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Abstract Effective planning of preventive maintenance plays an important
role in maximizing the operational readiness of any industrial system. We
consider an operating system and a maintenance workshop governed by two
stakeholders who collaborate based on a mutual contract: components of the
operating system that need maintenance are sent to the maintenance work-
shop, where necessary maintenance activities are performed and after which
the maintained components are returned to the operating systems and ready
to be used again. While the maintenance activities must obey the workshop
capacity, the components should be returned to the operating system within
a contracted time frame. For this problem, we developed in a previous work
a mixed-integer linear optimizaiton model incorporating stocks of damaged
as well as repaired components, workshop scheduling, and preventive mainte-
nance planning for the operating system. We then investigated an availability
contract between the stakeholders and which is in the paper at hand compared
with a turn–around–time contract type, which is more often used in reality.
Since, for real instance sizes, the latter leads to a computationally demanding
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bi-objective optimization problem, we use Lagrangean relaxation and subgra-
dient optimization to compute local lower bounds on the set of non-dominated
points, complemented with math-heuristics to identify good feasible solutions
(i.e., local upper bounds). Our suggested method thus provides a bounding of
the set of non-dominated points for a turn–around time contract.

Keywords System Maintenance · Workshop Scheduling · Mixed-Integer
Linear Optimization Model · Optimization of Contracting Forms · Simulta-
neous Scheduling · Bi-Objective Optimization · Subgradient Optimization ·
Lagrangean Relaxation

1 Introduction

Maintenance is performed in order for a system to remain in/get restored to its
operational state (Swanson, 2001). Maintaining a system typically means re-
pairing, replacing, overhauling, inspecting, servicing, adjusting, or testing the
system and/or its components, so that there are no interruptions of the sys-
tem’s planned operations. The outcome of an effective maintenance planning
is a reduced risk of failure (Papakostas et al., 2010) and an optimal use of the
system’s life (and of lives of its components). Preventive maintenance (PM)
is planned and performed after a specified period of time, or when a specified
system has been used for a certain period of time, in order to reduce the prob-
ability of system failure. Corrective maintenance (CM), on the other hand, is
performed after a failure has occurred as a corrective measure to restore the
system into an operational state. CM typically comes with a higher cost, since
it is often associated with unplanned operation disruptions. We consider PM
scheduling, while CM is implicitly considered through an additional cost which
increases with the time between PM occasions. The increasing cost reflects the
increased risk of having to perform CM. See Yu and Strömberg (2021) for a
model that uses failure time distributions to model such additional costs.

We consider a setting with two stakeholders, one being the system operator
and the other being the maintenance workshop. The system operator performs
the operations (e.g., within train traffic the system operator would operate
the trains according to a given timetable), while the maintenance workshop
performs the repair of components sent from the system operation to the
workshop. The two stakeholders can work independently or they can share
their information and cooperate towards a common goal. We study the latter
case, in which the stakeholders are integrated, each of them having one (or
several) objective(s) they wish to optimize. The collaboration between the
stakeholders is typically governed by a contract. We model, study, and compare
two types of contracts: an ’availability of repaired components’ contract type
and a ’turn–around time’ contract type, both of which are modelled as bi-
objective optimization problems.

Although it is theoretically possible to identify the complete set of non-
dominated points for a multi-objective optimization problem, finding an ex-
act description of this set is often computationally too expensive (Shao and
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Ehrgott, 2008). For a survey on approximation of the non-dominated set, see
(Ruzika and Wiecek, 2005). Prins et al. (2006), propose a two-phase heuristic
method for the bi-objective set covering problem, using a primal-dual La-
grangian relaxation to solve single objective set covering problems. Quttineh
et al. (2022) approximate the Pareto frontier for a bi-objective set covering
problem using an ε-constraint reformulation, a heuristic for set covering prob-
lems utilizing Lagrangean multipliers, and subgradient optimization.

For the preventive maintenance and workshop scheduling problem, we have
previously presented a model with individual components’ flow (Obradović,
2021) and another model with an aggregated flow of components for each
component type (Obradović et al., 2022); the goal being to investigate how
different contracting forms affect the efficiency of maintenance activities and
the flow of components between the systems, as well as the availability of
the operating systems over time. Subsequently, we introduced the modeling
of jobs1 along with a model for non-preemptive scheduling of components’
repair in the workshop and a new formulation of an ’availability of repaired
components’ contract between the stakeholders (Obradović et al., 2023).

In the paper at hand we present a partly new bi-objective optimization
modelling of the preventive maintenance and workshop scheduling problem,
including preemptive and non-preemptive scheduling of components’ repair, as
well as two different contracting forms: one turn–around time contract and one
availability contract. The scheduling model is summarized in Section 2 while
the bi-objective problems, based on the contracting forms, are described in
Section 3. The contracting forms are investigated and compared with respect
to the resulting costs for maintenance as functions of lower limits on stock
levels and due dates for component repair, respectively.

The main contribution of this work is an algorithm for bounding the area of
uncertainty of a Pareto front for one turn–around time and one maintenance
cost objective, and which constitutes a computationally heavy bi-objective
optimization problem. In order to manage the computations in a reasonable
time for real instance sizes, we use Lagrangean relaxation and subgradient op-
timization to compute local lower bounds on the set of non-dominated points,
complemented with math-heuristics to identify good feasible solutions (i.e.,
local upper bounds) As an additional result, we present a framework for com-
parison of the two contracting forms.

The remainder of the article is organized as follows. In Section 2—as a start-
ing point for this paper—we summarize the model (developed by Obradović
et al. (2023)), concerning the multi-system preventive maintenance scheduling
problem with interval costs (MS-PMSPIC), the structure of the maintenance
workshop, the stock dynamics, and their integration with the operational de-
mand on the systems. In Section 3, we define the objectives associated with the
two stakeholders—one on the system maintenance side and one on the mainte-
nance workshop side—and present the bi-objective modeling. Tests and results

1 Every action taken in the maintenance workshop is considered as a job
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are presented in Section 6, and in Section 7 we draw conclusions and present
ideas for future research.

2 Mathematical model

The scheduling problem, presented in detail in (Obradović et al., 2023), is
described as follows. A number of systems are operating to fulfill a common
production demand; their operating schedules are assumed to be predefined,
resulting in certain time-windows during which maintenance of the systems’
components may be performed. While the systems operate their components
degrade, which lead to a requirement for maintenance (i.e., service, replace-
ment, or repair of the components). At a maintenance occasion one or several
components are taken out of the system, sent to the maintenance workshop
for repair, and returned back to the stock of repaired components, ready to be
used again (by any of the systems). The components that are sent for repair
are instantly replaced by components from the stock of repaired components
(be the stock not empty). Thus, there is a circulating flow of individual com-
ponents, being used and degraded, replaced, repaired or serviced, and then
being made available for usage again by a system.

This system–of–systems is modeled such that the operating systems are
preserved operational (if possible), and such that the capacity of the mainte-
nance workshop is respected. After a component of type i ∈ I := {1, . . . , I} is
demounted from a system k ∈ K and once it is to be processed in a machine
l ∈ L in the maintenance workshop, it is assigned a new ’job id’, indexed by
n ∈ Ni. To enable a so-called time-indexed modeling (van den Akker et al.,
2000) the time is discretized into a set T := {1, . . . , T} of time steps. De-
pending on the length of the planning period, the components will undergo
repair different many times. Further, Ji is defined as the number of individual
components of type i ∈ I.

The decision variables are defined as

xik
st = 1 if a component type i ∈ I in system k ∈ K receives PM at times

s ∈ {0, . . . , t − 1} and t ∈ {1, . . . , T + 1}, but not in-between; 0
otherwise

zkt = 1 if maintenance of system k ∈ K occurs at time t ∈ T ; 0 otherwise;

uinl
t = 1 if a component type i ∈ I starts maintenance at time t ∈ T as job

n ∈ Ni in machine l ∈ L; 0 otherwise;

ait(b
i
t) = number of individuals of component type i ∈ I on the stock of dam-

aged (repaired) components at time t ∈ T ∪ {0};
αink
t = 1 if an individual of component type i ∈ I is taken out of a system

k ∈ K at time t ∈ T and allocated to job n ∈ Ni; 0 otherwise;

βi
t = number of individuals of component type i ∈ I placed in any of the

systems k ∈ K at time t ∈ T .
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The feasible set for the integrated problem is modeled by the constraints

T+1∑
r=1

xik
0r = 1, i ∈ I, k ∈ K, (1a)

t−1∑
s=0

xik
st =

T+1∑
r=t+1

xik
tr , i ∈ I, t ∈ T , k ∈ K, (1b)

t−1∑
s=0

xik
st ≤ zkt , i ∈ I, t ∈ T , k ∈ K, (1c)

zkt ≤ zkt , t ∈ T , k ∈ K, (1d)

xik
st = 0, t̄i ≤ s+ t̄i < t ≤ T + 1, i ∈ I, k ∈ K. (1e)

∑
i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s ≤ 1, t ∈ T , l ∈ L, (1f)

∑
l∈L

∑
t∈T

uinl
t ≤ 1, n ∈ Ni, i ∈ I, (1g)

∑
l∈L

∑
i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s = ℓt, t ∈ T , (1h)

∑
n∈Ni

αink
t −

t−1∑
s=0

xik
st = 0, i ∈ I, k ∈ K, t ∈ T , (1i)

∑
t∈T

∑
k∈K

αink
t ≤ 1, n ∈ Ni, i ∈ I, (1j)

∑
n∈Ni

(∑
k∈K

αink
t −

∑
l∈L

uinl
t+δia

)
+ ait−1 = ait, t ∈ {1− δia, . . . , T + 1}, i ∈ I,

(1k)

ait ≥ 0, t ∈ {−δia, . . . , T + 1}, i ∈ I,
(1l)

βi
t =

∑
k∈K

T+1∑
r=t+1

xik
tr , t ∈ T , i ∈ I, (1m)

bit = bit−1 − βi
t +

∑
n∈Ni

∑
l∈L

uinl
t−δib−pi , t ∈ T ∪ {T + 1}, i ∈ I, (1n)

bit ≥ bi, t ∈ T , i ∈ I, (1o)

Ji =
∑
k∈K

∑
r∈T

xik
0r + āi0 + b̄i0 +

0∑
r=−δib−pi+1

∑
l∈L

∑
n∈Ni

ūinl
r , i ∈ I. (1p)
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In summary, the set of feasible solutions to our maintenance scheduling
problem is modeled by2 (1) with binary requirements on the variables xik

st , z
k
t ,

uinl
t , and αink

t , and non-negativity and integer requirements on the variables
ait, b

i
t, β

i
t , and ℓt, for all relevant values of the indices.

3 Optimization objectives and contracting forms

We next define an availability of components contract (Obradović et al., 2023)
and a turn–around time contract between the stakeholders, who face differ-
ent costs and penalites. Penalties imposed on the maintenance workshop are
illustrated in Fig. 1.

Cost of preventive maintenance. A maintenance occasion at a time step t for
a system k generates a set-up cost dt > 0, and every maintenance interval
(s, t) for a component type i in any system yields an interval cost cist > 0.
The PM cost for the systems k ∈ K over the time steps t ∈ T imposed
on the system operator is thus defined as CPM(x, z) :=

∑
k∈K

∑
t∈T dtz

k
t +∑

k∈K
∑

i∈I
∑T+1

t=1

∑t−1
s=0 c

i
stx

ik
st .

Minimize risk of lacking spare parts. To maintain a seamless operational sched-
ule or at least minimize disruptions, it is vital to have a sufficient stock of spare
components. This way, in case of an unforeseen breakdown, the faulty compo-
nent can be replaced without disturbing the scheduled operations. Further, for
an effective PM planning, it is crucial to consistently have a sufficient supply
of spare parts in inventory. Hence, to avoid a lack of spare parts, a penalty

2 For a detailed explanation of the model (1), see (Obradović et al., 2023).

Fig. 1: Penalties im-
posed on the mainte-
nance workshop under
an availability and a
turn–around time con-
tract; the red (green)
color represents the
situation with (with-
out) penalty.
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cAVi > 0 is imposed on the maintenance workshop per unit yit that the in-
ventory bit falls below a certain limit bi ≥ 0, defining an availability penalty
function as CAV(y) :=

∑
i∈I cAVi

∑
t∈T yit, (Obradović et al., 2023). The avail-

ability contract is then modeled as the bi-objective optimization problem to

minimize
x,z,u,α,a,b,β,ℓ

[
CPM(x, z), CAV(y)

]
, (2a)

subject to (1a)–(1n), (1p) hold, (2b)

yit ≥ bi − bit, i ∈ I, t ∈ T , (2c)

yit, b
i
t ≥ 0, i ∈ I, t ∈ T . (2d)

Minimize risk of exceeding the contracted turn–around times for component
repair. The ’turn–around time’, vintat, of a component type i is defined as the
time interval from when it is taken out of one of the systems k ∈ K and assigned
a job id n (i.e., a time t such that αink

t = 1) until it is repaired and available
to use again in one of the systems (i.e., a time t such that uinl

t−pi−δib
= 1).

If a repaired component is delivered after its contracted due date, a penalty
cidelay > 0 per time unit vindelay that the corresponding job n ∈ Ni is delayed,
is imposed on the maintenance workshop. A delay penalty function is then
defined as CDL(vdelay) :=

∑
i∈I
∑

n∈Ni
cidelayv

in
delay, and the turn–around time3

contract is modeled as the bi-objective optimization problem to

minimize
[
CPM(x, z), CDL(vdelay)

]
, (3a)

subject to (1a)–(1p) hold, (3b)

T ext∑
t=0

(t+ pi + δib)
∑
l∈L

uinl
t −

T+1∑
t=−δia

t
∑
k∈K

αink
t = vintat, n ∈ Ni, i ∈ I, (3c)

vintat − qidue

T+1∑
t=−δia

∑
k∈K

αink
t ≤ vindelay, n ∈ Ni, i ∈ I, (3d)

vindelay ≥ 0, n ∈ Ni, i ∈ I. (3e)

A compact version of the model (3), in which the turn–around times, defined
in (3c), are implicit, is given by

minimize
[
CPM(x, z), CDL(vdelay)

]
, (4a)

subject to (1a)–(1p) hold, (4b)

T ext∑
t=0

(
t+pi+δib

)∑
l∈L

uinl
t −

T+1∑
t=−δia

(
t+qidue

)∑
k∈K

αink
t ≤vindelay, n ∈ Ni, i ∈ I, (4c)

vindelay≥0, n ∈ Ni, i ∈ I. (4d)

3 In order to compute turn–around times for all components that are sent for repair during
the planning period, we extend T + 1 to T ext as well as take into account the components
that are initialized (i.e., for t < 0), whence the different sets for summation over t in (3c).
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3.1 Complexity analysis

We next prove that both of the single-objective minimization problems to
minimize CPM(x, z) subject to (1a)–(1p), and to minimize CDL(vdelay) subject
to (1a)–(1p) and (4c)–(4d), can be reduced to the PMSPIC (Gustavsson et al.,
2014), which is an NP-hard problem. Thereby, the bi-objective problem (4),
after (any) scalarization (Ehrgott, 2005, Sec. 8.3), is an NP-hard problem.

That the availability bi-objective optimization problem (2) is NP-hard is
shown in (Obradović et al., 2023).

Theorem 1 (Complexity) The complete model of the system–of–systems
(1a)–(1p), (4c), (4d), minimizing either of the costs CPM(x, z) or CDL(vdelay),
binary requirements on the variables xik

st , z
k
t , u

inl
t , and αink

t , and non-negativity
and integer requirements on the variables vindelay, ait, bit, βi

t, and ℓt, for all
relevant values of the indices, is NP-hard.

Proof Define L := |L|, Ni := |Ni|, i ∈ I, N :=
∑

i∈I Ni, and K := |K|, and let
ti ≥ 1 denote the minimum number of time steps that a component of type i is
used in a system k before it has to be maintained. Then, the lowest number of
time steps needed for a component of type i to make one lap in the circulating

flow equals ti + δia + pi + δib. We define Mi :=
⌈

T
ti+δia+pi+δib

⌉
and Ri :=

⌈
T
ti

⌉
.

Then, Mi denotes the maximum number of repairs each individual component
of type i can undergo during the planning period T , while Ri denotes the
maximum number of replacements of component type i in one of the systems
k ∈ K during the planning period T .

Consider an instance of the model (1a)–(1p) with relevant binary, integer,
and non-negativity requirements on the variables. For each i ∈ I, assume that
āi0 = 0, b̄i0 = KRi + bi, and ūinl

t = 0, t ∈ {1− δib − pi, . . . , 0} (at any time step
t ≤ 0, there are no components in either of the stock of damaged components
and the workshop, while there areKRi+bi components in the stock of repaired
components and one component in each of the systems k ∈ K); together with
the constraints (1p) this yields that Ji = K(1 +Ri) + bi (the total number of
components of type i in the system–of–systems ensures that a feasible solution
exists). Further, assume that for each i ∈ I, Ni = JiMi (the number of job
indices equals the maximum total number of repairs of components of type i)
and L = N (the number of repair lines equals the total number of job indices).

Since L = N , there is one repair line for each possible repair job, such
that any damaged component can be instantly repaired at any time, i.e., the
constraints (1f)–(1g) are trivially fulfilled. Since Ni = JiMi, also the con-
straints (1j) are trivially fulfilled. Hence, w.l.o.g. the turn–around time for any
damaged component of type i at any time t ∈ T equals the shortest possible
turn–around time, i.e., δia + pi + δib, which together with the constraints (1k)–
(1l) yields that the value of each left-hand-side in (4c) is non-positive. Note
that the constraints (1h), defining the variables ℓt, do not imply any restric-
tions. Further, since the number of job indices equals the maximum possible
number of replacements, the constraints (1i) are trivially fulfilled, and since
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b̄i0 = KRi + bi (such that whenever a replacement of a component of type
i is required in any of the systems, there is a repaired component of type i
available in stock), the constraints (1m)–(1o) are also trivially fulfilled.

For this instance, the constraints (1a)–(1p) are thus reduced to the con-
straints (1a)–(1e), which separate over the indices k ∈ K, i.e., over the operat-
ing systems. The minimization of CPM(x, z) subject to (1a)–(1p) is thus equiv-
alent to K instances of the PMSPIC, which is an NP-hard problem (see Gus-
tavsson et al. (2014) and Arkin et al. (1989)). The minimization of CDL(vdelay)
subject to (1a)–(1p), (4c)–(4d) separates into a feasibility problem defined by
the constraints (1a)–(1e) (which in turn separates into K instances of the PM-
SPIC, each with a zero objective) and L one-variable linear minimization prob-
lems given by, for each n ∈ Ni and i ∈ I, min{cidelayvindelay : vindelay ≥ 0} ≡ 0,
since the left-hand-side of (4c) is non-positive. We conclude that minimizing
CDL(vdelay) subject to (1a)–(1p), (4c)–(4d) is an NP-hard problem.

The theorem follows. ⊓⊔

4 Lagrangean relaxation and subgradient algorithm

Due to the constraints (4c)—corresponding to the turn–around time contract
type—the bi-objective optimization problem (4) is computationally expensive.
Hence, to enable the computation of an approximate Pareto front, we develop
an algorithm based on Lagrangean duality. In order to easen the presenta-
tion, we introduce simplified notations in Table 1. The ε-constraint scalarized
problem (Mavrotas, 2009) reformulation of (4) is, in these notations, given by

zε := minimum c⊤x, (5a)

subject to (x, u) ∈ X , (5b)

Du ≤ v, (5c)

v ≥ 0, (5d)

e⊤v ≤ ε, (5e)

where each of the expressions in (5b)–(5d) represents the respective expres-
sion in (4b)–(4d), while the objective (5a) corresponds to the minimization of
CPM(x, z) in (4a) and the left–hand–side of the constraint (5e) corresponds
to the objective function CDL(vdelay) in (4a). Since all of the constraints in
(4c)–(4d) separate over the indices n ∈ Ni and i ∈ I, the constraints (5c)–(5d)
are also separable (i.e., the matrix D is assumed to be block-diagonal).

From the definition of (5) it follows that the inequality zε ≤ zε̃ holds
whenever ε ≥ ε̃ ≥ 0. In the analysis to follow, we will utilize the single-
objective optimization problem

z∗ := minimum c⊤x, (6a)

subject to (x, u) ∈ X , (6b)
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annotation corresponding variable/parameter/set indices
vector/scalar/set

v vindelay n ∈ Ni, i ∈ I
x (x, z)
u (u, α, β, a, b)
N

∑
i∈I Ni

e > 0 cidelay i ∈ I
c ≥ 0 (dt, cist) i ∈ I, 0 ≤ s < t ≤ T + 1
X set defined by the constraints (1a)–(1p)
D the constraint matrix corresponding to (4c)

Table 1: Simplified notation used for describing the Lagrangean dual method.

with optimal set X ∗, and an optimal solution denoted as (x∗, u∗) ∈ X ∗. It holds
that z∗ ≤ zε for all ε ≥ 0. Note that z∗ = zε holds for a large enough value of
ε > 0, such that the inequalities ε ≥ e⊤Du > 0 hold for all u : (x, u) ∈ X .

In order to solve the model (5) more efficiently, we form a Lagrangean
dual problem, where the constraints (5c) are Lagrangean relaxed, denoting
the multipliers by µin ∈ R+, n ∈ Ni, i ∈ I. For each value of ε ≥ 0 in the
ε-constraint method, the Lagrangean dual problem is then defined as

hε
∗ := max

µin≥0, n∈Ni, i∈I
{hε(µ)} , (7)

where the Lagrangean dual function hε : RN 7→ R is defined by

hε(µ) := minimum
x,u,v

{
c⊤x+ µ⊤(Du− v)

∣∣ (x, u) ∈ X , v ≥ 0, e⊤v ≤ ε
}
, (8)

= min
x,u

{
c⊤x+ µ⊤(Du)

∣∣ (x, u) ∈ X
}
−max

v

{
µ⊤v

∣∣ v ≥ 0; e⊤v ≤ ε
}
.

For any fixed value of the parameter ε ≥ 0 and the multipliers µ ∈ RN , we
denote optimal solutions to the Lagrangean subproblems by

[x(µ), u(µ)] ∈ argmin
x,u

{
c⊤x+ µ⊤Du

∣∣ (x, u) ∈ X
}
; (9a)

vε(µ) ∈ argmax
v

{
µ⊤v

∣∣ v ≥ 0, e⊤v ≤ ε
}
, (9b)

and for any µ ≥ 0, we define the index set

M(µ) := argmax
(in):n∈Ni,i∈I

{
µin

ei

}
.

Then, for any ε ≥ 0, it holds that vεin(µ) = 1
|M(µ)|

ε
ei

for (in) ∈ M(µ), and

vεin(µ) = 0 for (in) ̸∈ M(µ). Then, the value of the maximization subproblem4

in (9b) equals µin

ei
, for some (in) ∈ M(µ). In summary, the optimal value of

the subproblem for any ε ≥ 0 and any µ ∈ RN
+ can be expressed as

hε(µ) := h0(µ)− ε · max
(in):n∈Ni,i∈I

{
µin

ei

}
≤ zε,

4 The problem (9b) is a continuous knapsack problem
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Fig. 2: Illustration of the bounding in the objective space. In the last figure,
the polygon limited by a thick solid (red) line represents the area in which
non-dominated points can be found

where h0(µ) := c⊤x(µ) + µ⊤Du(µ) and zε is the optimal objective value for
the problem (5). Note that hε(0) = h0(0)− 0 · ε = z∗ for all ε ≥ 0.

Given a subproblem solution [x(µ), u(µ)] ∈ X , it holds (see (6)) that

c⊤x(µ) ≥ c⊤x∗ = z∗.

Specifically, this upper bound inequality holds for the rightmost (the minimum
of c⊤x over (x, u) ∈ X ) point on the Pareto front (set of non-dominated points
in the objective space). In order to find upper bounds for any non-dominated
point, we suggest the following heuristic procedure: Set v(µ) := [Du(µ)]+
(where the projection [·]+ onto the non-negative orthant is defined component-
wise), and let ε(µ) := e⊤v(µ). It holds that the point [x(µ), u(µ), v(µ)] is
feasible in (5) for all ε ≥ ε(µ). Therefore, it holds that

c⊤x(µ) ≥ zε(µ).

The bounding functions in the objective space that can be computed using
the entities developed above are illustrated in Figure 2.

Since we cannot conclude any relation between ε(µ) = e⊤v(µ) and e⊤vε(µ),
the value of ε that is solved for is altered to a heuristic value, which may be
higher or lower. A pair of upper bounds (on some non-dominated point in
the objective space) is thus given by

[
ε(µ) , c⊤x(µ)

]
, where ε(µ) = e⊤v(µ) =

e⊤[Du(µ)]+. This means that any point [ε, z] such that the inequalities ε ≥
e⊤[Du(µ)]+, z ≥ c⊤x(µ), and ε+z > e⊤[Du(µ)]++c⊤x(µ) hold, is dominated
by the point

[
ε(µ) , c⊤x(µ)

]
. See an illustration in Figure 3.
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Fig. 3: Upper and
lower bounds (red)
from a given pair
[ε, µ], a lower
bounding func-
tion (black), and a
set of points on the
Pareto front (blue).

In summary, from every dual point µ ∈ RN
+ , a pair of upper bounds is

obtained as
[
e⊤[Du(µ)]+ , c⊤x(µ)

]
.

To optimize the Lagrangean dual problem (7) we use a subgradient opti-
mization procedure—summarized in Algorithm 1—in which different strate-
gies can be used to update the step length parameter θ(m) and the estimated
upper bounds [ϵ(µ(m)), c⊤x(µ(m))] in each subgradient iteration m. We em-
ploy an adaptive step length update, that in practice has been shown to yield
fast convergence to an optimal solution (Caprara et al., 1999). Starting from
iteration 20, the step length parameter θ(m) is updated in each subgradient
iteration. In summary, the best and worst lower bounds hε(µ(m)) found during
the latest 20 iterations are compared. If the absolute value of their difference
is more (less) than 10% (1%) of the absolute value of the worst lower bound—
implying that too large (small) steps are taken by the algorithm—then θ(m)

is multiplied by 1
2 ( 32 ); if neither case applies, then θ(m) is kept unchanged.

The upper bound (ĥε)(m) used in the computation of the step length is set to
h0(µ(m)) and a decreasing term const

m is added to the step length to stimulate
progress during early iterations.

Algorithm 1 Subgradient Optimization Procedure

1: Choose a value for ε ≥ 0, let m := 0, and initialize µ(0) ≥ 0 and θ(0) ∈ (0, 2)
2: repeat
3: Solve the Lagrangean subproblems in (9) for µ = µ(m) and ε

4: Compute lower and upper bounds, hε(µ(m)) and (ĥε)(m), on the optimal value hε∗
5: Calculate a subgradient direction γ(m) := Du(µ(m))− vε(µ(m))

6: Compute the Polyak step length: ϕ(m) := θ(m)

(
(ĥε)(m)−hε(µ(m))+const/m

)
∥γ(m)∥2

7: Compute the next dual iterate: µ
(m+1)
in :=

[
µ
(m)
in + ϕ(m)γ

(m)
in

]
+

8: Let m := m+ 1 and calculate a step length parameter θ(m) ∈ (0, 2)
9: until a termination criterion is fulfilled
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5 Aggregation over the jobs

Since the bi-objective optimization problem (4) showed to be computationally
expensive, we next modify the algorithm for solving it. After investigating (see
App. A.1–A.4) different measures to efficiently utilize Algorithm 1, we found
the computationally most successful as to aggregate the constraints (4c)–(4d),
as well as the variables vindelay, α

ink
t , and uinl

t over the indices n ∈ Ni, such that

videlay =
∑

n∈Ni
vindelay, α

ik
t =

∑
n∈Ni

αink
t , uil

t =
∑

n∈Ni
uinl
t , and

T ext∑
t=0

(
t+ pi + δib

)∑
l∈L

uil
t −

T+1∑
t=−δia

(
t+ qidue

)∑
k∈K

αik
t ≤ videlay ≥ 0, i ∈ I, (10)

Besides that, as the requirement of non-preemption adds to the complexity—
in general as well as in our modeling—we employ a preemptive flow of jobs
through the maintenance workshop, replacing the constraints (1f) and (1h) by

0 ≤ ℓt = ℓt−1 +
∑
i∈I

∑
l∈L

(
uil
t − uil

t−pi

)
≤ L, t ∈ T .

The aggregation of constraints over jobs is employed also for (1g) and (1j),
while in (1i), (1k), (1n), and (1p), a summation over the jobs is already present
such that only the variable substitution needs to be employed.

The Lagrangean dual variables are altered to µi ∈ R+, i ∈ I. For each
value of ε ≥ 0 in the ε-constraint method, the Lagrangean dual problem is
then defined as

hε
∗ := max

µi≥0, i∈I
{hε(µ)} ,

where the Lagrangean dual function hε : RI 7→ R is given by (cf. (8))

hε(µ) = min
x,u

{
c⊤x+ µ⊤(Du)

∣∣ (x, u) ∈ X
}
−max

v

{
µ⊤v

∣∣ v ≥ 0; e⊤v ≤ ε
}
,

the vector v now representing the aggregated variables videlay and D represents
the constraint matrix in the aggregated version (10) of (4c).

Two heuristics are used to find upper bounds for the aggregated model.
(I) As in Section 4, v(µ) and ε(µ) are computed such that [x(µ), u(µ), v(µ)]
is feasible in the aggregated version of (5) for all ε ≥ ε(µ). This results in an
upper bound for the aggregated model with value c⊤x ≥ zε(µ). (II) An up-
per bound for the non-aggregated model is found by splitting the aggregated
variables back into jobs, using a ’first in–first out’ approach. Since up to time
t− 1,

∑t−1
s=−δia

αik
s jobs have started, while αik

t jobs start at time t, it is possi-

ble to split the aggregated variables sequentially into jobs (i.e., reversing the
aggregation) by (re)defining the binary variable values as

αink
t =

{
1, if

∑t−1
s=−δia

αik
s < n ≤

∑t
s=−δia

αik
s ,

0, otherwise,
(11)
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for all relevant indices i, n, k and t. Values for uinl
t are analogously recovered

from uil
t . The splitting results in an ordering such that components arriving at

the workshop first will start repairs first. Following the procedure developed
in Section 4, using the non-aggregated variables, values for ṽ(µ) and ε̃(µ)
are computed from the non-aggregated turn–around times, which result in
[x(µ), u(µ), ṽ(µ)] being feasible in the non-aggregated version of (5) for all
ε ≥ ε̃(µ). Finally, an upper bound for the non-aggregated model with value
c⊤x ≥ zε̃(µ) is found.

The advantage of this approach is that is makes the subproblems signifi-
cantly easier to solve and that both the primal and the dual spaces are reduced.
Moreover, it is a proof of concept for the method suggested in Section 4. A
disadvantage, however, is that the turn–around times, hence the delays, are
aggregated over jobs n for each component type i; thus we do not compute the
exact delay per individual job n. Further, replacing the constraints (4c) with
the aggregated ones (10) implies a relaxation of the original model, leading
to (for any ε ≥ 0) optimistic estimates of the optimal values sought. Con-
sequently, the aggregation alone, without the suggested heuristic, would be
insufficient to approximate the Pareto front for the non-aggregated problem.

6 Application: Implementation, tests, and results

We present an application from the aerospace industry, within a collabora-
tion with the Swedish aerospace and defence company Saab AB. For contract
assessment purposes, the instance sizes are considered to be reasonable from
a practical application point of view and the data sets used are based on
knowledge mediated from the industrial partner; all data are normalized.

Our implementation is made using Julia (2012) and JuMP (Dunning et al.,
2017), and the computations are performed by Gurobi (2020) on a cluster.
Our code was run on Intel Xeon Gold 6130 processors and each solution was
computed on 4 cores and 16 GB of RAM. The maximum number of threads
used by Gurobi per run is limited to 4. We found that increasing the number
of cores did not improve performance.

6.1 The main test instances and multi-objective settings

As main test cases, we consider K = 10 systems, each having I = 5 com-
ponent types and the number of individual components of type i ∈ I being
either Ji = 35 or Ji = 25. The operational and maintenance related differ-
ences of the component types are reflected by their respective repair times in
the maintenance workshop and their respective due dates, which are chosen
randomly within the same order of magnitude. The different component types
are also assigned differently structured interval costs, all increasing with the
time between maintenance occasions, reflecting the increasing risk of having
to perform CM. The planning horizon is T = 40 time steps and the workshop
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capacity is chosen as either L = 25 or L = 40 parallel machines. The maxi-
mum number of jobs5 needed for component type i during a planning period

T is Ni = JiMi, where Mi =
⌈

T
ti+δia+pi+δib

⌉
denotes the maximum number of

repairs each individual component of type i can undergo during this period.
For computational efficiency reasons, however, the number of jobs is limited
to Ni = 80 for each component type i ∈ I. The processing times take values
pi ∈ {3, 4, 5} and the transport times between the stocks and the maintenance
workshop are δia = 2 and δib = 1, i ∈ I. The largest allowed maintenance inter-
val length (i.e., life span ti of a component type i) is sampled from {10, . . . , 15},
for i ∈ I. The maintenance costs are dt = 5, t ∈ T , while cist is varied: the
smallest value (for the maintenance interval length t − s = 1) is 5, while the
cost for the longest allowed maintenance interval varies in the range [10, 100]
over component types i ∈ I. Availability penalty costs and penalties for late
deliveries take values cAVi ∈ {5, . . . , 10} and cDL

i ∈ {5, 6, 7}, respectively.

6.2 Computational tests and results

Figure 4 shows the performance of Alg. 1 applied to (4) with aggregated vari-
ables and constraints over jobs n ∈ Ni according to (10), for two instances.
It is fairly easy to compute (some of) the points on the Pareto front for the
aggregated problem, and they are utilized to validate that the Pareto front
lies in the uncertainty area provided by the algorithm. Moreover, the algo-
rithm approximates the area quite well. The instance illustrated in Fig. 4(a)
has larger numbers of components and repair lines as compared to the one in
Fig. 4(b), hence a much larger degree of freedom in terms of feasible solutions.
In (a) the resulting maintenance costs are in the interval [5000, 6500], while in
(b) they are overall higher, in the interval [5700, 7300]. A similar observation
is made regarding the resulting delay penalties; in (a) they are in the inter-
val [850, 1200], while in (b) the interval is increased to [4500, 7300]. For both
cases, reducing the resulting delay penalties leads to increased maintenance
costs, which is larger when the resources are more scarse (as in (b)). The av-
erage subproblem solution times6 for (a) and (b) are 1.16 and 0.82 seconds,
respectively; for each value of ε we run the subgradient algorithm for 10 000
iterations.7 The lower bounding functions span the area below the Pareto front
quite well while the upper bounds leave some gap when ε ≥ 1100 in (a) and
ε ≤ 4600 in (b); this would possibly be resolved by allowing for more sub-
gradient iterations. Since the aggregation of the problem (4) is a relaxation,
the resulting lower bounding functions obtained for the aggregated model are
valid also for (4). To approximate the area of uncertainty for the Pareto front
of (4), we utilize the heuristic for computing upper bounds on non-dominated

5 The number of variables is (approximately) proportional to the maximum total number
of jobs N =

∑
i∈I Ni

6 For a comparison with subproblem solution times for the non-aggregated model, see A.4
7 In Figure 4 (b), the number of subgradient iterations for ε = 4600 was expanded to

60000 iterations as it took longer to come closer to that part of the Pareto front
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(a) (I, Ji,K, L, b
i) = (5, 35, 10, 40, 0) (b) (I, Ji,K, L, b

i) = (5, 25, 10, 25, 0)

Fig. 4: Results from Alg. 1 applied to the aggregation of constraints (4c)–(4d)
over jobs n ∈ Ni for two different instances; proof of concept.

points described in Sec. 5. The resulting approximation of the area in which
the Pareto front of (4) lies is illustrated in Fig. 5, for the same instances as in
Fig. 4. It is noticeable that there is a better performance (i.e., smaller gaps)
in (b). As in Fig. 4, instance (a) comes with more freedom in the variable and
objective space, resulting in more freedom for the (heuristic) upper bounds.
This can be observed in both Fig’s. 4 and 5.

(a) (I, Ji,K, L, b
i) = (5, 35, 10, 40, 0). (b) (I, Ji,K, L, b

i) = (5, 25, 10, 25, 0).

Fig. 5: The approximated Pareto front and the area of uncertainty for the
bi-objective optimization problem (4); instances the same as in Fig. 4.

The availability penalty was analyzed for different values of the lower limit
bi, i ∈ I, as presented in Fig. 6. In (b), there is in total 125 components in
the whole system–of–systems, and out of which—at all times—50 are in one
of the systems, implying that 75 components are either in the repair workshop
or in one of the stocks. In (a), the number of components is larger; specifically
there are ten more components of each type. Moreover, the capacity in the
maintenance workshop is increased from L = 25 repair lines in (b) to L = 40
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in (a). If, for example, bi = 6, i ∈ I, then there is a penalty whenever the total
number of available components, over all types i ∈ I, on the stock of repaired
components goes below 30. Hence, for each value bi, the availability penalties
in (b) are higher. Moreover, the maintenance cost are higher in (b), which
is expected as the resources are scarser, whence the maintenance intervals
become longer due to a lack of repaired components necessary for replacement.

(a) (I, Ji,K, L) = (5, 35, 10, 40). (b) (I, Ji,K, L) = (5, 25, 10, 25).

Fig. 6: The computed points on the Pareto front for the availability contract
with four different lower levels bi, i ∈ I on the stock of repaired components.

Studying the two contracts and their respective Pareto fronts (approx-
imated or exact), it is only fair to compare the maintenance costs, as the
penalties for late deliveries and levels below a lower limit on the stock of
repaired components are both artificial costs utilized for modeling purposes.
They are motivated by the contracting forms, and could be used to negoti-
ate between the stakeholders. The penalties represent measures of contract
violation. Figure 7 compares the shapes as well as levels of maintenance cost
for the (computed and approximated) Pareto fronts corresponding to the two
contracting forms. In (a) the maintenance costs remain almost at the same
level for the availability contract. In comparison, the maintenance costs for
the approximated turn–around time Pareto front are significantly higher, and
the slope of the frontier is much steeper. In (b) the availability Pareto fronts
approach the approximated turn–around time front for higher values of bi and
the shapes of the fronts are similar. The difference between the maintenance
costs for the two contracting forms is highly affected by the value of bi.

7 Conclusions and Future Research

We present a method for bounding the Pareto frontier for a bi-objective op-
timization problem modeling a turn–around time contract for maintenance of
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(a) (I, Ji,K, L) = (5, 35, 10, 40). (b) (I, Ji,K, L) = (5, 25, 10, 25).

Fig. 7: Comparison of the shapes of the computed Pareto fronts of the avail-
ability contract and the uncertainty area for the Pareto front of the turn–
around time contract. Both penalties are normalized to the interval [0, 1]; for
the delay (availability) penalty, the value 1 corresponds to the midpoint of the
uncertainty interval (the right-most point on the Pareto front) for the lowest
maintenance cost depicted in Fig. 5.

components, between two stakeholders. The problem is practically impossi-
ble to solve within a reasonable time frame using an off–the–shelf software.
By employing a Lagrangean relaxation and a subgradient algorithm, together
with a suitable problem relaxation (an aggregation over maintenance jobs),
we obtain lower bounds on the Pareto front, while computing upper bounds
on non-dominated points using a heuristic approach. The main bottleneck in
our solution approach is the individual tracking of jobs that is necessary for
computing the turn–around times. After aggregation over jobs, a heuristic for
splitting the aggregated variables back into jobs is suggested.

Our results indicate that an availability contract performs better than a
turn–around time contract in terms of cost and penalties (which do not neces-
sarily represent the actual costs, but rather a measure of contract violation).

The suggested framework may be utilized further for contract compari-
son and evaluation. The method suggested for approximating the area of a
Pareto front for a turn–around time bi-objective optimization problem proves
to work quite well when applied to the aggregated model. However, for the
non-aggregated model, there is room for improvement of the gap between the
bounds. We suggest two measures for reducing the gap. One is to tighten the
lower bounds, that is, to find higher lower bounds than the ones provided by
the aggregated model. The other is to create a better performing heuristic for
computing the upper bounds and finding feasible solutions. Another possible
improvement of the suggested solution approach would be a different definition
and/or implementation of the symmetry breaking constraints (see App. A.1).
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A Appendix

A possible bottleneck for Alg. 1 and the method presented in Sec. 4 to be efficient is the sub-
problem complexity. Besides that, the suggested model does not ensure the correspondence
between the variables α and u, regarding the indexing of jobs. This means that a pair (i, n)
defining job n for a component of type i possibly does not represent the same job after the
relaxation, or in a new subgradient iteration. To validate the computed turn–around times
and delays, this information needs to be retrieved. We present an overview of the ideas and
methods explored in order to make Alg. 1 more effective.

A.1 Symmetry breaking constraints

There are many equally good, symmetric, solutions to the problem (1) with respect to jobs.
Presence of symmetries in combinatorial problems increase the size of the search space and
therefore, time is wasted in visiting new solutions which are symmetric to the already vis-
ited solutions. The size of the search space can be reduced by the introduction of symmetry
breaking constraints; e.g. (Kiziltan, 2004; Cherri et al., 2018). In order to retain the corre-
spondence between the variables αink

t and uinl
t throughout the relaxation, we let job id n

have priority over job id n+1, for n ∈ Ni \{Ni}. Since an inherent property of our problem
is that a replacement occurs prior to the corresponding repair, by construction there will be
an equal number of jobs and repairs over the extended (for both t < 0 and t > T + 1) time
horizon. Hence, for all n ∈ Ni \ {Ni}, i ∈ I, we include the constraints

t∑
s=1−pi−δi

b

∑
l∈L

(
uinl
s − ui,n+1,l

s

)
≥ 0, t ∈ {1− pi − δib, . . . , Text},

t∑
s=−δia

∑
k∈K

(
αink
s − αi,n+1,k

s

)
≥ 0, t ∈ {−δia, . . . , T + 1},

which, however, lead to a significant increase of computing times.

A.2 Heuristic matching of the replacement and repair variables

Another attempt of retrieval of the α–u correspondence was to, after solving the Lagrangean
subproblem, find a matching of the variables αink

t and uinl
t over t ∈ T ext and n ∈ Ni. In each

subgradient iteration (see Algorithm 1), we (a) solve the subproblem, (b) do the matching,
and (c) update the Lagrangean multipliers. The matching is done according to the first
in–first out approach. The dual variables are updated based on the matched α–u values,
whence in the next subgradient iteration, the multipliers will, most likely, be underestimated,
possibly leading to non-subgradient step directions.

A.3 Optimizing for a matching of jobs for replacement and repair

In Section 5, a heuristic was introduced to split the aggregated integer variables αik
t and uilt

into binary variables αink
t and uinl

t . In particular, the chosen approach ensures that αink
t

and uinl
t are matched such that the first component arriving at the workshop is the first

component to be repaired. These variables can then be used to produce a feasible upper
bound to the non-aggregated version of (5). Note that zεagg ≤ zε for the optimal objective
value of the aggregated problem zεagg and the optimal objective value of the non-aggregated
problem zε. Therefore, the linear lower bounds hεagg(µ) for the aggregated problem remain
valid lower bounds for the non-aggregated problem, i.e., hεagg(µ) ≤ zεagg ≤ zε. Note that
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αink
t and uinl

t obtained via splitting of the aggregated variables cannot be used to find an
improved linear bound at ε since we only have access to Lagrangian dual variables µi, i ∈ I
and not to µin, i ∈ I, n ∈ Ni.

To find improved linear bounds with matched values of αink
t and uinl

t at ε, job-splitting
was incorporated into the otherwise aggregated model as a means of symmetry-breaking
among jobs. The model in (1) is not impacted by aggregation over jobs and therefore it
is sufficient to use integer variables αik

t and uilt as described in Section 5. In the following

we introduce cumulative variables αi
t :=

∑t
s=−δia

∑
k∈K α

ik
s , t ∈ {−δia, . . . , T + 1}, and

uit :=
∑t

s=0

∑
l∈L u

il
s , t ∈ {0, . . . , T ext} for all i ∈ I.

As shown in (11), jobs can be recovered from the aggregated variables by comparing
cumulative variables with job indices, which can be achieved in model by using big-M con-
straints. For t ∈ {−δia, . . . , T +1} and i ∈ I, αi

t are split into αin
t :=

∑
k∈K α

ink
t for n ∈ Ni

by introducing binary helper variables ρint and ψin
t and constraints8

1−Niρ
in
t ≤ αi

t−1 − (n− 1) ≤ Ni(1− ρint ); (13a)

Ni(ψ
in
t − 1) ≤ αi

t − n ≤ Niψ
in
t − 1. (13b)

The helper variables can then be used to recover αin
t = ρint + ψin

t − 1. The variables uit
are similarly split into uint :=

∑
l∈L u

inl
t by an analogous construction. The resulting values[

αin
t , uint

]
n∈Ni

are then used in (4) to compute the non-aggregated turn–around times as

well as delays.
While appealing in theory, this formulation introduces 2N(T +3+δia+T

ext) auxiliary
binary variables and 4N(T+3+δia+T

ext) auxiliary constraints, increasing the problem size
substantially. This resulted in significantly increased computation times, making the model
unsuited for use within the subgradient algorithm.

A.4 Computing times for different models and model properties

The motivation for why we chose to utilize the aggregation over jobs (see Sec. 5) as compared
to the symmetry breaking constraints (see App. A.1) or optimizing for a matching of jobs
for replacement and repair (see App. A.3) can be seen in Table 2. It is easily noticeable that
the computing speed is much lower for the aggregated model, hence it is more useful and
preferred over the two alternatives.

Table 2: Computing times
per iteration of the subgra-
dient algorithm for a (rela-
tive) duality gap tolerance of
10−4. + : preemptive work-
shop scheduling employed.
− : non-preemptive work-
shop scheduling employed.
∗ : no feasible solution found.

(I, Ji,K, L, b
i) Model Preemption Solution time [s]

(5, 35, 10, 40, 0) Sec. 5 + 1.16
(5, 25, 10, 25, 0) Sec. 5 + 0.82
(5, 35, 10, 40, 0) Sec. 5 − 12.00
(5, 25, 10, 25, 0) Sec. 5 − 17.09
(5, 35, 10, 40, 0) App. A.3 − > 535.00
(5, 25, 10, 25, 0) App. A.3 − > 231.00
(5, 35, 10, 40, 0) App. A.1 − > 10000∗

(5, 25, 10, 25, 0) App. A.1 − > 10000∗
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