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Abstract: This work introduces a novel multi-fidelity blackbox optimization algorithm
designed to alleviate the resource-intensive task of evaluating infeasible points. This al-
gorithm is an intermediary component bridging a direct search solver and a blackbox,
resulting in reduced computation time per evaluation, all while preserving the efficiency
and convergence properties of the chosen solver. This is made possible by assessing
feasibility through a broad range of fidelities, leveraging information from cost-effective
evaluations before committing to a full computation. These feasibility estimations are
generated through a hierarchical evaluation of constraints, tailored to the multi-fidelity
nature of the blackbox problem, and defined by a biadjacency matrix, for which we propose
a construction. A series of computational tests using the NOMAD solver on the solar
family of blackbox problems are conducted to validate the approach. The results show a
significant improvement in solution quality when an initial feasible starting point is known
in advance of the optimization process. When this condition is not met, the outcomes are
contingent upon certain properties of the blackbox.
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1 Introduction
This work considers the constrained optimization problem

P min
x∈Ω

f(x) where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J}

in which X = [ℓ, u] ⊂ Rn is a set defined by unrelaxable constraints with ℓ, u ∈ Rn,
f : X → R = R ∪ {∞} and cj : X → R, j ∈ J = {1, 2, . . . ,m}, are the objective and
quantifiable constraint functions, respectively. The set of feasible points Ω, is delimited
by the constraint functions cj(x) ≤ 0, j ∈ J and by the bounds [ℓ, u]. These constraints
form the vector c(x) = (c1(x), c2(x), . . . , cm(x)). We use R because f can be set to ∞ to
reject points when using a barrier method, and constraints can be set to ∞ when a hidden
constraint is violated.

The present work considers that f and c are multi-fidelity blackboxes [12], are expensive
to run, may fail to evaluate and are such that their derivatives not available. Fidelity is
defined as the degree to which a model reproduces the state and behavior of the true object,
represented here by the real scalar ϕ ∈ [0, 1]. An evaluation of f and c at ϕ = 1 results in
the highest precision, and usually the highest cost. Conversely, an evaluation at ϕ < 1 may
be interpreted as the evaluation of a static surrogate model.

The computational time required to evaluate the blackboxes at a trial point x ∈ X using
the fidelity ϕ is denoted by t(x, ϕ) ∈ R+. This time function is assumed to be monotone
increasing with ϕ for any given value x ∈ X . The functions f , c and cj appearing in
Problem P are expanded to f(x, ϕ), c(x, ϕ), and cj(x, ϕ), with f(x) = f(x, 1), c(x) =
c(x, 1), and cj(x) = cj(x, 1) for j ∈ J , where the parameter ϕ indicates the fidelity of an
evaluation.

Recent literature concerning multi-fidelity blackbox optimization problems predomi-
nantly emphasizes research in the unconstrained case. The present work focuses on the
exploitation of constraints allowing multi-fidelity. This research serves as a first step, to
propose an algorithmic approach that comprehensively leverages the impact of fidelity on
both constraints and objective functions values.
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1.1 Motivation
The study of multi-fidelity is motivated by an asset management blackbox optimization
problem encountered at Hydro-Québec as part of the PRIAD project [18, 23, 27], which
is constituted of computationally expensive blackboxes wherein the violation of some
constraints can be predicted with low fidelity evaluations. Since the overall time allowed
to the optimization process is limited, strategies need to be devised to accelerate the
evaluations.

One of the first strategy that comes to mind is parallelism, as in [4, 24, 25], but is not
sufficient to solve the problem in the allowed time. As discussed in [27], it would require
thousands of processors to solve the problem within a month or less, even if one assumes
linear improvement with the number of processors. In addition, this assumption is unlikely
to be satisfied since the speed-up is less and less important when more processors are used
in the computation [26]. We anticipate that the problem will still require months to solve
even if thousands of processors are allocated to it. Instead, we suggest to solve Problem
P based on (i) the preemption concept of [37], which allows to interrupt an evaluation
as soon as it is shown that a trial point x ∈ X will not replace the current incumbent
solution, and (ii) the idea of converging to a local solution by iteratively increasing the
fidelity of blackboxes [36, 40]. The purpose of using these mechanisms is to reduce the time
spent on evaluating uninteresting points, thereby increasing the total number of evaluations
and exploring the solution domain more intensively. In other words, the present work
attempts to only engage the minimal computational effort to reach better solutions within
the predetermined time budget.

1.2 Organization
The approach proposed in this document embeds interruption opportunities into an iterative
fidelity evaluation process by proposing answers to the questions of determining the fidelity
to which the blackboxes are evaluated and determining the order in which they are evaluated.
The latter question is answered by solving a small optimization subproblem modelled using
a biadjacency matrix that links various fidelities to the constraints.

This document is structured as follows. Section 2 presents a literature review of
constraints management in a multi-fidelity blackbox optimization framework. Section 3
presents an algorithm to solve Problem P . Details will be then be provided to construct the
biadjacency matrix by solving the related optimization subproblem, and to set the resulting
interruption structure in order to reduce computational time. Section 4 shows how the
algorithm performs on different benchmarking blackboxes involving a solar thermal power
plant simulator. Finally, Section 5 discusses the results.
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2 Literature Survey
This work addresses single objective blackbox optimization problems [12]. It also catego-
rizes constraints based on the taxonomy of [29]. A constraint violation function h : Rm →
R, which stems from filter methods [7, 21, 22], is introduced in [9]:

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X

∞ otherwise.

This function measures the level of violation of relaxable constraints. When x ∈ Ω,
the function satisfies h(x) = 0, and h(x) > 0 otherwise. A first method to deal with
constraints is called the extreme barrier (EB), which is divided into two unconstrained
minimization phases [12]. The first is the feasibility phase, where minx∈Rn h(x) is solved
while disregarding the value of f , until a feasible point is found. Then, the optimality
phase takes place, where minx∈Rn fΩ(x) is solved, in which fΩ(x) = f(x) when x ∈ Ω and
fΩ(x) is set to ∞ otherwise. A more sophisticated approach for dealing with quantifiable
constraints is the progressive barrier (PB) [9]. It introduces a threshold hk

max ∈ R, initialized
at ∞, that progresses towards 0 as the iteration counter k increases. Any trial point x such
that h(x) > hk

max is rejected from consideration. Two incumbent points are updated at the
end of each iteration k: the feasible solution x with the lowest value of f(x), named xfeas,
and the infeasible solution, named xinf, with the lowest value of f(x) among the trial points
satisfying h(x) ≤ hk

max. The PB explores around both incumbent solutions, and as hk
max

decreases, xinf approaches the feasible region. Because it is frequent that f(xinf) < f(xfeas),
this may lead to good feasible solutions. The progressive-to-extreme barrier (PEB) [10]
combines the EB and PB approaches. Each constraint is initially treated by the PB, and
as soon as it is satisfied by the incumbent solution, it becomes treated by the EB for the
remainder of the optimization process.

To reduce the computational burden of an expensive blackbox, the two-phase interrupt-
ible EB algorithm [3] is a version of the EB adapted for problems where the constraint
values cj are sequentially computed through independent blackboxes. This strategy exploits
the fact that h(x) is the sum of non-negative terms. During the evaluation of trial point x,
the constraint violation function h(x) value is calculated cumulatively. An evaluation is
interrupted as soon as h(x) exceeds the constraint violation function value of the incumbent
point. A second approach to the same problem is the hierarchical satisfiability with EB
algorithm [3].

It consists of solving a sequence of m optimization problems. The objective function of
problem j, for j ∈ J , is to minimize cj(x) and is subject to ci(x) ≤ 0 for i ∈ {1, 2, . . . , j−
1}. Each optimization is stopped as soon a feasible point with a nonpositive objective
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function value is found. The starting point of each problem but the first is the final solution
of the previous one. A feasible solution in found when all problems are successfully solved.
These approaches replicate the idea of interrupting a simulation during its course when it
becomes known that it will not contribute to the optimization process [37].

To the authors’ knowledge, the term multi-fidelity often refers to the use of only two
fidelities (one high and one low), or a few more. Moreover, in the multi-fidelity setting,
low-fidelity sources are used to guide further sampling of the high-fidelity source, either by
finding promising regions, or by training a model in the context of Bayesian optimization or
other uses of Gaussian processes, and in the unconstrained case. Alternatively, constraints
can be considered with via a penalty in the objective function [1]. Reviews of the usage
of such methods in the last few decades are provided in [20, 35]. In this work, multiple
fidelity levels are instead exploited to reduce the overall cost of sampling the true blackbox,
and in the context of direct search methods for constrained problems. Additionally, the
proposed approach selects relevant fidelity levels instead of assuming that a low-fidelity
source is necessarily helpful.

In [38], a heuristic method is proposed for unconstrained problems where the objective
function can be queried at a continuous range of fidelities [0, 1]. The global optimization
with surrogate approximation of constraints (GOSAC) algorithm [34] uses radial basis
function surrogate models for constraints to solve problems where constraints are given
by an expensive blackbox, but the objective function is easy to evaluate. In [6], machine
learning is used to guide a direct search algorithm when hidden, binary and unrelaxable
constraints are present. Similarly, [33] suggests a machine learning approach to predict the
violation of hidden constraints, but it is not integrated in an optimization algorithm.

The fidelity of a model only indicates its predictive capability, but indicates nothing on
the computational cost of the model. Both concepts are combined to describe adequacy of
a model in [15]. The authors note that the same model can have a different fidelity level in
different problems, and that the fidelity depends on the other models available. Furthermore,
the fidelity of a model may vary across the parameter space. They propose a framework to
evaluate the model adequacy, and show its use with the MADS algorithm [8]. The search
step is used to select points that minimize the error induced by low cost models within
a trust region. This framework expands the use of MADS to multi-disciplinary design
optimization [16] and time-dependent multidisciplinary design optimization [17].

The computational results in this paper are conducted with version 4 of the NOMAD
software package [14], which is an implementation of the MADS algorithm [8]. When
the multi-fidelity aspect of a blackbox is of stochastic nature, many variations on the
MADS algorithm and new direct search algorithms have been proposed to take into account
stochastic noise [2, 11, 13, 19].

In the multi-fidelity literature, it is often the case that benchmarks used to assess the
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performance of new techniques are analytical in nature; that is, it is assumed the outputs
come from a blackbox, but instead they come from a known mathematical expression [5].
In the industrial setting however, it is possible for the amount of low-fidelity sources to
be virtually infinite, particularly when the output is acquired via a simulation which can
be sped up, and therefore approximated. Hence, benchmarks such as [31, 39] should be
favored.

3 Exploiting multi-fidelity in hierarchically constrained
problems

The algorithm presented herein uses a biadjacency matrix B as described in Section 3.1 to
select the fidelity levels required to estimate feasibility at each x ∈ X . The values of B
need to be adjusted at the beginning of each optimization problem. Section 3.2 introduces
a sub-problem for this purpose based on a Latin hypercube (LH) sampling of X [32].
A strategy to simplify and solve the sub-problem follows in Section 3.3. The complete
algorithm, named the hierarchically constrained optimization algorithm, is assembled in
Section 3.4.

3.1 Evaluation interruptions using multi-fidelity
An ordered discrete set of fidelities

Φ = {ϕi ∈ [0, 1] : i ∈ {1, 2, . . . , L}, 0 ≤ ϕ1 < ϕ2 < . . . < ϕL = 1}

with ϕL = 1 as its largest element is provided by the user. The user may choose a large set Φ,
since uninteresting fidelities are filtered out as shown later. A fidelity value of ϕ1 = 0 means
that only a priori outputs are evaluated. Such outputs have a known explicit formulation,
and do not require the execution of an expensive process [29].

The proposed method assigns each blackbox constraint to a fidelity in Φ, thus providing
a hierarchy. The assignments are represented by a biadjacency matrix B ∈ {0, 1}L×m,
where Bij = 1 if constraint cj ≤ 0 is assigned to fidelity ϕi, and Bij = 0 otherwise. The
assignment Bij = 1 indicates that ϕi is the smallest fidelity that may be trusted to predict if
the constraint cj ≤ 0 is satisfied of not.

The approach is coupled with a direct-search solver. When this solver determines
that xk is the k-th evaluated point, the fidelity controller algorithm performs a sequence
of calls, named sub-evaluations, to the blackbox in increasing order of fidelity in Φ at xk,
skipping the fidelities without assigned constraints. After each call at xk with ϕi ∈ Φ, for
each j ∈ J , if constraint cj ≤ 0 is assigned to ϕ ≤ ϕi and is violated, the entire blackbox

6



evaluation process at xk is interrupted. Then, the most recent sub-evaluation’s outputs are
returned to the solver. In this case, the solver may not receive the true blackbox output
values, but it will deem xk infeasible. Figure 1 illustrates this process.

0

Figure 1: Optimization loop with the fidelity controller algorithm. The notation f̄(x)
and c̄(x) indicate the output values at x ∈ X at the last fidelity used by the algorithm.

Performing interruptions saves time when comparing to an optimization method in
which each evaluation constitutes a single blackbox call with ϕ = 1. However, evaluating a
feasible point involves potentially numerous sub-evaluations, significantly increasing the
computational cost. Thus, defining the biadjacency matrix requires careful consideration.
In counterpart, prioritizing time-saving by assigning constraints at low fidelities while
choosing this matrix carries the risk of misidentifying the feasibility of a point with an early
interruptions.

The matrix B can be such that no constraint is assigned to ϕ = 1, meaning the true
output values are never assessed. However, the scenario where the best solution given to
the user by the solver at the end of an optimization is said to be feasible but is actually
not is highly undesirable. Hence, the algorithm also considers f ∗

k , the value of the best
feasible solution after evaluating xk. Whenever a point xk that has not been sub-evaluated
with ϕ = 1 is about to be labeled as the best solution so far by the solver, an additional
sub-evaluation with ϕ = 1 is introduced to ensure the feasibility of xk.
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Algorithm 3.1 shows the fidelity controller algorithm, without the evaluation super-
scripts k as they are not relevant to the algorithm. When values are returned before the
algorithm’s last line, the evaluation is said to be interrupted. An optimization from a solver
using Algorithm 3.1 constitutes the third step of the hierarchically constrained optimization
algorithm.

Algorithm 3.1: Fidelity controller
Input: trial point x; adjacency matrix B; incumbent value f ∗

For each fidelity ϕi ∈ Φ to which at least one constraint is assigned∣∣∣∣∣∣∣∣
Evaluate f(x, ϕi) and c(x, ϕi), Store the values in f̄ and c̄.
If cj(x, ϕi) > 0 for some j ∈ J where Baj = 1 for some a ≤ i∣∣∣ Return f̄ , c̄

If no constraint is assigned to ϕL and f < f ∗∣∣∣ Evaluate f(x, 1) and c(x, 1), Store the values in f̄ and c̄.

Return f̄ , c̄

3.2 Computing method for the biadjacency matrix
This section introduces a computing method for the matrix B which is broken down into
two parts. First, a constraints behaviour in accordance with fidelity analysis is proposed.
This process requires parallel computing to evaluate LH samples. Second, this behaviour
analysis is used to construct a B matrix.

3.2.1 Constraint behaviour analysis

The user selects a sample size nH . If a starting point x0 is provided, the LH bounds are
centered around x0 in order to analyse the constraint’s behaviour where the optimization is
likely to take place. A new optimization parameter ρ ∈ [0, 1] named the Latin hypercube
sizing factor is introduced to indicate the size of the sampled region. When ρ = 1, the
region is equal to X = [ℓ, u], and smaller values correspond to smaller regions. The
centered LH bounds (ℓcen, ucen) contain the following elements:

ℓcen
i =max

(
ℓi, x

0
i − ρ(ui − ℓi)

)
∀ i ∈ {1, 2, . . . , n} (1)

ucen
i =min

(
ui, x

0
i + ρ(ui − ℓi)

)
∀ i ∈ {1, 2, . . . , n}. (2)
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If no starting point is provided, the LH bounds are simply those of X . Let H ⊂ X
denote the set of LH points, and let Hap ⊆ H be the subset containing all sampled points
which do not violate any a priori constraint. Denote the cardinality of Hap by nap. Finally,
define I = {1, 2, . . . , L} and the indicator function

1(cj(x, ϕ)) :=

 0 if cj(x, ϕ) ≤ 0

1 otherwise
∀j ∈ J.

A fidelity ϕi ∈ Φ is said to be representative for a constraint cj ≤ 0 at a point x if and
only if

1(cj(x, ϕ)) = 1(cj(x, 1)) ∀ϕ ∈ Φ with ϕ ≥ ϕi.

This definition allows to identify fidelities at which a sub-evaluation correctly identifies
whether a constraint is violated or not on the LH samples. The behaviour of the constraints
in accordance with fidelity is characterized in two ways: the likeliness of a constraint to
be violated at a given fidelity at any point during the optimization, and the likeliness of
a fidelity to be representative for a given constraint at any point during the optimization.
Another point of interest is the expected sub-evaluation time for the fidelities in Φ. Define

rij :=Pr[fidelity ϕi is representative for constraint cj ≤ 0 at some x ∈ X] ∀i ∈ I , ∀j ∈ J

pij :=Pr[cj(x, ϕi) > 0 for some x ∈ X] ∀i ∈ I , ∀j ∈ J

ti :=Ex[t(x, ϕi)] ∀i ∈ I.

Assuming that t(x, ϕ) is monotone increasing with ϕ for each x ∈ X ,

ta ≤ tb ∀a, b ∈ I where a < b. (3)

After the LH samples are evaluated at each fidelity in Φ, these statistical values are
estimated with the following ratios:

rij ≃ r̂ij :=
1

nap
|{x ∈ Hap : ϕi is representative for cj ≤ 0}| ∀i ∈ I , ∀j ∈ J (4)

pij ≃ p̂ij :=
1

nap
|{x ∈ Hap : cj(x, ϕi) > 0}| ∀i ∈ I , ∀j ∈ J (5)

ti ≃ t̂i :=
1

nap

∑
x∈Hap

t(x, ϕi) ∀i ∈ I. (6)

This characterization of the constraint’s behaviour constitute the first step of the hierarchi-
cally constrained optimization algorithm.
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3.2.2 Optimal biadjacency matrix model

A biadjacency matrix is computed based on given values of rij , pij and ti. An explicit
optimization Problem Q is proposed below to compute B, which minimizes the expected
evaluation time during the optimization. It is also desired to minimize the probability
of causing an interruption on a feasible point, but a bi-objective model is avoided by
introducing a new threshold parameter ε ∈ [0, 1], the upper bound on the probability that a
constraint’s feasibility is misidentified during the optimization. Every element Bij of the
biadjacency matrix B corresponds to a decision variable in the model. The yi variables are
defined as follows. They are continuous variables in Q per their unimodality.

yi =

{
1 if a sub-evaluation at fidelity ϕi would be executed by Algorithm 3.1
0 otherwise.

(7)

In Q, the objective function (10) represents the expected evaluation time of a single
point according to Algorithm 3.1. It is a sum of all the sub-evaluation times ti, multiplied by
their probability of happening, which is the probability that no interruption happen earlier
in the hierarchy multiplied by yi for each i ∈ I . It can be written as follows.

t1y1

+ t2y2Pr[no interruption at ϕ1]

+ t3y3Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]

+ t4y4Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]Pr[no interruption at ϕ3]

+ . . .

= t1y1 +
L∑
i=2

(
tiyi

i−1∏
k=1

Pr[no interruption at ϕk]

)
. (8)

An index k denotes a fidelity index smaller than or equal to a given i ∈ I . The
probability that no interruption happens at a sub-evaluation at ϕk is the probability that
all constraints assigned to ϕk are satisfied after the sub-evaluation. Under the hypothesis
that these probabilities are independent, the product of each (1− pkj) where Bkj = 1 for
each j ∈ J is computed. Therefore,

Pk(B) := Pr[no interruption at ϕk] =
∏
j∈J

1− pkjBkj. (9)

The substitution of (9) in (8) results in (10). Problem Q is defined as follows
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Q

min
B∈BL×m,y∈RL

f(B) = t1y1 +
L∑
i=2

tiyi

i−1∏
k=1

Pk(B) (10)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (11)

Bij − ε ≤ rij ∀ i ∈ I, ∀ j ∈ J (12)
Bij ≤ yi ≤ 1 ∀ i ∈ I, ∀ j ∈ J (13)

yi ≤
∑
j∈J

Bij ∀ i ∈ I. (14)

Equation (11) ensures that every blackbox constraint is assigned to exactly one fidelity,
Equation (12) enforces the ε upper bound, and Equations (13) and (14) ensure the yi
variables respect their definition (7).

The potential extra sub-evaluation at ϕ = 1 if the evaluated point is about to become the
best solution so far is not considered, as the moments when it happens are unpredictable.
Also, by calculating the estimations with the points from Hap, the a priori constraints are
disregarded by the model, which is not a problem because they have no impact on the
optimal biadjacency matrix. A hypothesis assumed by this model is that if a constraint is
satisfied at the fidelity it is assigned to, it is also satisfied at any greater fidelity.

3.3 Solving the model
Notice that Problem Q is mixed-integer with a polynomial objective function. As today’s
solvers require a lot of solving time and have no guarantee of optimality for such problems,
an alternative solving method is proposed. Indeed, the set of possible solutions may be
reduced to the point where a simple exhaustive search is sufficient.

3.3.1 Reduction by introducing non-differentiability

The first reduction consists of simplifying the model by introducing non-differentiable
elements, which are allowed since only an exhaustive search will be conducted. First, the yi
variables are determined by the biadjacency matrix as:

yi(B) =


0 if

∑
j∈J

Bij = 0

1 otherwise
∀i ∈ I.

Hence, Equations (13) and (14) are removed, and a B matrix alone constitutes a solution
to the model. The function i : J → I is introduced, which returns the index of the smallest
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fidelity in Φ where constraint cj ≤ 0 can be assigned without violating Equation (12):

i(j) = min{i ∈ I : rij ≥ 1− ε}.

Equation (12) is then equivalent to imposing that a constraint cj ≤ 0 can not be assigned to
a fidelity ϕi when i < i(j). These new definitions allow for the definition of Problem Q1,
which is equivalent to Q.

Q1

min
B∈BL×m

t1y1(B) +
L∑
i=2

(
tiyi(B)

i−1∏
k=1

Pk(B)

)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (15)

Bij = 0 ∀ (i, j) ∈ I × J such that i < i(j). (16)

3.3.2 Reduction by filtering fidelities

The second reduction aims to reduce the number of rows of the biadjacency matrix B. It
follows from Theorem 3, which indicates that there exists an optimal solution for Q1 where
each constraint is assigned to a fidelity ϕi such that

i ∈ IF :=
⋃
j∈J

i(j) ⊆ I, (17)

with IF the filtered set of fidelity indexes. Each fidelity ϕi where i /∈ IF can therefore
be removed without excluding an optimal solution for Q1, by replacing I with IF . Note
that i(j) is a function that expresses a direct link between a fidelity index i and a constraint
index j. Conversely, the set IF removes that link. Theorem 3 states that an optimal solution
exists where all constraints are assigned to fidelities ϕi where i = i(j) for some j ∈ J ,
no matter what this j is. The theorem is true under the assumption that probabilities pij
are monotonic decreasing with i for each i where constraint cj ≤ 0 can be assigned to
fidelity ϕi without violating Equation (16), for each j ∈ J :

paj ≥ pbj ∀j ∈ J, ∀a, b ∈ I where i(j) ≤ a < b. (18)

The theorem can remain valid without this assumption. Indeed, as ε becomes smaller,
the likelihood of the theorem becoming invalid decreases [30].
Lemma 1 Let B be a feasible solution for Q1. If there exists a fidelity index i′ ∈ I\IF to
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which at least one blackbox constraint is assigned, then the matrix B′ where

B′
ij =


0 if i = i′

1 if i = i′ − 1 and Bi′j = 1

Bij otherwise

∀i ∈ I, ∀j ∈ J (19)

is feasible for Q1.
Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which at least
one blackbox constraint is assigned. Equation (15) is satisfied by B′, because it is satisfied
by B and B′

i′−1 j + B′
i′j = 1 = Bi′−1 j + Bi′j for each j ∈ J . Concerning Equation (16),

on the one hand, if (i, j) ∈ I × J is such that i < i(j), then Bij = 0 since B is feasible.
On the other hand, if j′ ∈ J is such that Bi′j′ = 1 then i′ > i(j′), which is equivalent to
i′ − 1 ≥ i(j′). The last condition in Equation (19) ensures that B′

ij = Bij = 0 for each pair
(i, j) ∈ I × J such that i < i(j), which implies that the matrix B′ is feasible for Q1. □
Lemma 2 Let B be a feasible solution for Q1. Under Assumption (18), if there exists a
fidelity index i′ ∈ I\IF to which at least one blackbox constraint is assigned, then the
matrix B′ given by (19) satisfies f(B′) ≤ f(B).
Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which at
least one blackbox constraint is assigned. The objective function (10) maybe be divided
into four terms, which correspond to the fidelity indexes smaller than i′ − 1, equal to i′ − 1,
equal to i′ and greater than i′ of the sum

f(B) = T<i′−1(B) + Ti′−1(B) + Ti′(B) + T>i′(B)

where

T<i′−1(B) = t1y1(B) +
i′−2∑
i=2

tiyi(B)
i−1∏
k=1

Pk(B), Ti′−1(B) = ti′−1yi′−1(B)
i′−2∏
k=1

Pk(B),

Ti′(B) = ti′yi′(B)
i′−1∏
k=1

Pk(B), T>i′(B) =
L∑

i=i′+1

tiyi(B)
i−1∏
k=1

Pk(B).

Equation (19) ensures that the first term satisfies T<i′−1(B) = T<i′−1(B
′). Assumption (18)

ensures that the last term satisfies T>i′(B) ≥ T>i′(B
′), as the only change from T>i′(B)

to T>i′(B
′) is that all pi′j become pi′−1 j . For the two central terms, two cases are considered.

First, if yi′−1(B) = 0, then Ti′−1(B) = Ti′(B
′) = 0 as yi′(B

′) = 0. Furthermore,
Assumption (3) ensures that

Ti′(B) = ti′
i′−1∏
k=1

Pk(B) = ti′
i′−2∏
k=1

Pk(B
′) ≥ ti′−1

i′−2∏
k=1

Pk(B
′) = Ti′−1(B

′).
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Second, if yi′−1(B) = 1, then Ti′−1(B) = Ti′−1(B
′) as the sub-evaluations at ϕi′−1 and

at lower fidelities are unchanged, and Ti′(B) > Ti′(B
′) = 0 as yi′(B′) = 0. In both cases,

the sum of the four terms of f(B) is greater than or equal to those of f(B′). Consequently,
f(B) ≥ f(B′). □
Theorem 3 There exists an optimal solution for Q1 in which every blackbox constraint is
assigned to a fidelity ϕi where i ∈ IF .
Proof. The argmin of Q1 can possibly contain only solutions where every blackbox
constraint is assigned to a fidelity ϕi where i ∈ IF . The theorem is then trivial. Otherwise,
there exists a solution B∗

0 in the argmin of Q1 such that the set

I ′(B∗
0) := {i ∈ I\IF : yi(B

∗
0) = 1}

is not empty. For a given i′ ∈ I ′(B∗
0), it is possible to find another solution, B∗

1 , where every
constraint assigned to ϕi′ is rather assigned to ϕi′−1, and where every other assignment
is unchanged. Lemma 1 indicates that B∗

1 is feasible, and Lemma 2 indicates that it
yields an equal or better objective function value than B∗

0 . Therefore, B∗
1 is also part of

the argmin. Then, the set I ′(B∗
1) can then be calculated. As long as I ′ is non-empty, this

process is repeated to find B∗
2 , B∗

3 and so on. The maximum number of such iterations
is max{L − i(j) : j ∈ J}, implying this process always terminates. When it does in K
iterations, I ′(B∗

K) = ∅, and B∗
K is an optimal solution for Q1 in which every blackbox

constraint is assigned to a fidelity belonging to IF . □

3.3.3 Reduction by filtering constraints

The third reduction simply consists of filtering out all a priori constraints, as they have
no impact on the optimal biadjacency matrix. This reduces the number of columns of the
biadjacency matrix B. The set J is replaced for

JF := {j ∈ J : cj ≤ 0 is not an a priori constraint}, (20)

the set of filtered constraint indexes.

3.3.4 Exhaustive search

First, consider Q1, and replace I for IF and J for JF , therefore removing columns and
rows of variables from matrix B, and removing multiple pij , rij and ti elements from the
model. This new problem is named Q2. Equation (12) indicates that Bij = 0 if rij < 1− ε.
Equation (11) indicates that every constraint is assigned to exactly one fidelity. Every
solution for Problem Q2 that satisfies these two equations is then exhaustively listed. For
each solution, the objective function value is computed with (10), and an optimal solution is

14



found. From this solution, an optimal biadjacency matrix B∗ of size L×m can be created
by reintroducing columns J\JF and rows I\IF , and by giving the value of 0 to these new
elements. Computing an optimal assignment with the estimations p̂ij , r̂ij and t̂i rather
than the true values which are unavailable constitutes the second step of the hierarchically
constrained optimization algorithm.

3.4 Hierarchically constrained optimization algorithm
Now that every part of the hierarchically constrained optimization algorithm has been
presented, see Algorithm 3.2 for the full algorithm. When constructing Q2 and IF during
the algorithm, rij and pij are substituted by r̂ij , p̂ij for each i ∈ I , and for each j ∈ J ,
and ti is substituted by t̂i for each i ∈ I .

4 Computational results
This section shows an application of Algorithm 3.2 with the NOMAD software [14, 28].
It is not an in depth analysis, but rather a proof of concept of the theoretical method.
Computing is done on Intel Xeon Gold 6150 CPU @ 2.70GHz processors. The benchmark
problems are sourced from the solar1 family of blackboxes [31]. As far as the authors are
aware, solar is the only benchmarking blackbox collection of problems where constraints
that are affected by fidelity can be found. Hence, benchmarking is only conducted on
problems from this collection. In NOMAD, constraints can be managed using the EB or the
PB methods. Literature suggests that the PB generally yields better results. However, due
to Algorithm 3.1 not returning the true outputs when the evaluation of a point is interrupted,
the EB might be more adapted, as it rejects these points. Conversely, the PB uses output
values to compute new incumbent points. Therefore, two implementations and a base case
are tested for comparison:

• Inter PB: Algorithm 3.2 with NOMAD and the PB;

• Inter EB: Algorithm 3.2 with NOMAD and the EB;

• Base case: NOMAD with default parameters and blackbox fidelity fixed at 1.

1Available at https://github.com/bbopt/solar (version 1.0)
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Algorithm 3.2: Hierarchically constrained optimization
Input:∣∣∣∣∣∣∣∣∣∣∣∣

x0 : optimization starting point (optional)
P : problem containing X ⊆ Rn, f and c

Φ : ordered set of fidelities ending with 1

ε : upper bound on the probability that a constraint’s feasibility is misidentified
ρ, nH : Latin hypercube sizing factor and sample size

1. Constraint behaviour in accordance with fidelity analysis.∣∣∣∣∣∣∣∣∣∣∣∣

If x0 is provided, find the (ℓcen, ucen) bounds from X , ρ and x0 using (1) and (2).
Else, set (ℓcen, ucen) = (ℓ, u) and at end of step 1, set x0 as the best point in H .
Randomly determine H , the nH LH points bounded by ℓcen and ucen.
Evaluate each point in H at each fidelity in Φ by parallelizing as much as possible.
Calculate all r̂ij , p̂ij and t̂i estimations using (4), (5) and (6), respectively.

2. Optimal biadjacency matrix computation.∣∣∣∣∣∣∣
Find JF , and find IF with ε using (20) and (17), respectively.
Solve problem Q2 with an exhaustive search on Ω.

Create a matrix B ∈ BL×m from an optimal solution for Q2.

3. Blackbox optimization.∣∣∣∣∣∣∣
Solve P with the chosen solver, providing Algorithm 3.1 with matrix B

as the blackbox evaluation function and x0 to the solver. Update f ∗
k at

end of evaluation k.

Return the solver output

The method introduced in this paper is motivated by computationally expensive prob-
lems, such as PRIAD’s blackbox, where the solver and the Algorithm 3.1 computation
times are insignificant in comparison. To replicate such problems with solar instances that
are computationally less demanding but possess desirable characteristics, only blackbox
computation times are considered in the following profiles. For both implementations of
the algorithm, the empirically determined values of nH = 104, ε = 0.05 and

Φ = {10−10, 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

are chosen.
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4.1 Without a starting point for the optimization
This section presents optimizations where no starting point is provided by the user. Con-
sequently, the LH bounds are those of X . The base case also performs a LH with the
same parameters to find a starting point. Optimizations on three constrained multi-fidelity
instances of the solar family of blackboxes: solar2, solar3 and solar4 are conducted. By
varying the unfeasible starting point, 20 optimization runs are executed for each tested
instance. The results are illustrated in data profiles, with the initial two profiles relating to
solar2, and shown in Figure 2. As the LH times are identical, only the optimization times
are shown.

(a) τ = 0.0001 (b) τ = 0.001

Figure 2: solar2 data profiles from 20 runs with no x0.

The Algorithm 3.2’s success, whether paired with the EB or the PB, is mainly attributed
to two factors. Firstly, solar2 contains a frequently violated constraint with a high esti-
mated probability of representativity at low fidelities, which allows for numerous quick
interruptions on infeasible points. Secondly, the calculated B matrix is accurate because
the constraint’s behaviour is homogeneous throughout X . On the other hand, this is not the
case for solar3 and solar4, where the calculated B matrix does not accurately reflect the
constraint’s behaviour for the encountered points during optimization. The results show that
when using Algorithm 3.2, every evaluated point is systematically considered infeasible.
No figures are shown as there are no curves for the 3.2 implementations. Conversely, the
base case finds numerous feasible solutions.
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4.2 With a starting point for the optimization
This section presents optimizations where a known feasible starting point is provided by the
user. The optimization runs are conducted on each constrained multi-fidelity instances of
the solar family of blackboxes: solar2, solar3, solar4 and solar7, with ρ values of 1

4
, 1
10

, 1
20

and 1
4

respectively. Those values are based on preliminary results. In this scenario, the
base case does not perform any LH sampling, which grants it a time advantage. However,
this advantage is inconsequential due to the extensive parallelization of samples using
Hydro-Québec’s facilities. By varying the NOMAD seed for random polls, 20 optimization
runs are executed for each tested instance, and the results are illustrated in data profiles.
Two data profiles for solar2 are shown in Figure 3.

(a) τ = 0.1 (b) τ = 0.5

Figure 3: solar2 data profiles with a starting point. Curves from implementations of
Algorithm 3.2 start at 642.22 seconds to account for LH sampling time.

With τ = 0.5, the base case solves a greater number of problems compared to the
proposed algorithm with the EB, as the implementation is highly inefficient for one of the
20 optimization runs. In general, both implementations of Algorithm 3.2 are preferable.

Data profiles for solar3 and solar4 are shown in Figure 4 and Figure 5, respectively.
For both instances, the base case yields results comparable to Algorithm 3.2 paired with

the PB. On the other hand, when pairing the algorithm with the EB, it performs significantly
better. This can be attributed to a higher scarcity of feasible points in solar3 and solar4
compared to solar2. This section also studies solar7, a constrained multi-fidelity blackbox
where infeasible points are much less common than for the other tested instances. It
serves as a test to assess how Algorithm 3.2 performs when it has limited opportunities to
interrupt evaluations and save time in contrast to the base case. Additionally, the objective
function value is affected by multi-fidelity for this instance. Thus, the condition yL = 1
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(a) τ = 0.05 (b) τ = 0.3

Figure 4: solar3 data profiles from 20 runs with a given x0. Curves from implementations
of Algorithm 3.2 start at 45.64 seconds to account for LH sampling time.

is imposed. Results show that the optimal biadjacency matrix computed for this problem
assigns all constraints to ϕL = 1. This suggests that the method has discerned the absence
of meaningful opportunities for interruptions and that emulating the base case is the optimal
approach. No figure is shown; the base case and the PB implementation exhibit identical
data profiles, except for the fact that the base case consistently precedes by 181.07 seconds
due to its absence of LH sampling prior to any optimization.

5 Discussion
We have introduced a novel approach to computationally expensive multi-fidelity blackbox
optimization problems by leveraging low-fidelity assessments of constraints violation to
interrupt evaluations. Our computational results demonstrate that, under specific conditions,
pairing the NOMAD solver with the hierarchically constrained optimization algorithm
yields significantly superior solutions compared to NOMAD alone. Here is a summary of
favorable conditions:

• scarce feasible points;

• accurate constraint violation assessments at lower fidelity levels;

• homogeneity in constraint behaviour relative to fidelity within the LH bounds defined
by the sizing factor ρ.

When this final condition is not fulfilled with ρ = 1, the existence of a known feasible
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(a) τ = 0.01 (b) τ = 0.1

Figure 5: solar4 data profiles from 20 runs with a given x0. Curves from implementations
of Algorithm 3.2 start at 94.75 seconds to account for LH sampling time.

solution prior to the optimization becomes vital; it enables the selection of a sizing factor ρ
that increases the homogeneity in constraint behaviour.

When utilizing the NOMAD solver, we observe that the preferred barrier choice depends
on the blackbox. For problems with infrequent feasible points, the EB is more suitable,
while the PB is mostly preferred when feasible points are more common.

Future work involve dynamically computing the biadjacency matrix and applying the
proposed algorithm to complex industrial problems, such as PRIAD’s. Additionally, as
indicated by [6, 33], the constraint behaviour analysis can potentially be improved with
machine learning methods.
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[18] A. Côté, O. Blancke, S. Alarie, A. Dems, D. Komljenovic, and D. Messaoudi. Com-
bining Historical Data and Domain Expert Knowledge Using Optimization to Model
Electrical Equipment Reliability. In 2020 International Conference on Probabilistic
Methods Applied to Power Systems (PMAPS), pages 1–6, Liege, Belgium, 2020.

[19] K.J. Dzahini. Expected complexity analysis of stochastic direct-search. Computational
Optimization and Applications, 81(1):179–200, 2022.

[20] M.G. Fernández-Godino. Review of multi-fidelity models. Technical Report
1609.07196, ArXiv, 2023.

[21] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.
Mathematical Programming, Series A, 91:239–269, 2002.

[22] R. Fletcher, S. Leyffer, and Ph.L. Toint. A brief history of filter methods. SIAM
SIAG/OPT Views-and-News, 18(1):2–12, 2006.

[23] M. Gaha, B. Chabane, D. Komljenovic, A. Côté, C. Hébert, O. Blancke, A. Dele-
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