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Abstract. In this paper, we study the low-rank matrix optimization problem, where the
penalty term is the ℓ𝑝 (0 < 𝑝 < 1) regularization. Inspired by the good performance of half
thresholding function in sparse/low-rank recovery problems, we propose a singular value half
thresholding (SVHT) algorithm to solve the ℓ𝑝 regularized matrix optimization problem. The
main iteration in SVHT algorithm makes use of the closed-form solution of the subproblem
but is different from the existing algorithm, which is in essence to make local 1/2 approxima-
tion to the objective function at the current point, instead of local linear or local quadratic
approximation. By constructing Lipschitz and non-Lipschitz approximate functions of the
objective function, we prove that any accumulation point of the sequence generated by SVHT

algorithm is a first-order stationary point of the problem. In numerical experiments, we test
SVHT algorithm by low-rank matrix completion problem on both simulated data and re-

al image data. Extensive numerical results show that SVHT algorithm is very efficient for

low-rank matrix optimization problems in terms of speed, accuracy, robustness and so on.

Keywords Low-rank matrix optimization problem; ℓ𝑝 regularization; closed-form solution;

singular value half thresholding algorithm; first-order stationary point
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1 Introduction

In this paper, we consider the following ℓ𝑝 regularized matrix optimization problem:

min
𝑋∈R𝑚×𝑛

𝐹 (𝑋) = 𝑓(𝑋) + 𝜆‖𝑋‖𝑝𝑝, (1.1)

where 𝑓 : R𝑚×𝑛 → R is a smooth function with 𝐿𝑓 -Lipschitz continuous gradient in R𝑚×𝑛,

i.e.,

‖∇𝑓(𝑋)−∇𝑓(𝑌 )‖𝐹 ≤ 𝐿𝑓‖𝑋 − 𝑌 ‖𝐹 , ∀𝑋,𝑌 ∈ R𝑚×𝑛,

and 𝑓 is bounded from below. In (1.1), 𝜆 > 0, 𝑝 ∈ (0, 1) and ‖𝑋‖𝑝𝑝 = ‖𝜎(𝑋)‖𝑝𝑝 =
min{𝑚,𝑛}∑︀

𝑖=1

𝜎𝑝
𝑖 (𝑋)

is the ℓ𝑝 quasi-norm of 𝑋, and 𝜎𝑖(𝑋) is the 𝑖-th largest singular value of 𝑋. Problem (1.1)
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arises in many important contemporary applications in signal and image processing, control
[9,10,37], statistics [8,35] and compressed sensing [3,46]. In particular, problem (1.1) extends
the following ℓ𝑝 regularized least squares problem:

lim
𝑋∈R𝑚×𝑛

1

2
‖𝒜(𝑋)− 𝑏‖22 + 𝜆‖𝑋‖𝑝𝑝, (1.2)

where 𝑏 ∈ R𝑙, 𝒜 : R𝑚×𝑛 → R𝑙 is a linear transformation.

When 𝑝 ↓ 0, problem (1.2) tends to the ℓ0 regularized least squares problem:

lim
𝑋∈R𝑚×𝑛

1

2
‖𝒜(𝑋)− 𝑏‖22 + 𝜆‖𝜎(𝑋)‖0, (1.3)

where ‖𝜎(𝑋)‖0 = rank(𝑋) :=
min{𝑚,𝑛}∑︀

𝑖=1

𝐼(𝜎𝑖(𝑋)) with 𝐼(𝑡) = 0 if 𝑡 = 0 and 𝐼(𝑡) = 1

otherwise.

In addition, when 𝑝 ↑ 1, problem (1.2) tends to the ℓ1 regularized least squares problem:

lim
𝑋∈R𝑚×𝑛

1

2
‖𝒜(𝑋)− 𝑏‖22 + 𝜆‖𝜎(𝑋)‖1, (1.4)

where ‖𝜎(𝑋)‖1 = ‖𝑋‖* :=
min{𝑚,𝑛}∑︀

𝑖=1

𝜎𝑖(𝑋) is the nuclear norm of 𝑋.

Since theoretical studies show that ‖𝜎(𝑋)‖1 is the tightest convex lower bound of the

rank function [34], it is a popular strategy to relax the ‖𝜎(𝑋)‖0 minimization problem to the
‖𝜎(𝑋)‖1 minimization problem. There are a few well-known algorithms for solving problem

(1.4). For examples, singular value thresholding (SVT) algorithm [1], singular value projec-

tion (SVP) algorithm [14], fixed point continuation (FPC) and Bregman iterative algorithm
[29], accelerated proximal gradient with linesearch (APGL) algorithm [38], prime and dual

proximal point algorithm [23], LMaFit [44], linearized augmented Lagrangian methods [47],

alternating direction methods [5,47] and some other types of algorithms [15,18,22,36,43].

Although ‖𝜎(𝑋)‖1 is a good substitution for ‖𝜎(𝑋)‖0 and can obtain promising results,
there still exists a large gap between ‖𝜎(𝑋)‖1 and ‖𝜎(𝑋)‖0. It is obvious that the ‖𝜎(𝑋)‖𝑝𝑝
(0 < 𝑝 < 1) can reduce this gap. But problem (1.1) is hard to solve since it is nonconvex,
non-Lipshcitz and even NP-hard. By virtue of some special optimality conditions such as
subspace optimality [26,20,39] and fixed point equations [33,41,42], some researchers have

proposed a series of algorithms to obtain the approximate solution of problem (1.1). These
algorithms include majorization minimization method [27,28], thresholding algorithms [20,

41,42], fixed point method [32,33] and et al..

Recall that in the case of sparse optimization, some iterative reweighted methods are very

efficient in solving ℓ𝑝 regularized sparse optimization problems. The first type of iterative
reweighted methods is iterative reweighted ℓ1 method [2,6,16,24,45], which generates 𝑥𝑘+1

via substituting ‖𝑥‖𝑝𝑝 by
∑︀

𝑖 𝜔
𝑘
𝑖 |𝑥𝑖| with 𝜔𝑘

𝑖 = (|𝑥𝑘
𝑖 |+ 𝜖𝑖)

𝑝−1 in the 𝑘th iteration. The second

type of iterative reweighted methods is iterative reweighted ℓ2 method [4,7,24,45], which
generates 𝑥𝑘+1 via substituting ‖𝑥‖𝑝𝑝 by

∑︀
𝑖 𝜔

𝑘
𝑖 𝑥

2
𝑖 with 𝜔𝑘

𝑖 = (|𝑥𝑘
𝑖 |+𝜖𝑖)

𝑝−2 in the 𝑘th iteration.

Inspired by iterative reweighted methods for ℓ𝑝 regularized sparse optimization problem-
s, some iterative reweighted methods for ℓ𝑝 regularized matrix optimization problems were

proposed. Iterative reweighted ℓ1 (IRL1) [12,21,26,30] was such a method for ℓ𝑝 regularized
matrix optimization problems, in the 𝑘th iteration of which ‖𝜎(𝑋)‖𝑝𝑝 is approximated by∑︀

𝑖 𝜔
𝑘
𝑖 𝜎𝑖(𝑋) with 𝜔𝑘

𝑖 = (𝜎𝑖(𝑋
𝑘) + 𝜖𝑖)

𝑝−1. Iterative reweighted ℓ2 (IRL2) [11,17,31] was an-

other type of method for ℓ𝑝 regularized matrix optimization problems, in the 𝑘th iteration
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of which ‖𝜎(𝑋)‖𝑝𝑝 is approximated by
∑︀

𝑖 𝜔
𝑘
𝑖 𝜎

2
𝑖 (𝑋) with 𝜔𝑘

𝑖 = (𝜎𝑖(𝑋
𝑘)+ 𝜖𝑖)

𝑝−2. The conver-
gence analysis of IRL1 and IRL2 methods both take advantage of the closed-form solutions
and the convexity of the objective functions of the subproblems. In fact, the essence of IRL1

and IRL2 method is to approximate ‖𝜎(𝑋)‖𝑝𝑝 by locally linear functions and locally quadratic
functions respectively at each iteration. However, as pointed out in [26], the IRL2 methods
usually do not produce a low-rank solution. Although the IRL1 methods tend to produce
a low-rank solution under some conditions, one can expect that the locally folded concave
approximation of ‖𝜎(𝑋)‖𝑝𝑝 can produce a lower rank solution under some weaker conditions,
which has been confirmed in sparse optimization.

Therefore, different from previous works, in this paper we consider a new method to solve
(1.1), which generates a new iteration 𝑋𝑘+1 by

𝑋𝑘+1 ∈ arg min
𝑋∈R𝑚×𝑛

{︃
𝐿

2

⃦⃦⃦⃦
𝑋 −

(︂
𝑋𝑘 − 1

𝐿
∇𝑓(𝑋𝑘)

)︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝
𝑛∑︁

𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋)

}︃
, (1.5)

where 𝑠𝑘𝑖 = (𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖 )

2𝑝−1. This idea is inspired by the ℓ1/2 regularization method in
sparse optimization. Since results in [41,46] revealed that the ℓ1/2 regularization not only
has a closed-form solution which is described by half thresholding function, but also has very
powerful recovering ability of sparse solution. Thus one can expect that the above locally ℓ1/2
approximation of ‖𝜎(𝑋)‖𝑝𝑝 can produce a lower rank solution under some weaker conditions.

Our algorithm based on (1.5) for problem (1.1) is called singular value half thresholding
(SVHT) algorithm. It is worthy of mentioning that subproblem (1.5) is nonconvex and non-

Lipschitz, which is different from the subproblems in IRL1 and IRL2 methods. This will

bring some difficulties in convergence analysis. In our analysis, we prove the convergence by
constructing Lipschitz and non-Lipschitz approximate functions of the objective function.

This paper is organized as follows. In section 2, we give some preliminaries and technical
results used in this paper. In section 3, we propose the singular value half thresholding

algorithm and establish the convergence results. In section 4, we test the proposed algorithms

by recovering simulated low-rank matrices and real images, and present the numerical results.
In section 5, we give the conclusion of this paper.

2 Preliminaries

Through out this paper, without loss of generality, we always suppose 𝑛 ≤ 𝑚. For any 𝑋 ∈
R𝑚×𝑛, let 𝜎(𝑋) = (𝜎1(𝑋), · · · , 𝜎𝑛(𝑋))

⊤
denote the vector of singular values of 𝑋 arranged

in nonincreasing order, Diag(𝜎(𝑋)) denote a diagonal matrix whose diagonal vector is 𝜎(𝑋),

‖𝑋‖𝐹 denote the Frobenius norm of 𝑋, namely, ‖𝑋‖𝐹 =
(︁∑︀

𝑖,𝑗 𝑋
2
𝑖𝑗

)︁1/2
=
(︁∑︀

𝑖,𝑗 𝜎
2
𝑖 (𝑋)

)︁1/2
,

and

𝒪(𝑋) =
{︁
(𝑈, 𝑉 ) ∈ R𝑚×𝑟 ×R𝑛×𝑟 : 𝑈⊤𝑈 = 𝑉 ⊤𝑉 = 𝐼,𝑋 = 𝑈Diag(𝜎(𝑋))𝑉 ⊤

}︁
, (2.1)

with 𝑟 = rank(𝑋). For any 𝑋,𝑌 ∈ R𝑚×𝑛, let ⟨𝑋,𝑌 ⟩ = tr(𝑌 ⊤𝑋) denote the inner product
of these two matrices.

Next, we introduce the half thresholding function which is the fundament of our algorithm.
The following lemma follows from [3,32,46].

Lemma 2.1 Let 𝜔 > 0. Define

ℎ𝜔(𝑡) := argmin
𝑥∈R

{︁
(𝑥− 𝑡)2 + 𝜔|𝑥|1/2

}︁
, ∀𝑡 ∈ R,
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then ℎ𝜔(𝑡) can be analytically expressed by

ℎ𝜔(𝑡) =

⎧⎪⎨⎪⎩
𝜑𝜔(𝑡), |𝑡| >

3√54
4 𝜔2/3,

{𝜑𝜔(𝑡), 0}, |𝑡| =
3√54
4 𝜔2/3,

0, |𝑡| <
3√54
4 𝜔2/3.

(2.2)

where

𝜑𝜔(𝑡) =
2

3
𝑡

(︃
1 + cos

(︃
2𝜋

3
− 2

3
arccos

(︃
𝜔

8

(︂
|𝑡|
3

)︂−3/2
)︃)︃)︃

.

The function ℎ𝜔 : R ⇒ R given by (2.2) is called a half thresholding function. Note
that this half thresholding function may be multi-valued (set-valued) since the objective

function has two minimizers when |𝑡| =
3√54
4 𝜔2/3. Hence “argmin” means the set of all global

minimizers of the problem.
Similar to [3,32,33,46], we give the following definitions.

Definition 2.2 (Vector-valued half thresholding operator) For any 𝑤 = (𝑤1, · · · , 𝑤𝑛)
⊤ ∈

R𝑛 with 𝑤𝑖 > 0, the vector-valued half thresholding operator 𝐻𝑤 : R𝑛 ⇒ R𝑛 is defined as

𝐻𝑤(𝑥) := (ℎ𝑤1
(𝑥1), · · · , ℎ𝑤𝑛

(𝑥𝑛))
⊤ ∈ R𝑛, ∀𝑥 = (𝑥1, · · · , 𝑥𝑛)

⊤ ∈ R𝑛.

Definition 2.3 (Matrix-valued half thresholding operator) For any 𝑤 = (𝑤1, · · · , 𝑤𝑛)
⊤ ∈

R𝑛 with all 𝑤𝑖 > 0, the matrix-valued half thresholding operator ℋ𝑤 : R𝑚×𝑛 ⇒ R𝑚×𝑛 is

defined as

ℋ𝑤(𝑌 ) := 𝑈Diag(𝐻𝑤(𝜎(𝑌 )))𝑉 ⊤ ∈ R𝑚×𝑛, ∀ 𝑌 = 𝑈Diag(𝜎(𝑌 ))𝑉 ⊤ ∈ R𝑚×𝑛.

For any given 𝑤 = (𝑤1, · · · , 𝑤𝑛)
⊤ ∈ R𝑛 with 𝑤𝑛 ≥ · · · ≥ 𝑤1 > 0, let 𝛷(𝑋) =

𝑛∑︀
𝑖=1

𝑤𝑖 ·

𝜎
1/2
𝑖 (𝑋). Then 𝛷(𝑋) can be reexpressed as the composition of an absolutely symmetric

function 𝜑 [19] and the vector 𝜎(𝑋) of singular values of 𝑋, i.e.,

𝛷(𝑋) = (𝜑 ∘ 𝜎)(𝑋) with 𝜑(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖𝜑
1/2
𝑖 (𝑥),

where 𝜑𝑖(𝑥) is the 𝑖-th largest element of {|𝑥1|, |𝑥2|, · · · , |𝑥𝑛|}.
According to Lemma 2.1 and [25, Proposition 2.1], we immediately obtain the following

Lemma 2.4, which shows that ℋ𝑤(𝑌 ) is a proximal operator associated with the nonconvex

and non-Lispschitz function
∑︀𝑛

𝑖=1𝑤𝑖𝜎
1/2
𝑖 (𝑋).

Lemma 2.4 For any given 𝑤 = (𝑤1, · · · , 𝑤𝑛)
⊤ ∈ R𝑛 with 𝑤𝑛 ≥ · · · ≥ 𝑤1 > 0 and any

𝑌 ∈ R𝑚×𝑛, it holds that

ℋ𝑤(𝑌 ) = arg min
𝑋∈R𝑚×𝑛

‖𝑋 − 𝑌 ‖2𝐹 +

𝑛∑︁
𝑖=1

𝑤𝑖𝜎
1/2
𝑖 (𝑋).

It follows from [[19], Theorem 2.1] that the limiting subdifferential of a singular value

function (𝜑 ∘ 𝜎) at 𝑋 is given by

𝜕(𝜑 ∘ 𝜎)(𝑋) =
{︁
𝑈Diag(𝜉)𝑉 ⊤ : 𝜉 ∈ 𝜕𝜑(𝜎(𝑋)), (𝑈, 𝑉 ) ∈ 𝒪(𝑋)

}︁
, (2.3)

where 𝜕𝜑(·) is the limiting subdifferent of 𝜑.
Following [26, Definition 1], we give the first-order stationary points for problem (1.1).
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Definition 2.5 𝑋* ∈ R𝑚×𝑛 of rank 𝑟 is a first-order stationary point of problem (1.1) if

0 ∈
{︁
𝑈⊤∇𝑓(𝑋*)𝑉 + 𝜆𝑝Diag(𝜎𝑝−1(𝑋*)) : (𝑈, 𝑉 ) ∈ 𝒪(𝑋*)

}︁
, (2.4)

where 𝒪(𝑋*) defined in (2.1) and 𝜎𝑝−1(𝑋*) := (𝜎𝑝−1
1 (𝑋*), · · · , 𝜎𝑝−1

𝑟 (𝑋*), 0, · · · , 0)⊤.

3 Singular value half thresholding algorithm for problem (1.1)

In this section, we propose a singular value half thresholding (SVHT) algorithm for solving
problem (1.1) and provide its convergence analysis.

3.1 Closed-form solution of the subproblem

For any 𝑍 ∈ R𝑚×𝑛, denote

𝐵𝐿(𝑍) = 𝑍 − 1

𝐿
∇𝑓(𝑍).

In our SVHT algorithm, the key subproblem at each iteration is to solve a weighted singular

value minimization problem in the following form

min
𝑋∈R𝑚×𝑛

𝐿

2
‖𝑋 −𝐵𝐿(𝑍)‖2𝐹 + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑖𝜎
1
2
𝑖 (𝑋), (3.1)

where 𝑠𝑖 = (𝜎
1/2
𝑖 (𝑍) + 𝜖𝑖)

2𝑝−1 and 𝜖𝑖 > 0. From Lemma 2.4, we obtain that problem (3.1)

has a closed-form solution, which is given by the following lemma.

Lemma 3.1 For any 𝜆 > 0, 𝐿 ≥ 𝐿𝑓 and 𝜖𝑖 > 0, 𝑖 = 1, · · · , 𝑛, let 𝐵𝐿(𝑍) = 𝑍 − 1
𝐿∇𝑓(𝑍)

admit the following SVD:

𝐵𝐿(𝑍) = 𝑈Diag(𝜎(𝐵𝐿(𝑍)))𝑉 ⊤.

Then the closed-form solution �̃� of problem (3.1) can be analytically given by

�̃� = ℋ 4𝜆𝑝𝑠
𝐿

(𝐵𝐿(𝑍)), (3.2)

where 𝑠 = (𝑠1, · · · , 𝑠𝑛)⊤ with 𝑠𝑖 = (𝜎
1/2
𝑖 (𝑍) + 𝜖𝑖)

2𝑝−1 for 𝑖 = 1, · · · , 𝑛.

3.2 Scheme of SVHT algorithm

The scheme of SVHT algorithm is given as Algorithm 1.
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Algorithm 1 singular value half thresholding (SVHT) algorithm

– Initialize: Choose {𝜖𝑘} being a sequence of component-wise non-increasing positive vec-
tors in R𝑛. Set 𝑋0 ∈ R𝑚×𝑛 and 𝑘 = 0.

– Step1. Compute

𝑋𝑘+1 ∈ arg min
𝑋∈R𝑚×𝑛

{︂
𝑓(𝑋𝑘) + ⟨∇𝑓(𝑋𝑘), 𝑋 −𝑋𝑘⟩+ 𝐿

2
‖𝑋 −𝑋𝑘‖2𝐹 (3.3)

+2𝜆𝑝
𝑛∑︁

𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋)

}︂
.

where 𝑠𝑘 = (𝑠𝑘1 , · · · , 𝑠𝑘𝑛)⊤ with 𝑠𝑘𝑖 =
(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁2𝑝−1

for 𝑖 = 1, · · · , 𝑛.
– Step2. Let 𝑘 := 𝑘 + 1, return to Step 1.
– Output: 𝑋𝑘

Let

𝑄𝐿(𝑋,𝑋𝑘) : = 𝑓(𝑋𝑘) + ⟨∇𝑓(𝑋𝑘), 𝑋 −𝑋𝑘⟩+ 𝐿

2
‖𝑋 −𝑋𝑘‖2𝐹 + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋),

=
𝐿

2
‖𝑋 − (𝑋𝑘 − 1

𝐿
∇𝑓(𝑋𝑘))‖2𝐹 + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋) + 𝐶𝑘, (3.4)

where 𝐶𝑘 is a constant with respect to 𝑋, then (3.3) can be rewritten as

𝑋𝑘+1 ∈ arg min
𝑋∈R𝑚×𝑛

𝑄𝐿(𝑋,𝑋𝑘),

that is,

𝑄𝐿(𝑋
𝑘+1, 𝑋𝑘) ≤ 𝑄𝐿(𝑋,𝑋𝑘) (3.5)

for any𝑋 ∈ R𝑚×𝑛. From Lemma 3.1, we know that𝑋𝑘+1 can be selected fromℋ 4𝜆𝑝𝑠𝑘

𝐿

(𝐵𝐿(𝑋
𝑘)),

i.e., 𝑋𝑘+1 ∈ ℋ 4𝜆𝑝𝑠𝑘

𝐿

(𝐵𝐿(𝑋
𝑘)), where 𝑠𝑘 = (𝑠𝑘1 , · · · , 𝑠𝑘𝑛)⊤ with 𝑠𝑘𝑖 =

(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁2𝑝−1

for

𝑖 = 1, · · · , 𝑛.

3.3 Convergence analysis

Next, we provide the convergence analysis for SVHT algorithm.

We first define

𝐹𝜖(𝑋) := 𝑓(𝑋) + 𝜆

𝑛∑︁
𝑖=1

(𝜎
1/2
𝑖 (𝑋) + 𝜖𝑖)

2𝑝. (3.6)

For any 𝑝 ∈ (0, 1/2], let 𝑞 be such that

1

2𝑝
+

1

𝑞
= 1, (3.7)
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then 𝑞 < 0, and it is not hard to check that

𝑡2𝑝−1 = argmin
𝜏≥0

2𝑝

{︂
𝑡𝜏 − 𝜏 𝑞

𝑞

}︂
and 𝑡2𝑝 = min

𝜏≥0
2𝑝

{︂
𝑡𝜏 − 𝜏 𝑞

𝑞

}︂
(3.8)

for any 𝑡 > 0. Using (3.8) and the definition of 𝑠𝑘, we obtain that

𝑠𝑘𝑖 = arg min
𝑠𝑖≥0

2𝑝

{︂(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁
𝑠𝑖 −

𝑠𝑞𝑖
𝑞

}︂
, (3.9)(︁

𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁2𝑝
= min

𝑠𝑖≥0
2𝑝

{︂(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁
𝑠𝑖 −

𝑠𝑞𝑖
𝑞

}︂
, and (3.10)

𝑠𝑘 = arg min
𝑠∈R𝑛

+

𝐹𝜖𝑘(𝑋
𝑘, 𝑠), (3.11)

where 𝑠𝑘 = (𝑠𝑘1 , · · · , 𝑠𝑘𝑛), R𝑛
+ = {(𝑎1, · · · , 𝑎𝑛)⊤ ∈ R𝑛 : 𝑎𝑖 ≥ 0} and

𝐹𝜖(𝑋, 𝑠) := 𝑓(𝑋) + 2𝜆𝑝
𝑛∑︁

𝑖=1

[︂(︀
𝜎
1/2
𝑖 (𝑋) + 𝜖𝑖

)︀
𝑠𝑖 −

𝑠𝑞𝑖
𝑞

]︂
. (3.12)

Particularly, by (3.6),(3.10) and (3.12), we have

𝐹𝜖𝑘(𝑋
𝑘) = 𝐹𝜖𝑘(𝑋

𝑘, 𝑠𝑘) (3.13)

Remark 3.2 The functions 𝐹𝜖(𝑋) and 𝐹𝜖(𝑋, 𝑠) are Lipschitz and non-Lipschitz approx-

imation functions of 𝐹 (𝑋) respectively. They will play very important roles in the analysis

of convergence of SVHT algorithm.

Lemma 3.3 Let 𝑝 ∈ (0, 1/2], 𝜆 > 0, 𝐿 ≥ 𝐿𝑓 , {𝜖𝑘} be a sequence of component-wise

non-increasing positive vectors in R𝑛 with 𝜖𝑘 → 0 as 𝑘 → ∞, and {𝑋𝑘} be the sequence
generated by Algorithm 1. Then the sequence

{︀
𝐹𝜖𝑘(𝑋

𝑘)
}︀
is non-increasing and satisfies

𝐹𝜖𝑘+1(𝑋𝑘+1)− 𝐹𝜖𝑘(𝑋
𝑘) ≤ −1

2
(𝐿− 𝐿𝑓 )‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 . (3.14)

Proof From (3.4) and (3.5), we have 𝑄𝐿(𝑋
𝑘+1, 𝑋𝑘) ≤ 𝑄𝐿(𝑋

𝑘, 𝑋𝑘), i.e.,

𝑓(𝑋𝑘) + ⟨∇𝑓(𝑋𝑘), 𝑋𝑘+1 −𝑋𝑘⟩+ 𝐿

2
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋𝑘+1)

≤ 𝑓(𝑋𝑘) + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋𝑘). (3.15)

By the fact that ∇𝑓 is 𝐿𝑓 -Lipschitz continuous, we have

𝑓(𝑋𝑘+1) ≤ 𝑓(𝑋𝑘) + ⟨∇𝑓(𝑋𝑘), 𝑋𝑘+1 −𝑋𝑘⟩+ 𝐿𝑓

2
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 . (3.16)

Combining (3.15) and (3.16), we obtain that

𝑓(𝑋𝑘+1) + 2𝜆𝑝
𝑛∑︁

𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋𝑘+1) +

1

2
(𝐿− 𝐿𝑓 )‖𝑋𝑘+1 −𝑋𝑘‖2𝐹

≤ 𝑓(𝑋𝑘) + 2𝜆𝑝

𝑛∑︁
𝑖=1

𝑠𝑘𝑖 𝜎
1/2
𝑖 (𝑋𝑘). (3.17)
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From (3.12), it follows that

𝐹𝜖𝑘(𝑋
𝑘+1, 𝑠𝑘) = 𝑓(𝑋𝑘+1) + 2𝜆𝑝

𝑛∑︁
𝑖=1

[︂(︀
𝜎
1/2
𝑖 (𝑋𝑘+1) + 𝜖𝑘𝑖

)︀
𝑠𝑘𝑖 −

(𝑠𝑘𝑖 )
𝑞

𝑞

]︂
,

𝐹𝜖𝑘(𝑋
𝑘, 𝑠𝑘) = 𝑓(𝑋𝑘) + 2𝜆𝑝

𝑛∑︁
𝑖=1

[︂(︀
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︀
𝑠𝑘𝑖 −

(𝑠𝑘𝑖 )
𝑞

𝑞

]︂
.

Using these two equalities with (3.17), we have

𝐹𝜖𝑘(𝑋
𝑘+1, 𝑠𝑘) +

1

2
(𝐿− 𝐿𝑓 )‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 ≤ 𝐹𝜖𝑘(𝑋

𝑘, 𝑠𝑘). (3.18)

In addition, we see from (3.8) that 𝐹𝜖(𝑋) = min
𝑠∈R𝑛

+

𝐹𝜖(𝑋, 𝑠), which together with (3.11), (3.13),

(3.18) and {𝜖𝑘} being a sequence of component-wise non-increasing positive vectors, we have

𝐹𝜖𝑘+1(𝑋𝑘+1) = 𝐹𝜖𝑘+1(𝑋𝑘+1, 𝑠𝑘+1) ≤ 𝐹𝜖𝑘(𝑋
𝑘+1, 𝑠𝑘+1) ≤ 𝐹𝜖𝑘(𝑋

𝑘+1, 𝑠𝑘)

≤ 𝐹𝜖𝑘(𝑋
𝑘, 𝑠𝑘)− 1

2
(𝐿− 𝐿𝑓 )‖𝑋𝑘+1 −𝑋𝑘‖2𝐹

= 𝐹𝜖𝑘(𝑋
𝑘)− 1

2
(𝐿− 𝐿𝑓 )‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 .

Since 𝐿 ≥ 𝐿𝑓 , the sequence {𝐹𝜖𝑘(𝑋
𝑘)} is non-increasing and (3.14) holds. �

Theorem 3.4 Let 𝑝 ∈ (0, 1/2], 𝜆 > 0, 𝐿 ≥ 𝐿𝑓 and {𝜖𝑘} be a sequence of component-wise
non-increasing positive vectors in R𝑛 with 𝜖𝑘 → 0 as 𝑘 → ∞, and {𝑋𝑘} be the sequence

generated by Algorithm 1. Then the following two statements hold.

(i) The sequence {𝑋𝑘} is bounded and 𝐹𝜖𝑘(𝑋
𝑘) converges to 𝐹 (𝑋*), where 𝑋* is any

accumulation point of {𝑋𝑘}.
(ii) The sequence {𝑋𝑘} is asymptotically regular, i.e., lim

𝑘→∞
‖𝑋𝑘+1 −𝑋𝑘‖ = 0;

Proof Since {𝐹𝜖𝑘(𝑋
𝑘)} is non-increasing, 𝐹𝜖𝑘(𝑋

𝑘) ≤ 𝐹𝜖0(𝑋
0) for every 𝑘 ≥ 0. In addition,

𝑓 : R𝑚×𝑛 → R is bounded from below, then we have

inf
𝑋∈R𝑚×𝑛

𝑓(𝑋) + 𝜆
𝑛∑︁

𝑖=1

𝜎𝑝
𝑖 (𝑋) ≤ inf

𝑋∈R𝑚×𝑛
𝑓(𝑋) + 𝜆

𝑛∑︁
𝑖=1

𝜎𝑝
𝑖 (𝑋

𝑘)

≤ inf
𝑋∈R𝑚×𝑛

𝑓(𝑋) + 𝜆

𝑛∑︁
𝑖=1

(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁2𝑝
≤ 𝑓(𝑋𝑘) + 𝜆

𝑛∑︁
𝑖=1

(︁
𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖

)︁2𝑝
= 𝐹𝜖𝑘(𝑋

𝑘) ≤ 𝐹𝜖0(𝑋
0). (3.19)

This means that 𝜆‖𝑋𝑘‖𝑝𝑝 ≤
(︂
𝐹𝜖0(𝑋

0)− inf
𝑋∈R𝑚×𝑛

𝑓(𝑋)

)︂
, and then {𝑋𝑘} is bounded. Thus,

the sequence {𝑋𝑘} has at least one accumulation point.

Inequality (3.19) also means that 𝐹𝜖𝑘(𝑋
𝑘) is bounded from below, which together with

the non-increasing property of {𝐹𝜖𝑘(𝑋
𝑘)}, we know that 𝐹𝜖𝑘(𝑋

𝑘) converges to a constant

𝐹 *. Let 𝑋* be an accumulation point of {𝑋𝑘}. By the continuity of 𝐹 (·) as well as 𝜖𝑘 → 0
as 𝑘 → ∞ and convergence of 𝐹𝜖𝑘(𝑋

𝑘), we get 𝐹 * = 𝐹 (𝑋*).
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Next, we proved (ii). From Lemma 3.3, we have

‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 ≤ 1

2
(𝐿− 𝐿𝑓 )(𝐹𝜖𝑘(𝑋

𝑘)− 𝐹𝜖𝑘+1(𝑋𝑘+1)).

Due to 𝐿 ≥ 𝐿𝑓 and (i), we obtain that ‖𝑋𝑘+1 −𝑋𝑘‖ → 0 as 𝑘 → ∞. �

Theorem 3.5 Let 𝑝 ∈ (0, 1/2], 𝜆 > 0, 𝐿 ≥ 𝐿𝑓 and {𝜖𝑘} be a sequence of component-wise
non-increasing positive vectors in R𝑛 with 𝜖𝑘 → 0 as 𝑘 → ∞, and {𝑋𝑘} be the sequence
generated by Algorithm 1. Then any accumulation point of {𝑋𝑘} is a stationary point of
problem (1.1).

Proof Let 𝐵𝐿(𝑋
𝑘) = 𝑋𝑘− 1

𝐿∇𝑓(𝑋𝑘) and 𝑈𝑘Diag(𝜎(𝐵�̄�(𝑋
𝑘)))(𝑉 𝑘)⊤ be an SVD of 𝐵𝐿(𝑋

𝑘),
where 𝑈𝑘 ∈ R𝑚×𝑛, 𝑉 𝑘 ∈ R𝑛×𝑟 with orthonormal columns and satisfy (𝑈𝑘)⊤𝑈𝑘 = (𝑉 𝑘)⊤𝑉 𝑘 =
𝐼, and 𝜎(𝐵𝐿(𝑋

𝑘)) ∈ R𝑛
+ is the vector of singular values of 𝐵𝐿(𝑋

𝑘) arranged in non-increasing
order. From (3.3) and Lemma 3.1, we have

𝑋𝑘+1 ∈ ℋ 4𝜆𝑝𝑠𝑘

𝐿

(𝐵𝐿(𝑋
𝑘)) = 𝑈𝑘Diag

(︁
𝐻 4𝜆𝑝𝑠𝑘

𝐿

(︀
𝜎(𝐵𝐿(𝑋

𝑘))
)︀)︁

(𝑉 𝑘)⊤ (3.20)

and

𝜎𝑖(𝑋
𝑘+1) ∈ ℎ 4𝜆𝑝𝑠𝑘

𝑖
𝐿

(︀
𝜎𝑖(𝐵𝐿(𝑋

𝑘))
)︀
,∀𝑖 = 1, · · · , 𝑛, (3.21)

where 𝑠𝑘𝑖 = (𝜎
1/2
𝑖 (𝑋𝑘) + 𝜖𝑘𝑖 )

2𝑝−1.

Let {𝑋𝑘𝑗} be a convergent subsequence of {𝑋𝑘} and the limit point be 𝑋*, i.e.,

𝑋𝑘𝑗 → 𝑋*, 𝑎𝑠 𝑘𝑗 → ∞. (3.22)

From (3.22), the continuous of 𝜎𝑖(·), 𝑠𝑘𝑖 = (𝜎
1
2
𝑖 (𝑋

𝑘) + 𝜖𝑘𝑖 )
2𝑝−1 and 𝜖

𝑘𝑗

𝑖 → 0 (as 𝑘𝑗 → ∞), we

obtain that

𝑠
𝑘𝑗

𝑖 → [𝜎𝑖(𝑋
*)]𝑝−

1
2 ,

4𝜆𝑝𝑠𝑘𝑖
𝐿

→ 4𝜆𝑝[𝜎𝑖(𝑋
*)]𝑝−

1
2

𝐿
𝑎𝑠 𝑘𝑗 → ∞. (3.23)

Due to (3.22) and the asymptotically regular of sequence {𝑋𝑘} by Theorem 3.4-(ii), we have

𝑋𝑘𝑗+1 = 𝑋𝑘𝑗 + (𝑋𝑘𝑗+1 −𝑋𝑘𝑗 ) → 𝑋*, 𝑎𝑠 𝑘𝑗 → ∞. (3.24)

Due to (3.4), there holds

𝑋𝑘𝑗+1 ∈ arg min
𝑋∈R𝑚×𝑛

{︃
𝐿

2

⃦⃦⃦⃦
𝑋 −

[︂
𝑋𝑘𝑗 − 1

𝐿
∇𝑓(𝑋𝑘𝑗 )

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝

𝑛∑︁
𝑖=1

(︁
𝜎

1
2
𝑖 (𝑋

𝑘𝑗 ) + 𝜖
𝑘𝑗

𝑖

)︁2𝑝−1

𝜎
1
2
𝑖 (𝑋)

}︃
,

then it holds

𝐿

2

⃦⃦⃦⃦
𝑋𝑘𝑗+1 −

[︂
𝑋𝑘𝑗 − 1

𝐿
∇𝑓(𝑋𝑘𝑗 )

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝

𝑛∑︁
𝑖=1

(︁
𝜎

1
2
𝑖 (𝑋

𝑘𝑗 ) + 𝜖
𝑘𝑗

𝑖

)︁2𝑝−1

𝜎
1
2
𝑖 (𝑋

𝑘𝑗+1)

≤ 𝐿

2

⃦⃦⃦⃦
𝑋 −

[︂
𝑋𝑘𝑗 − 1

𝐿
∇𝑓(𝑋𝑘𝑗 )

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝

𝑛∑︁
𝑖=1

(︁
𝜎

1
2
𝑖 (𝑋

𝑘𝑗 ) + 𝜖
𝑘𝑗

𝑖

)︁2𝑝−1

𝜎
1
2
𝑖 (𝑋)
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for any 𝑋 ∈ R𝑚×𝑛. Taking limitation on both sides of the above inequality and by virtue of
the continuity of 𝜎𝑖(·) and ∇𝑓(·), as well as (3.22) and (3.24), we obtain that

𝐿

2

⃦⃦⃦⃦
𝑋* −

[︂
𝑋* − 1

𝐿
∇𝑓(𝑋*)

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝
𝑛∑︁

𝑖=1

[𝜎𝑖(𝑋
*)]𝑝−

1
2𝜎

1
2
𝑖 (𝑋

*)

≤ 𝐿

2

⃦⃦⃦⃦
𝑋 −

[︂
𝑋* − 1

𝐿
∇𝑓(𝑋*)

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝
𝑛∑︁

𝑖=1

[𝜎𝑖(𝑋
*)]𝑝−

1
2𝜎

1
2
𝑖 (𝑋)

holds for any 𝑋 ∈ R𝑚×𝑛. This implies that

𝑋* ∈ arg min
𝑋∈R𝑚×𝑛

𝐿

2

⃦⃦⃦⃦
𝑋 −

[︂
𝑋* − 1

𝐿
∇𝑓(𝑋*)

]︂⃦⃦⃦⃦2
𝐹

+ 2𝜆𝑝
𝑛∑︁

𝑖=1

[𝜎𝑖(𝑋
*)]𝑝−

1
2𝜎

1
2
𝑖 (𝑋). (3.25)

Denote 𝑟 := rank(𝑋*) and suppose an SVD of 𝑋* is 𝑋* = 𝑈*Diag(𝜎(𝑋*))(𝑉 *)
⊤

with
(𝑈*)⊤𝑉 * = (𝑉 *)⊤𝑉 * = 𝐼 and 𝜎(𝑋*) being arranged in non-increasing order. By the opti-
mality condition of problem (3.25) at 𝑋*, it holds

∇𝑓(𝑋*) + 𝜆𝑝
𝑟∑︁

𝑖=1

(𝜎𝑖(𝑋
*))

𝑝−1
𝑈*
𝑖 (𝑉 *

𝑖 )
⊤
= 0. (3.26)

Through pre- and port-multiplying (3.26) by (𝑈*)⊤ and 𝑉 *, we get

(𝑈*)⊤∇𝑓(𝑋*)𝑉 * + 𝜆𝑝Diag(𝜎𝑝−1(𝑋*)) = 0, (3.27)

where 𝜎𝑝−1(𝑋*) = (𝜎𝑝−1
1 (𝑋*), · · · , 𝜎𝑝−1

𝑟 (𝑋*), 0, · · · , 0)⊤. By considering Definition 2.5, e-

quation (3.27) implies that 𝑋* is a stationary point of problem (1.1). The proof is thus
completed. �

4 Numerical experiments

In this section, we conduct numerical experiments on low-rank matrix completion problems
to test the performance of the proposed SVHT algorithm. Particularly, low-rank matrix
completion problem [1] is described by the following model

min
𝑋∈R𝑚×𝑛

rank(X) (4.1)

s.t. 𝑋𝑖,𝑗 = 𝑀𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝛺,

which aims to fill in the missing entries of a partially observed low-rank matrix 𝑀 ∈ R𝑚×𝑛

with the known entries {𝑀𝑖,𝑗 : (𝑖, 𝑗) ∈ 𝛺}.
We compared our SVHT algorithm with three competitive low-rank matrix optimiza-

tion solvers: SVT [1], augmented Lagrange method for weighted nuclear norm minimization
(WNNM) algorithm [12] and low-rank matrix fitting algorithm (LMaFit) [44] for simulation
data and real 2D/3D images recovery. The platform is Matlab R2018b under Windows 10

on a desktop of a 3.00GHz CPU and 8.00GB memory.

We emphasize that although we prove the convergence of SVHT algorithm only for 𝑝 ∈
(0, 1/2] in theory (Theorem 3.5), SVHT algorithm is also convergent for 𝑝 ∈ (1/2, 1) in
numerical practice, which can be seen from the following experiments.
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4.1 Simulated Data

In this subsection, we use the same way as [1,17,29,32,33] to generate 𝑚×𝑛 matrices of rank
𝑟. Firstly, two matrices 𝑀𝐿 ∈ R𝑚×𝑟 and 𝑀𝑅 ∈ R𝑛×𝑟 with i.i.d. in Gaussian distribution are
generated randomly by the MATLAB procedure “randn(m,r)” and “randn(n,r)”, then 𝑀
is obtained by 𝑀 = 𝑀𝐿𝑀

⊤
𝑅 . The goal is to recover the target matrix 𝑀 ∈ R𝑚×𝑛 of rank

𝑟 based on some observed entries {𝑀𝑖𝑗}(𝑖,𝑗)∈𝛺. The observed entries of 𝑀 is obtained by
sampling from 𝑀 with sampling ratio SR uniformly at random, where SR= |𝛺|/(𝑚𝑛).

4.1.1 Choice of p

First, we set 𝑚 = 𝑛 = 100, SR= 0.6 and let the real rank 𝑟 increase from 4 to 30 per 2
increases. To choose a good value of 𝑝 for recovering low-rank matrices, we let 𝑝 vary among
{0.1, 0.3, 0.5, 0.7, 0.9}. For each test simulation, we run 10 instances and report the following
results: the frequency of success, the average of relative error, the average number of iteration
and the average CPU time. The recovery was regarded successful if ‖𝑀−𝑋*‖𝐹

‖𝑀‖𝐹
< 10−3, where

𝑋* stands for the output matrix.

Numerical results of this experiment are displayed in Figure 1.

(a) (b)

(c) (d)

Figure 4. 1

From Figure 1, we can see that among the five values, 𝑝 = 0.1 and 𝑝 = 0.3 cost the least

number of iterations and running time for almost all the ranks, while 𝑝 = 0.3 possesses the
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highest frequency of success and the lowest relative error. This shows that the parameter
𝑝 = 0.3 is the best strategy for SVHT algorithm. Thus, we always use 𝑝 = 0.3 in the following
test.

4.1.2 Comparison of four competitive algorithms for random matrices

In this part, we compare the above mentioned four competitive algorithms for randomly

generated low-rank matrix completion problems. For a comprehensive comparison, the con-
sidered instances are multifarious: including noiseless problems (𝜎 = 0) and noised problems
(𝜎 = 0.01), small-scale problems and large-scale problems, as well as problems with vari-

ous sampling rates. In this experiment, for each small-scale test problem, i.e., 𝑚 < 3000,
we run 5 instances and record the average results, while for each large-scale test problem,
i.e., 𝑚 ≥ 3000, we run 2 instances and record the average results. The numerical results of
average relative error and average CPU time for this experiment are displayed in Table 4.1.
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Table 4.1: Numeric results for randomly generated matrix completion problem

Problems Methods
𝜎 = 0 𝜎 = 0.01

Rel err Time Rel err Time

m=n=1000

r=30 SR=0.177

SVHT 1.10e-04 3.27 1.35e-03 17.01

WNNM 1.91e-04 22.77 3.34e-03 161.41

LMaFit 1.25e-03 0.81 1.08e-03 0.47

SVT 3.74e-01 175.71 3.81e-01 130.35

r=50 SR=0.205

SVHT 1.75e-04 4.77 1.64e-03 17.98

WNNM 2.43e-04 26.38 2.68e-03 127.30

LMaFit 9.43e-01 1.02 9.43e-03 1.11

SVT 5.21e-01 69.94 5.19e-01 74.88

r=100 SR=0.266

SVHT 3.27e-04 14.07 1.57e-03 24.95

WNNM 4.12e-04 67.34 2.19e-03 218.32

LMaFit 3.02e-01 2.36 1.36e-01 1.91

SVT 6.17e-01 38.07 6.16e-01 33.46

m=n=2000

r=30 SR=0.125

SVHT 1.33e-04 12.47 1.19e-03 65.22

WNNM 1.51e-04 77.48 2.34e-03 842.52

LMaFit Out of memory Out of memory

SVT 2.36e-01 12065.00 2.39e-01 7296.56

r=50 SR=0.153

SVHT 1.30e-04 13.51 1.16e-03 82.14

WNNM 1.83e-04 97.89 2.33e-03 769.87

LMaFit 9.57e-04 3.67 9.62e-02 6.37

SVT 3.77e-01 9172.60 3.79e-01 2123.98

r=100 SR=0.214

SVHT 1.29e-04 20.20 1.06e-03 117.75

WNNM 2.32e-04 760.45 1.79e-03 996.61

LMaFit 1.62e-01 5.19 9.40e-01 6.61

SVT 4.86e-01 3285.44 4.87e-01 1055.26

m=n=3000

r=50 SR=0.126

SVHT 1.30e-04 29.56 1.01e-03 186.21

WNNM 1.58e-04 312.32 2.23e-03 1933.69

LMaFit Out of memory Out of memory

SVT 2.93e-01 0.03 2.91e-01 12886.48

r=100 SR=0.154

SVHT 1.82e-04 69.89 1.01e-03 230.12

WNNM 2.24e-04 434.49 1.77e-03 2422.82

LMaFit 9.60e-02 11.50 9.58e-03 11.33

SVT 5.15e-01 5143.31 5.16e-01 5126.43

r=150 SR=0.180

SVHT 2.73e-04 80.51 1.02e-03 294.55

WNNM 2.79e-04 798.35 1.57e-03 2786.30

LMaFit 1.42e-01 14.33 1.43e-01 15.05

SVT 5.90e-01 3398.58 5.89e-01 3543.63

m=n=5000

r=100 SR=0.087

SVHT 2.25e-04 187.70 1.08e-03 535.12

WNNM 2.34e-04 1592.18 1.84e-03 6250.21

LMaFit Out of memory Out of memory

SVT 6.22e-01 26665.22 6.23e-01 26527.10

r=150 SR=0.089

SVHT 3.37e-04 567.36 1.40e-03 699.78

WNNM 3.42e-04 2814.89 1.85e-03 6280.64

LMaFit 2.99e-01 37.09 1.09e-01 50.68

SVT 7.49e-01 17386.02 7.56e-01 17392.59

r=200 SR=0.118

SVHT 3.55e-04 1304.85 1.15e-03 1064.08

WNNM 3.58e-04 3520.59 1.61e-03 8873.66

LMaFit 8.94e-02 142.86 7.61e-01 98.26

SVT 7.20e-01 14586.77 7.19e-01 14639.66

From Table 4.1, we can see that although LMaFit algorithm is always the fastest one
among the four algorithms, its accuracy is not very good, even occurs “out of memory” for
some instances with very low sampling ratios. While our SVHT algorithm not only possesses
the highest accuracy, but also has faster speed than WNNM algorithm and SVT algorithm.

For example, for 𝑚 = 𝑛 = 5000, 𝑟 = 150, in the case of noiseless, SVHT algorithm only
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needs 8.9% samplings and the time of 567.36 seconds but can recover the matrix with the
relative error reaching 3.37e-04, where the speed is 4.96 times of WNNM algorithm and 30.64
times of SVT algorithm, meanwhile in the case of noise, SVHT algorithm only needs 8.9%
samplings and the time of 699.78 seconds but can recover the matrix with the relative error
reaching 1.40e-03, where the speed is 8.97 times of WNNM algorithm, 24.85 times of SVT
algorithm. In the case of noiseless, the time for SVT algorithm even exceeds a terrifying
17,000 seconds, but its relative error only attains 7.56e-01. Obviously, the numerical results
show the great advantages of SVHT algorithm in recovery the randomly generated low-rank
matrices.

4.2 Application to Image Inpainting

In this subsection, we use the USC-SIPI image database to evaluate our algorithm, and the
2D/3D images are downloaded from http://sipi.usc.edu/database/.

Firstly, we randomly select three two-dimensional images of size 512 * 512 from this
database. The original images are not low-tank in nature, we construct low-rank images
based on the randomly and noisy sampling from the original images as their low-rank ap-
proximations. For this experiment, we set sampling ratio SR= 0.3, Gaussian noise with

standard deviation 𝐺𝑛 = 10−2 and the recoved rank 𝑟 = 50. We use the following four
indexes: peak signal to noise ratio (PSNR) [13], structural similarity (SSIM) [40], root mean

square error (RMSE) [40] and CPU time to evaluate the numerical performances of the

compared algorithms for image inpainting, where

PSNR := 10 log10

(︂
𝑚𝑛 * 2552

‖𝑀 −𝑋*‖2𝐹

)︂
and RMSE :=

√︂
‖𝑋* −𝑀‖2𝐹

𝑚𝑛
.

Obviously, the higher PSNR and SSIM values and smaller RMSE and CPU time values rep-

resents the better recovery performance. Numerical results of this experiment are displayed
in Figure 4.2 and Table 4.2.

Figure 4. 2. Image recovery results with Gaussian noise (𝐺𝑛 = 10−2)
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Table 4.2: Image recovery results of all the compared algorithms

hhhhhhhhhhhhhhhImage

Method
SVHT WNNM LMaFit SVT

Truck

PSNR 24.2104 21.7740 21.4179 10.9148

SSIM 0.4970 0.3845 0.3634 0.0877

RMSE 15.7044 20.7893 21.6593 72.5776

Time 8.6082 22.1494 0.0645 0.8427

Couple

PSNR 24.0853 22.4996 21.3421 8.1418

SSIM 0.6047 0.5189 0.5228 0.0439

RMSE 15.9321 19.1231 21.8493 99.8740

Time 8.4387 20.9571 0.1067 0.5997

Ruler

PSNR 20.7958 10.8142 19.4680 2.4527

SSIM 0.8820 0.4114 0.8686 0.1035

RMSE 23.2676 73.4227 27.1105 192.2675

Time 7.5871 1.1386 0.2051 0.3859

From Figure 4.2, we can see that the images restored by SVHT algorithm are relatively

clearer than other algorithms, which shows that SVHT algorithm can effectively recover the

images in the case of noise. In order to compare the recovery effect of the four algorithms
more clearly, we display PSNR, SSIM, RMSE and CPU time of the four algorithms in Table
4.2. We can see that although SVHT algorithm is slower than LMaFit algorithm and SVT
algorithm, but outperforms them andWNNM algorithm in terms of PSNR, SSIM and RMSE.
While SVHT algorithm has higher PNSR and SSIM values and smaller RMSE and CPU time

values than WNNM algorithm for most of the cases. In summary, SVHT algorithm performs
the best among the four algorithms.

Secondly, we apply the four algorithms to recover three-dimensional images. We select
four three-dimensional images of size 256*256*3 for this experiment, whose entries denote the
pixels of the corresponding images. We sample 30% pixels of each image and add Gaussian
noise with standard deviation 𝐺𝑛 = 10−2 as observation data, based on which we reconstruct
an image of rank 30 by each algorithm as low-rank approximation to each original image,

that is, SR= 30% and 𝑟 = 30. The recovered images are shown in Figure 4.3 and the numeric
results of PSNR, SSIM, RMSE and Time are reported in Table 4.3.
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Figure 4. 3. Recovery results for 3D images

Table 4.3: Numeric results for 3D images recovery of the four compared algorithms

hhhhhhhhhhhhhhhImage

Method
SVHT WNNM LMaFit SVT

Flower

PSNR 21.2013 19.1316 18.5224 10.2418

SSIM 0.4326 0.3313 0.3544 0.1213

RMSE 22.2063 28.1811 30.2289 78.4243

Time 2.3871 4.7171 0.0177 0.5562

Hat

PSNR 23.4241 21.5304 20.3392 10.2523

SSIM 0.4960 0.3475 0.4900 0.1772

RMSE 17.1923 21.3806 24.5233 78.3292

Time 2.2722 3.8314 0.0445 1.5539

Leaves

PSNR 15.7829 13.7406 12.5215 5.5154

SSIM 0.4553 0.3736 0.2180 0.1225

RMSE 41.4376 52.4217 60.3208 135.1353

Time 2.0403 3.6539 0.0079 0.2139

Plants

PSNR 24.2323 22.2863 20.6571 14.2017

SSIM 0.5584 0.3782 0.5107 0.3324

RMSE 15.6649 19.5985 23.6420 49.7113

Time 2.2751 2.8642 0.0517 2.2638

From Figure 4.3, we can also see that the images recovered by SVHT algorithm is clearer
than that recovered by the other three algorithms. From Table 4.3, we can see that for most
of the cases, SVHT algorithm still outputs the highest PNSR, the highest SSIM, the lowest
RMSE and the third fastest speed. Although LMaFit algorithm and SVT algorithm are

faster than SVHT algorithm, the quality of their recovered images are poor.
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4.3 Application to MRI Volume Dataset

We adopt the MRI volume dataset to test our algorithm further. We selected the 50th slice of
the CThead and MRbrain which are downloaded from http://graphics.stanford.edu/data/voldata
and of size 256*256. Similarly, we set sampling rate SR= 0.3, Gaussian noise with standard
deviation 𝐺𝑛 = 10−2 and the recovered rank 𝑟 = 30. Numerical results of this experiment
are displayed in Figures 4.4 and 4.5.

Figure 4. 4. Image recovery results with Gaussian noise (𝐺𝑛 = 10−2))

(a) (b)

(c) (d)

Figure 4. 5. Image recovery results of all the compared algorithms
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At first, we can see from Figure 4.4 that the images recovered by SVHT algorithm are
more detailed. Secondly, from the histogram 4.5, our stone columns in PSNR and SSIM are
higher and in RMSE and Time are lower, which indicates that our results are closer to the
real images.

To summarize the numeric experiments on random data and real image data, the results
show that SVHT algorithm works very well in almost all the cases, and it is very competitive
compared with the three state-of-the-art algorithms.

5 Conclusion

In this paper, we studied the low-rank matrix optimization problem by relaxing the rank of
matrix to the ℓ𝑝 (0 < 𝑝 < 1) matrix quasi-norm. Based on the locally ℓ1/2 approximation
of ℓ𝑝 (0 < 𝑝 < 1) matrix quasi-norm and the closed-form solution of the ℓ1/2 subproblem,
we proposed a singular value half thresholding algorithm for the ℓ𝑝 regularized matrix op-
timization problem. By constructing Lipschitz and non-Lipschitz approximate functions of
the objective function, we proved that any accumulation point of the sequence generated by
SVHT algorithm is a first-order stationary point of the problem. In numerical experiments,
we test SVHT algorithm by low-rank matrix completion problem on simulation data, USC-
SIPI image data and MRI volume image data. Extensive numerical results show that SVHT

algorithm is very competitive for low-rank matrix optimization problems in comparison with

some popular algorithms.
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