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Abstract

This work introduces a novel blackbox optimization algorithm for computa-
tionally expensive constrained multi-fidelity problems. When applying a direct
search method to such problems, the scarcity of feasible points may lead to
numerous costly evaluations spent on infeasible points. Our proposed fidelity and
interruption controlled optimization algorithm addresses this issue by leveraging
multi-fidelity information, allowing for premature interruption of an evaluation
when a point is estimated to be infeasible. These estimations are controlled by a
biadjacency matrix, for which we propose a construction. The proposed method
acts as an intermediary component bridging any non multi-fidelity direct search
solver and a multi-fidelity blackbox problem, giving the user freedom of choice for
the solver. A series of computational tests are conducted to validate the approach.
The results show a significant improvement in solution quality when an initial
feasible starting point is provided. When this condition is not met, the outcomes
are contingent upon specific properties of the blackbox.

Keywords: Blackbox optimization, Derivative-free optimization, Multi-fidelity,
Constrained optimization, Direct search methods, Static surrogates
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1 Introduction

This work considers the constrained optimization problem

min
x∈Ω

f(x) where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} (P)

in which X = [ℓ, u] ⊂ Rn is a set defined by unrelaxable constraints with ℓ, u ∈ Rn,
f : X → R = R ∪ {∞} and cj : X → R, j ∈ J = {1, 2, . . . ,m}, are the objective and
quantifiable constraint functions, respectively. The set of feasible points Ω, is delimited
by the constraint functions cj(x) ≤ 0, j ∈ J and by the bounds [ℓ, u]. These constraints
form the vector c(x) = (c1(x), c2(x), . . . , cm(x)). We use R because f can be set to ∞
to reject points when using a barrier method, and constraints can be set to ∞ when
a hidden constraint is violated.

The present work considers f and c as functions for which derivatives are unavail-
able, and as outputs of a multi-fidelity blackbox [1], which is expensive to run and
may fail to evaluate. Fidelity is defined as the degree to which a model reproduces the
state and behavior of the true object, represented here by the real scalar ϕ, an ele-
ment of a finite discrete subset of [0, 1]. An evaluation of f and c at ϕ = 1 results in
the highest precision, and usually the highest cost. Conversely, an evaluation at ϕ < 1
may be interpreted as the evaluation of a static surrogate model.

The computational time required to evaluate the blackbox at a trial point x ∈ X
using the fidelity ϕ is denoted by t(x, ϕ) ∈ R+. The functions f , c and cj appearing in
Problem (P) are expanded to f(x, ϕ), c(x, ϕ), and cj(x, ϕ), with f(x) = f(x, 1), c(x) =
c(x, 1), and cj(x) = cj(x, 1) for j ∈ J , where the parameter ϕ indicates the fidelity
of an evaluation. It is not assumed that with ϕa < ϕb, c(x, ϕa) and f(x, ϕa) can be
deduced from a blackbox evaluation at fidelity ϕb.

Recent literature concerning multi-fidelity blackbox optimization problems pre-
dominantly emphasizes research in the unconstrained case. The present work focuses
on the exploitation of constraint information from multi-fidelity. This research serves
as a first step, to propose an algorithmic approach that comprehensively leverages the
impact of fidelity on both constraint and objective function values.

1.1 Motivation

The study of multi-fidelity is motivated by an asset management blackbox optimiza-
tion problem encountered at Hydro-Québec as part of the PRIAD project [2–4],
which is constituted of computationally expensive blackboxes wherein the violation
of some constraints can be predicted with low fidelity evaluations. Since the overall
time allowed to the optimization process is limited, strategies need to be devised to
accelerate the evaluations.

One of the first strategy that comes to mind is parallelism, as in [5–7], but is
not sufficient to solve the problem in the allowed time. As discussed in [4], it would
require thousands of processors to solve the problem within a month or less, even
if one assumes linear improvement with the number of processors. In addition, this
assumption is unlikely to be satisfied since the speed gain diminishes when more
processors are used in the computation [8]. Instead, we suggest to solve Problem (P)
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based on (i) the preemption concept of [9], which allows to interrupt an evaluation as
soon as it is shown that a trial point x ∈ X will not replace the current incumbent
solution, and (ii) the idea of converging to a local solution by iteratively increasing the
fidelity [10, 11]. The purpose of using these mechanisms is to reduce the time spent
on evaluating uninteresting points, thereby increasing the total number of evaluations
and exploring the solution domain more intensively. In other words, the present work
attempts to only engage the minimal computational effort to reach better solutions
within a predetermined time budget.

1.2 Organization

The proposed approach embeds interruption opportunities into an iterative fidelity
evaluation process to reduce computational time. For a given blackbox problem, a
biadjacency matrix is constructed to select the fidelity level required to estimate the
feasibility of each constraint. This construction is based on a sub-problem, for which
a fast solving method is presented. Interruptions occur when a constraint is estimated
to be violated at a point from low fidelity information. Then, the point is assumed
infeasible without incurring time-consuming higher fidelity evaluations.

This document is structured as follows. Section 2 presents a literature review of
constraints management in a multi-fidelity blackbox optimization framework. Section 3
presents an algorithm to solve Problem (P). Details will then be provided to construct
the biadjacency matrix by solving the related optimization sub-problem, and to set
the resulting interruption mechanism in order to reduce computational time. Section 4
shows how the algorithm performs on different benchmarking blackboxes involving a
solar thermal power plant simulator. Finally, Section 5 discusses the results.

2 Literature Survey

This work addresses single objective blackbox optimization problems [1]. It also cate-
gorizes constraints based on the taxonomy of [12]. A constraint violation function h :
Rm → R, which stems from filter methods [13–15], is introduced in [16]:

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X

∞ otherwise.

This function measures the level of violation of relaxable constraints. When x ∈ Ω,
the function satisfies h(x) = 0, and h(x) > 0 otherwise. A first method to deal with
constraints is called the extreme barrier (EB), which is divided into two unconstrained
minimization phases [1]. The first is the feasibility phase, where minx∈Rn h(x) is solved
while disregarding the value of f , until a feasible point is found. Then, the optimality
phase takes place, where minx∈Rn fΩ(x) is solved, in which fΩ(x) = f(x) when x ∈ Ω
and fΩ(x) is set to ∞ otherwise. A more sophisticated approach for dealing with
quantifiable constraints is the progressive barrier (PB) [16]. It introduces a thresh-
old hk

max ∈ R, initialized at ∞, that progresses towards 0 as the iteration counter k
increases. Any trial point x such that h(x) > hk

max is rejected from consideration. Two
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incumbent points are updated at the end of each iteration k: the feasible solution x
with the lowest value of f(x), named xfeas, and the infeasible solution, named xinf,
with the lowest value of f(x) among the trial points satisfying h(x) ≤ hk

max. The PB
explores around both incumbent solutions, and as hk

max decreases, xinf approaches the
feasible region. Because it is frequent that f(xinf) < f(xfeas), this may lead to good
feasible solutions. The progressive-to-extreme barrier (PEB) [17] combines the EB and
PB approaches. Each constraint is initially treated by the PB, and as soon as it is
satisfied by the incumbent solution, it becomes treated by the EB for the remainder
of the optimization process.

To reduce the computational burden of an expensive blackbox, the two-phase inter-
ruptible EB algorithm [18] is a version of the EB adapted for problems where the
constraint values cj are sequentially computed through independent blackboxes. This
strategy exploits the fact that h(x) is the sum of non-negative terms. During the
evaluation of trial point x, the constraint violation function h(x) value is calculated
cumulatively. An evaluation is interrupted as soon as h(x) exceeds the constraint vio-
lation function value of the incumbent point. A second approach to the same problem
is the hierarchical satisfiability with EB algorithm [18].

It consists of solving a sequence of m optimization problems. The objective func-
tion of problem j, for j ∈ J , is to minimize cj(x) and is subject to ci(x) ≤ 0 for
i ∈ {1, 2, . . . , j− 1}. Each optimization is stopped as soon a feasible point with a non-
positive objective function value is found. The starting point of each problem but the
first is the final solution of the previous one. A feasible solution in found when all
problems are successfully solved. These approaches replicate the idea of interrupting
a simulation during its course when it becomes known that it will not contribute to
the optimization process [9].

To the authors’ knowledge, the term multi-fidelity often refers to the use of only
two fidelities (one high and one low), or a few more. Moreover, in the multi-fidelity
setting, low-fidelity sources are used to guide further sampling of the high-fidelity
source, either by finding promising regions, or by training a model in the context of
Bayesian optimization or other uses of Gaussian processes, and in the unconstrained
case. Alternatively, constraints can be considered with via a penalty in the objective
function [19]. Reviews of the usage of such methods in the last few decades are provided
in [20, 21]. Additionally, Bayesian optimization can be expanded to utilize multi-task
Gaussian processes [22, 23] and solve multi-objective problems [24, 25]. In this work,
multiple fidelity levels are instead exploited to reduce the overall cost of sampling the
true blackbox, and in the context of direct search methods for constrained problems.
This topic is the subject of very limited research. Herein, a novel algorithm that aims
to fill this gap is introduced. Moreover, the proposed approach selects relevant fidelity
levels instead of assuming that a low-fidelity source is necessarily helpful.

In [26], a heuristic method is proposed for unconstrained problems where the
objective function can be queried at a continuous range of fidelities [0, 1]. The global
optimization with surrogate approximation of constraints (GOSAC) algorithm [27]
uses radial basis function surrogate models for constraints to solve problems where
constraints are given by an expensive blackbox, but the objective function is easy to
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evaluate. In [28], machine learning is used to guide a direct search algorithm when hid-
den, binary and unrelaxable constraints are present. Similarly, [29] suggests a machine
learning approach to predict the violation of hidden constraints, but it is not integrated
in an optimization algorithm.

The fidelity of a model only indicates its predictive capability, but indicates nothing
on the computational cost of the model. Both concepts are combined to describe ade-
quacy of a model in [30]. They propose a framework to evaluate the model adequacy,
and show its use with the MADS algorithm [31]. The search step is used to select
points that minimize the error induced by low cost models within a trust region. This
framework expands the use of MADS to multi-disciplinary design optimization [32]
and time-dependent multidisciplinary design optimization [33].

The computational results in this paper are conducted with version 4 of the
NOMAD software package [34], which is an implementation of the MADS algo-
rithm [31]. When the multi-fidelity aspect of a blackbox is of stochastic nature,
many variations on the MADS algorithm and new direct search algorithms have been
proposed to take into account stochastic noise [35–38].

In the multi-fidelity literature, it is often the case that benchmarks used to assess
the performance of new techniques are analytical in nature; that is, it is assumed the
outputs come from a blackbox, but instead they come from a known mathematical
expression [39]. In the industrial setting however, it is possible for the amount of low-
fidelity sources to be virtually infinite, particularly when the output is acquired via
a simulation which can be sped up, and therefore approximated. Hence, benchmarks
such as [40, 41] should be favored.

3 Exploiting multi-fidelity in expensive constrained
problems

This section describes the fidelity and interruption controlled optimization algorithm.
The method is composed of three steps to solve Problem (P). First, a model of the
constraints’ feasibility when varying the fidelity is built through Latin hypercube (LH)
sampling [42]. Second, an optimization sub-problem which constructs a biadjacency
matrix B is solved. These two steps set up the interruption mechanism. Finally, a
direct search optimization process is launched using the interruption mechanism to
reduce computational time.

Before presenting the algorithm, we first outline how the interruption mecha-
nism is used in Section 3.1, and then explain how to build it in Section 3.2. Next,
Section 3.3 provides details on solving the sub-problem. Finally, the complete fidelity
and interruption controlled optimization algorithm is presented in Section 3.4.

3.1 Direct search using multi-fidelity based interruptions

An ordered discrete set of fidelities

Φ = {ϕi ∈ [0, 1] : i ∈ {1, 2, . . . , L}, 0 ≤ ϕ1 < ϕ2 < . . . < ϕL = 1}
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with ϕL = 1 as its largest element is considered. In situations where the fidelities ϕ are
free to be chosen in the continuous interval [0, 1], the set Φ can be chosen to contain
many elements, as unused fidelities will be automatically filtered out by the algorithm.
It may also only contain a few fidelities, each corresponding to a static surrogate model
available to the user.

The fidelity value ϕ = 0 indicates that only a priori constraints are evaluated. Such
constraints have a known explicit formulation, and do not require the execution of
an expensive process [12]. Inside a blackbox, a priori constraints are checked first and
outputs are directly returned if any are violated.

The proposed method assigns each blackbox constraint to a fidelity in Φ. These
assignments can be seen as vertices in a bipartite graph where the nodes of one part
represent the L fidelities, and the nodes of the other represent the m constraints. This
information is encapsulated in a biadjacency matrix B ∈ {0, 1}L×m, where Bij = 1
if constraint cj ≤ 0 is assigned to fidelity ϕi, and Bij = 0 otherwise. The assignment
Bij = 1 indicates that ϕi is the smallest fidelity that may be trusted to predict if the
constraint cj ≤ 0 is satisfied or not.

Section 3.2 describes how these assignments are computed.
Multi-fidelity evaluations are used not to guide the exploration of the solution

space, but rather to reduce overall computational time. As such, the algorithm is
coupled with a direct search solver that handles the exploration. When this solver
determines that x is the next point to evaluate, the fidelity controller algorithm per-
forms a sequence of calls, named sub-evaluations, to the blackbox in increasing order
of fidelity in Φ at x, skipping the fidelities without assigned constraints. The entire
blackbox evaluation process at x is interrupted as soon as a constraint cj(x) ≤ 0, for
some j ∈ J , is violated at some fidelity ϕi ∈ Φ, provided that the constraint is assigned
to a fidelity of at most ϕi. Then, the most recent sub-evaluation’s outputs are returned
to the solver. In this case, the solver may not receive the true blackbox output values,
but it will still correctly deem x infeasible. Figure 1 illustrates this process.

Fig. 1: Optimization loop with the fidelity controller algorithm. The notations f̄(x)
and c̄(x) indicate the output values at x ∈ X at the last fidelity used by the algorithm.
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Figure 2 shows an example with L = 3 that compares the fidelity controller algo-
rithm with the base case that always uses the highest fidelity. The points xk are
generated by the solver, and are evaluated sequentially. The width of the rectangles
represents evaluation time at a specified fidelity. The widths are constant in the base
case. In this example, only x1 and x5 are feasible, making them longer to evaluate
using the fidelity controller. However, the three other points are rapidly deemed infea-
sible and discarded. This allows the solver to explore an additional point within the
same time window.

Base case

x1 x2 x3 x4

ϕ3 ϕ3 ϕ3 ϕ3

Fidelity controller

x1 x2 x3 x4 x5

ϕ1 ϕ2 ϕ3 ϕ1 ϕ1 ϕ1 ϕ2 ϕ1 ϕ2 ϕ3

Time

Fig. 2: An example showing that performing interruptions may save time compared
to the base case that systematically uses the maximal fidelity.

Feasible points, which are evaluated at all fidelities in Φ, take longer to com-
pute with the fidelity controller algorithm. In counterpart, prioritizing time-saving by
assigning constraints to low fidelities carries the risk of misidentifying the feasibil-
ity of some points. This implies that defining the biadjacency matrix requires careful
consideration.

If it is allowed that no constraint is assigned to ϕ = 1, meaning the true output
values are never assessed, it is possible that the solution returned by the algorithm at
the end of an optimization is said to be feasible but is actually not. As this is highly
undesirable, the method also considers f∗, the value of the best feasible solution so far.
Whenever a point x that has not been sub-evaluated with ϕ = 1 is about to be labeled
as the best solution so far by the solver (if f(x) < f∗), an additional sub-evaluation
with ϕ = 1 is introduced to ensure the feasibility of x.

Algorithm 3.1 shows the fidelity controller algorithm. When values are returned
before the algorithm’s last line, the evaluation is said to be interrupted. An optimiza-
tion from a solver using Algorithm 3.1 constitutes the third step of the fidelity and
interruption controlled optimization algorithm.

3.2 Computing method for the biadjacency matrix

This section introduces a computing method for the matrix B which is broken down
into two parts. First, a model of how the constraints’ feasibility is affected by the
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Algorithm 3.1: Fidelity controller algorithm

Input: trial point x; biadjacency matrix B; incumbent value f∗; set of fidelities Φ

For each fidelity ϕi ∈ Φ to which at least one constraint is assigned∣∣∣∣∣∣∣
Evaluate f(x, ϕi) and c(x, ϕi), Store the values in f̄ and c̄.

If cj(x, ϕi) > 0 for some j ∈ J where Baj = 1 for some a ≤ i∣∣∣Return f̄ , c̄

If no constraint is assigned to ϕL = 1 and f̄ < f∗∣∣∣ Evaluate f(x, 1) and c(x, 1), Store the values in f̄ and c̄.

Return f̄ , c̄

fidelity is proposed. This process requires parallel computing to evaluate LH samples.
Second, this model is used to construct a B matrix.

3.2.1 Constraint feasibility relative to fidelity model

The user selects a sample size nH . If a starting point x0 is provided, the LH bounds
are centered around x0 in order to model the constraints’ feasibility where the opti-
mization is likely to take place. A new optimization parameter ρ ∈ [0, 1] named the
Latin hypercube sizing factor is introduced to indicate the size of the sampled region.
When ρ = 1, the region is equal to X = [ℓ, u], and smaller values correspond to smaller
regions. The centered LH bounds (ℓcen, ucen) contain the following elements:

ℓceni =max
(
ℓi, x0

i − ρ(ui − ℓi)
)

∀ i ∈ {1, 2, . . . , n} (1)

ucen
i =min

(
ui, x0

i + ρ(ui − ℓi)
)

∀ i ∈ {1, 2, . . . , n}. (2)

If no starting point is provided, the LH bounds are those of X. Let H ⊂ X denote
the set of LH points, and let Ωap be the set of points which do not violate any a priori
constraint, where Ω ⊆ Ωap ⊆ X. Define I = {1, 2, . . . , L} and the indicator function

1(cj(x, ϕ)) :=

{
0 if cj(x, ϕ) ≤ 0
1 otherwise

∀j ∈ J.

A fidelity ϕi ∈ Φ is said to be representative for a constraint cj ≤ 0 at a point x if

1(cj(x, ϕ)) = 1(cj(x, 1)) ∀ϕ ∈ Φ with ϕ ≥ ϕi.

This definition allows to identify fidelities at which a sub-evaluation correctly identifies
whether a constraint is violated or not on the LH samples. The behaviour of the
constraints relative to fidelity is modeled in two ways: the likeliness of a fidelity to
be representative for a given constraint at any point during the optimization, and the
likeliness of a constraint to be violated at a given fidelity at any point during the
optimization. Another point of interest is the expected sub-evaluation time for the
fidelities in Φ. For any i ∈ I and j ∈ J , define

rij := Pr[fidelity ϕi is representative for constraint cj ≤ 0 at some x ∈ X]
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pij := Pr[cj(x, ϕi) > 0 for some x ∈ X]

ti := Ex∈X [t(x, ϕi)].

Accordingly, the purpose of the LH samples is to estimate these statistical values. To
achieve this, every sample is evaluated at each fidelity in Φ. For any i ∈ I and j ∈ J :

rij ≃ r̂ij :=
1

|H ∩ Ωap|
|{x ∈ H ∩ Ωap : ϕi is representative for cj ≤ 0}| (3)

pij ≃ p̂ij :=
1

|H ∩ Ωap|
|{x ∈ H ∩ Ωap : cj(x, ϕi) > 0}| (4)

ti ≃ t̂i :=
1

|H ∩ Ωap|
∑

x∈H∩Ωap

t(x, ϕi). (5)

Note that when a point violates an a priori constraint, the other constraint values
are unavailable (and uninteresting), hence the use of H ∩ Ωap. This modeling of the
constraints’ behaviour relative to fidelity constitutes the first step of the fidelity and
interruption controlled optimization algorithm.

3.2.2 Optimal biadjacency matrix model

A biadjacency matrix is computed based on given values of rij , pij and ti. An
explicit optimization Problem Q is proposed below to compute B, which minimizes
the expected evaluation time during the optimization. It is also desired to minimize
the probability of causing an interruption on a feasible point, but a bi-objective model
is avoided by introducing a new threshold parameter ε ∈ [0, 1], the upper bound on
the probability that a constraint’s feasibility is misidentified during the optimization.
Every element Bij of the biadjacency matrix B corresponds to a decision variable
in the model. The additional decision variables yi are defined as follows. They are
continuous in Q per their unimodality.

yi =

{
1 if a sub-evaluation at fidelity ϕi would be executed by Algorithm 3.1

0 otherwise.

(6)
In Q, the objective function (9) represents the expected evaluation time of a single

point according to Algorithm 3.1. It is a sum of all the sub-evaluation times ti, multi-
plied by their probability of happening, which is the probability that no interruption
happens earlier multiplied by yi for each i ∈ I. It can be written as follows.

t1y1

+ t2y2Pr[no interruption at ϕ1]

+ t3y3Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]

+ t4y4Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]Pr[no interruption at ϕ3]

+ . . .
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= t1y1 +

L∑
i=2

(
tiyi

i−1∏
k=1

Pr[no interruption at ϕk]

)
. (7)

An index k denotes a fidelity index smaller than or equal to a given i ∈ I. The
probability that no interruption happens at a sub-evaluation at ϕk is the probability
that all constraints assigned to ϕk are satisfied after the sub-evaluation. Under the
hypothesis that these probabilities are independent, the product of each (1 − pkj)
where Bkj = 1 for each j ∈ J is computed. Therefore,

Pk(B) := Pr[no interruption at ϕk] =
∏
j∈J

(1− pkjBkj). (8)

The substitution of (8) in (7) results in (9). Problem Q is defined as follows

Q

min
B∈BL×m,y∈RL

f(B) = t1y1 +

L∑
i=2

tiyi

i−1∏
k=1

Pk(B) (9)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (10)

Bij − ε ≤ rij ∀(i, j) ∈ I × J (11)

Bij ≤ yi ≤ 1 ∀(i, j) ∈ I × J (12)

yi ≤
∑
j∈J

Bij ∀ i ∈ I. (13)

Equation (10) ensures that every blackbox constraint is assigned to exactly one
fidelity, Equation (11) enforces the ε upper bound, and Equations (12) and (13) ensure
the yi variables respect their definition (6).

Two assumptions are presumed by model Q. Although they are not required to
apply the algorithm, they are necessary to derive the theoretical results of Section 3.3.
Assumption 1. The conditional sub-evaluation launched by Algorithm 3.1’s second
to last line has no impact on the optimal biadjacency matrix.

Since the moments when the extra sub-evaluations happen are unpredictable,
model Q disregards them.
Assumption 2. If a constraint is satisfied at its assigned fidelity, then it is also
satisfied at any greater fidelity:

Bij = 1 and cj(x, ϕi) ≤ 0 =⇒ paj = 0 ∀ a > i, ∀x ∈ X.

Define Is = {i ∈ I|e⊤i B ̸= 0} where ei is the i-th column of the n × n identity
matrix. Without Assumption 2, for each constraint cj ≤ 0, ifBij = 1, then for each is ∈
Is, is > i, probability pisj needs to be redefined as pisj = Pr[cj(x, ϕis) > 0 | pi′sj ∀ i

′
s ∈

Is, i ≤ i′s < is]. In practice, this assumption is sometimes violated, although in a
proportion of cases of at most ε by definition of ε. Introducing Assumption 2 and
selecting a small ε value is preferable not only because it simplifies the problem, but
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also because a small ε reduces the likelihood of misidentifying the feasibility of the
constraints.

3.3 Solving the model

Notice that Problem Q is mixed-integer with a polynomial objective function. As
today’s solvers require a lot of solving time and have no guarantee of optimality for
such problems, an alternative solving method is proposed. Indeed, the set of possible
solutions may be reduced to the point where a simple exhaustive search is sufficient.

3.3.1 Reduction by introducing non-differentiability

The first reduction consists of simplifying the model by introducing non-differentiable
elements, which are allowed since only an exhaustive search will be conducted. First,
the yi variables are determined by the biadjacency matrix as:

yi(B) =

{
0 if

∑
j∈J

Bij = 0

1 otherwise
∀i ∈ I.

Hence, Equations (12) and (13) are removed, and a B matrix alone constitutes a
solution to the model. The function i : J → I is introduced, which returns the index
of the smallest fidelity in Φ where constraint cj ≤ 0 can be assigned without violating
Equation (11):

i(j) = min{i ∈ I : rij ≥ 1− ε}.
Equation (11) is then equivalent to imposing that a constraint cj ≤ 0 can not be
assigned to a fidelity ϕi when i < i(j). These new definitions allow for the definition
of Problem Q1, which is equivalent to Q.

Q1

min
B∈BL×m

t1y1(B) +

L∑
i=2

(
tiyi(B)

i−1∏
k=1

Pk(B)

)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (14)

Bij = 0 ∀ (i, j) ∈ I × J such that i < i(j). (15)

3.3.2 Reduction by filtering fidelities

The second reduction aims to decrease the number of rows of the biadjacency matrixB.
It follows from Theorem 3, which indicates that there exists an optimal solution for Q1

where each constraint is assigned to a fidelity ϕi such that

i ∈ IF :=
⋃
j∈J

i(j) ⊆ I, (16)

with IF the filtered set of fidelity indexes. Each fidelity ϕi where i /∈ IF can therefore
be removed without excluding an optimal solution for Q1, by replacing I with IF .
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Note that i(j) is a function that expresses a direct link between a fidelity index i and a
constraint index j. Conversely, the set IF removes that link. Theorem 3 states that an
optimal solution exists where all constraints are assigned to fidelities ϕi where i = i(j)
for some j ∈ J , no matter what this j is. The theorem holds under the following two
assumptions. In practice, they need not to be verified to apply the algorithm.
Assumption 3. For any index j ∈ J , the probabilities pij are monotonic decreasing
with i, for each i where constraint cj ≤ 0 can be assigned to fidelity ϕi without violating
Equation (15):

paj ≥ pbj ∀j ∈ J, ∀a, b ∈ I where i(j) ≤ a < b.

This assumption simplifies the proof of Lemma 2. A more realistic and technical
assumption in the context of blackbox optimization is discussed in [43], where it is
shown that even when Assumption 3 is violated, as ε becomes smaller, the likelihood
of Theorem 3 being valid increases.
Assumption 4. For any fixed value x ∈ X, the function t(x, ϕ) is monotonic
increasing with respect to ϕ.

This implies that for a given set of LH samples,

ta ≤ tb ∀ a, b ∈ I where a < b.

Lemma 1. Let B be a feasible solution for Q1. If there exists a fidelity index i′ ∈ I\IF
to which at least one blackbox constraint is assigned, then the matrix B′ where

B′
ij =

 0 if i = i′

1 if i = i′ − 1 and Bi′j = 1
Bij otherwise

∀(i, j) ∈ I × J (17)

is feasible for Q1.

Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which
at least one blackbox constraint is assigned. Equation (14) is satisfied by B′, because
it is satisfied by B and B′

i′−1 j +B′
i′j = 1 = Bi′−1 j +Bi′j for each j ∈ J . Concerning

Equation (15), on the one hand, if (i, j) ∈ I × J is such that i < i(j), then Bij = 0
since B is feasible. On the other hand, if j′ ∈ J is such that Bi′j′ = 1 then i′ > i(j′),
which is equivalent to i′ − 1 ≥ i(j′). The last condition in Equation (17) ensures that
B′

ij = Bij = 0 for each pair (i, j) ∈ I × J such that i < i(j), which implies that the
matrix B′ is feasible for Q1.

Lemma 2. Let B be a feasible solution for Q1. Under Assumption 3, if there exists
a fidelity index i′ ∈ I\IF to which at least one blackbox constraint is assigned, then
the matrix B′ given by (17) satisfies f(B′) ≤ f(B).

Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which at
least one blackbox constraint is assigned. The objective function (9) maybe be divided
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into four terms, which correspond to the fidelity indexes smaller than i′ − 1, equal
to i′ − 1, equal to i′ and greater than i′ of the sum

f(B) = T<i′−1(B) + Ti′−1(B) + Ti′(B) + T>i′(B)

where

T<i′−1(B) = t1y1(B) +

i′−2∑
i=2

tiyi(B)

i−1∏
k=1

Pk(B), Ti′−1(B) = ti′−1yi′−1(B)

i′−2∏
k=1

Pk(B),

Ti′(B) = ti′yi′(B)

i′−1∏
k=1

Pk(B), T>i′(B) =

L∑
i=i′+1

tiyi(B)

i−1∏
k=1

Pk(B).

Equation (17) ensures that the first term satisfies T<i′−1(B) = T<i′−1(B
′). Assump-

tion 3 ensures that the last term satisfies T>i′(B) ≥ T>i′(B
′), as the only change

from T>i′(B) to T>i′(B
′) is that all pi′j become pi′−1 j . For the two central terms, two

cases are considered. First, if yi′−1(B) = 0, then Ti′−1(B) = Ti′(B
′) = 0 as yi′(B

′) = 0.
Furthermore, Assumption 4 ensures that

Ti′(B) = ti′
i′−1∏
k=1

Pk(B) = ti′
i′−2∏
k=1

Pk(B
′) ≥ ti′−1

i′−2∏
k=1

Pk(B
′) = Ti′−1(B

′).

Second, if yi′−1(B) = 1, then Ti′−1(B) = Ti′−1(B
′) as the sub-evaluations at ϕi′−1

and at lower fidelities are unchanged, and Ti′(B) > Ti′(B
′) = 0 as yi′(B

′) = 0. In both
cases, the sum of the four terms of f(B) is greater than or equal to those of f(B′).
Consequently, f(B) ≥ f(B′).

Theorem 3. There exists an optimal solution for Q1 in which every blackbox con-
straint is assigned to a fidelity ϕi where i ∈ IF .

Proof. The argmin of Q1 can possibly contain only solutions where every blackbox
constraint is assigned to a fidelity ϕi where i ∈ IF . The theorem is then trivial.
Otherwise, there exists a solution B∗

0 in the argmin of Q1 such that the set

I ′(B∗
0) := {i ∈ I\IF : yi(B

∗
0) = 1}

is not empty. For a given i′ ∈ I ′(B∗
0), it is possible to find another solution, B∗

1 , where
every constraint assigned to ϕi′ is rather assigned to ϕi′−1, and where every other
assignment is unchanged. Lemma 1 indicates that B∗

1 is feasible, and Lemma 2 indi-
cates that it yields an equal or better objective function value than B∗

0 . Therefore, B
∗
1

is also part of the argmin. Then, the set I ′(B∗
1) can then be calculated. As long as I ′ is

non-empty, this process is repeated to find B∗
2 , B

∗
3 and so on. The maximum number

of such iterations is max{L − i(j) : j ∈ J}, implying this process always terminates.
When it does in K iterations, I ′(B∗

K) = ∅, and B∗
K is an optimal solution for Q1 in

which every blackbox constraint is assigned to a fidelity belonging to IF .
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3.3.3 Reduction by filtering constraints

The third reduction simply consists of filtering out all a priori constraints, as they have
no impact on the optimal biadjacency matrix. This reduces the number of columns of
the biadjacency matrix B. The set J is replaced for

JF := {j ∈ J : cj ≤ 0 is not an a priori constraint}, (18)

the set of filtered constraint indexes.

3.3.4 Exhaustive search

First, consider Q1, and replace I with IF and J with JF , therefore removing columns
and rows of variables from matrix B. This new problem is named Q2. Equation (11)
indicates that Bij = 0 if rij < 1 − ε. Equation (10) indicates that every constraint
is assigned to exactly one fidelity. The set of solutions for Problem Q2 that satisfies
these two equations is denoted ΩQ. For each solution in ΩQ, the objective function
value is computed with (9), and an optimal solution is found. From this solution,
an optimal biadjacency matrix B∗ of size L × m can be created by reintroducing
columns J\JF and rows I\IF , and by giving the value of 0 to these new elements.
Computing such an optimal assignment with the estimations p̂ij , r̂ij and t̂i rather than
the true values which are unavailable constitutes the second step of the fidelity and
interruption controlled optimization algorithm. Because points from H∩Ωap are used to
compute these estimations, the a priori constraints are disregarded by model Q. This
is not problematic because they have no impact on the optimal biadjacency matrix.

3.4 Fidelity and interruption controlled optimization algorithm

The steps detailed in the previous sections are integrated in the fidelity and inter-
ruption controlled optimization algorithm, as shown in Algorithm 3.2. Any blackbox
optimization solver can be considered for the direct search step, including heuristic
methods. This is possible since the interruption mechanism is not implemented in the
solver, but as a wrapper around the blackbox. From the solver’s point of view, inter-
ruptions are part of the blackbox. If an unconstrained optimization solver is chosen, we
then recommend to use the extreme barrier function fΩ. The convergence guarantees
of Algorithm 3.2 are inherited from those of the solver.
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Algorithm 3.2: Fidelity and interruption controlled optimization algorithm

Input:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 optimization starting point (optional)

(P) problem containing X ⊆ Rn, f and c

Φ ordered set of fidelities ending with 1

ε upper bound on the probability that a constraint’s feasibility is misidentified

ρ, nH Latin hypercube sizing factor and sample size

solver direct search blackbox optimization solver

1. Constraint feasibility relative to fidelity model.∣∣∣∣∣∣∣∣∣∣∣

If x0 is provided, find the (ℓcen, ucen) bounds from X, ρ and x0 using (1) and (2).

Else, set (ℓcen, ucen) = (ℓ, u) and at end of step 1, set x0 as the best point in H.

Randomly determine H, the nH LH points bounded by ℓcen and ucen.

Evaluate each point in H at each fidelity in Φ by parallelizing as much as possible.

Calculate all r̂ij , p̂ij and t̂i estimations using (3), (4) and (5), respectively.

2. Optimal biadjacency matrix computation.∣∣∣∣∣∣∣
Find JF , and find IF with ε using (18) and (16), respectively.

Solve problem Q2 with an exhaustive search on ΩQ.

Create a matrix B ∈ BL×m from an optimal solution for Q2 using r̂ij , p̂ij and t̂i.

3. Direct search.∣∣∣∣∣∣∣
Initialise f∗ = ∞.

Launch solver, providing Algorithm 3.1 with matrix B as the blackbox evaluation

function, and x0 as the starting point if needed. Update f∗ after each evaluation.

Return the solver output
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4 Computational results

The interruption mechanism described above is tested on four instances of the solar1

family of blackbox problems [44]. To the best of the authors’ knowledge, solar is the
only benchmark blackbox problem collection where constraints can depend on fidelity.
The properties of the four solar instances used herein are presented in Table 1.

Instance n m nb. a priori constraints nb. multi-fidelity constraints

solar2 14 13 5 4
solar3 20 13 5 5
solar4 29 16 7 6
solar7 7 6 2 2

Table 1: Characteristics of the four studied blackbox problem
instances from the solar family of problems.

The NOMAD V4 [34] software package is chosen to quantify the effect of the inter-
ruption mechanism from Algorithm 3.2. NOMAD is an implementation of the MADS
algorithm [16, 31] conceived for constrained blackbox optimization problems. NOMAD
is used because that it has shown to be successful on real engineering and industrial
problems [45], it is freely available and can easily be modified to include the interrup-
tion mechanisms proposed here. Comparisons with other blackbox solvers, and tuning
the NOMAD parameters are beyond the scope of the present paper.

With NOMAD, constraints can be managed using the EB or the PB strategies.
Literature suggests that PB is preferable [16]. However, due to Algorithm 3.1 not
returning the true outputs when the evaluation of a point is interrupted, the EB might
be more adapted, as it rejects these points. Conversely, the PB uses output values to
compute new incumbent points. Therefore, two implementations and a base case are
tested for comparison:

• Inter PB: Algorithm 3.2 with NOMAD and the PB;
• Inter EB: Algorithm 3.2 with NOMAD and the EB;
• Base case: NOMAD with default parameters and blackbox fidelity fixed at 1.

The method introduced in this paper is motivated by computationally expensive
problems, such as Hydro-Québec’s asset management blackbox optimization prob-
lem from PRIAD, where the solver and the Algorithm 3.1 computation times are
insignificant in comparison. To replicate such problems with solar instances that are
computationally less demanding but possess desirable characteristics, only blackbox
computation times are considered in the following profiles. For both implementations
of the algorithm, the empirically determined values of nH = 104, ε = 0.05 and

Φ = {0, 10−10, 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

are chosen. All numerical experiments are performed using an Intel Xeon Gold 6150
CPU @ 2.70GHz processors.

1Available at https://github.com/bbopt/solar (version 1.0)
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4.1 Without a starting point for the optimization

This section presents optimizations where no starting point is provided by the user.
Consequently, the LH bounds are those of X. The base case also performs a LH with
the same parameters to find a starting point. Optimizations on three constrained
multi-fidelity instances of the solar family of blackboxes: solar2, solar3 and solar4 are
conducted. By varying the feasible starting point, 20 optimization runs are executed
for each tested instance. The results are illustrated in data profiles, with the initial
two profiles relating to solar2, and shown in Figure 3. As the LH times are identical,
only the optimization times are shown.

(a) τ = 0.05 (b) τ = 0.5

Fig. 3: solar2 data profiles from 20 runs with no x0.

The Algorithm 3.2’s success, whether paired with the EB or the PB, is mainly
attributed to two factors. Firstly, solar2 contains a frequently violated constraint with
a high estimated probability of representativity at low fidelities, which allows for
numerous quick interruptions on infeasible points. Secondly, the calculated B matrix
is accurate because the constraint feasibility relative to fidelity model is accurate for
most points encountered during optimization. The opposite is true for solar3 and solar4.
This happens because the constraints’ behaviour is non-homogeneous throughout X,
that is, the rij , pij and ti values vary greatly when they are calculated from differ-
ent sub-spaces of X. As a result, when using Algorithm 3.2 with those two instances,
every evaluated point is systematically estimated to be infeasible. No figures are shown
as there are no curves for the 3.2 implementations. Conversely, the base case finds
numerous feasible solutions.

4.2 With a starting point for the optimization

This section presents optimizations where a known feasible starting point is provided
by the user. The optimization runs are conducted on each constrained multi-fidelity
instances of the solar family of blackboxes: solar2, solar3, solar4 and solar7, in which ρ
is set to 1

4 ,
1
10 ,

1
20 and 1

4 respectively. Those values are based on preliminary results.
In this scenario, the base case does not perform any LH sampling, which grants it
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a time advantage. However, this advantage is inconsequential due to the extensive
parallelization of samples using Hydro-Québec’s facilities. By varying the NOMAD
seed for random polls, 20 optimization runs are executed for each tested instance, and
the results are illustrated in data profiles. Two data profiles for solar2 are shown in
Figure 4.

(a) τ = 0.1 (b) τ = 0.5

Fig. 4: solar2 data profiles with a starting point. Curves from implementations of
Algorithm 3.2 start at 642.22 seconds to account for LH sampling time.

With τ = 0.5, the base case solves a greater number of problems compared to the
proposed algorithm with the EB, as the implementation is highly inefficient for one
of the 20 optimization runs. In general, both implementations of Algorithm 3.2 are
preferable.

(a) τ = 0.05 (b) τ = 0.3

Fig. 5: solar3 data profiles from 20 runs with a given x0. Curves from implementations
of Algorithm 3.2 start at 45.64 seconds to account for LH sampling time.

Data profiles for solar3 and solar4 are shown in Figure 5 and Figure 6, respectively.
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(a) τ = 0.01 (b) τ = 0.1

Fig. 6: solar4 data profiles from 20 runs with a given x0. Curves from implementations
of Algorithm 3.2 start at 94.75 seconds to account for LH sampling time.

For both instances, the base case yields results comparable to Algorithm 3.2 paired
with the PB. On the other hand, when pairing the algorithm with the EB, it performs
significantly better. This can be attributed to a higher scarcity of feasible points in
solar3 and solar4 compared to solar2. This section also studies solar7, a constrained
multi-fidelity blackbox where infeasible points are much less common than for the
other tested instances. It serves as a test to assess how Algorithm 3.2 performs when
it has limited opportunities to interrupt evaluations and save time in contrast to the
base case. Additionally, the objective function value is affected by multi-fidelity for
this instance. Thus, the condition yL = 1 is imposed. Results show that the optimal
biadjacency matrix computed for this problem assigns all constraints to ϕL = 1. This
suggests that the method has discerned the absence of meaningful opportunities for
interruptions and that emulating the base case is the optimal approach. No figure
is shown; the base case and the PB implementation exhibit identical data profiles,
except for the fact that the base case consistently precedes by 181.07 seconds due to
its absence of LH sampling prior to any optimization.

5 Discussion

This work introduces a novel approach to computationally expensive multi-fidelity
blackbox optimization problems by leveraging low-fidelity assessments of constraints
violation to interrupt evaluations. These assessments are determined by a biadjacency
matrix, which balances computation cost and the probability of constraint violation.
Our computational results demonstrate that, under specific conditions, pairing the
NOMAD solver with the fidelity and interruption controlled optimization algorithm
yields significantly superior solutions compared to NOMAD alone. Here is a summary
of favorable conditions:

• scarce feasible points;

• accurate constraint violation assessments at lower fidelities;
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• homogeneity in constraint behaviour relative to fidelity within the LH bounds
defined by the sizing factor ρ.

This final condition is necessary for an accurate constraint feasibility relative to
fidelity model, which results in a high quality biadjacency matrix. When this condition
is not fulfilled with ρ = 1, the existence of a known feasible solution prior to the
optimization becomes vital; it enables the selection of a sizing factor ρ that increases
the homogeneity in constraint behaviour.

While the scarcity of feasible points typically presents challenges, the proposed
method achieves greater computational cost reductions under such a condition.

When utilizing the NOMAD solver, we observe that the preferred barrier choice
depends on the blackbox. For problems with infrequent feasible points, the EB is more
suitable, while the PB is mostly preferred when feasible points are more common.

Future work involves dynamically computing the biadjacency matrix and updating
the constraint feasibility relative to fidelity model, improving this model by introducing
machine learning methods such as [28, 29] as well as tools from trust-region methods
and developing a multi-fidelity barrier method. Additionally, the proposed algorithm
will be applied to complex industrial problems such as PRIAD, and adapted to these
problems when an exploitable structure from the blackbox is available.
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