies that (Lk(x
†))k∈N is bounded a.s. Hence, by (3.71), (∥xk+1 − x†∥Uk

)k∈N is
also bounded a.s. In turn, using the definition of bk(x

†) (3.18),

|bk+1(x
†)| ≤ ∥L∥∥xk+1 − xk∥∥xk+1 − x†∥Uk

= ∥L∥∥xk+1 − xk∥∥xk+1 − x†∥Uk
→ 0. (3.85)

Next, we derive from (3.81), (3.85) and (3.77) that

limLk+1(x
†) = lim ∥xk+1 − x†∥2Uk

= L∞(x†) a.s., (3.86)

which, in particular, implies that (xk)k∈N is bounded almost surely. Let x be a weak cluster point of
(xk)k∈N, i.e., there exists a subsequence (xnk

)k∈N that converges weakly a.s to x. Note that (ynk
)k∈N

and (x̂nk
)k∈N also converge weakly a.s to x. As k → ∞, from

U−1
k (xk − x̂k+1 −Cyk) ∈ M x̂k+1, (3.87)

and (3.76), we obtain x ∈ zer(M + C) = S a.s. Therefore, by [34, Proposition 2.5], (xk)k∈N
converges weakly a.s. to a point in S.
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We next show that the convergence of the function Θ(xk) (3.51) to 0 and the strong convergence
of (xk)k∈N imply the convergence of the partial duality gap function defined by

GZ(xk, vk) = sup
x∈Z

(K(xk, v)−K(x, vk)), (3.88)

where Z is a bounded set of H× G.

Corollary 3.17 Suppose that the conditions of Theorem 3.16 are satisfied and dim(H×G) < +∞.
Then, for any bounded set Z of H×G, which have nonempty intersection with the set of solutions
S, the partial duality gap converges to 0, i.e.,

sup
x∈Z

(K(xk, v)−K(x, vk)) → 0 a.s.. (3.89)

Proof. Since Z ∩ S ≠ ∅, the partial gap supx∈Z(K(xk, v)−K(x, vk)) is nonnegative. By Theorem
3.16 and dim(H × G) < +∞, xk → x† a.s. and λ0 = supx∈Z ∥x∥ < +∞. Simple calculations show
that (

K(xk, v)−G(xk, v
†)
)
−
(
K(x, vk)−G(x†, vs+1)

)
= G(x†, v)−G(x, v†) +

〈
L(xk − x†) | v − v†

〉
−
〈
L(x− x†) | vk − v†

〉
. (3.90)

Since x† ∈ S, the convexity of f, h, g, ℓ and the linearity of L imply that G(x†, v) − G(x, v†) ≤ 0.
Therefore, it follows from (3.90) that(

K(xk, v)−G(xk, v
†)
)
−
(
K(x, vk)−G(x†, vk)

)
≤
〈
L(xk − x†) | v − v†

〉
−
〈
L(x− x†) | vk − v†

〉
≤ ∥L∥(λ0 + ∥x†∥)∥xk − x†∥+ ∥L∥(λ0 + ∥v†∥)∥vk − v†∥, (3.91)

which implies that

sup
x∈Z

(K(xk, v)−K(x, vk)) ≤ Θ(xk) + ∥L∥(λ0 + ∥x†∥)∥xk − x†∥+ ∥L∥(λ0 + ∥v†∥)∥vk − v†∥. (3.92)

Since Θ(xk) → 0 and xk → x† a.s., (3.89) follows from (3.92).

We next show that the proposed method is a variance reduction method.

Corollary 3.18 Under the same setting as Theorem 3.12, Algorithm 3.1 is indeed a variance
reduction method in the sense of Definition 2.5.

Proof. The conclusion follows directly from (3.82).

The following theorem proves the almost sure convergence of Gβk
(xk; x

†) to 0 and the almost
sure weak convergence of the sequence (xk)k∈N to a point x† ∈ S.
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Theorem 3.19 Let k ∈ N and defineZk =

(
8µ2τk(1 +

2
βk
)(1− p) + 4τk

βk
L⋆L 0

0 8ν2σk(1 +
2
βk
)(1− q) + 4σk

βk
LL⋆

)
+ V̂

Λk+1 = Uk −Tk+1 −Zk+1.

(3.93)

Define the following Lyapunov function

Lβk
(x†) = Gβk

(xk; x
†) +Q(wk−1) +

1

2
∥xk − x†∥2Uk

− bk(x
†) +

1

2
∥xk − xk−1∥2Zk

, (3.94)

where Gβk
(xk; x

†) is defined at each iterate k ∈ N following (2.10) and Q(wk−1) by (3.51). Let
p = max{p, q} and p = min{p, q}. Let (ηk)k∈N be a sequence in ℓ1+(N). Suppose that for all k ∈ N,
the following conditions are verified.

βk ≥ βk−1,

4µ
(
2γk(1− p) + p

)
+ ϵ ≤ 1 + ηk with γk = γk(1 + 2/βk),

(2γk + 1)(1− p) + ϵ ≤ 1 + ηk with γk = γk(1 + 2/βk),

Uk−1 ⪰ Uk ⪰ ϵ Id+∥L∥2V̂ −1
,

Λk ⪰ ϵ Id .

(3.95)

Then, for all k ∈ N, the following descent property is verified by the Lyapunov function (3.94)

Ek

[
Lβk+1

(x†)
]
+ Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ (1 + ηk)Lβk

(x†)− ϵ
(
Gβk

(xk; x
†) +Q(wk−1)

)
. (3.96)

Consequently,
Gβk

(xk; x
†) → 0 and Q(wk) → 0 a.s.. (3.97)

Moreoover, if (3.76) is satisfied, then (xk)k∈N converges weakly to some random variable x ∈ S
almost surely.

Proof. Obseve that we can rewrite (3.93) as{
Zk = Sk + 8D2PkU

−1
k + 4D2(Id−P ),

Λk+1 = Uk −Tk+1 −Zk+1

(3.98)

where Pk = (1 + 2/βk)P . It follows from Lemma 3.10 that

(1 + 2/βk)Ek

[
∥rk −Rk∥2U−1

k

]
≤ 2γk(1− p)

(
Q(wk−1) + 4µΘ(xk)

)
+ ∥xk − xk−1∥24D2PkU

−1
k

(3.99)

Hence, by taking conditional expectation on both sides of (3.45) in Lemma 3.8, we obtain

Ek

[
Gβk

(xk+1; x
†)
]
≤ 2γk(1− p)

(
Q(wk−1) + 4µΘ(xk)

)
+ ∥xk − xk−1∥24D2PkU

−1
k

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Sk

− bk(x
†)

−
(
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2Sk+1

− bk+1(x
†)

)
+

1

2
∥xk+1 − xk∥2Sk+1+Tk+1

− 1

2
∥xk+1 − xk∥2Uk

. (3.100)
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Adding (3.66) to (3.100), we obtain

Ek

[
Gβk

(xk+1; x
†)
]
+ Ek [Q(wk)] ≤ 4µ

(
2γk(1− p) + p

)
Θ(xk) + (2γk + 1)(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Sk+8D2PkU

−1
k +4D2(Id−P )

− bk(x
†)

−
(
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2Sk+1

− bk+1(x
†)

)
+

1

2
∥xk+1 − xk∥2Sk+1+Tk+1

− 1

2
∥xk+1 − xk∥2Uk

. (3.101)

In view of the notations defined in (3.98), we can rewrite (3.101) as

Ek

[
Gβk

(xk+1; x
†)
]
+ Ek [Q(wk)] ≤ 4µ

(
2γk(1− p) + p

)
Θ(xk) + (2γk + 1)(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Zk

− bk(x
†)

−
(
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2Zk+1

− bk+1(x
†)

)
− 1

2
∥xk+1 − xk∥2Λk+1

. (3.102)

Since (βk)k∈N is assumed increasing, Gβk
(xk+1; x

†) ≥ Gβk+1
(xk+1; x

†). Moreover, by Lemma 2.2,
Θ(xk) ≤ Gβk

(xk; x
†). Therefore, (3.102) can be further estimated as follows

Ek

[
Lβk+1

(x†)
]
+ Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ 4µ

(
2γk(1− p) + p

)
Gβk

(xk; x
†) + (2γk + 1)(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Zk

− bk(x
†)

≤ (1 + ηk)
(
Gβk

(xk; x
†) +Q(wk−1)

)
+

1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Zk

− bk(x
†)

− ϵ
(
Gβk

(xk; x
†) +Q(wk−1)

)
. (3.103)

Next, we use (3.69) to obtain

1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Zk

− bk(x
†) ≥ 1

2
∥xk − xk−1∥2Zk−V̂

+
1

2
∥xk − x†∥2

Uk−∥L∥2V̂ −1

≥ 0, (3.104)

where the last inequality follows from Zk − V̂ ⪰ 0 and Uk − ∥L∥2V̂ −1 ⪰ ϵ Id in (3.95). Therefore,
we can further estimate (3.103) as

Ek

[
Lβk+1

(x†)
]
+ Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ (1 + ηk)

(
Gβk

(xk; x
†) +Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2Zk

− bk(x
†)

)
− ϵ
(
Gβk

(xk; x
†) +Q(wk−1)

)
= (1 + ηk)Lβk

(x†)− ϵ
(
Gβk

(xk; x
†) +Q(wk−1)

)
. (3.105)
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Hence, (3.96) is proved. The remainder of the proof is similar to the proof of Theorem 3.16, and
we omit it here.

Remark 3.20 Here are some comments.

(i) The weak convergence of the iterate as well as the convergence of the smoothed primal-dual
gap function appear to be new in the context of loopless variance reduction method for solving
primal-dual problems. In the case of non-loopless variance reduction method, this kind of
result has also been obtained in [25]. While the proof of the almost sure convergence of the
iterations based on the gap function is not new approach even in the stochastic; see [31, 25]
for instance.

(ii) To the best of our knowledge, our results appear to be the first establishing the convergence
of the smoothed primal-dual gap introduced by [16] in the stochastic setting.

3.2.2 Linear convergence

In this section, we study the linear convergence properties of the proposed algorithm. More pre-
cisely, we establish the linear convergence in expectation of the duality and the smoothed primal-
dual gap as well as the iteration.

Theorem 3.21 Suppose that f and g⋆ are strongly convex functions with strictly positive constants
θ1 and θ2, respectively. Let µ = max{µ, ν}, p = max{p, q} and p = min{p, q}. For every k ∈ N,
set ϵ = infk∈Nmin{θ1τk, θ2σk} and γk = max{τk, σk}. Suppose that ρ0 verifies

(∀k ∈ N)


(2 + ϵ)(1− ρ0) ≤ ϵ

4µ
(
2γk(1− p) + p

)
≤ ρ0 < 1

(2γk + 1)(1− p) ≤ ρ0 < 1.

(3.106)

and that

(∀k ∈ N)

 Uk−1 ⪰ Uk

Λk+1 ⪰
1− ρ0
ρ0

(V k+1 +L⋆U−1
k+1L).

(3.107)

Then, the following hold:

Ek[Θ(xk+1)] = O(ρk0), Ek[Q(wk)] = O(ρk0) and Ek

[
[ϵ∥xk+1 − x†∥2Uk+1

]
≤ O(ρk0). (3.108)

Proof. By using (3.41), instead of (3.68), we obtain

Ek

[
Θ(xk+1) +Q(wk) +

ϵ

2
∥xk+1 − x†∥2Uk

]
≤ 4µ

(
2γk(1− p) + p

)
Θ(xk) + (2γk + 1)(1− p)Q(wk−1)

+
1

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†)

− Ek

[
1

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2V k+1

− bk+1(x
†)

]
− Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
. (3.109)
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This inequality together with the condition (3.106) gives

Ek [Θ(xk+1)] + Ek [Q(wk)] ≤ ρ0
(
Θ(xk) +Q(wk−1)

)
+

1 + ϵ

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†)− ϵ

2
∥xk − x†∥2Uk

− Ek

[
1 + ϵ

2
∥xk+1 − x†∥2Uk

+
1

2
∥xk+1 − xk∥2V k+1

− bk+1(x
†)

]
− Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
≤ ρ0

(
Θ(xk) +Q(wk−1)

)
+

1 + ϵ

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†)− ϵ

2
∥xk − x†∥2Uk

− Ek

[
1 + ϵ

2
∥xk+1 − x†∥2Uk+1

+
1

2
∥xk+1 − xk∥2V k+1

− bk+1(x
†)

]
− Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
= ρ0

(
Θ(xk) +Q(wk−1)

)
+ ak −

ϵ

2
∥xk − x†∥2Uk

− ak+1

−Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
, (3.110)

where the last inequality follows from the first condition in (3.107) and

ak =
1 + ϵ

2
∥xk − x†∥2Uk

+
1

2
∥xk − xk−1∥2V k

− bk(x
†). (3.111)

Then,

(1− ρ0)bk(x
†) = (1− ρ0)

〈
U−1

k L⋆(xk − xk−1) | xk − x†
〉
Uk

≥ −(1− ρ0)

2
∥xk − x†∥2Uk

− (1− ρ0)

2
∥xk − xk−1∥2L⋆U−1

k L
(3.112)

Therefore,

ak = ρ0ak + (1− ρ0)ak

= ρ0ak +
(1 + ϵ)(1− ρ0)

2
∥xk − x†∥2Uk

+
1− ρ0

2
∥xk − xk−1∥2V k

− (1− ρ0)bk(x
†)

≤ρ0ak +
(2 + ϵ)(1− ρ0)

2
∥xk − x†∥2Uk

+
1− ρ0

2
∥xk − xk−1∥2V k+L⋆U−1

k L
. (3.113)

Now, using the second condition in (3.106), i.e., (2 + ϵ)(1− ρ0) ≤ ϵ, we obtain

ak −
ϵ

2
∥xk − x†∥2Uk

≤ ρ0ak +
1− ρ0

2
∥xk − xk−1∥2V k+L⋆U−1

k L

= ρ0

(
ak +

1− ρ0
2ρ0

∥xk − xk−1∥2V k+L⋆U−1
k L

)
. (3.114)
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Therefore, (3.110) can be further estimated as

Ek [Θ(xk+1)] + Ek [Q(wk)] ≤ ρ0

(
Θ(xk) +Q(wk−1) + ak +

1− ρ0
2ρ0

∥xk − xk−1∥2V k+L⋆U−1
k L

)
− Ek [ak+1]− Ek

[
1

2
∥xk+1 − xk∥2Λk

]
= ρ0

(
Θ(xk) +Q(wk−1) + ak +

1− ρ0
2ρ0

∥xk − xk−1∥2V k+L⋆U−1
k L

)
− Ek

[
ak+1 +

1− ρ0
2ρ0

∥xk+1 − xk∥2V k+1+L⋆U−1
k+1L

]
+ Ek

[
1− ρ0
2ρ0

∥xk+1 − xk∥2V k+1+L⋆U−1
k+1L

]
− Ek

[
1

2
∥xk+1 − xk∥2Λk+1

]
(3.115)

The difference between the last two terms in (3.115) is negative due to the condition (3.107).
Therefore,

Ek [Θ(xk+1)] +Ek

[
Q(wk) + ak+1 +

1− ρ0
2ρ0

∥xk+1 − xk∥2V k+1+L⋆U−1
k+1L

]
≤ ρ0

(
Θ(xk) +Q(wk−1) + ak +

1− ρ0
2ρ0

∥xk − xk−1∥2V k+L⋆U−1
k L

)
(3.116)

Using this expression recursively, we obtain

Ek [Θ(xk+1)] + Ek

[
Q(wk) + ak+1 +

1− ρ0
2ρ0

∥xk+1 − xk∥2V k+1+L⋆U−1
k+1L

]
≤ O(ρk0), (3.117)

which proves the desired results.

Remark 3.22 Under the strong convexity of f and g⋆, the linear convergence of Θ(xk) implies the
linear convergence of the duality gap defined by (2.12), i.e., supx∈H×G K(xk, v)−K(x, vk) = O(ρk0)
[25]. Moreover, by using the same technique, the linear convergence of the smoothed primal-dual
gap function can be obtained. Hence, we omit it here.

Remark 3.23 The linear convergence of the duality gap as well as the smoothed primal-dual gap
function values under an additional condition like the strong convexity-concavity or the quadratic
error bound are well-known in both stochastic and deterministic settings; see for examples [5, 16,
24, 32]. If ℓ⋆ = 0 and f = 0, under additional assumptions on the linear operator L, [15] achieves
the linear convergence rate even when the strongly convex-concave condition is not full-filled.

The following proposition provides an explicit expression of the stepsize and will be further used
when developing the computational complexity results in Section 4.

Proposition 3.24 Under the same conditions stated in Theorem 3.21. Set χ := 10µ + ∥L∥2
µ .

Suppose that µ = ν, p = q < min{1/µ, 1/5} together with

θ1 = θ2 = θ ≤ min{(2µ+ χ)/(4χ), µ} (3.118)

and τk ≡ σk = γ ≤ 0.5/µ. Then the condition (3.106) and (3.107) are satisfied when

γ =
√
2min

{
p/(1− p)

(θ + 4)θ
;
(1/(4µ)− p)

4(1− p) + pθ
;

1

2(2µ+ χ)

}
. (3.119)
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Proof. Under the conditions p = q, µ = ν, θ1 = θ2 = θ and τk ≡ σk = γk ≡ γ, we have

ϵ = inf
k∈N

min{θ1τk, θ2σk} = γθ. (3.120)

If we take

ρ0 =
2

2 + ϵ
=

2

2 + γθ
< 1, (3.121)

then the first condition of (3.106) is satisfied. Moreover, from (3.106), simple calculations show
that the condition (2γ + 1)(1− p) ≤ ρ0 is satisfied when

γ ≤ γ00 :=
−(θ + 4) +

√
(θ + 4)2 + 16p/(1− p)

4θ

=
16p/(1− p)

4θ[θ + 4 +
√
(θ + 4)2 + 16p/(1− p)]

≥ 16p/(1− p)

8θ
√

(θ + 4)2 + 16p/(1− p)
(3.122)

≥
√
2p

(θ + 4)(1− p)θ
, (3.123)

where the last inequality follows from the condition p < 1/5 which implies

16p/(1− p)√
(θ + 4)2 + 16p/(1− p)

≥ 16p/(1− p)√
2(θ + 4)

. (3.124)

From (3.106), the condition 4µ
(
2γ(1− p) + p

)
≤ ρ0 is satisfied when

γ ≤ γ01 :=
−4(1− p)− pθ +

√
(4(1− p) + pθ)2 − 16θ(1− p)(p− 1/(4µ))

4θ(1− p)

≥ 16θ(1− p)(1/(4µ)− p)

8
√
2θ(1− p)(4(1− p) + pθ)

=

√
2(1/(4µ)− p)

4(1− p) + pθ
, (3.125)

where the last inequality follows from θ ≤ µ. The first condition of (3.107) is trivially satisfied
since τk = σk ≡ γ. Since (3.67), Λk+1 = Uk − 2D − V k+1 − L∗D−1L, the second condition in
(3.107) is equivalent to

Uk ⪰ 2D +
1

ρ0
V k+1 +L∗D−1L+

1− ρ0
ρ0

L⋆U−1
k+1L

= 2D +
1

ρ0
V k+1 + µ−1L⋆L+ γ

1− ρ0
ρ0

L⋆L

⪯ 2D +
1

ρ0
(V k+1 + µ−1L⋆L)

= 2D +
1

ρ0
(2D + 4D2(Id−P ) + 8D2PU−1

k + µ−1L⋆L)

⪯ 2D +
1

ρ0
(2D + 4D + 4D + µ−1L⋆L). (3.126)
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Therefore, the second condition in (3.107) is satisfied when

1

γ
≥ 2µ+

1

ρ0
(10µ+

∥L∥2

µ
), (3.127)

which implies since θ ≤ (2µ+ χ)/(4χ) that

γ ≤ γ02 :=
−(4µ+ 2χ) +

√
(4µ+ 2χ)2 + 8χθ

2χθ

≥
√
2

2(2µ+ χ)
. (3.128)

4 Complexity

The complexity analysis detailed in this section assumes that the functions f and g⋆ are strongly
convex. From Theorem 3.21 and Proposition 3.24, we derive the following result for the total
average complexity. By convention (as usually performed in the literature), we measure the per-
iteration complexity in terms of the number of the stochastic gradient calls, i.e., the number of
calls to the so-called Stochastic First-order Oracle (SFO)2.

Corollary 4.1 Under the same conditions stated in Theorem 3.21. Set χ := 10µ+ ∥L∥2
µ . Suppose

that µ = ν, θ1 = θ2 = θ, σk = γ ≤ 1/(2µ), τk = γ, nd = np = N > max{5, 2µ}, and p = q = 1/N .
Assume that θ ≤ min{(2µ + χ)/(4χ), µ}. Then, to reach an ϵ-accurate point, the total average

complexity is O
(
(N + µ/θ) log(1/ϵ)

)
.

Proof. First, referring to Theorem 3.21, the number of iterations to reach an ϵ-accurate point is
driven by ρ0. If we take ρ0 as in Proposition 3.24 and set ρ = 1

2θγ, then

ρ0 =
1

1 + 1
2γθ

=
1

1 + ρ
, where ρ =

1

2
θγ.

Hence, since log(1/(1 + ρ)) = − log(1 + ρ), the method reaches an ϵ-accurate point after

O
( log(1/ϵ)

log(1 + ρ)

)
(4.1)

iterations. Next, at each iteration, the number of calls in expectation to the stochastic first-order
oracle is

O(2 + pN). (4.2)

By multiplying the term (4.1) with (4.2) and approximating log(1 + t) ∼ t (t ≪ 1), we have

O
(
(2 + pN)

log(1/ϵ)

log(1 + ρ)

)
∼ O

(2 + pN

ρ
log(1/ϵ)

)
. (4.3)

2Whence, this complexity measure is often referred to as the oracle complexity.
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Since p = q = 1/N , it follows that

2 + pN

ρ
=

3

ρ
=

6

θγ
(4.4)

Referring to Proposition 3.24

6

θγ
= (3

√
2)max

{
(θ + 4)(1− p)

p
;
4(1− p) + pθ

(1/(4µ)− p)θ
;
2(2µ+ χ)

θ

}
;

hence,

O
(
(2 + pN)/ρ

)
∼ O(N +

µ

θ
). (4.5)

It follows that the the total average complexity is O
(
(N + µ/θ) log(1/ϵ)

)
.

Remark 4.2 In view of Corollary 4.1, the proposed method obtains the optimal total average com-
plexity O(N +µ/θ) log(1/ϵ). This recovers the complexity result in [19] obtained when minimizing
only one θ–strongly convex function h defined by finite sums. This result significantly improves
the total average complexity O(N +

√
N(µ + ∥L∥)/θ) log(1/ϵ) obtained in [8] and [2]. Moreover,

we can also observe that the total average complexity obtained for proposed method improves the
complexity of the deterministic method from O(N(µ+ ∥L∥)/θ) log(1/ϵ) to O(N + µ/θ) log(1/ϵ).

Remark 4.3 In view of (2.9), one can apply directly several existing methods for solving the
monotone inclusions 0 ∈ (M +C)x as in [5] and [2] to obtain suboptimal total complexity O(N +
(µ+ ∥L∥)2/θ2) log(1/ϵ) and O(N +

√
N(µ+ ∥L∥)/θ) log(1/ϵ), respectively.

5 Conclusion

In this paper, we developed a new primal-dual splitting algorithm with loopless variance reduction
for solving Problem 1.1. We proved the weak almost sure convergence of the iterations and the
convergence of the duality gap and the smoothed primal-dual gap functions as well as of the full
gradient. Linear convergence is also obtained under the strong convexity condition. We also note
that when Step 1 of Algorithm 3.1 is modified as{

yk = (1 + ωk)xk − ωkxk−1

uk = (1 + ωk)vk − ωkvk−1

where ωk ≥ 0; then, under the same conditions on ωk as those used in [25], all results presented in
this paper can be extended to this general case with minor modification of the conditions. In terms
of computational complexity, the proposed stochastic primal-dual splitting algorithm reaches the
optimal total average complexity as in [19].
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Appendix A [26, Corollary 2.6] Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of F, let
(xn)n∈N be a [0,+∞[-valued random sequence such that, for every n ∈ N, xn−1 is Fn-measurable
and ∑

n∈N
E[xn|Fn] < +∞ a.s.. (5.1)

Then
∑
n∈N

xn < +∞ a.s..

Proof. Let us set

(∀n ∈ N) zn =
n−1∑
k=1

xk.

Then, zn is Fn measurable. Moreover,

E[zn+1|Fn] = zn + E[xn|Fn]. a.s..

Hence, it follows from Lemma 2.6 and (5.1) that (zn)n∈N converges a.s..
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