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Abstract. Mixed-integer convex quadratic programs with indicator variables (MIQP) encompass a
wide range of applications, from statistical learning to energy, finance, and logistics. The outer ap-
proximation (OA) algorithm has been proven efficient in solving MIQP, and the key to the success
of an OA algorithm is the strength of the cutting planes employed. In this paper, we propose a new
technique for deriving cutting planes for MIQP from various convex relaxations, and, as a result, we
develop new OA algorithms for solving MIQP at scale. The contributions of our work are two-fold: (1)
we bridge the work on the convexification of MIQP and the algorithm design to solve large-scale prob-
lems, and (2) we demonstrate through a computational study on the sparse portfolio selection problem
that our algorithms give rise to significant speedups compared with the state-of-the-art methods in the
literature.

1. Introduction

Mixed-integer convex quadratic programs with indicators (MIQP) constitute a broad class of opti-
mization problems formulated as:

min
x,y

y⊤Qy + g⊤y + h⊤x (1a)

s.t. Ay ≤ b (1b)

(MIQP) Cy ≤ Dx (1c)

yi(1− xi) = 0, ∀i = 1, . . . , n (1d)

x ∈ X ⊆ {0, 1}n, (1e)

where Q ∈ Rn×n is a positive definite Hessian matrix, and X denotes an arbitrary set over the binary
variable vector x. The complementarity constraint (1d) encodes the relation that the indicator variable
xi activates/deactivates the associated continuous variable yi, i = 1, . . . , n. We also consider arbitrary
linear constraints over y and linear linking constraints over x and y. Examples of constraints (1b)–(1c)
include the nonnegativity constraints (yi ≥ 0) and the semi-continuity constraints (yi = 0 if xi = 0,
and yi ∈ [li, ui] if xi = 1, which can be modeled as lixi ≤ yi ≤ uixi). Examples of X include the
cardinality constraint, i.e., X = Xk := {x ∈ {0, 1}n :

∑n
i=1 xi ≤ k}, for a given k < n. MIQP finds a

wide range of applications in statistical learning with sparsity [5, 7, 32, 34, 35], portfolio optimization
[3, 8], energy production [18], and logistics [15, 27]. On the other hand, MIQP is NP-hard even when
x and y are unconstrained [11].

1.1. Background and Literature review. By introducing an auxiliary variable η, we can write
problem (1) equivalently as follows

min η

s.t. η ≥ y⊤Qy + g⊤y + h⊤x

Ay ≤ b

Cy ≤ Dx

yi(1− xi) = 0, ∀i = 1, . . . , n

x ∈ X ⊆ {0, 1}n,
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S. Küçükyavuz: Department of Industrial Engineering and Management Sciences, Northwestern University,
simge@northwestern.edu.

1



2 LINCHUAN WEI, SIMGE KÜÇÜKYAVUZ

and we define an epigraph accordingly

Z = {(x, y, η) ∈ X × Rn+1 | η ≥ y⊤Qy + g⊤y + h⊤x,

Ay ≤ b, Cy ≤ Dx, yi(1− xi) = 0, ∀i = 1, . . . , n}.

Note that minimizing η over (x, y, η) ∈ Z for some x and y is equivalent to minimizing over the
closure of the convex hull of Z denoted as cl conv(Z). In recent years, there has been a growing
interest in studying the convexification of Z via decomposition. For example, the Hessian matrix Q
can be decomposed into

∑
i Γi + R, where each Γi exhibits some ‘simple’ structure. Then, a convex

relaxation of Z can be derived by studying the mixed-integer quadratic epigraphs where each Γi is
the Hessian of the associated quadratic term. Specifically, the perspective reformulation [10, 18] is
obtained when we decompose the quadratic function into a sum of one-dimensional quadratic terms

and a remainder (Q = diag(δ) + R such that δ ≥ 0 and R ≽ 0) and replace δiy
2
i with δi

y2i
xi
, and

y2i
xi

is

known as the perspective function of y2i [30]. Other convexification work considers decomposing Q into
rank-one matrices [2, 26, 40, 41], two-by-two matrices [21, 25, 28, 31], and tridiagonal matrices [33].
In principle, cl conv(Z) can be obtained directly using the disjunctive programming approach [10, 21];
however, a straightforward disjunctive formulation requires a copy of variables for each configuration
of indicators in X, which results in an exponential number of auxiliary variables. Wei et al. [42]
give a more compact description of cl conv(Z) in the absence of the linear constraints (1b)–(1c).
Another related strand of research concerns the convexification of the lifted set S = {(x, y, y⊤y) ∈
{0, 1}n ×Rn ×Rn×n : yi(1− xi) = 0, ∀i = 1, . . . , n}, and S stems from the more general mixed-integer
quadratic programs with indicators. Anstreicher and Burer [1] deliver a convex hull description for
S with bound constraints 0 ≤ y ≤ x when n = 2. De Rosa and Khajavirad [12] give the convex hull
of S with nonnegativity constraints for n = 2. Although there are many strong theoretical results
on the convexification of MIQP, a stronger reformulation usually involves a larger set of auxiliary
variables, more constraints, or more nonlinearity in the objective or constraints, which may hinder
the branch-and-bound process.

Regarding the exact solution methods for MIQP, substantial research emerged in recent years which
can be categorized into (i) branch-and-bound methods that solve a sequence of subproblems and (ii)
outer-approximation (OA) algorithms that recursively solve polyhedral approximations of Z.

Branch-and-bound: In the literature, various branch-and-bound methods using different reformu-
lations have been proposed for solving MIQP (or its special cases) to optimality. Bienstock [8] first
proposed solving MIQP via branch-and-bound, and, instead of using indicators, their algorithm di-
rectly branches on the continuous variables by enforcing bound constraints yi ≤ 0 or yi ≥ αi. Bertsimas
et al. [7] modeled the complementarity constraints (1d) using Specially Ordered Sets of Type 1 (SOS-
1) [6] and solved the best subset selection problem by branch-and-bound. A classic modeling practice
is the so-called big-M reformulation [23], which replaces the nonconvex complementarity constraints
(1d) with the constraints −Mxi ≤ yi ≤ Mxi, ∀i = 1, . . . , n. The big-M value is chosen so that the
true optimal solution is not eliminated; on the other hand, the strength of the big-M reformulation
relies heavily on the value of M , and a loose M will result in a weak relaxation of MIQP. MIQP
formulated by big-M constraints can be equivalently written as mixed-integer second-order conic pro-
grams. Vielma et al. [39] solve the resulting formulations using lifted polyhedral approximations for
second-order cones. Another line of branch-and-bound methods builds upon the perspective refor-
mulation. Frangioni and Gentile [18] solve MIQP using perspective reformulation and a nonlinear
branch-and-bound scheme. Subsequently, Frangioni and Gentile [19] and Zheng et al. [44] extend the
work of Frangioni and Gentile [18] by designing different approaches for diagonal decomposition, and
[20] propose an approximate perspective reformulation through a project-and-lift approach. Another
line of work accelerates the branch-and-bound procedure through specialized nonlinear programming
algorithms with ‘warm start’ capability [4, 29].

Outer approximation: The OA algorithm [14, 16] solves general mixed-integer nonlinear program-
ming (MINLP) programs to optimality. It consists of recursively solving a master mixed-integer linear
(MILP) approximation of MINLP and nonlinear subproblems to generate cutting planes. The advan-
tages of OA methods compared with nonlinear branch-and-bound methods are (i) the reduced effort
of solving linear programming relaxations than nonlinear programming relaxations, (ii) the ability to
utilize the ‘warm start’ capability of linear programming solvers, the heuristics of MILP solvers, and
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MILP cuts. On the other hand, the strength of the cutting planes employed is crucial to the success of
OA methods. In early work [9, 17], the computational results show that nonlinear branch-and-bound
outperforms OA for MIQP. The initiative to redesign OA to solve MIQP faster was taken by Fischetti
et al. [15], in which an OA algorithm using the cutting planes of a perspective reformulation of the
quadratic uncapacitated facility location problem [27] was proposed. Since then, significant advances
have been accelerating the OA algorithm to solve MIQP. For example, Bertsimas and Van Parys [5]
propose an OA algorithm based on the perspective reformulation of the best subset selection problem
with an ℓ2-norm penalty. Bertsimas and Cory-Wright [3] extend the work of Bertsimas and Van Parys
[5] and give an OA algorithm for solving MIQP in its general form; however, their algorithm also alters
the original problem by introducing an ℓ2-norm penalty; and the cutting planes there are generated by
solving a quadratic programming (QP) problem of size n, which could be computationally expensive.
Friedrich and Kreber [22] remedy this issue by replacing constraints (1b) with a quadratic penalty
term into the objective, which allows the use of the more efficient cut generation scheme in [5] (for
unconstrained MIQP), but their approach does not handle the linear linking constraints (1c). The
cutting planes used in [3, 5, 15, 22] are ‘projective’ cuts in the (x, η) space, and they are derived
from the subgradient cuts of the marginal function of a convex envelope of Z, i.e., a closed convex
function fenv such that Z ⊂ {(x, y, η) : η ≥ fenv(x, y)} = epi(fenv). As a result, the master problem
in the OA algorithm is a mixed-integer linear programming problem over the binary vector x, and
an auxiliary continuous variable η capturing the objective function value. The OA approach using
projective cutting planes has several algorithmic advantages. First, the problem size is reduced from
2n to n. Second, MIQP problems often have cardinality constraints on x, and such sparsity can be
leveraged by commercial MILP solvers.

In the present paper, we fill the gap between the convexification theory of MIQP and the design
of algorithms to solve MIQP. We develop a unifying framework to derive projective cutting planes
in (x, η) space based on different reformulations of MIQP. As a special case, we give a formula for
computing the projective cutting planes for the perspective reformulation of MIQP. Our formula is
more efficient than [5] and can handle MIQP with linear linking constraints (1c).

1.2. Structure. The rest of this paper is organized as follows:
• In §3, we first lay the theoretical foundation for our approach by appealing to variational analysis.
Later, we derive cutting planes for the perspective reformulation of MIQP. A key observation is that
the cutting planes can be computed by solving a QP (with a size much smaller than n when a strong
sparsity constraint is enforced) plus a few linear algebraic operations.
• In §4, we derive cutting planes based on the perspective reformulation strengthened by the conic-
quadratic inequalities of rank-one quadratics [2]. In addition, we show rigorously that we can obtain
a class of stronger cutting planes with rank-one strengthening.
• In §5, we design an OA procedure with the cutting planes derived in §3 and §4 and apply it to
the sparse portfolio selection problem studied in [3, 18]. The computational results reveal that our
algorithms lead to significant speedups compared with other state-of-the-art methods in the literature.

2. Notation

We denote the vector of all ones by 1. For a matrix H, we use the upper case Hi to denote the ith
column of H and lower case hi to denote the ith row of H. We use ≽ to denote the partial order in
the space of symmetric matrices defined via the cone of positive semidefinite matrices. For a convex
set C, we adopt the conventional notations cl(C) and ri(C) to denote its closure and relative interior.
The closure of the convex hull of C is written as cl conv(C). For a convex function f(x), its epigraph
is epi(f) = {(x, η) : η ≥ f(x)}, and its Fenchel conjugate is f∗(µ) = supx{⟨µ, x⟩−f(x)}. The effective
domain of f is denoted as dom(f) = {x | f(x) < +∞}. The subdifferential set of f at x is written as
∂f(x). We define the indicator function of set C as IC(x) = 0 if x ∈ C and +∞ otherwise. We define
the projection operator Projx,η(C) as Projx,η(C) = {(x, η) : (x, y, η) ∈ C for some y}.

3. Cutting Planes for Perspective Reformulation

For an arbitrary closed convex envelope fenv of Z, we have, by definition, Z ⊂ epi(fenv). It is known
from convex analysis that the marginal function f̄env obtained by partially minimizing over y ∈ Rn,
i.e.,

f̄env(x) = inf
y
fenv(x, y),
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is also convex.

Lemma 1. For any t ∈ ∂f̄env(x), the following inequality

η̃ ≥ ⟨t, x̃− x⟩+ f̄env(x) (2)

holds for any (x̃, ỹ, η̃) ∈ cl conv(Z).

Proof. Because f̄env is a convex function, the subgradient inequality (2) is valid for epi(f̄env). Moreover,
we have the sequence of inclusion relations that Projx,η(cl conv(Z)) ⊂ Projx,η(epi(fenv)) ⊂ epi(f̄env).
The first inclusion follows from the fact that Z ⊂ epi(fenv) and cl conv(Z) ⊂ epi(fenv) because
epi(fenv) is a convex set. For any y, η ≥ fenv(x, y) ≥ f̄env(x) = infy∈Rn fenv(x, y), by definition,
thus the second inclusion holds. Based on the inclusion relations, we can see that the subgradient
inequality (2) is valid for Projx,η(cl conv(Z)), and we write the projection in an explicit form as
Projx,η(cl conv(Z)) = {(x, η) : (x, y, η) ∈ cl conv(Z) for some y ∈ Rn}. Now, it becomes clear that
the subgradient inequality is also valid for cl conv(Z). □

One insight that can be drawn from Lemma 1 is that we can construct projective cutting planes
for Z using the subgradients of f̄env. Our goal is to design a unifying procedure for computing the
subgradients regardless of the explicit form of f̄env, so that we can derive a rich family of projective
cutting planes via various convex envelopes available in the literature. Toward this end, we will borrow
tools from variational analysis.

In what follows, for a proper convex function f whose definition is not clear over the relative
boundary of dom(f), we assume that we naturally extend it to cl(dom(f)) by the limiting argument

f(x) = lim
λ→0+

f(x+ λ(x̃− x)) for some x̃ ∈ ri(dom(f)).

For example, for ϕ(x, y) = y2

x ,

ϕ(x, y) =


y2

x if x > 0
0 if y = x = 0

+∞ otherwise.

We also assume that problem (1) is feasible.

Assumption 1. There exists (x̃, ỹ) satisfying constraints (1b)–(1e).

Checking the feasibility of the system (1b)–(1e) is NP-hard in general because it includes the
feasibility problem of a mixed-integer linear set as a special case. However, for many interesting
applications, i.e., sparse regression, best subset selection, and sparse portfolio selection, it is without
loss of generality to assume that the MIQP problem always has a feasible point.

Lemma 2. For f(x, y) = y2

x : R+ × R → R+, its subdifferential ∂f(x, y) is as follows

∂f(x, y) =


{(Φ,Ψ) | Φ ≤ −1

4Ψ
2} if x = 0 and y = 0

(− y2

x2 ,
2y
x , ) if x > 0

∅ otherwise.

Proof. The result follows from the Fenchel-Young inequality [37]:

f(x, y) + f∗(Φ,Ψ) ≥ xΦ+ yψ

and the inequality holds at equality if and only if

(Φ,Ψ) ∈ ∂f(x, y).

The conjugate function f∗(Φ,Ψ), by definition, equals

f∗(Φ,Ψ) = sup
x,y

{
Φx+Ψy − y2

x

}
= I{(Φ,Ψ) | Φ≤− 1

4
Ψ2}(Φ,Ψ).

Note that the perspective function f is differentiable in its relative interior x > 0, and the subdif-
ferential collapses to a single point, and when x = 0 but y ̸= 0, f(0, y) = +∞, so no subgradient
exists. The only nontrivial case is when x = 0 and y = 0. By Fenchel-Young inequality, we know that
(Φ,Ψ) ∈ ∂f(0, 0) if and only if

I{(Φ,Ψ) | Φ≤− 1
4
Ψ2}(Φ,Ψ) = 0 ⇐⇒ Φ ≤ −1

4
Ψ2.
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□

Before we proceed with deriving the first class of cutting planes for Z, we recall a result regarding the
subdifferential of a marginal function from variational analysis, which is our main tool for computing
projective cutting planes.

Theorem 1. [38] For any proper closed convex function f(x, y) : R2n → R
⋃
{∞}, suppose that there

exists x̄, r̄ such that the level set

{y | f(x̄, y) ≤ r̄}

is compact, then

(i) f̄(·) : Rn → R is finite and lower semicontinuous,

(ii) ∂f̄(x) = {t : (t, 0) ∈ ∂f(x, y) for some y ∈ Rn}.

Here, we provide a simplification of the condition of Theorem 10.31 in [38] because when f is a
closed convex function, the boundedness of the level set {y | f(x̄, y) ≤ r̄} at some point x̄ for some
value r̄ implies the uniform level boundedness (Definition 1.16 [38]).

The level set boundedness condition in Theorem 1 is necessary to guarantee the validity of the
subdifferential formula in Theorem 1 for the marginal function f̄(·). Next, we will see an example in
which the formula does not hold in the absence of the level set boundedness condition.

Example 1. We define function f1(x, y) : R+ × R → R+ piecewise as follows:

f1(x, y) =


x exp (− y

x) x > 0
0 x = 0, y = 0
0 x = 0, y > 0

+∞ x = 0, y < 0.

Note that on ri(dom(f1)), f1 coincides with the perspective function of a simple exponential, and on
the boundary, it is not hard to check that the function values can be obtained via a limiting argument.
Thus, f1 is a closed convex function. It is easy to see that the level set boundedness condition does
not hold for f1. The marginal function f̄1 after partially minimizing over y is

f̄1(x) = 0,

which is a constant function over [0,+∞]. Therefore, f̄1 is also a closed convex function whose
subdifferential set ∂f̄1(x) is nonempty and compact for any x ≥ 0; however, a simple calculation

reveals that ∂f1(x, y) = {(exp(− y
x) +

y2

x exp(− y
x),− exp(− y

x))} for x > 0, and the second coordinate
− exp(− y

x) is always nonzero. This means there does not exist a point y such that (t, 0) ∈ ∂f1(x, y)
for any x > 0. Figure 1 provides a visualization of f1.

Figure 1. f1.

We introduce the notations F1 and F2 to denote the sets of feasible points of the linear inequalities
(1b) and (1c), respectively, i.e., F1 = {y : Ay ≤ b} and F2 = {(x, y) : Cy ≤ Dx}. Starting from the
perspective reformulation, we first give a corresponding convex envelope function of Z. Suppose we
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decompose Q as Q = diag(δ) + R such that δ ≥ 0 and R ≽ 0. The perspective reformulation is as
follows:

min
x,y

y⊤Ry +
n∑

i=1

δi
y2

xi
+ g⊤y + h⊤x

s.t. Ay ≤ b

Cy ≤ Dz

x ∈ X.

Alternatively, we can make use of the indicator function, and replace the constraints on the continuous
variables with indicator functions in the objective function, i.e.

min
x,y

y⊤Ry +
n∑

i=1

δi
y2

xi
+ g⊤y + h⊤x+ IF1(y) + IF2(x, y)

s.t. x ∈ X.

Let us denote the objective function above as fpersp(x, y). Note that the perspective relaxation is
obtained when we replace the binary restriction x ∈ X with x ∈ conv(X). We have the relation that
(x, y, η) ∈ Z ⇐⇒ η ≥ fpersp(x, y) and x ∈ X (if xi is zero for some i ∈ [n], then to avoid fpersp being
infinity, we must have yi equal zero as well, and the complementarity constraints are satisfied), thus
fpersp is a valid convex envelope function of Z. Here, we ignore the subtle case where δi may be zero
for some i ∈ [n] since it is not hard to see that fpersp is a convex envelope function of Z under this
scenario as well. As we have argued before, for any x ∈ conv(X) and t ∈ ∂f̄persp(x), the subgradient
inequality η̃ ≥ ⟨t, x̃−x⟩+ f̄persp(x) is valid for any (x̃, ỹ, η̃) ∈ Z. In Proposition 1, we will characterize
∂f̄persp.

Proposition 1. For any x ∈ [0, 1]n, suppose that S is the set of indices of nonzero entries of x, and
SC denotes its complement. Let AS and CS denote the submatrices where the columns are in S. For
y ∈ Rn, λ ∈ Rm1 and µ ∈ Rm2, let yi = 0 for i ∈ SC and yS, λ, and µ be the primal-dual optimal
solution of the following quadratic program (QP) in the reduced space indexed by S

min
ỹ∈R|S|

ỹ⊤
(
RS + diag

({
δi
xi

}
i∈S

))
ỹ + g⊤S ỹ (3a)

s.t. AS ỹ ≤ b (3b)

CS ỹ ≤ Dx. (3c)

Then t ∈ ∂f̄persp(x) if and only if there exists Ψ ∈ R|SC | such that

ti = −δi
y2i
x2i

− µ⊤Di + hi, ∀i ∈ S (4)

δiΨi = −(2R⊤
i y + gi + λ⊤Ai + µ⊤Ci), ∀i ∈ SC (5)

ti ≤ −1

4
δiΨ

2
i − µ⊤Di + hi, ∀i ∈ SC . (6)

Proof. Given x ∈ [0, 1]n, let S denote the support set of x (i.e., S = {i ∈ [n] | xi ̸= 0}). By
Assumption 1, there exists a feasible point (x̃, ỹ) ∈ X×Rn for (1). We have the inequality fpersp(x̃, y) ≥
y⊤Qy + g⊤y + h⊤x̃ since δi

y2i
x̃i

≥ δiy
2
i for any x̃i ∈ [0, 1]. The strongly convex quadratic function

y⊤Qy + a⊤y has bounded level sets, which implies that any level set of fpersp(x̃, ·) as a function of y
is also bounded. Note, in particular, that the level set {y | fpersp(x̃, y) ≤ fpersp(x̃, ỹ)} is nonempty
as it contains ỹ, and it satisfies the level set boundedness condition in Theorem 1. Since we extend

the perspective function
y2i
xi

to its closure, we have
y2i
0 = +∞ if yi ̸= 0. Then for the subdifferential

∂fpersp(x, y) to exist for some y ∈ Rn, we must have yi = 0 for any i ∈ SC and (x, y) is feasible
for (1) (one of the indicator functions IF1 or IF2 will evaluate to +∞ if otherwise). Recall that the
subdifferential of the indicator function IC(·) of a closed convex set is its normal cone NC(·) [30], and
the normal cones of polyhedral sets F1 and F2 are:

NF1(y) = {(0, λ̃⊤A) | λ̃ ≥ 0, λ̃i = 0, ∀i such that ⟨ai, y⟩ < bi},

NF2(x, y) = {(−µ̃⊤D, µ̃⊤C) | µ̃ ≥ 0, µ̃i = 0, ∀i such that ⟨ci, y⟩ < ⟨di, x⟩}.
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The indicator function of a polyhedron is a polyhedral function [37], and by Theorem 23.8 in [37] (in
which the constraint qualification holds), ∂fpersp(x̃, ỹ) equals the sum of the subdifferentials of the

components of fpersp, i.e., y
⊤Ry, δi

y2i
xi
, IF1 , and IF2 . By Theorem 1, t ∈ ∂f̄persp(x) if and only if t

solves the first-order equation for some y ∈ Rn:

(t, 0) ∈ ∂fpersp(x, y).

We will reveal the equation above entry-by-entry in the order of (i) yi for i ∈ S, (ii) yi for i ∈ SC ,
(iii) xi for i ∈ S, and (iv) xi for i ∈ SC .
The first set of equations is for i ∈ S:

2R⊤
i y + 2δi

yi
xi

+ gi + λ̃⊤Ai + µ̃⊤Ci = 0. (7)

The second set of equations is that there exists Ψ ∈ R|SC |, where Ψi is the second entry of the

subgradients in ∂
y2i
xi

at (0, 0), such that for i ∈ SC :

δiΨi + 2R⊤
i y + gi + λ̃⊤Ai + µ̃⊤Ci = 0, (8)

which is nothing but (5). The third set of equations is for i ∈ S:

ti = −δi
y2i
x2i

− µ̃⊤Di + hi, (9)

which is nothing but (4). The last set of equations is that there exists Φ ∈ R|SC |, where Φi is the first

entry of the subgradients in ∂
y2i
xi

at (0, 0), such that for i ∈ SC :

ti = −δiΦi − µ̃⊤Di + hi. (10)

In equations (7)–(10), by Lemma 2, Ψi,Φi for i ∈ SC satisfy the relations:

Φi ≤ −1

4
Ψ2

i , ∀i ∈ SC . (11)

Thus far, we have argued that equations (7)–(11) must hold, (x, y) must be feasible to (1), and
that yi = 0 for all i ∈ SC for ∂fpersp(x, y) to exist. Next, we simplify these equations to obtain the

desired result. Note that equations (7) where λ̃ and µ̃ satisfy the complementarity condition together
with the conditions that the given (x, y) satisfies constraints (1b)–(1c) and yi = 0 for any i ∈ SC are

equivalent to the Karush–Kuhn–Tucker (KKT) conditions of the QP problem (3). Hence, (yS , λ̃, µ̃)
is the primal-dual optimal solution for the QP problem (3). Furthermore, we can combine equations
(10) and (11) by plugging (11) into (10) which then gives (6).

□

By substituting (5) into (6), we can see that we can choose any t satisfying (4) and the following
inequality:

ti ≤ − 1

4δi
(2R⊤

i y + gi + λ⊤Ai + µ⊤Ci)
2 − µ⊤Di + hi, ∀i ∈ SC , (12)

in deriving the subgradient cuts for Z. Nevertheless, the strongest cuts are those that attain equality.
To see this, if we add the cut

η̃ ≥ ⟨t, x̃− x⟩+ f̄persp(x),

where xi = 0, ∀i ∈ SC , and expand it as η̃ ≥
∑

i∈S ti(x̃i − xi) +
∑

i∈SC tix̃i + f̄persp(x), then, a cut

with smaller ti for i ∈ SC is implied by the one with larger ti for i ∈ SC and the bounds 0 ≥ −xi for
i ∈ [n]. In Algorithm 1, we outline the procedure for obtaining the strongest cutting plane from the
perspective reformulation.
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Algorithm 1 A cut-generating procedure based on the perspective reformulation (CUTpersp)

1: INPUT R, δ, g, h, (A, b), (C,D), x
2: Set S to be the set of indices such that xi > 0
3: Set y = 0
4: Set (yS , λ, µ) to be the optimal primal-dual solution of QP (3)
5: Set t = 0
6: for i ∈ S do

7: Set ti = −δi
y2i
x2
i
− µ⊤Di + hi

8: end for
9: for i ∈ SC do

10: Set Ψi = − 1
δi
(2

∑
j∈S Rijyj + gi + λ⊤Ai + µ⊤Ci)

11: end for
12: for i ∈ SC do
13: Set ti = − δi

4 Ψ
2
i − µ⊤Di + hi

14: end for
15: return t

In some cases, e.g., in the presence of bound constraints, some constraints active at y may not
involve yi for i ∈ S, and the corresponding multipliers λi and µi do not appear in the optimal primal-
dual solution of the QP (3). Consequently, such λi and µi are ‘free’ variables. As we have argued
before, it would be beneficial to maximize the right-hand side of (12); however, doing so will require
solving a QP. One simple strategy is to set these λi and µi to zero, which is how we implement the
cutting planes in the numerical experiments.

One insight we can draw from Proposition 1 is that computing a cutting plane can be very efficient
if only a small proportion of the entries of x are nonzero. When we enforce a sparsity constraint,
i.e., X ⊆ Xk, at any binary point, the computational cost equals the solution time of a k-dimensional
quadratic program (3) plus O(n(k+m1 +m2)) floating-point operations. Next, we give a corollary of
Proposition 1 for the case in which we do not have constraints over y.

Corollary 1. For MIQP with no constraints over y, given x ∈ [0, 1]n, suppose S is the set of indices
of nonzero entries of x; for y ∈ Rn, let yi = 0 for i ∈ SC and yS be the unconstrained optimal solution
in the reduced subspace indexed by S, i.e., yS = −1

2Q
−1
S gS. Then t ∈ ∂f̄perps(x) if and only if

ti = −δi
y2i
x2i

+ hi i ∈ S

δiΨi = −(2R⊤
i y + gi) ∀i ∈ SC

ti ≤ −1

4
δiΨ

2
i + hi ∀i ∈ SC .

Proof. The proof follows the same procedure as the proof of Proposition 1 by ignoring the constraints
(1b) and (1c). □

Corollary 1 gives a formula for computing the subgradients of f̄persp(x) in the absence of constraints
on y for an arbitrary diagonal decomposition (Q = R + diag(δ) such that R ≽ 0 and δ ≥ 0), and it
generalizes the result in [5] by allowing the remainder term R to be rank-deficient.

Bertsimas and Cory-Wright [3] proposed a class of cutting planes for Z when X = Xk based on
a convex Boolean reformulation of (1). Their result requires first reformulating (1) equivalently as a
sparse regression problem, i.e.,

min
x,y

n∑
i=1

δiy
2
i + ∥β − Ey∥22 + g̃⊤y (13a)

s.t. Ay ≤ b (13b)

Cy ≤ Dx (13c)

yi(1− xi) = 0, ∀i = 1, . . . , n (13d)

x ∈ Xk, (13e)
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whereR = E⊤E for some full row-rank E ∈ Rk1×n, β = −1
2(EE

⊤)−1Eg, and g̃ = (I−E⊤(EE⊤)−1E)g,
and then applying the convex Boolean reformulation akin to [5, 36]. The perspective reformulation of
(13) is written as:

min
x,y

n∑
i=1

δi
y2i
xi

+ ∥r∥22 + g̃⊤y + c⊤x (14a)

s.t. r = β − Ey (14b)

Ay ≤ b (14c)

Cy ≤ Dz (14d)

x ∈ Xk. (14e)

We introduce another indicator function IF3(·) with F3 ≡ {(y, r) : r = β −Xy}, and define

fpersp2(x, y, r) =
n∑

i=1

δi
y2i
xi

+ ∥r∥22 + g̃⊤y + c⊤x+ IF3(y, r) + IF1(y) + IF2(x, y).

In Appendix A, we prove that ∂f̄persp2(x) coincides with the cutting planes in [3] and since fpersp2 only

differs from fpersp by a constant, ∂f̄persp = ∂f̄persp2 . However, the cost of computing a cutting plane
in [3] includes the cost of solving a QP of size k1 plus O(n(k1 +m1 +m2)) floating-point operations,
where k1 (the rank of R) can be of the same order as n; on the contrary, the formula in Proposition 1
only requires the solution of a QP of size k in addition to O(n(k+m1+m2)) floating-point operations.
Observe that k can be much smaller than n in some applications.

Remark 1. At any binary point x ∈ X, f̄persp(x) is the optimal value of MIQP (1) given x.

When computing f̄persp(x) = miny∈Rn fpersp(x, y), to avoid the term δi
y2i
xi

becoming +∞, we must

have yi = 0 if xi = 0 and thus the complementarity constraint (1d) holds. On the other hand, for any y

satisfying the complementarity constraint (1d), y⊤
(
diag

({
δi
xi

}
i∈[n]

)
+R

)
y = y⊤S (diag(δS) +RS) yS =

y⊤SQSyS since the term δi
y2i
xi

= 0
0 = 0 for any i ∈ SC . Hence, the partial minimization problem

miny∈Rn fpersp(x, y) is equivalent to

min
ỹ∈R|S|

ỹ⊤QS ỹ + g⊤S ỹ + h⊤x

s.t. AS ỹ ≤ b

CS ỹ ≤ Dx,

which is exactly MIQP (1) given x.
So far, we have seen how to derive cutting planes for Z in the space of (x, η) using Theorem 1 and

the perspective reformulation. It is also interesting to see how we can use the same framework to
derive cutting planes for Z based on other reformulations in the literature. In the next section, we
focus on one reformulation that uses the ideal formulation of the epigraph of a rank-one quadratic
function with indicator variables and no constraints on y.

4. Cutting planes for perspective reformulation with rank-one inequalities

Let

XR1 ≡ {(x, y, η) ∈ {0, 1}n × Rn+1 | η ≥ (y⊤u)2, yi(1− xi) = 0, ∀i ∈ [n]}
denote the epigraph of a rank-one quadratic function with indicator variables, and y is unconstrained.
Atamtürk and Gómez [2] show that cl conv(XR1) is obtained by simply adding the inequality

η ≥ max

{
(u⊤y)2,

(u⊤y)2∑n
i=1 xi

}
, (15)

and the closure of the convex hull of XR1 admits the following description:

cl conv(XR1) ≡
{
(x, y, η) ∈ [0, 1]n × Rn+1 | η ≥ max

{
(u⊤y)2,

(u⊤y)2∑n
i=1 xi

}}
.
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The validity of (15) follows from the fact that for any (x, y, η) ∈ XR1 if xi = 1 for some i ∈ [n], then

η ≥ (u⊤y)2 = max
{
(u⊤y)2, (u⊤y)2∑n

i=1 xi

}
, and if xi = 0 for all i ∈ [n], then (u⊤y)2 = (u⊤y)2∑n

i=1 xi
= 0 by

the complementarity constraint. The convexity of the constraint (15) follows from the fact that its
right-hand side is the maximum of two convex functions.

Inequality (15) is easy to implement with a decomposition of Q as the sum of rank-one quadratic
matrices. In what follows, we will see that the conic-quadratic inequality (15) together with the
perspective reformulation gives a class of stronger subgradient cuts than those in Proposition 1.

Before we derive our new cutting planes, we introduce the following lemma regarding the subdif-
ferential of the composite of a perspective function and a linear mapping.

Lemma 3. Let ϕ(x, y) = max
{
(u⊤y)2, (u⊤y)2∑n

i=1 xi

}
, then ∂ϕ(x, y) =


(0, 2(u⊤y)u)

∑n
i=1 xi > 1

conv({(0, 2(u⊤y)u), (−(u⊤y)21, 2(u⊤y)u)})
∑n

i=1 xi = 1(
− (u⊤y)2

(
∑n

i=1
xi)

2 1, 2 1∑n
i=1

xi
(u⊤y)u

)
0 <

∑n
i=1 xi < 1

{(Φ1,Ψu) : Φ ≤ − 1
4Ψ

2} x = 0.

Proof. There are four cases to consider:

(i)
∑n

i=1 xi > 1. In a small neighborhood of such (x, y), we have
∑n

i=1 xi > 1, thus (u⊤y)2 ≥
(u⊤y)2∑n

i=1 xi
. Hence, ϕ(x, y) equals (u⊤y)2 locally. Since the subdifferential is determined by the

local geometry of the epigraph of ϕ(·), ∂ϕ(x, y) = ∂(u⊤y)2.

(ii) 0 <
∑n

i=1 xi < 1. Similarly, when 0 <
∑n

i=1 xi < 1, ϕ(x, y) = (u⊤y)2∑n
i=1 xi

in a small neighborhood,

and ∂ϕ(x, y) = ∂ (u⊤y)2∑n
i=1 xi

which shrinks to a single point since (u⊤y)2∑n
i=1 xi

is differentiable.

(iii)
∑n

i=1 xi = 1. In this case, then (u⊤y)2 and (u⊤y)2∑n
i=1 xi

coincide, and they are finite in a small

neighborhood of (x, y). Then, according to the rule of the subdifferential of the supremum of

finite convex functions (Theorem 4.4.2 [30]), ∂ϕ(x, y) = conv(∂(u⊤y)2
⋃
∂ (u⊤y)2∑n

i=1 xi
).

(iv) x = 0. In this case, ϕ(x, y) is locally equal to (u⊤y)2∑n
i=1 xi

, the composite of a perspective function

and a linear mapping. Then, ∂ (u⊤y)2∑n
i=1 xi

can be derived via the chain rule of subdifferentials and

Lemma 2.

□

In what follows, we assume that we are given a decomposition Q = LL⊤ + diag(δ) +N such that
δ ≥ 0 and N ≽ 0, and L ∈ Rn×K for some 1 ≤ K ≤ n (we will discuss how to obtain such a
decomposition later). Then, we can apply inequality (15) to the terms (L⊤

i y)
2 for i ∈ 1, . . . ,K and

arrive at the following convex envelope function for Z:

fpersp+ro(x, y) ≡
K∑
i=1

max

{
(L⊤

i y)
2,

(L⊤
i y)

2∑
1≤j≤n,Lji ̸=0 xj

}
+ y⊤Ny +

n∑
i=1

δi
y2i
xi

+ g⊤y + h⊤x

+ IF1(y) + IF2(x, y).

Proposition 2. For any x ∈ [0, 1]n, S is the set of indices of nonzero x entries, and SC denotes its
complement. Suppose

I> = {i :
∑

1≤j≤n,Lji ̸=0

xj > 1, i = 1, . . . ,K},

I= = {i :
∑

1≤j≤n,Lji ̸=0

xj = 1, i = 1, . . . ,K},

I< = {i : 0 <
∑

1≤j≤n,Lji ̸=0

xj < 1, i = 1, . . . ,K},

I0 = {i :
∑

1≤j≤n,Lji ̸=0

xj = 0, i = 1, . . . ,K}.



AN OUTER APPROXIMATION METHOD FOR MICQPS 11

Let y ∈ Rn , yi = 0 for i ∈ SC , and (yS , λ, µ) be the primal-dual optimal solution of the following
QP:

min
ỹ∈R|S|

ỹ⊤

 ∑
i∈I>

⋃
I=

(Li)S(Li)
⊤
S +

∑
i∈I<

1∑
1≤l≤n,Lli ̸=0 xl

(Li)S(Li)
⊤
S + diag

({
δi
xi

}
i∈S

)
+NS

 ỹ + g⊤S ỹ

(16a)

s.t. AS ỹ ≤ b (16b)

CS ỹ ≤ Dx, (16c)

Then, t ∈ ∂f̄persp+ro(x) if and only if there exist ϕ ∈ R|I=|+|I0| , ψ ∈ R|I0|, Ψ ∈ R|SC |, and Φ ∈ R|SC |

such that

0 =
∑

i∈I>
⋃

I=

2Lji(L
⊤
i y) +

∑
i∈I<

2
1∑

1≤j≤n,Lji ̸=0 xj
Lji(L

⊤
i y) +

∑
i∈I0

Ljiψi

+ δjΨj + 2N⊤
i y + gj + λ⊤Aj + µ⊤Cj = 0, ∀j ∈ SC (17)

tj =
∑

i∈I=,Lji ̸=0

ϕi −
∑

i∈I<,Lji ̸=0

(L⊤
i y)

2

(
∑

1≤l≤n,Lli ̸=0 xl)
2
− δj

y2j
x2j

− µ̃⊤Dj + hj , ∀j ∈ S (18)

tj =
∑

i∈I=,Lji ̸=0

ϕi −
∑

i∈I<,Lji ̸=0

(L⊤
i y)

2

(
∑

1≤l≤n,Lli ̸=0 xl)
2
+

∑
i∈I0,Lji ̸=0

ϕi + δjΦj − µ⊤Dj + hj , ∀j ∈ SC (19)

ϕi ≥− (L⊤
i y)

2, ∀i ∈ I= (20)

ϕi ≤− 1

4
ψ2
i , ∀i ∈ I0 (21)

Φi ≤− 1

4
Ψ2

i , ∀i ∈ SC . (22)

Proof. Note that fpersp+ro(x, y) ≥
∑n

i=1 δi
y2i
xi
+y⊤(LL⊤)y+y⊤Ny+g⊤y+h⊤x, and the right-hand side

can be considered as a perspective reformulation. Since we have shown in the proof of Proposition 1
that the level set boundedness condition in Theorem 1 holds for fpersp, it also holds for fpersp+ro. Then,
the subdifferential of the marginal function f̄persp+ro(x) can be obtained by solving for the first-order
condition in Theorem 1. By the same argument as in the proof of Proposition 1, we can compute
∂fpersp+ro(x, y) as the sum of the subdifferentials of the components of fpersp+ro. The only difference

between fpersp+ro and fpersp is the appearance of the term
∑K

i=1max

{
(L⊤

i y)
2,

(L⊤
i y)2∑

1≤j≤n,Lji ̸=0 xj

}
, by

Lemma 3 and the calculus of subdifferentials, its subdifferential set equals∑
i∈I>

(0, 2(L⊤
i y)Li)+∑

i∈I=
conv{(0, 2(L⊤

i y)Li), (−(L⊤
i y)

2, . . . ,−(L⊤
i y)

2︸ ︷︷ ︸
indices where Lli ̸=0

, 0, . . . , 0︸ ︷︷ ︸
indices where Lli=0

, 2(L⊤
i y)Li)}+

∑
i∈I<

(− (L⊤
i y)

2

(
∑

1≤j≤n,Lji ̸=0 xj)
2
, . . . ,− (L⊤

i y)
2

(
∑

1≤j≤n,Lji ̸=0 xj)
2︸ ︷︷ ︸

indices where Lli ̸=0

, 0, . . . , 0︸ ︷︷ ︸
indices where Lli=0

, 2
1∑

1≤j≤n,Lji ̸=0 xj
(L⊤

i y)Li)+

∑
i∈I0

{( ϕi, . . . , ϕi︸ ︷︷ ︸
indices where Lli ̸=0

, 0, . . . , 0︸ ︷︷ ︸
indices where Lli=0

, ψiLi) : ϕi ≤ −1

4
ψ2
i }.

The subdifferential set of max

{
(L⊤

i y)
2,

(L⊤
i y)2∑

1≤j≤n,Lji ̸=0 xj

}
for some i ∈ I= can be written more com-

pactly as {( ϕi, . . . , ϕi︸ ︷︷ ︸
indices where Lli ̸=0

, 0, . . . , 0︸ ︷︷ ︸
indices where Lli=0

, 2(L⊤
i y)Li) : 0 ≥ ϕi ≥ −(L⊤

i y)
2}. The subdifferentials of

other terms in fpersp+ro are the same as fpersp. Now, we state again that t ∈ ∂f̄persp+ro(x) if and only
if there exists y ∈ Rn such that

(t, 0) ∈ ∂fpersp+ro(x, y). (23)
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Similarly, for the subdifferential set ∂fpersp+ro(x, y) to exist, we must have yi = 0 for i ∈ SC since

otherwise, δi
y2i
xi

= +∞, and (x, y) must satisfy constraints (1b)–(1c). Recall that the subdifferential
sets of the indicator functions IF1 and IF2 are

NF1(y) = {(0, λ̃⊤A) | λ̃ ≥ 0, λ̃i = 0, ∀i such that ⟨ai, y⟩ < bi},

NF2(x, y) = {(−µ̃⊤D, µ̃⊤C) | µ̃ ≥ 0, µ̃i = 0, ∀i such that ⟨ci, y⟩ < ⟨di, x⟩}.

Again, we uncover equation (23) entry by entry in the order of (i) yj for j ∈ S, (ii) yj for j ∈ SC , (iii)
xj for j ∈ S, and (iv) xj for j ∈ SC . The first set of equations is for j ∈ S:∑

i∈I>
⋃

I=

2Lji(L
⊤
i y) +

∑
i∈I<

2
1∑

1≤j≤n,Lji ̸=0 xj
Lji(L

⊤
i y) + 2δj

yj
xj

+ 2N⊤
i y + gj + λ̃⊤Aj + µ̃⊤Cj = 0. (24)

The second set of equations is for j ∈ SC :∑
i∈I>

⋃
I=

2Lji(L
⊤
i y) +

∑
i∈I<

2
1∑

1≤j≤n,Lji ̸=0 xj
Lji(L

⊤
i y) +

∑
i∈I0

Ljiψi + δjΨj + 2N⊤
i y + gj + λ̃⊤Aj + µ̃⊤Cj = 0,

(25)

which is exactly (17). The third set of equations is for j ∈ S:

tj =
∑

i∈I=,Lji ̸=0

ϕi −
∑

i∈I<,Lji ̸=0

(L⊤
i y)

2

(
∑

1≤l≤n,Lli ̸=0 xl)
2
− δj

y2j
x2j

− µ̃⊤Dj + hj , (26)

which is nothing but (18). The last set of equations is for j ∈ SC :

tj =
∑

i∈I=,Lji ̸=0

ϕi −
∑

i∈I<,Lji ̸=0

(L⊤
i y)

2

(
∑

1≤l≤n,Lli ̸=0 xl)
2
+

∑
i∈I0,Lji ̸=0

ϕi + δjΦj − µ̃⊤Dj + hj , (27)

which is equivalent to (19). In equations (25)–(27), ψ, Ψ, ϕ, and Φ satisfy the relations (20)–(22). Note

that equations (24) where λ̃ and µ̃ satisfy the complementarity condition together with the conditions that the
given (x, y) satisfies the constraints (1b)–(1c) and yi = 0 for all i ∈ SC are equivalent to saying that the triple

(yS , λ̃, µ̃) satisfies the KKT condition for the QP (16). □

Now, a question to ask is how to decompose Q as
∑K

i=1 LiL
⊤
i + diag(δ) + N? Atamtürk and

Gómez [2] propose a semidefinite programming (SDP) approach for decomposing Q into the sum of
low-dimensional rank-one quadratic functions and one-dimensional quadratic functions for the sake of
maximizing the relaxation lower bound; however, the computational cost of solving the SDP problem
using interior-point methods could be prohibitive. A much cheaper option is the Cholesky decompo-
sition, and we refer interested readers to [24] for a complete discussion on variants of the Cholesky
decomposition and their numerical stability. We can divide the task into (i) first extract a diagonal
term diag(δ) from Q, and then (ii) do a Cholesky decomposition on the remaining positive semidefinite
matrix (the Cholesky decomposition is applicable for both positive definite and positive semidefinite
matrices).

The subgradient cuts of f̄persp+ro have a much simpler form at binary points. In what follows, we
will present an algorithm for computing cutting planes in this case.

Proposition 3. Given x ∈ X ⊂ {0, 1}n, suppose we decompose Q as Q =
∑K

i=1 LiL
⊤
i + diag(δ) +N

such that δ ≥ 0, N ≽ 0 and R =
∑K

i=1 LiL
⊤
i +N . Let t be the vector returned by Algorithm 2, then

t ∈ ∂f̄persp+ro(x) and η̃ ≥ ⟨t, x̃− x⟩+ f̄persp+ro(x) is a valid cut for Z.

Proof. Since x ∈ X is binary, the index set I< does not exist. Thus, QP (16) reduces to:

min
ỹ∈R|S|

ỹ⊤

 ∑
i∈I>

⋃
I+

(Li)S(Li)
⊤
S + diag

({
δi
xi

}
i∈S

)
+NS

 ỹ + g⊤S ỹ (28a)

s.t. AS ỹ ≤ b (28b)

CS ỹ ≤ Dx. (28c)
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Algorithm 2 A cut-generating procedure based on the perspective reformulation and rank-one in-
equalities (CUTpersp+ro)

1: INPUT R, δ, L, g, h, (A, b), (C,D), x
2: Set S to be the set of indices such that xi > 0
3: Set I0 to be the set of indices such that

∑
1≤l≤n,Lli ̸=0 xl = 0

4: Set y = 0
5: Set (yS , λ, µ) to be the optimal primal-dual solution of QP (3)
6: Set t = 0
7: for i ∈ S do

8: Set ti = −δi
y2i
x2
i
− µ⊤Di + hi

9: end for
10: for i ∈ I0 do
11: Set ni = |{j : Lji ̸= 0}|
12: end for
13: for i ∈ SC do
14: Set ri = −2

∑
j∈S Rijyj − gi − λ⊤Ai − µ⊤Ci

15: end for
16: Solve the system

(
diag

(
{δi}i∈SC

)
+
∑

i∈I0
1
ni
(Li)SC (Li)

⊤
SC

)
β = 2r

17: for i ∈ SC do
18: Set Ψi =

1
2βi

19: end for
20: for i ∈ I0 do
21: Set ψi =

1
2ni

∑
j∈SC Ljiβj

22: end for
23: for i ∈ SC do

24: Set ti = − δ2i
4 Ψ

2
i − 1

4

∑
j∈I0,Lij ̸=0 ψ

2
j − µ⊤Di + hi

25: end for
26: return t

Since each Li for i ∈ I0 is supported only on SC , the Hessian of the objective equals∑
i∈I>

⋃
I=

⋃
I0

(Li)S(Li)
⊤
S + diag

({
δi
xi

}
i∈S

)
+NS ,

which by definition is also equal to diag
({

δi
xi

}
i∈S

)
+ RS . If we take ϕi = 0 for i ∈ I= in equations

(18)–(20), then equations (17)–(22) further simplify to

ti = −δi
y2i
x2i

− µ⊤Di + hi, ∀i ∈ S (29)

δiΨi +
∑

j∈I0,Lij ̸=0

Lijψj = −(2N⊤
i y +

∑
j∈I>

⋃
I=

2Lij(L
⊤
j y) + gi + λ⊤Ai + µ⊤Ci), ∀i ∈ SC (30)

ti = δiΦi +
∑

j∈I0,Lij ̸=0

ϕj − µ⊤Di + hi, ∀i ∈ SC (31)

ϕi ≤ −1

4
ψ2
i , ∀i ∈ I0 (32)

Φi ≤ −1

4
Ψ2

i , ∀i ∈ SC . (33)

We can substitute (32)–(33) into (31), to obtain

ti ≤ −δi
4
Ψ2

i −
1

4

∑
j∈I0,Lij ̸=0

ψ2
j − µ⊤Di + hi, ∀i ∈ SC . (34)

The free variables are Ψi for i ∈ SC , ψi for i ∈ I0, and ti for i ∈ SC . Note that a cut η̃ ≥
⟨t̄, x̃ − x⟩ + f̄persp+ro(x) ‘dominates’ another cut η̃ ≥ ⟨t̃, x̄ − x⟩ + f̄persp+ro(x) if t̄i ≥ t̃i, ∀i ∈ SC
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(because the latter is implied by the former together with the bounds −xi ≤ 0), thus one strategy is
to select Ψ, ψ, t such that the summation

∑
i∈SC ti is maximized, and this guarantees that the cut is

non-dominated. Let us denote the right-hand side of (30) as ri for all i ∈ SC . Again, since each Li

for i ∈ I0 is only supported on SC , the right-hand side of (30) equals −(2R⊤
i y + hi + λ⊤Ai + µ⊤Ci).

The QP problem for maximizing
∑

i∈SC ti is as follows:

min
∑
i∈SC

δiΨ
2
i +

∑
i∈I0

∑
j∈SC ,Lji ̸=0

ψ2
i (35a)

s.t. δiΨi +
∑
j∈I0

Lijψj = ri [βi] ∀i ∈ SC . (35b)

We associate each constraint with Lagrangian multiplier βi, and then the KKT conditions of (35) are:

Ψi =
1

2
βi, ∀i ∈ SC (36)

ψi =

∑
j∈SC Ljiβj

2ni
, ∀i ∈ I0 (37)

δiΨi +
∑
j∈I0

Lijψj = ri, ∀i ∈ SC . (38)

By substituting equations (36) and (37) into (38), we can solve for the multiplier β viadiag
(
{δi}i∈SC

)
+

∑
i∈I0

1

ni
(Li)SC (Li)

⊤
SC

β = 2r. (39)

Since the coefficient matrix is a diagonal matrix plus a rank |I0| term, its inverse can be computed
efficiently as the sum of a diagonal matrix and rank |I0| matrix using the Woodbury matrix identity.

Finally, we can use (36), (37), and (34) to obtain ti for i ∈ SC . □

Remark 2. If we decompose Q as Q =
∑K

i=1 LiL
⊤
i + diag(δ) + N such that δ ≥ 0, N ≽ 0, and

R =
∑K

i=1 LiL
⊤
i +N , then at any binary point x ∈ X, ∂f̄persp(x) ⫋ ∂f̄persp+ro(x).

This strict inclusion relation can be seen from the fact that if we set ψi = 0 for all i ∈ I=
⋃
I0 and

ϕi = 0 for all i ∈ I0, then equations (30) and (31) are identical to equations (5) and (6), and thus any
t feasible for the system (4)–(6) is also feasible for the system (29)–(33).

Remark 3. If we decompose Q as Q =
∑K

i=1 LiL
⊤
i + diag(δ) + N such that δ ≥ 0, N ≽ 0, and

R =
∑K

i=1 LiL
⊤
i +N , then at any binary point x ∈ X, f̄persp(x) = f̄persp+ro(x). For any two t and t̃

returned by Algorithm 1 and Algorithm 2 respectively, we always have
∑

i∈SC t̃i ≥
∑

i∈SC ti.

For any i ∈ I>
⋃
I=, the term max

{
(L⊤

i y)
2,

(L⊤
i y)2∑

1≤j≤n,Lji ̸=0 xj

}
equals (L⊤

i y)
2. For any i ∈ I0, the

fact
∑

1≤j≤n,Lji ̸=0 xj = 0 implies that Lji ̸= 0 only if xj = 0. If there exists some j ∈ SC such

that yj ̸= 0, then both fpersp(x, y) and fpersp+ro(x, y) will be +∞ as they have the term δj
y2j
xj
. On

the other hand, if yj = 0 for all j ∈ SC , then the term max

{
(L⊤

i y)
2,

(L⊤
i y)2∑

1≤j≤n,Lji ̸=0 xj

}
vanishes for

any i ∈ I0, and y⊤(
∑

i∈I>
⋃

I= LiL
⊤
i + diag(δ) +N)y = y⊤(diag(δ) + R)y = y⊤Qy. Overall, we have

fpersp(x, y) = fpersp+ro(x, y) for any y ∈ Rn, and thus f̄persp(x) = f̄persp+ro(x). The second part holds
since by Remark 2, any t ∈ ∂f̄persp(x) is also a subgradient of f̄persp+ro(x), and Algorithm 2 outputs
the subgradient vector t̃ of f̄persp+ro(x) such that

∑
i∈SC t̃i is maximized. Remark 3 confirms the

intuition that the tighter convex envelope fpersp+ro leads to stronger cutting planes of Z.
The computational cost of Algorithm 2 equals the cost of solving QP (3) plus O(|I0|2n + |I0|3)

floating-point operations (the cost of solving the linear system (39)). Again, the procedure can be
very efficient if we are at a binary point x satisfying a strong sparsity constraint. On the other hand, we
will only generate cuts at binary points when we utilize Algorithm 2 as the cut-generating procedure
in an outer approximation algorithm.

In the next section, we will demonstrate the effectiveness of the cutting planes in Proposition 1
and Proposition 3 on sparse portfolio selection problems with minimum and maximum investment
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constraints. We will benchmark the OA algorithms with Algorithm 1 and Algorithm 2 as the cut-
generation procedure against the state-of-the-art methods in the literature.

5. Computational experiments

In this section, we demonstrate the practical performance of the cutting planes in Proposition 1 and
Proposition 3 through a computational study on the sparse portfolio selection problem. We solve the
corresponding MIQP by an OA algorithm in which we iteratively refine the polyhedral approximation
for Z using cutting planes in Proposition 1 and Proposition 3. An outline of the OA algorithm is
given in Algorithm 3. All the experiments are conducted on a laptop with a 12th Generation Intel(R)
Core(TM) i7-12700H CPU and 16 GB RAM. The quadratic programming subproblems are modeled
by CVX 2.2 and solved using MOSEK 10.1.13, and the mixed-integer programming (MIP) master
problem is solved by Gurobi 10.0.1. We adapt the default settings of Gurobi, except that the number
of threads in use is forced to be one. The MIP solver terminates when a solution of relative optimality
gap < 0.01% is found. All the algorithms and mathematical optimization models are implemented in
Python.

5.1. Outer approximation. The OA algorithm is formalized in Algorithm 3.

Theorem 2. Algorithm 3 solves MIQP (1) exactly in a finite number of iterations.

Proof. Let us denote the optimal value of MIQP (1) as OPT. The finite convergence of Algorithm 3
follows from the fact that each binary solution is visited at most once, and only a finite number of
cutting planes are added. Suppose Algorithm 3 returns a solution (xT , ηT ), then because Zt contains
Z at iteration t (the cutting planes are valid for Z), we have ηT ≤ OPT. By the stopping criteria, we
have ηT ≥ f̄persp(x

T ). Remark 1 tells that f̄persp(x
T ) is the optimal value of MIQP when x is fixed to

xT , and hence upper bounds OPT. Putting these together, we have ηT = OPT. □

Instead of rebuilding a branch-and-bound tree each time a violated cut is added, we adapt the
single-tree strategy through the lazy constraints. This means that the cutting planes are added to the
MIP solver when an integer solution is found, and it violates some cutting plane. The solver terminates
when no more violated cutting planes are added, and the current integer solution is optimal.

5.1.1. Incumbent solutions: High-quality incumbent solutions help prune the branch-and-bound nodes
and save efforts on exploring suboptimal regions. In the literature, heuristics exist under some par-
ticular constraints of (1), i.e., [3, 7, 43]; however, there does not exist a heuristic that can generate
provably near-optimal solutions for MIQP in its general form. Another strategy is providing the vis-
ited binary points (xt, f̄persp(x

t)) as incumbent solutions to the MIP solver (we have established in
Theorem 2 that f̄persp(x

t) upper bounds the optimal solution). Implementing this strategy takes no
additional cost to the OA procedure as the computation of f̄persp(x

t) is included in the cut generation,
and we can set incumbent solutions through a user callback function for commercial solvers such as
CPLEX and Gurobi.

5.1.2. Copy variables: We add a copy of the constraints Ay ≤ b and Cy ≤ Dx to the initial polyhedral
approximation Z1, i.e., Z1 = {(x, y, η) : Ay ≤ b, Cy ≤ Dx, x ∈ conv(X)}. Doing so guarantees that
the quadratic programming subproblem (3) is always feasible when we generate cutting planes.

5.1.3. Improve the lower bound: Note that the perspective relaxation provides a valid lower bound
on the optimal value of the MIQP (1). We denote the optimal value of the perspective relaxation
as ηpersp; then we can add the inequality η ≥ ηpersp to the MIP solver. In some scenarios, we must
obtain a high-quality solution before the MIP solver terminates. A near-optimal lower bound, such
as ηpersp, will help close the optimality gap of the best integer solution found. A stronger relaxation
lower bound can be obtained via SDP relaxations, i.e., [2, 13, 28, 44], and we do not exploit these
options due to the high computational cost of solving SDPs.
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5.1.4. Decomposition: In terms of the diagonal decomposition, i.e., Q = R+ diag(d) such that R ≽ 0
and d ≥ 0, several approaches exist. For example, Frangioni and Gentile [19] propose solving a simple
SDP while Zheng et al. [44] propose solving a larger-sized SDP, which seeks the diagonal decomposition
such that the lower bound of the resulting perspective relaxation is maximized. Zheng et al. [44] also
test the convex combination of those two. In our experiments, the decomposition method in [19] attains
a better solution time for almost all the instances and solution methods. Thus, we only present the
results using the method in [19] to extract a diagonal term. The rank-one decomposition is obtained

by doing Cholesky decomposition on the remainder term R, i.e., Q =
∑K

i=1 LiL
⊤
i + diag(δ) such that∑K

i=1 LiL
⊤
i = R.

Algorithm 3 An outer approximation algorithm (OA)

1: Set t = 1
2: Set Z1 = {(x, y, η) : Ay ≤ b, Cy ≤ Dx, x ∈ conv(X), η ≥ ηpersp}
3: while ηt < f̄persp(x

t) do
4: Compute the solution (xt, ηt) of

min
x∈X,η

η s.t. (x, y, η) ∈ Zt for some y

5: Add a cut t using Algorithm 1 or 2

Zt = Zt

⋂
{(x, y, η) : η ≥ ⟨t, x− xt⟩+ f̄persp(x

t)}

6: Set t = t+ 1
7: end while

5.2. Portfolio selection problems. Given a universe of n risky assets, we denote the mean return
vector as µ and the covariance matrix as Q. The mean-variance portfolio selection problem with spar-
sity, minimum investment, maximum investment, and minimum return constraints can be formulated
as follows:

min
x,y

y⊤Qy (40a)

s.t.
n∑

i=1

yi = 1 (40b)

µ⊤y ≥ ρ (40c)

αixi ≤ yi ≤ uixi, ∀i ∈ [n] (40d)
n∑

i=1

xi ≤ k (40e)

x ∈ {0, 1}n. (40f)

The random instances we use are generated the same way as the diagonal-dominant instances
in [19]. The expected return (µi), minimum investment (αi), and maximum investment (ui) are
drawn from uniform distributions with ranges [0.002, 0.01], [0.075, 0.125], and [0.375, 0.425], for
each i = 1, . . . , n, respectively. The minimum return value ρ is also from a uniform distribution
over the interval [0.002, 0.01]. The off-diagonal entries of Q are drawn from a discrete uniform
distribution between 1 and 10, and the diagonal entries are drawn from a discrete uniform distribution
between 10n and 20n. Since αi ≥ 0.075, the number of nonzeros in the vector y is at most 13. We
test with cardinality constraints when k = 6, 8, 10 and the case without a cardinality constraint,
which we denote by ‘nc’. For n = 300, 400, we reuse these publicly available instances at https:

//commalab.di.unipi.it/datasets/MV/ for benchmarking, and for larger problem sizes, which are
not available in the public data set, we generate new random instances following the same scheme.

We compare the following solution methods.

• MISOCP: the mixed-integer second-order conic reformulation of the perspective reformulation
of (40) solved by Gurobi.

• OA-BC: the OA method proposed by Bertsimas and Cory-Wright [3].

https://commalab.di.unipi.it/datasets/MV/
https://commalab.di.unipi.it/datasets/MV/
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• OA-persp: Algorithm 3 with Algorithm 1 as the cut generating subroutine.

• OA-persp+ro: Algorithm 3 with Algorithm 2 as the cut generating subroutine.

Note that the original OA algorithm in [3] is implemented in Julia, and here, we re-implement it
in Python for a fair comparison with the other methods implemented in Python. Authors in [3] also
supply additional cuts at the root node to strengthen the original polyhedral approximation of Z. We
also test the OA algorithm with additional cuts generated by an in-out bundle method at the root
node; however, although this implementation improves the solution time in the OA procedure, it takes
more time overall because the cost of generating additional cuts is substantial. Another difference in
the experiment settings is the choice of MIP solver. In [3, 19, 44], the MIP solver in use is CPLEX,
whereas here we use Gurobi.

In Table 1, we present the comparison between MISOCP, OA-BC, OA-persp, and OA-persp+ro,
and each entry represents an average of ten instances. A time limit of ten minutes is enforced, and
the parenthesis followed by the solution time indicates the number of instances that hit the time limit
before reaching an optimal solution. The method that attains the best solution time is shown in bold.
We provide instance-wise performance in Appendix B for a more detailed comparison.

By comparing Table 1 with the tables in [3] (the most recent computational study on the sparse
portfolio selection problem), we discover that with the recent developments of Gurobi in mixed-integer
conic programming, we are now able to explore more than twice as many nodes as CPLEX version
12.8.0. run on a machine with a better configuration within the same amount of time. Also, the
comparison between MISOCP and OA-BC is reversed in some instances (MISOCP now attains a
better end gap than OA-BC in some instances when they both reach the time limit). Consistent with
the findings in [3], MISOCP performs worst in the case where there is no explicit sparsity constraint but
an implicit sparsity constraint because of the minimum investment constraints, and its performance
significantly deteriorates (with an end gap ≈ 10%) when the problem size scales up to 500. This
phenomenon suggests that OA methods are better for the sparse portfolio selection problem in large
instances.

Another observation we make is that OA-BC hits the time limit in most instances. An even closer
look at Table 1 and the tables in [3] reveals that for both the original implementation of OA-BC
and our re-implementation, it takes roughly the same amount of branch-and-bound nodes and cutting
planes to obtain an optimal solution; however, on our computing environment, we are only able to
explore less than half of the branch-and-bound nodes within ten minutes.

As we have shown, the cuts generated by OA-BC and OA-persp are the same, but the cut-generating
procedure in the latter one is much more efficient (it solves a QP subproblem of size k as opposed
to the QP subproblem of size n in OA-BC). The computational results further confirm that OA-
persp significantly outperforms OA-BC. OA-persp solves most instances within the time limit, and its
improved efficiency against OA-BC allows the exploration of more branch-and-bound nodes and the
generation of more cuts. For many instances, both the smaller ones (n = 300) and the larger ones
(n = 500), OA-persp reduces the solution time by one-half or more (this reduction is underestimated
as OA-BC fails to solve a large proportion of instances).

Finally, even though OA-persp is the winning algorithm in most cases, the performances of OA-perp
and OA-persp+ro tie closely (with only a few instances in which OA-persp+ro takes approximately
10% extra time than OA-persp). Although OA-persp+ro generates stronger cuts than OA-persp, and
accordingly maintains a stronger linear programming relaxation, the additional cost of solving the
linear system in line 16 of Algorithm 2 may slow down the branch-and-bound process. One trend we
can observe from Table 1 is that the gap between the solution times of OA-persp and OA-persp+ro
diminishes as the problem size scales up.
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6. Conclusion

In this paper, we consider constrained mixed-integer convex quadratic programs (MIQP) with
indicators. The motivation for this work arises from a sequence of convexification results on MIQP and
the scalability of outer approximation algorithms. We develop a framework to derive projective cutting
planes for MIQP, and as special cases, we derive the cutting planes based on perspective reformulation
and perspective reformulation with rank-one inequalities. Our approach has some apparent advantages
over existing ones. First, we can handle different constraints (potentially nonlinear constraints) by
representing them as indicator functions in the objective as long as we can readily compute the resulting
subdifferentials. Second, our result applies to general mixed-integer convex programs (MICP) with
indicators. Third, an explicit form of the marginal function is not required to derive cutting planes.
Last, it can be easily adapted to other strong reformulations in the literature. The computational
results in §6 show that the theory translates into promising algorithmic improvements.

The theoretical framework is not restricted to the problem formulation (MIQP) we study here.
One possible extension is applying the framework to other MICP problems, i.e., when the objective
is separable convex or the composite of a convex function and a linear mapping. It is also interesting
for future research to study the cutting planes for problems with nonlinear constraints. A theoretical
question to answer is, can we relax to the level set boundedness condition? By answering it, we can
obtain cutting planes for a broader class of functions. From a computational perspective, an idea
for improving the algorithm is to exploit the sparsity of the Hessian. For example, intuitively, the
rank-one inequality (15) is stronger when it involves a small proportion of variables, and we can use
the sparse Cholesky decomposition to decompose the Hessian into sparse rank-one quadratics.
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Appendix A. Equivalence of Cutting Planes

Following Bertsimas and Cory-Wright [3], and for ease of exposition, we choose diag(δ) = 1
γ I for

some γ > 0 (the proof of the general δ case is similar). It’s easy to verify that the level set boundedness
condition holds for fpersp2 , and by mimicking the steps of the proof of Proposition 1, we conclude that

t ∈ ∂f̄persp2(x) at some x if and only if

∃y ∈ Rn, α ∈ Rk1 , λ ∈ Rm1 , µ ∈ Rm2 (41a)

yi = 0 ∀i ∈ SC (41b)

r = β − Ey (41c)

Ay ≤ b (41d)

Cy ≤ Dx (41e)

λ ≥ 0, µ ≥ 0 (41f)

λi(a
⊤
i y − bi) = 0, ∀i ∈ [m1] (41g)

µi(c
⊤
i y − d⊤i x) = 0, ∀i ∈ [m2] (41h)

2diag

({
1

γxi

}
i∈S

)
yS + E⊤

S α+A⊤
S λ+ C⊤

S µ+ g̃S = 0 (41i)

2r + α = 0 (41j)

ti = −1

γ

y2i
x2i

−D⊤
i µ+ ci ∀i ∈ S (41k)

ti ≤ −γ
4
(X⊤

i α+A⊤
i λ+ C⊤

i µ+ gi)
2 −D⊤

i µ+ ci. ∀i ∈ SC . (41l)

Conditions (41a)–(41j) are the KKT conditions for the following regression problem in a reduced space:

min
y

∑
i∈S

1

γ

y2i
xi

+ ∥r∥22 + g̃⊤S y (42)

s.t. r = β − ESy

ASy ≤ b

CSy ≤ Dx,

and yS , α, λ, and µ are the optimal primal and dual solutions. By comparing with Theorem 1 in [3],
we can see that ∂f̄persp2 attains the same set of cutting planes.

Appendix B. Supplementary computational results

We give instance-wise comparisons for the instances generated by Frangioni and Gentile [19].
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