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Abstract

In most health care systems, a primary care physician (PCP) is both the first
instance consulted by patients with medical concerns and the instance coordinating
patients’ continued access to medical care. Due to the PCP’s pivotal role, we address
challenges of a high-quality primary care service by interday appointment schedul-
ing on a tactical decision level. Our study considers three different types of pa-
tients, including walk-ins who complicate the PCP’s schedule planning as they forgo
scheduling an appointment and seek immediate care by walking into the practice
without prior notice. We study appointment scheduling systems based on so-called
masks and focus on the balanced workload of the PCP in form of the mask design
problem. To account for different uncertainties in demand for treatment, we extend
the mask design problem to the robust mask design and the robust multimask design
problem. For all three problems, we provide a combinatorial interpretation by a net-
work flow and design model. We develop a solution approach that combines binary
search with compact formulations (of extensions) of minimum cost flow problems.
Finally, we conduct an extensive case study by agent-based simulation in which we
evaluate the mask-based appointment scheduling systems and compare them with
five appointment scheduling systems from the literature.

1 Introduction
Primary care physicians (PCPs) play a crucial role in health care systems as they are often
the first instance consulted by patients with medical concerns [7, 22]. PCPs’ responsi-
bilities begin with conducting an examination to determine the patients’ states of health
and assessing whether they themselves can provide the necessary medical care. If this
is not the case, they are obliged to ensure the continuation of medical care, for example
by referring the patient to a specialist [43]. As the instance facilitating and coordinating
patients’ access to medical care, the PCP’s quality of service is not only measured on the
basis of competent medical care but also by aspects such as the patient-physician conti-
nuity, timely access to medical care, and waiting times within the practice, as discussed
in more detail in the following.

Patient-physician continuity is desirable as patients benefit from follow-up treatments
and referrals [4, 43]. PCPs themselves benefit as they have to spend less time dealing
with medical histories of new patients [22]. Clearly, patient-physician continuity may
conflict with swift access to health care if patients prefer to be treated by their familiar
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PCP rather than by any available PCP [6]. Timely access to medical care is imperative,
as it is decisive for the patients’ choice of medical facility, course of illness, and medical
outcome [22, 55]. For instance, long access times for PCP practices increase the likelihood
of patients visiting emergency rooms [50, 44].

In the United States, patients’ timely access is endangered by the clash of increasing
demand for primary health care and the nationwide lack of PCPs [7, 38]. Similar conflicts
arise in other countries. In rural areas of Germany, the prospect of timely medical care is at
risk due to mainly elderly PCPs near retirement [5] combined with fewer medical graduates
who are willing to start a practice [29]. Due to the worldwide aging population at the
highest risk of chronic conditions [38, 3], PCPs’ schedules are already overloaded [10].
Overloading in turn results in long waiting times in the practice—one of the major reasons
for patients’ complaints [25].

To face the described and further challenges of high-quality service, an effective ap-
pointment scheduling system is required [23, 40]. However, the PCPs’ schedule planning
is complicated as patients forgo scheduling an appointment and seek immediate care by
walking into the practice without prior notice—as so-called walk-ins. Over the past ten
years, German surveys conducted by The National Association of Statutory Health In-
surance Physicians [42] reveal that on average 18.8% of the patients forgo scheduling an
appointment and are seen by their PCP as walk-in. Compared to specialists with an
average rate of 6.5%, this almost three times higher rate highlights the difficulty of the
scheduling in primary care practices. The scheduling is further complicated by fluctu-
ating demand for treatment which leads to an inefficient and imbalanced workflow of
PCPs [54]. PCPs have to work overtime on one day and are underutilized on another day
of the same week. In summary, an effective appointment scheduling system maintains
patient-physician continuity, enables timely access, reduces waiting times, smooths the
PCP workflow, and provides robustness against demand uncertainties [22].

The main contributions of this paper are summarized as follows. Considering three
different types of patients, we manage a PCP’s demand for treatment by interday ap-
pointment scheduling on a tactical decision level. For this purpose, we first formalize
appointment scheduling systems that preserve an efficient and balanced workflow of the
PCP by the so-called mask design problem (MDP) in a deterministic setting. We provide
a combinatorial interpretation of the MDP by a network flow and design model. For this
model, we present a solution approach that combines binary search and compact integer
program (IP) formulations of minimum cost flow problems. We extend the MDP to a
robust setting due to uncertainties in demand for treatments and provide the resulting
robust mask design problem (rMDP). In addition, to account for further uncertainties in
demand for treatment and overfitted solutions, we present the robust multimask design
problem (rMMDP). For the rMDP and rMMDP, we extend our solution approach by
robust compact minimum cost flow formulations. Based on the solutions to the MDP,
rMDP, and rMMDP, we obtain so-called mask-based appointment scheduling systems.
We conduct an extensive case study using agent-based simulation. In this case study,
we evaluate the mask-based appointment scheduling systems and compare them with
five appointment scheduling systems from the literature. We can observe that especially
the robust mask-based appointment scheduling systems leads to high-quality solutions
in several key performance indicators. To the best of our knowledge, this is the first
contribution that studies (interday) appointment scheduling by means of combinatorial
and robust methods. More precisely, this is the first contribution that studies (interday)
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appointment scheduling as a (robust) network flow and design problem.
The paper is structured as follows. In Section 2, we outline literature of appointment

scheduling in primary health care with a focus on interday appointment scheduling. In
Section 3, we define a physician-patients setting, introduce mask-based interday appoint-
ment scheduling, and present the mask design problem. In Section 4, we model the mask
design problem in a deterministic setting and subsequently extend it to a robust setting.
In Section 5, we consider the extension of the mask design problem, the multimask design
problem. We note that the modeling in Sections 4 and 5 is presented step-by-step in great
detail. In Section 6, we present and discuss the results from our case study. In Section 7,
we discuss and conclude our results.

2 Appointment scheduling in the literature
Health care services face many challenges due to the clash of increasing demand for med-
ical care and the resources available [9, 14]. In the overview [27], Hulshof et al. identify
the general classifications of planning and control decisions of health care services. Con-
centrating on appointment scheduling in outpatient services, we refer to the overview of
Cayirli and Veral [12] which focuses on formulating general problems and their various
modelings. Factors that make appointment scheduling challenging are demonstrated by
Gupta and Denton [22]. Furthermore, we refer to Ahmadi-Javid et al. [2] for a review
of analytical and numerical optimization studies for outpatient appointment scheduling
systems. In the following, we provide an overview about the categories into which ap-
pointment scheduling systems are classified as well as related work.

2.1 Categories of appointment scheduling systems

Appointment scheduling systems established in the literature are categorized into four
different types of systems [53]: traditional, advanced access, hybrid, and carve-out ap-
pointment scheduling systems. The traditional appointment scheduling system allows all
slots to be scheduled for appointments by requesting patients. Appointments may be
scheduled well in advance and are often used to postpone patients requests. In contrast,
the advanced access appointment scheduling system accommodates all patients on the day
of their request. The core idea is to schedule same-day appointments only [40]. Robinson
and Chen [49] compare these two contrasting scheduling policies regarding various perfor-
mance measures. Both appointment scheduling systems show a lack of planning security
with respect to the actual number of treatments. The traditional appointment scheduling
system is disadvantageous for two reasons: short-term cancellations and no-shows, i.e.,
patients who do not show up for their appointments. Overbooking strategies have been
proven to reduce the resulting negative impacts [13, 26, 31, 36, 37, 49, 56]. Further dif-
ficulties for the traditional appointment scheduling system are, for example, long access
times to appointments and insufficient time for (walk-in) patients with acute or urgent
concerns [48]. The advanced access appointment scheduling system becomes less efficient
due to the uncertain demand for treatment. This causes waiting times for patients as well
as inefficient and imbalanced working hours for PCPs [49]. The request for appointments
scheduled in advance is also not considered, which particularly affects elderly and chron-
ically ill patients [2, 53]. Furthermore, on days with high demand for treatment patients
are still referred to the next session or the following day—the so-called overflow patients.
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Thus, same-or-next-day scheduling policies also appear in the context of advanced access
systems [40] which have been proven to be successful against simple same-day scheduling
policies [49]. For this reason, hybrid appointment scheduling systems are introduced that
combine the two concepts [13, 47, 49]. Finally, the carve-out appointment scheduling
system is managed as the traditional appointment scheduling system where a part of the
PCP’s working hours is reserved for specific procedures or urgent services [2, 53]. We
note that the categorization of appointment scheduling systems becomes blurred as the
systems overlap. In addition, the categorization is not clearly defined due to different
assumptions, settings, services, and facilities of various health care systems of different
countries.

Besides the differentiation in appointment scheduling systems, studies are further cat-
egorized according to intraday and interday appointment scheduling [19]. Intraday ap-
pointment scheduling concentrates on a single day with emphasis on, for example, the
reduction of patient waiting times or the patient-physician continuity. In this context,
mostly same-day scheduling policies are investigated on tactical and operational decision
levels. In contrast, the concept of interday appointment scheduling aims at allocating ap-
pointments for consecutive days to manage the PCP’s working hours, usually on a tactical
decision level. Fluctuating demand for treatment is smoothed throughout the week, and
therefore, the utilization of the PCP’s working hours and patient arrivals are controlled
in a more efficient way.

In this study, we analyze an appointment scheduling system that analogously operates
to a carve-out system. Appointments are traditionally scheduled while ample time is
reserved for walk-ins to serve their urgent needs. For designing an appointment scheduling
system, we refer to studies [21, 24] that introduce a notion similar to ours. As we focus
on interday appointment scheduling in this study, we propose further related literature in
the following section.

2.2 Related work

Qu et al. [46] manage a hybrid appointment scheduling system by a two time horizon. The
first time horizon is used to schedule same-day appointments and the second to postpone
demand for treatment within a maximum of one week. Regarding the expectation and
variance of the number of patients seen by the PCP, the authors show that the two
time horizon system is at least as good as an advanced access appointment scheduling
system. Further, Qu et al. [48] investigate the ratio between same-day appointments
and appointments in advance by an analytical method with the aim of maximizing the
expected number of treated patients. The results show the important dependency of
the average demand for same-day appointments to the PCP’s working hours. Dobson et
al. [18] formulate a stochastic model to determine the optimal number of slots reserved for
urgent patients. They compare the resulting carve-out appointment scheduling system
with an advanced access appointment scheduling system on the basis of revenue, i.e., the
average number of urgent patients who are not seen during the PCP’s working hours and
the average queue length for routine patients. Feldman et al. [19] develop a dynamic
appointment scheduling model that considers not only appointment cancellations and no-
shows but also patients’ preferences. If appointments do not match their preferences,
patients are not seen by the PCP. Thus, Feldman et al. aim at a maximum expected
revenue per day determined by patients treated.
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In contrast to these studies, like Wiesche et al. [54], we consider patients with acute
concerns who attempt scheduling an appointment within their willingness to wait. If
no appointment is proposed within this time, they forgo scheduling an appointment and
become walk-ins. Wiesche et al. [54] determine the minimum number of appointments
scheduled for a weekly profile to match capacity with demand by a mixed integer program
formulation. Stochastic simulation shows that their appointment scheduling strategy
balances the PCP’s work hours and reduces overflow patients. Schacht [51] extends the
contributions by seasonal and stochastic aspects. He concludes that reconfiguration of
the PCP’s working hours throughout the year is advantageous. Unlike studies of Wiesche
et al. [54] and Schacht [51], we do not minimize the number of appointment slots to have
as much capacity as possible for walk-ins. Instead, we intend to offer appointment slots,
motivated by the German health care system where only three percent of all primary
care practices do not offer appointments [42]. More precisely, we aim at determining an
optimal ratio between appointment slots and reserved time for walk-ins. We also note
that, unlike studies [54] and [51], we do not neglect patients whose demand for treatment
is known well in advance, for instance as it is the case for chronically ill patients. Instead,
we use this controllable demand to manage and balance the PCP’s workload.

The key difference between previously published studies and ours is that we use com-
binatorial optimization and do not consider stochastic but robust optimization models.
To the best of our knowledge, we are the first who use combinatorial and robust solving
methods to develop an appointment scheduling system.

3 Setting and problem definition
In this section, we introduce notations and formalize the appointment scheduling problem.
In Section 3.1, we introduce a deterministic physician-patients setting. In Section 3.2,
we show how to control demand for treatment by masked-based interday appointment
scheduling. In Section 3.3, we present the MDP.

3.1 Deterministic physician-patients setting

Like most studies on primary health care [2], our study assumes a single-server system, i.e.,
practices with one PCP, because of the importance of patient-physician continuity. The
single-server assumption holds even in joint practices, as PCPs usually provide medical
care to their own panel of patients [12, 41]. PCPs generally operate in clinical sessions—a
morning and an afternoon session. We denote the set of all sessions by K. Concentrating
on a single working week, we describe each session by a tuple k = (i, j) ∈ K, where
i ∈ {0, . . . , 4} indicates the working day from Monday to Friday and a binary indicator j ∈
{0, 1} represents whether the morning (j = 0) or afternoon (j = 1) session is considered.
For each of these sessions, we refine the PCP’s working hours by differentiating between
opening hours, buffer time, and overtime. Opening hours determine the time span o ∈
ZK

≥0 in which appointments are scheduled and patients may be admitted for treatments.
After opening hours, we assume PCPs to use buffer time b ∈ ZK

≥0 to compensate for
contingencies such as delays. We refer to the time during the start of the opening hours
and the end of the buffer as the PCP’s capacity, denoted by parameter c := o+ b. PCPs
who do overtime work even beyond the buffer time. Figure 1 illustrates an exemplary
working day of a PCP who operates in two sessions.
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Working
DayOpening Closing Opening Closing

Buffer time
Overtime
Service time
Idle time

Figure 1: Schematic representation of a PCP’s morning and afternoon session visualizing
buffer, idle time, and overtime

During the PCP’s opening hours, patients have two options to seek medical care in
the modeled setting—either by appointment or as walk-in. Whether patients first contact
their PCP or accept a proposed appointment depends on their willingness to wait which
varies with their health status. In this context, we divide patients into three categories:
walk-ins, regular, and chronic patients. The last suffer from chronic illnesses and seek
follow-up treatments by appointment. We assume that their willingness to wait ensures
flexibility in their appointment requests and we therefore specify their demand as a single
weekly demand dc ∈ Z≥0. In contrast, regular patients suffer from acute illnesses and
request an appointment for a specific session, specified by demand dr ∈ ZK

≥0. If they
are not offered an appointment in this session or an alternative appointment within their
willingness to wait, regular patients forgo an appointment and seek immediate care as
walk-ins in the session of their request. Motivated by German employees, who must
provide a sick note after three days of sick leave [17], we uniformly set their willingness
to wait to three days. Naturally, there always exist some additional walk-ins who are
not willing to wait at all and who do not even request an appointment. We specify their
demand per session by parameter dw ∈ ZK

≥0.
Once patients request to be treated, the treatments’ duration are naturally subject

to variation. Nevertheless, studies have shown that the length of the treatments only
marginally varies in primary care [39, 52]. Thus, we assume a uniform anticipated service
time t ∈ Z>0 for all patients.

Before proposing a method to manage patient demand, we note that our models
generalize to finer demand aggregations, for example, for every 30 minutes of a session.
However, as our models support on a tactical decision level and as some of the models
are based on a single demand realization, finer aggregations may lead to overfitting and
consequently to appointment scheduling systems that are not generally applicable.

3.2 Controlling patient demand by masked-based interday ap-
pointment scheduling

Naturally, patient demand is unevenly distributed over the sessions within a week. There-
fore, we manage controllable demand and consider potential uncontrollable demand by
interday appointment scheduling. More precisely, we beneficially distribute chronic de-
mand dc over the week while we shift regular demand dr from days with high demand
to days with lower demand. Following this strategy, we account for the walk-in demand
dw which is not controllable by postponement to a later session. To address this issue,
we employ a cyclic model of a single working week. We assume that the regular demand
which is shifted to the following week due to scheduled appointments, e.g., from Friday to
Monday, compensate for the regular demand that would, theoretically, be shifted from the
previous week. To shift (part of) the regular demand drk, k ∈ K to an alternative session
that is within the patient’s willingness to wait, we define a set of all feasible sessions as
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follows

K+
k=(i,j) =

{
k′ = (i′, j′) ∈ K

∣∣∣ (i′ − i) mod 5 ≤ 2, ok′ > 0
}
.

For later purposes, we define a set to summarize the sessions originally have been requested
by regular patients alternatively scheduled in session k ∈ K as follows

K−
k=(i,j) =

{
k′ = (i′, j′) ∈ K

∣∣∣ −(i′ − i) mod 5 ≤ 2, ok′ > 0
}
.

Using these sets, we formalize the distribution of the chronic demand and the shifts of
the regular demand in the following definition.

Definition 1 (Assignment). Let demands dc ∈ Z≥0 and dr ∈ ZK
≥0 be given. A (dc,dr)-

assignment α = (αc,αr) = (αc, αr
(0,0), . . . , α

r
(4,1)) is a (|K|+1)-tuple of functions αc : K →

Z≥0 and αr
k : K+

k → Z≥0, k ∈ K that distribute and shift the demand across sessions,
respectively, such that

∑
k∈K α

c(k) = dc and
∑

k′∈K+
k
αr
k(k

′) ≤ drk, k ∈ K holds.

Considering the definition of an assignment, we note the following three aspects. First,
an assignment has to distribute the entire chronic demand dc and may not shift more
than the regular demand drk of each session k ∈ K. Second, whenever a regular patient
is assigned by function αr to the requested or a later occurring session, we assume the
patient to see the PCP by appointment. Conversely, this means that the number of
regular patients who are not assigned, i.e., drk −

∑
k′∈K+

k
αr
k(k

′), determines the number
of regular patients who become walk-ins in session k ∈ K. Third, assignments do not
have to respect the PCP’s capacity by definition and thus may lead to overtime. For this
reason, we strive for a system by which demand is reasonably assigned—in other words,
an appointment scheduling system.

In primary care practices, appointment scheduling systems are usually based on time
slots. To implement time slots in our setting, we divide the time span ok of the PCP’s
opening hours for each session k ∈ K into time periods of equal length ℓ ∈ Z>0. Each slot
is described by a tuple s = (k, qk) where k ∈ K indicates the session and qk ∈ {1, . . . , nk}
with nk := ⌈ok

ℓ
⌉ ∈ Z≥0 the position. We denote the set of all slots within the weekly

PCP’s capacity by S. We assume one scheduled patient per slot and, in order to reserve
a reasonable amount of time, we require the slot length ℓ to be at least as long as the
anticipated service time t, i.e., ℓ ≥ t. Figure 2 visualizes an exemplary schedule of a five-
day working week with ten-minute slots where the PCP’s practice is closed on Wednesday
and Friday afternoons.

At this point, we allow slots to have one of the following three states : chronic c,
regular r and walk-in w. States are supposed to indicate whether a slot is reserved to
schedule a chronic or regular patient or whether a slot is reserved for a potential walk-in.
For simplicity’s sake, we refer to slots with state ‘chronic’, ‘regular’, and ‘walk-in’ also as
chronic, regular, and walk-in slots. Using the states of slots, we can define a mask.

Definition 2 (Mask). A mask is a function µ : S → {c, r, w} that assigns each slot one
state.

In the following, we assign demand, or in other words, schedule appointments on the
basis of a mask. Since masks regulate how many chronic and regular patients may be
scheduled and how many slots are reserved for potential walk-ins, assignments need to be
compatible.
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Mon Tue Wed Thu Fri
8.00

9.00

10.00

11.00

12.00

15.00

16.00

17.00

18.00

Figure 2: Schedule defined by consecutive slots

Definition 3 (α-compatible mask). Mask µ and (dc,dr)-assignment α = (αc,αr) are
compatible with each other if α assigns at most as much chronic and regular demand as
chronic and regular slots are available, respectively, i.e., for k ∈ K it holds

αc(k) ≤ nµ(c, k) = |{s = (k, qk) ∈ S | µ(s) = c}| ,∑
k′∈K−

k

αr
k′(k) ≤ nµ(r, k) = |{s = (k, qk) ∈ S | µ(s) = r}| .

The set of all (dc,dr)-assignments that are compatible with mask µ is denoted by Aµ. If
α ∈ Aµ holds, we say a mask µ is α-compatible.

Overall, we obtain an appointment scheduling system based on a mask and compatible
assignments referred to as mask-based appointment scheduling system. In the next section,
we design a mask that aims at a balanced utilization of the capacity of the PCP. We note
that masks can be designed according to different objectives such as the distribution of
certain types of patients to certain working days.

3.3 Balanced utilization by the MDP

A main goal PCPs strive for is an efficient workflow. This includes a balanced workload
to avoid PCPs working overtime on one day while not working at full capacity on another
day of the same week. To achieve this in our setting on a tactical decision level, we
strive for a balanced use of the weekly capacity. We start with formal definitions for the
workload per session, the weekly utilization, and the, in terms of a balanced utilization
of the weekly capacity, optimal workload per session.

Given demands dc ∈ Z≥0 and dr,dw ∈ ZK
≥0 as well as a (dc,dr)-assignment α, we

define the PCP’s workload Φk(α, d
w
k ) in session k ∈ K by the anticipated working time

resulting from all treatments requested in and assigned to session k, i.e.,

Φk(α, d
w
k ) =

dwk + drk −
∑

k′∈K+
k

αr
k(k

′) +
∑

k′∈K−
k

αr
k′(k) + αc(k)

 t.

We note that the PCP’s workload depends on demands and assignments. Recalling the
cyclic model and using the weekly patient demand, we can compute the weekly utilization
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u of the PCP by

u =
t

C

(
dc +

∑
k∈K

(drk + dwk )

)
,

where C =
∑
k∈K

ck denotes the PCP’s weekly capacity. We obtain the, in terms of balance,

optimal workload per session as the product of the weekly utilization and the session’s
capacity, i.e., u · ck for k ∈ K. As the PCP’s workload depends on assignments and the
assignments in turn are restricted by masks, we can manage the PCP’s workload by the
design of a mask. Aiming at an optimal workload in every session, we evaluate masks
according to the achievable workload balance.

Definition 4. Let the PCP’s capacity c ∈ ZK
≥0 and demands dc ∈ Z≥0, dr,dw ∈ ZK

≥0 be
given. We define the cost of a mask µ as the maximum deviation of the actual from the
optimal workload among all sessions, provided that the workload is subject to a (dc,dr)-
assignment α ∈ Aµ that minimizes the cost, i.e.,

c(µ) = min
α∈Aµ

max
k∈K

|Φk(α, d
w
k )− u · ck| .

We conclude this section with the definition of the MDP.

Definition 5 (MDP). Given the PCP’s capacity c ∈ ZK
≥0 and demands dc ∈ Z≥0, dr,dw ∈

ZK
≥0, the mask design problem aims at a mask of minimum cost.

4 Modeling the MDP
In this section, we present an extensive combinatorial interpretation of the MDP by a
network flow and design model. First, we consider a model in a deterministic setting and
subsequently extend this model to a robust setting.

4.1 MDP in a deterministic setting

In this section, we model the MDP by a network flow and design formulation. For this
purpose, we construct a network in which a PCP’s patient flow is modeled. An exemplary
network of a five-day working week with one session per day is visualized in Figure 3. The
network is defined by an acyclic digraph G = (V,A) with vertex set V and arc set A.
Besides auxiliary vertices v1k and v2k for all k ∈ K, vertex set V includes multiple sources
and a single sink that represent the patient demand. More precisely, let σc ∈ V be the
source that models the weekly chronic demand and let σr

k ∈ V and σw
k ∈ V be the sources

that model the regular and walk-in demand per session k ∈ K, respectively. Let τ ∈ V be
the unique sink which ensures that all patients are seen by the PCP. A flow originating
from one of the sources only reaches the sink by using at least one of two kind of arcs. The
first type of arcs a1k = (v1k, σ

w
k ) ∈ A represents regular and chronic patients scheduled in

session k ∈ K referred to as appointment arcs. To limit the number of patients scheduled,
we define upper arc capacities ψ : A → Z≥0 on the appointment arcs that are equal to
the number of slots of the PCP’s opening hours, i.e., ψ(a1k) = nk for all k ∈ K. As regular
patients may be scheduled within three days after their requests, we add arcs that connect
source σr

k, k ∈ K with the tail of the appointment arcs, i.e., with vertices v1k′ ∈ V for
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(
dc +

∑
k∈K

(drk + dwk )

)
appointment arcs a1k
treatment arcs a2k

Figure 3: Network flow model for managing patient flow

k′ ∈ K+
k . Furthermore, as chronic patients may be scheduled for each session, source σc

is also connected with vertex v1k for all k ∈ K. The second type of arcs a2k = (σw
k , v

2
k) ∈ A

represents all patients seen by the PCP in session k ∈ K referred to as treatment arcs.
Accordingly, the treatment arc a2k is connected in series with the appointment arc a1k of
the same session k ∈ K. We note that the connection vertex is the source σw

k ∈ V that
models the walk-in demand in session k ∈ K. In addition, source σr

k, k ∈ K is also
connected with the connection vertex σw

k , i.e., with the tail of treatment arc a2k, which
models regular patients who become walk-ins. Finally, each treatment arc a2k, k ∈ K is
connected with sink τ . For all vertices v ∈ V , balances β : V → Z with

∑
v∈V β(v) = 0

are defined as follows

β(v) =



drk if v = σr
k, k ∈ K,

dwk if v = σw
k , k ∈ K,

dc if v = σc,

−
(
dc +

∑
k∈K

(drk + dwk )

)
if v = τ ,

0 otherwise.

Overall, we obtain network N = (G,ψ,β).
In network N , a feasible integral β-flow is defined by a function f : A → Z≥0 that

satisfies the flow balance constraints
∑

a=(v,w)∈A f(a) −
∑

a=(w,v)∈A f(a) = β(v) at every
vertex v ∈ V and the capacity constraints 0 ≤ f(a1k) ≤ ψ(a1k) on all appointment arcs
a1k ∈ A. We note that all flows in this study are integrally defined. A β-flow in network
N corresponds to a feasible solution to the MDP as shown in the following lemma.

Lemma 1. Let f be a feasible β-flow in network N . Flow f defines

(1) a (dc,dr)-assignment α = (αc,αr) with αc(k) = f((σc, v1k)) and αr
k(k

′) = f((σr
k, v

1
k′))

and
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(2) a mask µ : S → {c, r, w}, s = (k, qk) 7→ µ(s) with

µ(s) =


c if qk ∈ {1, . . . , f((σc, v1k))},
r if qk ∈ {f((σc, v1k)) + 1, . . . , f(a1k)},
w otherwise.

that are compatible with each other.

Proof. First, flow f defines a feasible (dc,dr)-assignment α = (αc,αr) due to the flow
balance constraints as shown in the following expression∑

k∈K

αc(k) =
∑
k∈K

f((σc, v1k)) = dc,∑
k′∈K+

k

αr
k(k

′) =
∑

k′∈K+
k

f((σr
k, v

1
k′)) ≤ drk, k ∈ K.

Second, flow f defines a feasible mask µ as each slot is assigned exactly one state. We note
that the arc capacities ensure that no more slots are assigned a status by the flow than
there exist slots in the mask, i.e., it holds qk ≤ f(a1k) ≤ ψ(a1k) = nk for k ∈ K. Assignment
α and mask µ are compatible as αc(k) = f((σc, v1k)) = nµ(c, k) and

∑
k′∈K−

k
αr
k′(k) =∑

k′∈K−
k
f((σr

k′ , v
1
k)) = f(a1k)− f((σc, v1k)) = nµ(r, k) hold for every k ∈ K.

We recall that the flow value on the treatment arc a2k represents the number of patients
seen by the PCP in session k ∈ K. So, multiplying this number by the anticipated service
time t results in the PCP’s workload in session k ∈ K. Thus, to obtain an optimal solution
to the MDP, we aim at a feasible β-flow f in network N that minimizes the following
expression

max
k∈K

|t · f(a2k)− u · ck|. (1)

In other words, we look for a flow that is balanced on the treatment arcs. To determine
such a flow, we add lower and upper arc capacities ψ

ω
, ψω : A→ Z≥0 for a parameter ω ∈

Z≥0 on the treatment arcs a2k ∈ A, k ∈ K of network N . We denote the resulting network
by Nω = (G,ψ, ψ

ω
, ψω, β). The lower and upper arc capacities are defined such that the

PCP’s actual workload in session k ∈ K may deviate from the optimal workload u·ck by an
amount of ω ∈ Z≥0 , i.e., ψ

ω
(a2k) = max

{⌈
1
t
(u · ck − ω)

⌉
, 0
}

, ψω(a
2
k) =

⌊
1
t
(u · ck + ω)

⌋
.

For the smallest parameter ω, a feasible β-flow in network Nω corresponds to a feasible
flow that minimizes expression (1). Consequently, for minimum parameter ω, a feasible
β-flow in network Nω defines an optimal solution to the MDP.

Before presenting an algorithm to find the minimum parameter ω, we consider the
solution values that can be realized in the MDP. The PCP’s workload Φk(α, d

w
k ) is com-

puted by the anticipated service time t times the number of treatments in session k ∈ K
which can vary between zero and Dk := dwk +

∑
k′∈K−

k
drk′ + dc. Thus, the possible solution

values to the MDP form the finite set Ω =
⋃

k∈K Ωk with

Ωk =
{
|t · i− u · ck|

∣∣i ∈ {0, 1, . . . , Dk}
}
.

11



Using this, Algorithm 1 attached to Appendix A computes the optimal parameter
ω ∈ Ω based on the following procedure. For the sake of simplicity, binary search is
used to first determine the minimum parameter i of set {0, 1, . . . ,maxk∈KDk} for which
a feasible β-flow exists in network Nω with ω = i · t. We note that the gap between
two consecutive values in set Ωk, k ∈ K is t (if the elements of set Ωk were ordered by
size). Consequently, from the first step, we obtain an interval (ω − t, ω] that contains
the optimal parameter ω. In the second step, set Ω is searched for parameters that are
within this interval (and smaller than ω), i.e., set (ω − t, ω) ∩ Ω is searched. We note
that such parameters may exist as the optimal workload u · ck need not be a multiple
of the anticipated service time t. If there are such parameters for which additionally
feasible flows in the corresponding networks exist, the minimum parameter found so far is
updated. We note that a feasible β-flow can be computed by, for example, the Minimum
Mean Cycle Canceling algorithm in polynomial time [35]. Finally, Algorithm 1 returns
the minimum parameter ω ∈ Ω and a β-flow that defines an optimal solution to the MDP
as shown in the following theorem.

Theorem 1. A mask determined by a β-flow obtained by Algorithm 1 is of minimum
cost.

Proof. Let ω ∈ Ω be the parameter and f be the β-flow in network Nω computed by
Algorithm 1. According to Lemma 1, let α and µ be the resulting (dc,dr)-assignment and
mask, respectively. Assume there exists a mask µ∗ with less cost, i.e., c(µ∗) < c(µ) = ω.
There exists a (dc,dr)-assignment α∗ ∈ Aµ∗ that minimizes the cost of mask µ∗. Based
on assignment α∗, we can construct a feasible β-flow f ∗ in network N . We note that
each assignment determines a unique flow in network N . Accordingly, there exists a
parameter ω∗ < ω such that f ∗ is a feasible β-flow in network Nω∗ . This contradicts to
the correctness of Algorithm 1.

We note that the flow obtained by Algorithm 1 is not unique, as for minimum pa-
rameter ω ∈ Ω some feasible β-flow in network Nω is determined. We recall that, for
minimum parameter ω, every feasible β-flow in network Nω defines an optimal solution
to the MDP. Using this, we integrate a second optimization stage into our network flow
model that takes into account the following. Regular patients strive for an appointment.
If they are offered an appointment within their willingness to wait, not only their request
is satisfied but also demand is beneficially controlled for the PCP. Considering this win-
win situation, we aim at minimizing the unsuccessful appointment requests, or in other
words, the number of regular patients who become walk-ins. Regular patients who become
walk-ins have not been assigned by a (dc,dr)-assignment α = (αc,αr). In total, that is
drw(α

r) :=
∑

k∈K d
r
k −

∑
k′∈K+

k
αr
k(k

′) regular patients. As assignments are restricted by
masks, the number of regular patients who become walk-ins is influenced by the design of
a mask. Addressing this in our network flow model, we aim at finding a β-flow in network
Nω for minimum parameter ω with minimum flow value on arcs (σr

k, σ
w
k ) ∈ A, k ∈ K.

We can easily implement this into our model by assigning arbitrary positive cost to arcs
(σr

k, σ
w
k ) ∈ A, k ∈ K. Overall, we obtain a minimum cost flow model that we integrate

into Algorithm 1 by determining a minimum cost β-flow instead of an arbitrary feasible
β-flow in the respective network. We refer to the model and procedure presented in this
section as Det-F. We conclude this section with the following corollary.

Corollary 1. Det-F is a modeling for the MDP.
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4.2 MDP in a robust setting

So far, we considered the MDP in a deterministic setting based on the assumption that the
entire demand data is given. However, as regular patients contact their PCP when they
suffer from acute illnesses, their demand is subject to uncertainty. Naturally, the walk-in
demand is also subject to uncertainty. Only the chronic demand is regulated by recurring
appointments scheduled in advance. For an effective appointment scheduling system,
a mask that is robust against demand uncertainties is essential, i.e., a mask whose use
achieves a balanced utilization of the PCP’s capacity for all potential demands. Following
the core idea of robust optimization, we aim at a version of the MDP whose solution is
immune to variation in demand data. To address this issue, we model the uncertainty in
regular and walk-in demand by a finite set of scenarios Λ. In each of these scenarios λ ∈ Λ,
the regular and walk-in demands are specified by parameters dr

λ ∈ ZK
≥0 and dw

λ ∈ ZK
≥0,

respectively. However, we assume that the variations in demand are limited due to reasons
such as a fixed panel of patients. We require the total weekly regular and walk-in demand
to be equal for all scenarios, i.e.,

∑
k∈K d

r
λ,k = Dr and

∑
k∈K d

w
λ,k = Dw for all λ ∈ Λ for

given parameters Dr, Dw ∈ Z≥0. We note that the chronic demand is still specified by
parameter dc. Given this new setting, we define a mask that is robust to uncertainties in
demand.

Definition 6 (Robust Mask). A mask is called robust if there exists a compatible (dc,dr
λ)-

assignment for each scenario λ ∈ Λ. The set of all (dc,dr
λ)-assignments that are compatible

with mask µ is denoted by Aµ
λ for every scenario λ ∈ Λ.

We note that the robustness of a mask is independent of the walk-in demand dw
λ , λ ∈ Λ.

Furthermore, we note that the PCP’s utilization u and the resulting optimal workload
u · ck in session k ∈ K is independent of the scenario considered, as we assume that the
total demand is equal in all scenarios. In contrast, the PCP’s workload Φk(α, d

w
λ,k) in

session k ∈ K depends on a (dc,dr
λ)-assignment α and on walk-in demand dwλ,k and thus

on scenario λ ∈ Λ.
Considering the set of scenarios, we evaluate masks according to the achievable work-

load balance in the worst-case scenario as formalized in the following definition.

Definition 7. Let the PCP’s capacity c ∈ ZK
≥0, demand dc ∈ Z≥0, and demands dr

λ,d
w
λ ∈

ZK
≥0 for all scenarios λ ∈ Λ be given. The cost of a robust mask µ is defined by the worst-

case maximum deviation of the actual from the optimal workload among all sessions of
all scenarios, i.e.,

c(µ) = max
λ∈Λ

min
α∈Aµ

λ

max
k∈K

∣∣Φk(α, d
w
λ,k)− u · ck

∣∣ .
Using this, we define a robust version of the MDP as follows.

Definition 8 (rMDP). Let c ∈ ZK
≥0 be the PCP’s capacity, dc ∈ Z≥0 be the chronic

demand, and dr
λ,d

w
λ ∈ ZK

≥0 be the regular and walk-in demand for all scenarios λ ∈ Λ,
respectively. The robust mask design problem aims at a robust mask of minimum cost.

In the next step, we model the rMDP by a network flow and design model in which
a so-called robust flow under consistent flow constraints is sought [11]. More precisely,
flows are sought for every scenario that satisfy equal flow values on specified arcs. For
this purpose, we consider network N as defined in Section 4.1 and adapt the balances to
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the set of scenarios. We obtain new balances βλ : V → Z with
∑

v∈V β
λ(v) = 0 for all

scenarios λ ∈ Λ, denoted by β = (βλ1 , . . . , βλ|Λ|), that are defined for all vertices v ∈ V
as follows

βλ(v) =



drλ,k if v = σr
k, k ∈ K,

dwλ,k if v = σw
k , k ∈ K,

dc if v = σc,

−
(
dc +

∑
k∈K

(
drλ,k + dwλ,k

))
if v = τ ,

0 otherwise.

Furthermore, we introduce two arc sets Ac
fix := {(σc, v1k) | k ∈ K} and Ar

fix := {a1k |
k ∈ K} and refer to their arcs as fixed arcs. Overall, we obtain the adapted network
NΛ = (G,ψ,β).

In networkNΛ, a feasible robust β-flow f = (f 1, . . . , f |Λ|) is defined by feasible integral
βλ-flows fλ : A→ Z≥0 for all scenarios λ ∈ Λ that satisfy the following equal flow property

(F ) fλ(a) = fλ′
(a) for all a ∈ Ac

fix ∪ Ar
fix, λ, λ

′ ∈ Λ.

A robust β-flow in network NΛ corresponds to a solution to the rMDP as shown in the
following lemma.

Lemma 2. Let f = (f 1, . . . , f |Λ|) be a robust β-flow. Flow f defines

(1) (dc,dr
λ)-assignments αλ = (αc,αr

λ) with αc(k) = fλ((σc, v1k)) and αr
λ,k(k

′) = fλ((σr
k, v

1
k′))

for λ ∈ Λ, k ∈ K and k′ ∈ K+
k and

(2) a robust mask µ : S → {c, r, w}, s = (k, qk) 7→ µ(s) with

µ(s) =


c if qk ∈ {1, . . . , fλ((σc, v1k))},
r if qk ∈ {fλ((σc, v1k)) + 1, . . . , fλ(a1k)},
w otherwise,

for one arbitrary λ ∈ Λ.

Proof. Analogous to the proof of Lemma 1.

We note that the PCP’s workload in session k ∈ K of scenario λ ∈ Λ is given by the
respective flow value on treatment arc a2k ∈ A, i.e., Φk(αλ, d

w
λ,k) = t·fλ(a2k). Thus, to obtain

an optimal solution to the rMDP, we aim at a feasible robust β-flow f = (f 1, . . . , f |Λ|) in
network NΛ that minimizes the following expression

max
λ∈Λ

max
k∈K

|t · fλ(a2k)− u · ck|.

We recall that u · ck is still the optimal workload in session k ∈ K as the total demand is
equal in every scenario. Consequently, the possible solution values to the rMDP are equal
to the possible solution values to the MDP contained in set Ω. Analogous to Algorithm 1,
we use a procedure to find the minimum parameter ω ∈ Ω for which a feasible robust
β-flow f in network NΛ

ω = (G,ψ, ψ
ω
, ψω,β) exists to determine a solution to the rMDP.
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As there does not exist a polynomial-time algorithm to compute a feasible robust flow on
acyclic digraphs [11], we determine a feasible robust flow by means of a compact IP. Let
fλ
a ∈ Z≥0 be the variables that model the flow on arc a ∈ A in scenario λ ∈ Λ. The IP

can be formulated as presented in (2)–(7).

min 0 (2)

s.t.
∑

a=(v,w)∈A

fλ
a −

∑
a=(w,v)∈A

fλ
a = βλ(v) ∀ v ∈ V, λ ∈ Λ (3)

0 ≤ fλ
a ≤ ψ(a) ∀ a ∈ A, λ ∈ Λ (4)

ψ
ω
(a) ≤ fλ

a ≤ ψω(a) ∀ a = a2k ∈ A, λ ∈ Λ (5)

fλ
a = fλ′

a ∀ a ∈ Ar
fix ∪ Ac

fix, λ, λ
′ ∈ Λ (6)

fλ
a ∈ Z≥0 ∀ a ∈ A, λ ∈ Λ (7)

The flow balance constraints (3) and capacity constraints (4) ensure feasible flows in all
scenarios. Capacity constraints (5) guarantee the desired balanced flow on the treatment
arcs. The so-called consistent flow constraints (6) enforce the desired equal flow values
on fixed arcs. Constraints (7) define the domain of the variables.

Overall, we can determine a robust β-flow with minimum parameter ω ∈ Ω that
defines an optimal solution to the rMDP problem as stated in the following theorem.

Theorem 2. A robust mask determined by a robust β-flow obtained by the adjusted
Algorithm 1 is of minimum cost.

Proof. Analogous to the proof of Theorem 1.

As a result, for minimum parameter ω, every feasible robust β-flow in network NΛ
ω

defines an optimal solution to the rMDP. Analogous to Section 4.1, we additionally aim at
minimizing the unsuccessful treatment requests, i.e., the total number of regular patients
who have not been assigned by a (dc,dr

λ)-assignment αλ = (αc,αr
λ), λ ∈ Λ. In total, for

all scenarios that is
∑

λ∈Λ
∑

k∈K d
r
λ,k −

∑
k′∈K+

k
αr
λ,k(k

′). For our extended network flow
model, this means that we aim at finding a robust β-flow in network NΛ

ω for minimum
parameter w, where the sum of the flow values on arcs (σr

k, σ
w
k ) ∈ A, k ∈ K of all scenarios

is minimal. We refer to the resulting model and procedure presented in this section as
Rob-F and conclude with the following corollary.

Corollary 2. Rob-F is a modeling for the rMDP.

5 Robust multimask design problem and its modeling
In the previous section, we have considered the rMDP where the weekly distribution of the
regular and walk-in demands are uncertain, but the respective total demand remains the
same in every scenario. Naturally, not only the distribution but also the total demand
is uncertain and fluctuates. Under such circumstances, there might not exist a robust
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mask, or if it does, it may produce poor results with respect to our objective. To address
this issue, we neglect the requirement formulated in the previous section for the total
regular and the total walk-in demand. Without further restrictions, the regular and walk-
in demand are specified by parameters dr

λ ∈ ZK
≥0 and dw

λ ∈ ZK
≥0 for all scenarios λ ∈ Λ,

respectively. In response to the new setting, we extend the rMDP and employ not only
a single robust mask but multiple robust masks. We aim at finding robust masks which
are feasible for a cluster of scenarios. Using multiple masks and, in particular, switching
between them should allow PCPs to flexibly respond to changes in the demand. To
facilitate the switch between masks, we require a nested construction as shown in the
following definition. We use the notation [n] := {1, . . . , n}.

Definition 9. Masks µ1, . . . , µn are called nested if

(1) they have the same number of chronic slots in every session k ∈ K, i.e., nµi(c, k) =
nµj(c, k) for all i, j ∈ [n] and

(2) mask µj has at least as many regular slots as mask µi for i < j in every session
k ∈ K, i.e., nµi(r, k) ≤ nµj(r, k) for i < j with i, j ∈ [n].

Given this new setting, we define a robust multimask.

Definition 10 (Robust Multimask). A multimask µ = (µ1, . . . , µn) is defined by a tuple
of nested masks µi : S → {c, r, w}, i ∈ [n]. It is called robust if a (dc,dr

λ)-assignment
exists for each scenario λ ∈ Λ that is compatible with at least one of the masks of µ. The
set of all (dc,dr

λ)-assignments that are compatible with at least one mask of µ is denoted
by Aµ

λ , λ ∈ Λ.

Before evaluating a robust multimask, we note that the PCP’s utilization uλ depends

now on the scenario λ ∈ Λ, i.e., uλ = t
C

(
dc +

∑
k∈K

(drλ,k + dwλ,k)

)
.

Definition 11. Let the PCP’s capacity c ∈ ZK
≥0, demand dc ∈ Z≥0, and demands dr

λ,d
w
λ ∈

ZK
≥0 for all scenarios λ ∈ Λ be given. The cost of a robust multimask µ is defined as

c(µ) = max
λ∈Λ

min
α∈Aµ

λ

max
k∈K

∣∣Φk(α, d
w
λ,k)− uλ · ck

∣∣ .
Finally, we can define the rMMDP.

Definition 12 (rMMDP). Let c ∈ ZK
≥0 be the PCP’s capacity, dc ∈ Z≥0 be the chronic

demand, and dr
λ,d

w
λ ∈ ZK

≥0 be the regular and walk-in demand for all scenarios λ ∈ Λ,
respectively. The robust multimask design problem aims at finding a robust multimask of
minimum cost.

In the following, we also model the rMMDP by a network flow and design model.
Therefore, let π : Λ → {µ1, . . . , µn} be a function that allocates one mask to each scenario.
In network NΛ, a feasible nested robust β-flow f = (f 1, . . . , f |Λ|) is defined by feasible
integral βλ-flows fλ : A → Z≥0 for all scenarios λ ∈ Λ that satisfy the flow properties
presented in (F1)− (F3):

(F1) fλ(a) = fλ′
(a) for all a ∈ Ac

fix and λ, λ′ ∈ Λ,

(F2) fλ(a) = fλ′
(a) for all a ∈ Ar

fix and λ, λ′ ∈ Λ with π(λ) = π(λ′),

(F3) fλ(a) ≤ fλ′
(a) for all a ∈ Ar

fix and λ, λ′ ∈ Λ where λ ∈ π−1(µi), λ′ ∈ π−1(µj), i ≤ j.
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Flow property (F1) ensures that the flow value on a fixed arc contained in set Ac
fix is

equal among all scenarios. Flow property (F2) ensures that the flow value on a fixed arc
contained in set Ar

fix is equal for all scenarios which are assigned to the same mask. Flow
property (F3) ensures non-decreasing flow values on fixed arcs contained in set Ar

fix among
scenarios assigned to different masks. A nested robust β-flow in network NΛ corresponds
to a solution to the rMMDP as shown in the following lemma.

Lemma 3. Let f = (f 1, . . . , f |Λ|) be a nested robust β-flow. Flow f defines

(1) (dc,dr
λ)-assignments αλ = (αc,αr

λ) with αc(k) = fλ((σc, v1k)) and αr
λ,k(k

′) = fλ((σr
k, v

1
k′))

for λ ∈ Λ, k ∈ K and k′ ∈ K+
k and

(2) a multimask µ = (µ1, . . . , µn) with µi : S → {c, r, w}, s = (k, qk) 7→ µi(s), i ∈ [n]
for λ ∈ π−1(µi) as follows

µi(s) =


c if qk ∈ {1, . . . , fλ((σc, v1k))},
r if qk ∈ {fλ((σc, v1k)) + 1, . . . , fλ(a1k)},
w otherwise.

Proof. The proof can be done analogously to the proof of Lemma 1.

To obtain an optimal solution to the rMMDP, we aim at a feasible nested robust
β-flow f = (f 1, . . . , f |Λ|) in network NΛ that minimizes the following expression

max
λ∈Λ

max
k∈K

|t · fλ(a2k)− uλ · ck|.

In contrast to the rMDP, the solution space of the rMMDP differs among the scenarios
as the PCP’s utilization depends on the scenario considered. The possible solution values
form the finite set ΩΛ =

⋃
λ∈Λ,k∈K Ωλ,k with

Ωλ,k =
{
|t · i− uλ · ck|

∣∣∣i ∈ {0, 1, . . . , Dλ,k}
}
,

where Dλ,k = dwλ,k +
∑

k′∈K−
k
drλ,k′ + dc. Analogous to the previous section, we use an

adjusted version of Algorithm 1 to find the minimum parameter ω ∈ ΩΛ for which a
feasible nested robust β-flow f exists in network NΛ

ω to determine a solution to the
rMMDP. We determine a feasible nested robust flow using a compact IP formulation.
Let fλ

a ∈ Z≥0 be the variables that model the flow on arc a ∈ A in scenario λ ∈ Λ. Let
mi

k ∈ Z≥0, i ∈ [n] be auxiliary variables that indicate the amount of flow on arcs a1k ∈ A.
Further, let yiλ ∈ {0, 1} be binary variables that determine whether a mask µi, i ∈ [n] is
allocated to scenario λ ∈ Λ (yiλ = 1) or not (yiλ = 0), corresponding to function π. The
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IP can be formulated as presented in (8)–(19).

min 0 (8)

s.t.
∑

a=(v,w)∈A

fλ
a −

∑
a=(w,v)∈A

fλ
a = βλ(v) ∀ v ∈ V, λ ∈ Λ (9)

0 ≤ fλ
a ≤ ψ(a) ∀ a ∈ A, λ ∈ Λ (10)

ψ
ω
(a) ≤ fλ

a ≤ ψω(a) ∀ a = a2k ∈ A, λ ∈ Λ (11)

fλ
a = fλ′

a ∀ a ∈ Afix
c , λ, λ

′ ∈ Λ (12)

n∑
i=1

yiλ = 1 ∀ λ ∈ Λ (13)

fλ
a1k

≤ mi
k + nk(1− yiλ) ∀ i ∈ [n], k ∈ K, λ ∈ Λ (14)

fλ
a1k

≥ mi
k − nk(1− yiλ) ∀ i ∈ [n], k ∈ K, λ ∈ Λ (15)

mi
k ≤ mi+1

k ∀ i ∈ [n− 1], k ∈ K (16)

fλ
a ∈ Z≥0 ∀ a ∈ A, λ ∈ Λ (17)

mi
k ∈ Z≥0 ∀ i ∈ [n], k ∈ K (18)

yiλ ∈ {0, 1} ∀ i ∈ [n], λ ∈ Λ (19)

The flow balance constraints (9) and capacity constraints (10) ensure feasible flows in all
scenarios. Capacity constraints (11) guarantee the desired balanced flow on the treatment
arcs. Constraints (12) enforce the equal flow values on arcs a ∈ Afix

c among all scenarios as
required in flow property (F1). Constraints (13) model that one mask is assigned to each
scenario which corresponds to function π. Constraints (14) and (15) enforce the equal
flow values on arcs a ∈ Afix

r (in amount of mi
k) for two scenarios λ, λ′ ∈ Λ if the scenarios

are assigned to the same mask, i.e., µi = π(λ) = π(λ′), i ∈ [n] (yiλ = yiλ′ = 1), as required
in flow property (F2). Otherwise, they function only as upper and lower bounds on the
flows. The combination of constraints (14)–(16) enforce the non-decreasing flow values on
arcs a ∈ Afix

r for two scenarios λ, λ′ ∈ Λ if the scenarios are assigned to different masks µi,
µj with i ≤ j, i.e., µi = π(λ) and µj = π(λ′) (yiλ = yjλ′ = 1), as required in flow property
(F3). Finally, constraints (17)–(19) define the domain of the variables.

Overall, we can determine a nested robust β-flow in network NΛ
ω with minimum pa-

rameter ω ∈ ΩΛ that defines an optimal solution to the rMMDP problem as shown in the
following theorem.

Theorem 3. A robust multimask determined by a nested robust β-flow obtained by the
adjusted Algorithm 1 is of minimum cost.
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Proof. Analogous to the proof of Theorem 1.

Analogous to Section 4.1, if we aim at finding a nested robust β-flow in network NΛ
ω

for minimum parameter w ∈ ΩΛ with minimum flow value on arcs (σr
k, σ

w
k ) ∈ A, k ∈ K, we

can additionally minimize the number of regular patients who become walk-ins. We refer
to the extended model and procedure presented in this section as RobMulti-F. Finally, we
obtain the following corollary.

Corollary 3. RobMulti-F is a modeling for the rMMDP.

6 Case study
In this section, we present a case study conducted to demonstrate the potential of the
mask-based appointment scheduling systems obtained by solving MDP, rMDP, and rM-
MDP. In Section 6.1, we present the experimental environment. In Section 6.2, we present
the setting of the implementation and computation. In Section 6.3, we discuss the results
of the optimization models. In Section 6.4, we evaluate the mask-based appointment
scheduling systems and compare them with some appointment scheduling systems from
the literature using agent-based simulation.

6.1 Experimental environment

In this section, we present the experimental environment for the case study. This includes
the physician-patients setting, the simulation model and its input data, and the appoint-
ment scheduling systems. In addition, this includes the instance generation and input
parameter for the optimization models.

6.1.1 Physician-patients setting

In primary health care, the physician-to-patient ratio is commonly used to measure med-
ical care. Following the German Federal Joint Committee’s (GFJC) guideline [16], we set
the ratio of one PCP per 1607 patients as a benchmark for analyzing the appointment
scheduling systems in this study. The GFJC defines an excess of 10% in the ratio as over-
supply, i.e., one PCP per 1448 patients. An undersupply is defined by a 25% shortfall in
the ratio, i.e., one PCP per 2011 patients. Representing these three scenarios, we analyze
the performance of the appointment scheduling systems for populations of 1400, 1600,
and 2000 patients. According to a study of the German Robert Koch Institute [28], 43%
of female and 38% of male patients are chronically ill. As our study is gender neutral, we
consider 40% of all patients to be suffering from chronic illnesses. Due to the worldwide
aging population at the highest risk of chronic conditions, an increase in the number of
chronically ill patients is expected. Thus, we additionally analyze a chronic proportion of
45%. Over the past ten years, surveys conducted by The National Association of Statu-
tory Health Insurance Physicians [42] have revealed that on average 18.8% of the patients
holding health insurance are walk-ins that forgo scheduling an appointment with their
PCPs. To cover this and slight deviations, we analyze a walk-in rate of 15%, 18%, and
20%. In total, we obtain 18 different configurations for the patient population considered
in this case study, as summarized in Table 1.
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Config. # patients chronic. ill walk-in rate
ID (%) (%)
1 1400 40 15
2 1400 40 18
3 1400 40 20
4 1400 45 15
5 1400 45 18
6 1400 45 20
7 1600 40 15
8 1600 40 18
9 1600 40 20
10 1600 45 15
11 1600 45 18
12 1600 45 20
13 2000 40 15
14 2000 40 18
15 2000 40 20
16 2000 45 15
17 2000 45 18
18 2000 45 20

Table 1: Patient configurations

Based on a survey regarding the practice’s opening hours conducted by The National
Association of Statutory Health Insurance Funds [20], we determine the PCP’s opening
hours as follows. We decide the PCP to operate in a four-hour morning session from
Monday to Friday and in a two-and-a-half-hour afternoon session on Mondays, Tuesdays,
and Thursdays. This results in a time span o(i,0) = 240 for i ∈ {0, . . . , 4} and o(i,1) = 150
for i ∈ {0, 1, 3}. The first hour after each session is used as buffer time, i.e., bk = 60 for all
k ∈ K. Accordingly, overtime is caused if the PCP works beyond the capacity c(i,0) = 300
for i ∈ {0, . . . , 4} and c(i,1) = 210 for i ∈ {0, 1, 3}.

6.1.2 Simulation model SiM-Care and modifications

To generate instances and to analyze the appointment scheduling systems designed in
this study, we use the agent-based simulation tool ’SiM-Care’ (Simulation Model for
Primary Care) [15]. SiM-Care simulates the dynamics of primary health care systems and
aims at supporting decision-makers in their planning, analysis, and adaption. For this
purpose, it models PCPs, patients, and their interaction on an individual level. Tracking
the interactions allows identifying the interdependencies between different subproblems,
evaluating new planning approaches, and quantifying the effects of interventions based on
multiple performance measurements. SiM-Care enables in particular the comparison and
assessment of appointment scheduling systems in terms of, for example, patients’ waiting
times, patients’ access times, or the PCPs’ utilization. For the sake of validity, SiM-Care
uses real-world data to the extent available. For example, the distribution of illnesses
and their characteristics are estimated on the basis of publications of health insurances
and federal government agencies. All unavailable data was either empirically collected in
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a primary care practice, for instance the patients’ service times, or where this was not
possible, it was inferred.

To simulate the needs of our primary health care setting, we make the following changes
to SiM-Care. First, in the current modeling, PCPs may reject patients due to capacity
overloads. Rejected patients then seek care at other PCPs. As we only consider one PCP
in our study, we integrate an emergency practice to SiM-Care. Accordingly, if patients
are rejected by the PCP in our setting, they seek immediate care at a physician in the
emergency practice. Second, in the current modeling, patients always try to make a
feasible appointment first. If they do not succeed, they seek immediate care as walk-
ins. However, there always exist walk-ins who have not previously attempted to make an
appointment. For this reason, we integrate that a given percentage of the patients forgo
making an appointment and instead seek immediate care as walk-in. At this point, we
note that patients who successfully make an appointment actually attend it, i.e., there
are no no-shows modeled. Furthermore, we note that, in contrast to our optimization
models, in SiM-Care, the patients’ willingness to wait for an appointment is individual
for each patient, as it depends on factors such as the illness, the age, and the condition
of the patients. Third, we assume that walk-ins are subject to the same service time
distribution as patients with appointments. We note that the service times are sampled
from a maximum likelihood fitted log-normal distribution based on empirical service times.
The result is a mean service time of 7.8 minutes.

Before addressing the input parameters for SiM-Care in the next section, we note
that SiM-Care is a complex simulation model, much more complex than our optimization
models. We have chosen SiM-Care on an operational decision level to prove that the
optimization models developed on a tactical decision level can withstand complex systems.

6.1.3 Input parameters for SiM-Care

Comis et al. [15] present a case study for a primary health care system in Germany to
showcase SiM-Care and its validation through expert input and empirical data. Specifi-
cally, they create a baseline scenario representing a real-world primary health care system.
In this study, we conduct a case study based on this baseline scenario. In particular, we
assume the same age classes and age-class-illness distributions. In the following, we detail
the input parameter choices that are different from this baseline scenario.

First, we model a time period of one year (52 weeks) preceded by a warm-up period
of also one year. Second, we consider randomly generated locations of the patients and
physicians as performance indicators such as travel times are not important in our case
study. Third, the modeled PCP and their opening hours as well as the modeled patients
are as described in Section 6.1.1. Fourth, we consider the same families of illnesses as
in the baseline scenario, consisting of three chronic and four acute illnesses, which is a
subset of the 100 ICD-10 codes most frequently reported to the Association of Statutory
Health Insurance Physicians Nordrhein [30]. Fifth, we apply the same estimation for the
attributes of the families of illnesses as real data is protected by confidentiality and not
published. The only difference is that we assume that patients with acute illnesses do not
require a follow-up treatment (i.e., the treatment frequency is not applicable). Finally, we
present the integrated appointment scheduling, the treatment, and the admission strategy
employed by the PCP modeled in SiM-Care. The integrated appointment scheduling
strategies are detailed in Section 6.1.4. The treatment strategy is defined as in the baseline
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Figure 4: Non-mask-based systems from the literature with slots reserved for appoint-
ments and slots withheld for walk-ins

scenario [15]. The strategy includes the order of treatments on a priority-first-come-
first-served basis: Patients with appointment are prioritized over walk-ins and within
their respective groups, patients are served in order of their arrivals, i.e., first come,
first served. In addition, the treatment strategy includes the PCP’s consultation speed,
that is, the PCP adjusts the service times whenever more than three patients await
treatment. The admission strategy is defined as follows. Patients with an appointment are
admitted as long as they arrive before the end of the buffer time. Like in studies [32, 45],
walk-ins are admitted up to a certain utilization threshold. Therefore, PCPs predict
their remaining workload by multiplying the average service time of 7.8 minutes with
the number of currently waiting patients and upcoming scheduled appointments. If this
estimated workload is lower than the remaining duration of the current session including
buffer time, walk-ins are admitted, otherwise rejected.

6.1.4 Appointment scheduling systems

In this section, we present the PCP’s appointment scheduling strategies, or in other words,
the appointment scheduling systems that we implement in SiM-Care for this study. Before
presenting the considered appointment scheduling systems, we note that they are based
on slot systems. To that end, the opening hours of each session are divided into slots of
10 minutes length. Theoretically, each slot can accommodate one appointment. However,
the appointment scheduling systems determine which slots are allowed to accommodate
an appointment. In SiM-Care, appointments are offered to patients on a first-come-first-
serve basis. Consequently, every patient is offered the earliest feasible appointment at
the time of inquiry. If no feasible appointment is available, the patient decides to forgo
an appointment and seek immediate care as walk-in. An offered appointment is feasible
for a patient if it matches with the patient’s availabilities and if it is within the patient’s
willingness to wait. In the following, we list the implemented appointment scheduling
systems. We refer to Figure 4 which visualizes the five appointment scheduling systems
derived from the literature.

Individual-block/Fixed-interval (IBFI) Like Comis et al. [15], we consider the IBFI
appointment scheduling system. IBFI allows all slots of each session to accommodate an
appointment [12, 34]. Thus, no slots are withheld.
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All Morning (AM) and Half Morning (HM) Like Balasubramanian et al. [6] and
Wiesche et al. [54], we consider the AM and the HM appointment scheduling system as
benchmarks. AM allows all slots of each morning session to accommodate an appoint-
ment. HM allows the first half of the slots of each morning session to accommodate
an appointment. In both appointment scheduling systems, the slots of every afternoon
session are withheld for the treatment of walk-ins.

All Afternoon (AA) Like Balasubramanian et al. [6], we consider the AA appointment
scheduling system as a benchmark. AA allows all slots of each afternoon session to
accommodate an appointment. The slots of every morning session are withheld for the
treatment of walk-ins.

2-Block (2B) We consider the 2B appointment scheduling system introduced by Bala-
subramanian et al. [6]. 2B allows the slots of the first half of each session to accommodate
an appointment. The slots of the second half of each session are withheld for the treatment
of walk-ins.

Masked-Based (M) and Robust-Mask-Based (RM) We consider the M and the
RM appointment scheduling systems that are based on a mask and a robust mask obtained
by solving MDP and rMDP, respectively. M and RM allow in each session the chronic
and regular slots to accommodate an appointment for one chronic or regular patient,
respectively. The walk-in slots of each session are withheld for the treatment of walk-ins.

Multimask-Based (MM) We consider the MM appointment scheduling system based
on a multimask consisting of three nested masks obtained by solving rMMDP. MM allows
in each session the chronic and regular slots to accommodate an appointment for one
chronic or regular patient, respectively. In addition to the standard scheduling process
for chronic patients, the scheduling process for regular patients based on the multimask
is as follows. Every regular patient is offered the earliest feasible appointment of the first
mask at the time of inquiry. If the earliest feasible appointment is not within the patient’s
willingness to wait, the patient is offered the earliest feasible appointment of the second
and if necessary of the third mask. The walk-in slots of each session are withheld for the
treatment of walk-ins.

Before we conclude this section, we note that we refer to AM, HM, and AA as bench-
mark systems. Furthermore, we refer to IBFI, AM, HM, AA, 2B as non-mask-based
systems and to M, RM, and MM as mask-based systems. We conclude this section by
noting that the non-mask-based systems do not distinguish between slots reserved explic-
itly for regular or chronic patients.

6.1.5 Instance generation for (robust) mask and robust multimask design
problem

For the instances of MDP, rMDP, and rMMDP, demand data is crucial. In the absence
of accessible empirical data on visits to primary care practices, we have to rely on simu-
lation to obtain rough estimates. Based on a selected patient configuration presented in
Section 6.1.1, we use SiM-Care [15] to simulate the number of visits to a primary care
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practice by regular and chronic patients as well as walk-ins over a one-year time horizon.
We obtain the demand of 52 weeks and classify it into regular, chronic, and walk-in de-
mand. We prepare this demand data as input to our optimization problems as explained
in the following.

For the MDP, we average the demand of the 52 weeks and obtain the session-specific
regular and walk-in demands dr and dw and the weekly chronic demand dc. For the rMDP
and the rMMDP, we require different scenarios, where each scenario consists of one week’s
demand. For the input of both problems, we use the scenario set Λ52 = {λ1, . . . , λ52} that
is obtained by considering the demand from each of the 52 weeks of the year as individual
scenarios. As shown in the next section, the model RobMulti-F cannot optimally solve
all instances to the rMMDP within the given time limit. In addition, we note that there
is a risk of overfitting for the robust model Rob-F if the scenario set is too large due
to the strict equal flow property (F ). The same holds true for RobMulti-F due to the
strict equal flow properties (F1) and (F2). For this reason, we use a second scenario
set Λ13 as input for the rMDP and the rMMDP. Scenario set Λ13 = {λ1, . . . , λ13} is
constructed by aggregating the demand of each four consecutive weeks of the 52 weeks
to create 13 different scenarios. For the two scenario sets Λ52 and Λ13, we perform the
following additional processing to obtain valid inputs to the optimization problems. For
the rMDP, we standardize the regular and walk-in demand so that the total regular and
walk-in demand is equal in all scenarios, i.e.,

∑
k∈K d

r
λ,k = Dr and

∑
k∈K d

w
λ,k = Dw for

all λ ∈ Λ52, λ ∈ Λ13. Furthermore, we standardize the chronic demand as in rMDP the
chronic demand is specified by only one parameter dc. For the rMMDP, we only need to
standardize the chronic demand.

Since SiM-Care relies on stochastic values, our case study includes ten independent
runs. Therefore, we perform the demand generation and processing described above ten
times for each patient configuration. Given the ten runs for the 18 different patient
configurations, we obtain a total of 180 instances for Det-F and, due to the two different
scenario sets considered, 360 instances for Rob-F and RobMulti-F. Besides the demand
data, the optimization problems MDP, rMDP, and rMMDP require the following input
parameters. For each of the three optimization problems, we set the uniform anticipated
service time t according to the mean service time in SiM-Care, which averages 7.8 minutes.
Adjusted to the anticipated service time, we determine ten-minutes slots, i.e., ℓ = 10. The
capacity and buffer time of the PCP is set as described in Section 6.1.1. For the rMMDP,
we consider multimasks that consist of three nested masks, i.e., n = 3.

6.2 Implementation and computational setting

For our computational study, all computational experiments are performed on a cluster
of machines running Ubuntu 20.04.6 with an Intel(R) Core(TM) i9 − 9900 CPU @ 3.10
GHz and 32 GB DDR4-Non-ECC main memory. We restrict each individual job to one
physical core, 14 GB main memory, and a time of 24 hours. We implement our algorithms
based on binary search and IP formulations in Java using OpenJDK 11 [33]. To solve the
IP formulations, we use CPLEX 22.1 through the Java API [1]. We restrict the CPLEX
optimizer to a one hour time limit and 32 GB memory limit and leave all other CPLEX
parameters at their default settings.

We solve the MDP, rMDP, and rMMDP by using the models Det-F, Rob-F, and
RobMulti-F, respectively. Each model includes two optimization stages as presented in
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Sections 4.1, 4.2, and 5. In theory, we can solve both stages at once by determining
flows of minimum cost instead of feasible flows. In contrast, when solving the models, we
consider the stages separately and sequentially to speed up the computations. In the first
optimization stage, we aim at finding the minimum parameter ω ∈ Ω (ΩΛ) for which a
feasible flow in network Nω (NΛ

ω ) exists by binary search. Once the minimum parameter
ω ∈ Ω (ΩΛ) is found, we proceed with the second optimization stage. In the second
optimization stage, we aim at finding a minimum cost flow, robust flow, or robust nested
flow in network Nω (NΛ

ω ). We recall that there does not exist a polynomial-time algorithm
to determine a robust or a robust nested flow. Therefore and for simplicity’s sake, we
compute all flows of all models, including the deterministic model, by IPs. While runtime
is clearly not a focus of this study, we note the following regarding the solvability. The first
optimization stage is performed in a few seconds for most instances and in less than two
hours for every instance. Consequently, for all instances an optimal solution to the first
stage and thus a feasible solution to the second stage is found. The second optimization
stage is solved to optimality (CPLEX default MIP gap tolerance 10−4) for all instances
of Det-F and Rob-F within the given time limit of one hour. In contrast, it is solved to
optimality for only 100 out of the 180 instances based on scenario set Λ52 of RobMulti-F
within the given time limit of one hour. For the remaining 80 instances, the best solution
found so far is considered. As described in Section 6.1.5, due to non-solvability within the
given time limit, we additionally consider instances based on scenario set Λ13 as input for
the optimization problems Rob-F and RobMulti-F. For scenario set Λ13, all instances of
both models are solved to optimality within the given time limit.

6.3 Evaluation of the optimization models and the resulting masks

In this section, we analyze the results of the Det-F, the Rob-F, and the RobMulti-F
model. Before we begin, we recall the following. The solution of each model provides us
with the following three results. First, we obtain the objective value ω ∈ Z≥0 for which
the respective flow with minimum cost is found in the corresponding network. Second,
we obtain the number of the unsuccessful appointment requests (drw(·)) by the cost of the
flow. Third, we obtain a mask (of cost ω) and thus the number of chronic, regular, and
walk-in slots (

∑
k∈K nµ(·, k)) by the flow itself. For all instances, the results of the three

models are summarized in Tables 2–7 in Appendix B.
We start by considering the objective value ω. For each model, the average objective

value of the ten runs are visualized for all patient configurations and both scenario sets in
Figure 5. We note that the results of Det-F are not computed based on the demands of
the scenario sets Λ52 and Λ13, instead the input is the average annual demand. The double
visualization is only for the comparability of the models. For Rob-F and RobMulti-F, the
average objective value ω is affected by the choice of the scenario set. We confirm that the
results for scenario set Λ52 are significantly higher than those for scenario set Λ13. This
meets our expectations as the computation of the minimum parameter ω becomes more
difficult the more scenarios are considered in the sense that the parameter must be suitable
for more scenarios. Accordingly, Det-F achieves the best average objective values since the
minimum parameter ω is determined for only a single demand scenario. Considering the
fact that the objective value ω corresponds to the cost of an optimal mask, we have to pay
on average higher cost of a robust or robust nested mask compared to a non-robust mask,
the so-called price of robustness [8]. In addition, RobMulti-F achieves on average better
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Figure 6: Average number of unsuccessful appointment requests

objective values than Rob-F due to the higher flexibility of a robust nested multimask
compared to a robust mask. For scenario set Λ52, RobMulti-F outperforms Rob-F in
all patients configurations. For scenario set Λ13, this is mainly observed in the patient
configurations 7 − 18 that represent increased demand based on population of 1600 and
2000 patients. Furthermore, Rob-F and RobMulti-F have the tendency that the average
objective value ω increases (with exceptions) the more patients are considered (patient
configurations 1− 6 versus 7− 12 versus 13− 18). Finally, recall that parameter ω, or in
other words, the cost of a corresponding mask indicates the deviation of the PCP’s actual
workload from the optimal workload using the respective model.

In the next step, we consider the total number of unsuccessful treatment requests
(drw(·)). For each model, we average the total number of unsuccessful appointment requests
over the number of scenarios to obtain the average number per scenario. We visualize the
average of the ten runs for all patient configurations and both scenario sets in Figure 6.
We recall that RobMulti-F is solved to feasibility (i.e., the minimum parameter ω is
found) but not to optimality for all instances based on scenario set Λ52. For these cases,
the minimum total number of unsuccessful treatment requests found so far is considered.
Furthermore, we recall that the results of Det-F are not based on the scenario sets Λ52 and
Λ13. The input is the average annual demand. Det-F satisfies all appointment requests
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for patient configurations 1 − 6 and misses only a maximum average of 1.6 requests for
patient configurations 7 − 12. In contrast, Det-F performs significantly worse for the
patient configurations 13 − 18 based on the population of 2000 patients with average
unsuccessful appointment requests between 16.1 and 20.2. For Rob-F and RobMulti-
F, the average number of unsuccessful appointment requests is affected by the choice
of the scenario set. For patient configurations 1 − 12, the results of Rob-F are clearly
lower than those of RobMulti-F for scenario set Λ52 while the opposite is the case for
scenario set Λ13. We explain this by the following two reasons. First, as RobMulti-F is
not optimally solved for all instances based on scenario set Λ52 (unlike set Λ13), only the
best results found so far are considered for the total number of unsuccessful treatment
requests. Second, the results of the objective values ω of Rob-F are significantly higher
for instances based on scenario set Λ52 than set Λ13. Consequently, the solutions to
Rob-F based on scenario set Λ52 allow a higher deviation of the actual from the optimal
PCP’s workload which in turn provides more flexibility for appointments so that there are
fewer unsuccessful appointment requests. Like Det-F, Rob-F and RobMulti-F perform
for patient configurations 13 − 18 significantly worse than for all other configurations.
Consistent with the results, we expect that if the total number of patients increases while
the PCP’s capacity remains the same, the number of unsuccessful appointment requests
increases. Counterintuitive are the outliers of Rob-F for patient configurations 10 − 12.
However, if we consider the objective values ω of Rob-F for the same configurations, we
see that they are significantly higher than the objective values of configurations 7 − 9,
although in both cases the configurations are based on the same size of the population of
patients. This means that the solutions to Rob-F allow a higher deviation of the actual
from the optimal PCP’s workload for patient configurations 10−12 than for configurations
7− 9. Thus, for patient configurations 10− 12, the solutions to Rob-F also provide more
flexibility for appointments so that there are fewer unsuccessful appointment requests. A
second result we expect is that if the walk-in rate increases, the number of patients that
request an appointment decreases. Consequently, the number of unsuccessful appointment
requests also decreases. In particular, this effect can be observed in the results of Det-F for
all patient configurations and in the results of all three models for configurations 13− 18.
We conclude with the following note. The number of unsuccessful appointment requests
provides us with the information that, given an allowed maximum deviation, there is
theoretically no assignment of the patient demand that would satisfy every appointment
requests.

Finally, we consider the structure of the masks, robust masks, and nested robust masks
that result from the optimization models Det-F, Rob-F, and RobMulti-F, respectively.
Before discussing the results, we note that there are in total |S| = 165 slots within the
PCP’s capacity. Furthermore, we note that in all three models, dc out of the 165 slots are
assigned the state ‘chronic’. Consequently, the number of available slots for state ‘regular’
or ‘walk-in’ is 165 − dc. In the following, we only compare the number of regular slots
of the masks among all models. We recall that all remaining slots are walk-in slots. For
each model, the total number of regular slots is averaged over the ten runs and visualized
for all patient configurations and both scenario sets in Figure 7. Furthermore, we recall
that the number of available slots for state ‘regular’ as well as the results of Det-F are
independent from the scenario sets.

First of all, we confirm that the number of slots available for state ‘regular’ decreases if
the population of patients and thus the proportion of chronic patients increases. Moreover,
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we note that none of the models assigns all available slots to the state ‘regular’. Conversely,
in all models there are slots assigned the state ‘walk-in’. For Det-F, the average total
number of regular slots is at a high level compared to the results of the other models and
varies between 75.2 and 88.1, depending on the patient configuration. For Rob-F and
RobMulti-F, the total numbers of regular slots are affected by the choice of the scenario
set. Before discussing the differences, we confirm for RobMulti-F the resulting nested
masks, denoted by µ1, µ2, µ3. Considering Rob-F, we see that the total number of regular
slots is significantly higher for the robust mask based on scenario set Λ52 than set Λ13. For
RobMulti-F based on scenario set Λ52, we note that the total number of regular slots of
the third mask is lower than those from Det-F neglecting patient configurations 13− 18.
In contrast, for RobMulti-F based on scenario set Λ13, the results almost coincide with
those from Det-F. Moreover, we note that the difference of the number of regular slots
between the three resulting masks is smaller for RobMulti-F based on scenario set Λ13

than on set Λ52. We explain this by the overall fewer and less diverse demand scenarios of
set Λ13 used for the computation of the solution due to the aggregation of the scenarios.
Furthermore, we see that each of the three masks based on scenario set Λ13 offers more
regular slots than each of the corresponding masks based on set Λ52. All three models
have the tendency that the total number of regular slots decreases if the walk-in rate
increases as seen in patient configurations 1−3, 4−6, 7−9, 10−12, 13−15, and 16−18.

Before concluding the section, we analyze how often each of the three resulting masks
of RobMulti-F is used among all scenarios. Figure 8 visualizes the average frequency
over all 10 runs of the assignment of masks µ1, µ2, and µ3 to the scenarios of scenario
sets Λ52 and Λ13 for all patient configurations. In general, we confirm that the average
use of the masks µ1, µ2, and µ3 is balanced for all patient configurations, so none of
the masks is tailored exclusively for one scenario. Instead, we see that each of the three
masks is assigned for a cluster of scenarios as targeted in Section 5. For scenario set
Λ52, we note that mask µ3 (which includes the most regular slots) is assigned slightly
more often than mask µ1 (which includes the fewest regular slots), compared to scenario
set Λ13. We explain this with the fact that mask µ1 based on scenario set Λ52 includes
less regular slots than mask µ1 based on scenario set Λ13. At the same time, mask µ3

based on scenario set Λ52 also includes less regular slots than mask µ3 based on scenario
set Λ13 for patient configurations 1 − 12. We conclude this section with an example of
a mask, a robust mask, and a robust nested multimask resulted from the tenth run of
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patient configuration 8 as visualized in Figure 9. Considering the results, we note that,
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Figure 9: The resulting mask, robust mask, and robust nested mask of the tenth run for
patient configuration 8

interestingly, the choice of a robust model corresponding to RM and MM instead of the
deterministic model corresponding to M has influenced the positioning of the chronic slots.
The robust models account for regular demand before and after the weekend.

6.4 Evaluation by agent-based simulation

In this section, we evaluate the appointment scheduling systems presented in Section 6.1.4.
We recall that considering the AM, the HM, and the AA system help as a benchmark. We
focus on the comparison of the IBFI and the 2B system with the mask-based systems M,
RM, and MM. For the RM and MM appointment scheduling system, we denote whether
they are computed on scenario set Λ52 or Λ13 by RM-52 or RM-13 and MM-52 or MM-13,
respectively. In the following, we address RM-52, RM-13, MM-52, and MM-13 as individ-
ual appointment scheduling systems. To evaluate the total of ten resulting appointment
scheduling systems, we use some of SiM-Care’s key performance indicators. For each
individual key performance indicator, we summarize the average results of all appoint-
ment scheduling systems in Tables 8–17 in Appendix B. In addition, for each individual
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Figure 10: PCP’s average weekly overtime and idle time

key performance indicator, we visualize below the results for all appointment scheduling
systems of all 180 instances by means of box plots where the average is indicated by a
star. We note that the tables and figures are colored by appointment scheduling system.
The non-mask-based systems are colored in various shades of green and the mask-based
systems in the colors of the underlying optimization problem.

We start with evaluating three key performance indicators for the PCP: the average
weekly overtime, the average weekly idle time, and the weekly maximum deviation from
the actual to the optimal workload. The results of overtime and idle time are visualized in
Figure 10. We confirm that IBFI causes significantly more weekly overtime than all other
appointment scheduling systems. The overtime averages 129.48 minutes. These results
are consistent with our expectations as IBFI does not reserve time for potential walk-
ins. The remaining appointment scheduling systems cause overtime at lower level, which
averages between 21.47 and 36.32 minutes. In particular, we note that the mask-based
systems perform as well as, and even slightly better than, the non-masked-based systems.
We confirm that MM-13 causes the least amount of average overtime at 21.47 minutes.
Overall, we note that the average overtime is relatively low which can be explained by the
incorporated buffers and the admission of patients up to a certain utilization threshold.

Considering the idle time, we confirm that AM causes the most average weekly idle
time. However, if we consider idle time in relation to overtime, we rate IBFI as the worst
performing system. Overall, MM-52 achieves the lowest average weekly idle time in the
amount of 244 minutes. This is an average of 25 minutes less per week than the idle time
caused by 2B, which causes the lowest average weekly idle time among the non-masked-
based systems. In fact, all mask-based systems outperform 2B by at least 16 minutes less
average weekly idle time.

Finally, across all 52 weeks, we consider the worst-case maximum deviation of the
actual from the optimal PCP’s workload among all sessions as visualized in Figure 11.
This corresponds to the definition of the cost of a (robust) mask for the mask-based
systems. IBFI causes the largest average worst-case imbalance between the actual and
optimal PCP’s workload. This average imbalance is only minimally larger than that
caused by AM. Based on the results of overtime and idle time, these results are consistent
with our expectations. We further note that AA causes the maximum worst-case deviation
of 0.83, i.e., the PCP works 0.83 times the optimal workload more or less in a session. If
we consider the non-mask-based systems, we confirm that 2B performs best on average
but also in general. In addition, 2B performs better than M but on average worse than
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Figure 12: Access time to an appointment for regular and chronic patients

all other mask-based systems. Overall, MM-52 causes the smallest average worst-case
deviation of 0.46. Among all appointment scheduling systems, it also causes the smallest
maximum worst-case deviation. In conclusion, compared to the appointment scheduling
systems from the literature, the mask-based systems achieve to balance the utilization of
the PCP ’s capacity as targeted in Section 3.3.

In the next step, we consider seven key performance indicators for patients. First, we
discuss the access time to an appointment of regular and chronic patients as visualized
in Figure 12. As expected, IBFI ensures the shortest access time to an appointment for
regular and chronic patients. For instance, for regular patients, the maximum and average
access times to an appointment are 1.49 and 1.22 days, respectively. Clearly, the bench-
mark systems AA, AM, HM perform the worst as the slots that allow to accommodate
appointments are limited to specific sessions. We confirm that the mask-based systems
ensure a faster average access time to an appointment, ranging from 2.20 to 2.43 days,
than the 2B system with 2.83 days. However, the average access time to an appointment
increases for chronic patients if a mask-based system is used compared to 2B. We ex-
plain this by the fact that the mask-based systems distinguish between slots for regular
and chronic patients, so fewer appointments are available for chronic patients. Thus, the
mask-based systems use the flexibility that chronic patients have. We point out that the
timely access for chronic patients is still ensured. Conversely, if there is no distinction
between slots for regular and chronic patients, the access time for appointments of chronic
patients decreases, as chronic patients are typically scheduled much further in advance.
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Figure 13: Number of patients with an unsuccessful appointment request

This in turn affects the access time to an appointment for regular patients. We assume
that this has occurred for AM and 2B. In conclusion, the mask-based systems ensure for
all instances a maximum access time to an appointment for regular and chronic patients of
three and four days, respectively. At this point, we emphasize that these access times are
guaranteed, although in SiM-Care the patients’ willingness to wait is not limited to three
days as assumed in the optimization models. Consequently, this meets the objectives
formulated in Section 3.1.

Second, we consider the total number of unsuccessful appointment requests within a
year as visualized in Figure 13. As IBFI allows all slots to accommodate an appointment,
it clearly ensures the smallest number of unsuccessful appointment requests. The results
of the benchmark appointment scheduling systems AA, AM, and HM confirm that the
number of unsuccessful appointment requests increases if appointment slots are restricted
to specific sessions or possibly if too few slots exist that allow to accommodate an ap-
pointment. We underline that the mask-based systems perform significantly better than
2B. MM-52 causes a maximum of 3594 unsuccessful appointment requests which is the
maximum number among all mask-based systems and still lower than 4080.11 which is
the average number of 2B. Furthermore, MM-52 causes with 1855.33 the smallest aver-
age number of unsuccessful appointment requests among all mask-based systems and the
second smallest average number among all appointment scheduling systems. Overall, we
assess that the number of unsuccessful appointment requests is minimized as targeted in
the second optimization stage of the optimization models.

Third, we consider the total number of rejected walk-ins within a year, i.e., patients
that are not seen by the PCP, and how many of them previously had an unsuccessful
appointment request. We note that patients with an appointment are always admitted
as long as they arrive before the end of the buffer. Furthermore, we note that the ad-
mission strategy in SiM-Care does not favor walk-ins who previously had an unsuccessful
appointment request over walk-ins who had not requested an appointment. Accordingly,
it is random how many patients are rejected twice, once for an appointment request and
once for the treatment itself. Nevertheless, it is interesting to evaluate how many patients
are rejected twice by the (appointment scheduling) system. The results are visualized in
Figure 14. As IBFI does not reserve slots for potential walk-ins, clearly, it is the system
with the highest average total number of rejected walk-ins, namely 213 walk-ins. At the
same time, IBFI is the system with the highest average number of rejected walk-ins who
previously requested an appointment even though it is the systems with the fewest aver-
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Figure 14: Number of rejected walk-ins and how many of them previously had an unsuc-
cessful appointment request

age unsuccessful appointment requests. It is also noticeable that the benchmark systems
AA, AM, HM and even 2B reject more than twice as many patients on average than the
mask-based systems. More precisely, 2B rejects 89 walk-ins on average while the mask-
based systems M, RM-52, RM-13, MM-52, and MM-13 reject 44, 35, 34, 31, 30 walk-ins
on average, respectively. Furthermore, the maximum and average numbers for the re-
jected walk-ins who previously had an unsuccessful appointment request are on a lower
level for the mask-based systems compared to the non-mask-based systems. Overall, the
mask-based systems cause fewer unsuccessful appointment requests, fewer rejected walk-
ins, and thus fewer walk-ins who have previously requested an appointment, compared to
all other appointment scheduling systems.

Finally, we consider the average waiting times for treatments in the practice for pa-
tients with appointments and walk-ins. The results are visualized in Figure 15. As the
treatment strategy is defined so that patients with appointments are always prioritized
over walk-ins in the treatment order, waiting times for walk-ins are significantly higher
than those from patients with appointments. Considering the waiting times for patients
with appointments first, we see that the benchmark systems AA, AM, HM perform the
best with an average waiting time ranging between 3.42 and 3.53 minutes. The average
waiting times caused by the mask-based systems are comparable to the average waiting
time of 6.32 minutes caused by IBFI, they are only 0.09 minutes longer. Neglecting the
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Figure 15: Waiting time for treatment within the practice of patients with appointment
and walk-ins
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benchmark systems, we confirm that 2B causes with 5.75 minutes the lowest average
waiting times for patients with appointments. Considering the waiting times of walk-ins
next, we see that the benchmark systems perform again the best with an average wait-
ing time ranging between 39.65 and 53.77 minutes. 2B provides with 74.68 minutes the
next lowest average waiting time for walk-ins. The mask-based systems cause worse, but
similarly good average waiting times for walk-ins than 2B ranging between 74.49 and
80.54 minutes. We note that MM-52, which causes the maximum waiting time among all
mask-based systems, causes only 0.83 minutes more waiting time than the average waiting
time caused IBFI. Furthermore, we note that the maximum waiting time which a walk-in
has to wait among all appointment scheduling strategies is caused by IBFI with 125.75
minutes. We conclude this section and refer to the next section where we summarize the
results of the mask-based systems and assess them among each other.

7 Discussion and conclusion
In this paper, we managed a PCP’s demand for treatment considering three different types
of patients by interday appointment scheduling on a tactical decision level. We introduced
the MDP and provided a combinatorial interpretation by a network flow and design model.
Furthermore, we extended the MDP to the rMDP to obtain a robust setting in which we
could account for uncertainties in the weekly distributions of demand. To avoid overfitted
solutions and to prevent uncertainties not only in the weekly distribution but also in
the total demand, we introduced the rMMDP. For all three problems, we developed a
solution approach that combined binary search with compact IP formulations of extension
of minimum cost flow problems. We analyzed the optimization models and discussed their
results. Finally, we conducted an extensive case study by agent-based simulation in which
we evaluated the resulting mask-based appointment scheduling systems and compared
them with five appointment scheduling systems from the literature.

Compared to the presented appointment scheduling systems from the literature, our
study shows the potential of the mask-based appointment scheduling systems. The mask-
based appointment scheduling systems improve the balanced utilization of the PCP, iden-
tifiable by the minimized overtime, idle time, and worst-case deviation of the actual from
the optimal workload. Furthermore, they ensure the (timely) access to medical care which
includes the following three aspects. First, more patients may receive an appointment so
that there are fewer unsuccessful appointment requests. Second, the timely access to
an appointment is ensured for regular patients within three days and for chronic patients
within four days. Third, more patients are admitted for treatment and consequently fewer
patients are rejected. We point out that the timely access comes at the expenses of waiting
times within the practice. To overcome this deficit, future work needs to investigate the
order of slots with specific states, especially the positioning of the walk-in slots. Since the
walk-in slots are always positioned at the end of a session in the presented appointment
scheduling systems, it is not surprising that walk-ins have long waiting times to their
treatments. In addition to the positioning of the walk-in slots, walk-ins’ waiting times
can be beneficially controlled by an adjusted treatment strategy that does not always
prioritize patients with appointments over walk-ins.

While this study represents a valuable contribution for interday appointment schedul-
ing in primary care practices, we must not overlook the major limitations of our models
and our case study that stem from assumptions and open up directions for further re-
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search. Concerning the limitations of our models, we note our assumption that patients
always attend their appointments. The exclusion of potential no-shows is quite strict and
definitely not true in reality. To overcome this limitation in future work, we might inte-
grate no-shows in our models by additional sink vertices between the appointment and
treatment arcs that demand a number of no-shows. Naturally, we would then also inte-
grate no-shows into the simulation model. Concerning the limitations of our case study,
we note that the lack of empirical demand data forced us to use a simulation model which
can provide rough estimates at best. Furthermore, we could not sufficiently clarify on
which scenario set the mask-based appointment scheduling systems work better. The
question could be answered depending on available demand data and available time for
computation.

Overall, we obtain the following four key findings of this study. First, the distinction
in slots reserved for specific patient types is beneficially for the demand management. Sec-
ond, taking into account information like high walk-in rates in specific sessions has a major
impact on the resulting appointment scheduling system and should thus be considered in
interday appointment scheduling. Third, a robust nested multimask may be advantageous
over a robust mask as observable in key performance indicators such as the number of
patients with an unsuccessful appointment request, the number of rejected walk-ins, and
the number of rejected patients who previously had an unsuccessful appointment request.
We also confirm better results regarding the maximum deviation of the actual from the
optimal workload of the PCP. In future research, however, we need to investigate the
circumstances under which appointments of the second and third mask of the multimask
are offered to the patients to fully realize the potential of a multimask. Fourth, our robust
and combinatorial network flow and design models are applicable and effective methods
to manage demand in primary care practices. More precisely, they are valid modelings
for interday appointment scheduling on a tactical decision level. In addition, they with-
stand a much more complex simulation model on an operational level. We conclude this
paper with the confidence that our mask-based appointment scheduling systems meet the
effectiveness described in the introduction at the beginning of the paper: The mask-based
appointment scheduling systems maintain patient-physician continuity, enable timely ac-
cess, reduce waiting times, smooth the PCP workflow, and provide robustness against
demand uncertainties.
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A Algorithm 1
In this section, we present the omitted Algorithm 1.
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Algorithm 1

Input: Network N = (G,ψ, β)

Output: Feasible β-flow in network Nω with minimum ω ∈ Ω

Method:

Set ωLB = 0 and ωUB = max
k∈K

Dk

while ωLB ̸= ωUB do
Compute ω̃ = ⌊ωLB+ωUB

2
⌋

Set ω = ω̃ · t
if there exists a feasible β-flow fω in network Nω then

Update ωUB = ω̃ and set f = fω
else

Update ωUB = ω̃ + 1
end if

end while
Set ω = ωUB · t
for k ∈ K do

Compute i1 =
⌊
ω+u·ck

t

⌋
and ωi1 = |t · i1 − u · ck|

Compute i2 =
⌈
u·ck−ω

t

⌉
and ωi2 = |t · i2 − u · ck|

for ω ∈ {ωi1 , ωi2} do
if ω < ω then

if there exists a feasible β-flow fω in network Nω then
Update ω = ω and set f = fω

end if
end if

end for
end for
return ω and β-flow f

B Computational results
In this section, we present the computational results of the optimization problems as well
as the average results of the evaluation by simulation.
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
1 1400/15/40 1 7.8 46.8 23.68 0 208 609 83 78 84 43 44
1 1400/15/40 2 4.25 46.8 20.42 0 260 760 78 73 67 46 44
1 1400/15/40 3 4.25 35.45 19 0 156 684 80 77 75 43 44
1 1400/15/40 4 4.25 57.44 25.81 0 156 776 80 76 73 44 44
1 1400/15/40 5 4.96 27.65 20.99 0 156 473 80 77 76 42 44
1 1400/15/40 6 4.25 43.25 33.19 0 104 374 80 78 76 44 44
1 1400/15/40 7 1.42 39 26.24 0 312 385 82 76 83 44 44
1 1400/15/40 8 4.25 41.84 17.44 0 104 693 81 79 78 43 44
1 1400/15/40 9 4.25 41.84 30.35 0 156 425 80 78 76 44 44
1 1400/15/40 10 6.81 54.46 37.58 0 156 271 79 76 81 45 44
2 1400/18/40 1 6.81 43.25 21.41 0 260 718 79 74 76 43 44
2 1400/18/40 2 5.67 46.66 21.7 0 312 593 74 70 70 46 44
2 1400/18/40 3 4.25 43.25 23.97 0 104 671 76 74 76 43 44
2 1400/18/40 4 5.39 54.46 16.31 0 104 872 76 75 68 43 44
2 1400/18/40 5 4.25 38.01 20.99 0 208 521 77 73 74 43 44
2 1400/18/40 6 6.81 42.55 26.95 0 104 304 77 75 81 44 44
2 1400/18/40 7 7.8 49.64 26.24 0 364 412 81 72 78 43 44
2 1400/18/40 8 7.8 41.84 18.15 0 156 617 79 76 75 45 44
2 1400/18/40 9 7.8 54.6 31.34 0 52 404 79 77 74 44 44
2 1400/18/40 10 6.81 62.26 36.16 0 104 343 75 74 73 46 44
3 1400/20/40 1 4.25 51.05 20.28 0 208 829 78 73 73 43 44
3 1400/20/40 2 6.81 46.8 21.7 0 208 549 74 70 71 46 44
3 1400/20/40 3 4.25 46.8 31.77 0 104 361 75 73 78 43 44
3 1400/20/40 4 6.81 57.44 18.58 0 104 923 75 73 63 44 44
3 1400/20/40 5 4.96 34.75 28.79 0 312 392 76 69 71 42 44
3 1400/20/40 6 7.8 34.75 34.75 0 260 276 76 70 78 44 44
3 1400/20/40 7 4.25 48.93 26.24 0 312 406 78 72 79 43 44
3 1400/20/40 8 4.96 49.64 25.24 0 104 415 75 75 82 44 44
3 1400/20/40 9 4.25 57.44 39.14 0 104 361 76 74 76 44 44
3 1400/20/40 10 4.25 54.46 28.36 0 156 367 74 71 75 46 44
4 1400/15/45 1 7.8 46.8 22.97 0 52 499 79 79 82 49 49
4 1400/15/45 2 7.8 47.93 69.92 0 156 202 77 74 78 50 50
4 1400/15/45 3 6.67 28.93 16.59 0 468 891 78 70 66 50 50
4 1400/15/45 4 1.42 46.8 26.52 0 156 520 77 74 70 48 49
4 1400/15/45 5 7.8 39 45.38 0 156 405 79 77 74 50 49
4 1400/15/45 6 7.8 50.2 58.85 0 208 278 80 77 79 49 49
4 1400/15/45 7 6.67 37.87 20.56 0 312 579 80 74 75 51 50
4 1400/15/45 8 5.53 45.67 17.73 0 260 916 80 75 74 51 49
4 1400/15/45 9 6.67 46.8 18.44 0 52 743 79 78 77 52 50
4 1400/15/45 10 1.42 63.53 31.91 0 0 585 78 78 76 50 50
5 1400/18/45 1 5.53 39 18.44 0 104 760 78 76 77 50 49
5 1400/18/45 2 6.67 48.22 62.12 0 156 180 74 71 75 50 50
5 1400/18/45 3 6.67 28.93 18.44 0 364 760 75 69 68 50 50
5 1400/18/45 4 6.67 40.42 23.54 0 156 652 75 71 66 49 49
5 1400/18/45 5 6.67 46.8 41.98 0 104 383 77 75 73 50 50
5 1400/18/45 6 5.53 52.47 57.72 0 260 250 78 74 80 49 49
5 1400/18/45 7 5.53 45.67 20.71 0 260 603 78 73 74 50 50
5 1400/18/45 8 5.53 39 22.41 0 312 558 77 71 73 51 49
5 1400/18/45 9 6.67 54.6 26.24 0 104 481 76 74 78 51 50
5 1400/18/45 10 7.8 56.02 30.77 0 104 567 76 73 74 50 50
6 1400/20/45 1 6.67 46.8 18.86 0 52 701 75 75 75 50 49
6 1400/20/45 2 6.67 46.09 62.12 0 156 220 74 70 72 50 50
6 1400/20/45 3 6.67 36.73 22.41 0 208 729 74 70 68 50 50
6 1400/20/45 4 1.42 38.29 23.97 0 156 560 75 70 65 48 50
6 1400/20/45 5 6.67 45.67 43.11 0 156 431 77 73 70 50 50
6 1400/20/45 6 4.4 50.2 64.39 0 260 203 78 72 81 49 49
6 1400/20/45 7 4.4 45.67 23.54 0 104 539 76 74 68 51 50
6 1400/20/45 8 5.53 45.67 22.41 0 208 670 75 72 73 51 49
6 1400/20/45 9 7.8 54.6 26.24 0 52 613 74 74 73 51 50
6 1400/20/45 10 1.42 54.6 22.97 0 156 769 74 70 70 49 50

Table 2: Computational results of the mask models for patient configurations 1− 6
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
7 1600/15/40 1 7.09 55.31 56.59 2 0 481 89 90 96 51 50
7 1600/15/40 2 7.8 48.64 46.37 0 312 286 89 83 88 49 51
7 1600/15/40 3 6.38 41.84 24.68 1 208 745 90 86 84 51 50
7 1600/15/40 4 4.25 51.05 66.65 2 52 348 85 87 98 52 50
7 1600/15/40 5 1.84 47.51 38.86 2 104 321 86 88 90 52 51
7 1600/15/40 6 1.84 41.84 29.5 0 208 384 90 86 90 50 50
7 1600/15/40 7 6.38 34.04 16.59 0 312 772 88 83 88 51 50
7 1600/15/40 8 7.8 78 19.71 2 0 998 89 91 81 50 50
7 1600/15/40 9 1.84 39 27.09 2 676 489 88 75 86 51 51
7 1600/15/40 10 6.38 46.8 39.57 0 520 368 87 79 92 51 51
8 1600/18/40 1 6.24 55.31 48.64 0 0 468 88 87 88 51 50
8 1600/18/40 2 7.8 46.8 46.37 1 312 228 86 81 88 49 51
8 1600/18/40 3 6.38 46.8 29.92 0 156 503 87 84 81 52 50
8 1600/18/40 4 1.84 43.25 67.79 1 208 302 85 82 87 52 50
8 1600/18/40 5 7.09 48.64 47.79 0 104 296 87 85 88 52 51
8 1600/18/40 6 7.8 34.04 37.3 0 312 323 87 81 86 50 50
8 1600/18/40 7 7.8 35.45 13.76 1 208 1066 86 83 73 51 50
8 1600/18/40 8 1.84 62.4 20.71 1 52 1091 87 87 77 49 50
8 1600/18/40 9 6.38 42.55 28.51 0 520 492 85 76 89 51 51
8 1600/18/40 10 7.8 57.44 47.37 0 468 265 87 78 88 51 51
9 1600/20/40 1 1.84 63.11 56.44 0 0 455 84 86 82 51 50
9 1600/20/40 2 4.25 54.6 47.51 0 260 230 84 80 87 49 51
9 1600/20/40 3 6.38 54.6 25.53 0 156 600 86 83 79 50 50
9 1600/20/40 4 7.8 51.05 67.79 0 156 281 84 81 85 51 50
9 1600/20/40 5 6.38 56.44 55.59 0 52 283 85 84 85 52 51
9 1600/20/40 6 7.8 46.8 34.04 0 260 404 84 80 85 50 50
9 1600/20/40 7 6.38 35.45 12.91 0 208 1065 85 81 79 50 50
9 1600/20/40 8 1.84 72.04 18.15 0 0 1175 86 86 76 49 50
9 1600/20/40 9 1.84 39 31.06 0 624 400 84 72 85 51 51
9 1600/20/40 10 6.38 54.6 39.57 0 520 348 85 74 82 52 51
10 1600/15/45 1 7.8 76.44 33.33 2 0 546 87 88 82 57 56
10 1600/15/45 2 6.24 53.18 24.82 2 104 791 85 85 89 55 57
10 1600/15/45 3 5.11 53.04 36.87 1 104 384 86 84 87 55 56
10 1600/15/45 4 6.38 60.98 24.53 1 0 809 88 90 82 57 56
10 1600/15/45 5 6.38 70.2 31.06 2 0 997 84 85 79 57 57
10 1600/15/45 6 7.8 56.73 21.84 2 52 830 87 88 84 57 57
10 1600/15/45 7 6.38 76.58 34.6 1 0 645 88 88 85 56 57
10 1600/15/45 8 7.8 53.18 29.78 3 208 851 87 84 75 57 57
10 1600/15/45 9 6.38 58.43 33.04 1 104 644 88 87 83 56 57
10 1600/15/45 10 6.24 59.71 26.52 1 0 990 87 87 71 55 56
11 1600/18/45 1 6.24 76.44 33.33 1 0 532 84 85 80 56 56
11 1600/18/45 2 6.38 53.18 31.77 1 0 461 84 84 87 55 57
11 1600/18/45 3 6.38 45.24 44.67 0 104 329 84 81 85 55 56
11 1600/18/45 4 6.38 58.43 28.08 1 52 567 86 86 86 57 56
11 1600/18/45 5 6.38 78 31.63 2 0 920 81 83 78 57 57
11 1600/18/45 6 0.57 54.6 38.15 2 208 461 84 82 84 58 57
11 1600/18/45 7 6.38 81.83 36.16 1 0 760 85 85 85 56 57
11 1600/18/45 8 6.38 48.93 36.59 2 312 736 83 80 73 57 57
11 1600/18/45 9 7.09 58.43 33.89 1 156 580 83 83 80 57 57
11 1600/18/45 10 5.11 60.84 26.95 1 0 1047 85 84 69 55 56
12 1600/20/45 1 7.09 76.44 33.33 1 0 557 81 83 77 57 56
12 1600/20/45 2 5.11 50.63 30.77 0 52 494 82 82 85 55 57
12 1600/20/45 3 5.11 53.04 44.67 0 156 314 82 78 83 55 56
12 1600/20/45 4 6.38 62.4 28.51 0 52 597 85 85 81 56 56
12 1600/20/45 5 1.84 70.91 31.77 2 0 929 80 82 74 57 57
12 1600/20/45 6 7.8 54.6 28.36 0 104 812 83 82 81 58 57
12 1600/20/45 7 7.8 84.38 35.45 1 0 727 84 83 82 56 57
12 1600/20/45 8 6.38 48.93 40.42 1 208 727 82 80 71 57 57
12 1600/20/45 9 5.11 60.98 39 1 104 508 84 83 91 56 57
12 1600/20/45 10 5.11 59.71 34.18 0 52 619 82 81 79 55 56

Table 3: Computational results of the mask models for patient configurations 7− 12
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
13 2000/15/40 1 5.39 81.55 89.49 20 1196 597 83 80 95 63 63
13 2000/15/40 2 5.67 92.61 41.41 19 780 1091 82 86 88 65 63
13 2000/15/40 3 5.67 73.75 34.89 17 936 1217 87 85 91 60 63
13 2000/15/40 4 4.68 60.98 37.16 21 1092 1005 84 84 90 64 62
13 2000/15/40 5 4.96 80.84 57.44 19 1092 853 85 82 90 62 63
13 2000/15/40 6 7.09 69.49 58.71 19 988 777 83 83 90 63 63
13 2000/15/40 7 7.09 77.29 47.08 19 1092 1007 83 81 86 63 63
13 2000/15/40 8 7.09 76.58 46.37 19 884 1053 84 86 87 63 63
13 2000/15/40 9 5.39 81.55 23.12 20 936 1301 83 86 89 64 63
13 2000/15/40 10 4.96 62.4 34.04 17 1040 1004 84 82 89 63 63
14 2000/18/40 1 5.81 72.61 81.69 20 988 529 82 81 94 65 63
14 2000/18/40 2 5.67 84.81 37.3 17 624 1094 82 86 88 64 63
14 2000/18/40 3 4.68 77.29 28.65 16 780 1198 86 86 87 62 63
14 2000/18/40 4 7.09 60.98 44.96 17 936 810 85 84 90 63 62
14 2000/18/40 5 3.55 70.06 40.7 17 1040 915 83 80 87 62 63
14 2000/18/40 6 7.09 77.29 66.37 16 884 595 83 83 92 63 63
14 2000/18/40 7 4.68 73.75 55.03 19 1040 765 81 80 90 64 63
14 2000/18/40 8 5.39 69.49 36.45 18 780 1025 84 86 86 62 63
14 2000/18/40 9 4.68 65.95 32.76 18 832 1045 84 86 88 64 63
14 2000/18/40 10 4.96 57.01 23.97 17 1092 1272 84 80 81 63 63
15 2000/20/40 1 4.68 80.41 82.82 16 884 459 81 81 94 65 63
15 2000/20/40 2 7.09 81.55 43.96 15 572 851 83 86 88 64 63
15 2000/20/40 3 7.09 73.75 52.05 15 728 701 86 85 89 61 63
15 2000/20/40 4 5.81 64.81 48.36 18 1040 739 83 81 91 64 62
15 2000/20/40 5 5.67 73.04 62.97 17 884 631 82 82 92 64 63
15 2000/20/40 6 7.09 77.29 57.44 15 780 595 83 83 91 63 63
15 2000/20/40 7 5.81 89.35 37.58 16 936 1110 82 80 82 63 63
15 2000/20/40 8 5.39 77.29 38.57 16 728 1004 84 85 84 62 63
15 2000/20/40 9 5.39 65.95 36.45 17 832 938 83 84 87 64 63
15 2000/20/40 10 4.68 55.88 31.77 16 1092 1034 84 78 86 63 63
16 2000/15/45 1 7.8 96.15 41.98 19 1196 1280 78 74 78 72 71
16 2000/15/45 2 5.81 92.18 50.77 21 988 966 76 78 86 71 71
16 2000/15/45 3 7.8 85.8 49.64 21 1144 1048 78 76 83 71 71
16 2000/15/45 4 7.8 95.02 47.37 20 1144 1201 77 75 79 72 71
16 2000/15/45 5 2.13 78 36.02 21 1144 1268 76 75 82 72 71
16 2000/15/45 6 7.8 82.82 39.57 19 1196 1130 78 76 80 71 71
16 2000/15/45 7 7.8 95.73 39.85 20 1144 1361 78 75 79 69 71
16 2000/15/45 8 7.8 67.22 41.84 19 1352 1146 78 72 81 71 71
16 2000/15/45 9 4.82 98.42 60.13 21 1144 1426 77 76 72 71 71
16 2000/15/45 10 6.38 84.38 30.77 21 1092 1204 76 76 84 71 71
17 2000/18/45 1 7.8 93.6 45.38 17 1144 1084 78 74 82 72 71
17 2000/18/45 2 6.38 92.18 51.76 19 936 936 77 77 85 70 71
17 2000/18/45 3 4.82 95.02 46.37 21 1092 1034 77 75 82 71 71
17 2000/18/45 4 2.13 101.4 48.5 20 1040 1259 75 75 74 72 71
17 2000/18/45 5 7.8 87.22 42.55 18 1040 1113 76 75 81 72 71
17 2000/18/45 6 4.82 73.75 56.59 21 1040 909 76 77 82 72 71
17 2000/18/45 7 6.38 85.8 35.88 19 1040 1216 77 76 80 69 71
17 2000/18/45 8 7.8 62.4 50.49 18 1248 958 79 72 81 70 71
17 2000/18/45 9 7.8 91.47 52.76 19 1092 1141 77 76 77 70 71
17 2000/18/45 10 2.13 83.81 31.06 21 884 1136 75 77 83 72 71
18 2000/20/45 1 4.82 81.55 43.96 17 1144 1143 78 73 77 72 71
18 2000/20/45 2 5.81 84.38 47.37 17 988 961 78 75 79 69 71
18 2000/20/45 3 7.8 87.22 53.04 18 988 893 76 75 82 71 71
18 2000/20/45 4 7.8 109.2 58.85 18 988 869 76 75 81 71 71
18 2000/20/45 5 7.8 78 41.69 18 936 1075 76 76 79 72 71
18 2000/20/45 6 5.67 70.2 49.64 19 936 912 76 78 84 72 71
18 2000/20/45 7 7.8 78 36.16 20 936 1358 76 77 81 71 71
18 2000/20/45 8 2.13 75.02 40.99 17 1092 1082 78 75 81 69 71
18 2000/20/45 9 4.82 90.62 53.04 19 1040 1196 76 75 74 70 71
18 2000/20/45 10 5.81 83.81 34.75 18 832 921 74 77 82 72 71

Table 4: Computational results of the mask models for patient configurations 13− 18
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
1 1400/15/40 1 7.8 7.8 6.38 0 156 81 83 70 84 43 44
1 1400/15/40 2 4.25 4.96 6.38 0 221 86 78 61 77 46 44
1 1400/15/40 3 4.25 7.8 6.38 0 169 86 80 67 78 43 44
1 1400/15/40 4 4.25 6.81 7.09 0 156 80 80 68 80 44 44
1 1400/15/40 5 4.96 4.25 6.52 0 91 73 80 73 79 42 44
1 1400/15/40 6 4.25 4.25 6.38 0 117 67 80 71 80 44 44
1 1400/15/40 7 1.42 7.8 6.38 0 156 74 82 71 82 44 44
1 1400/15/40 8 4.25 4.25 6.38 0 104 70 81 74 80 43 43
1 1400/15/40 9 4.25 7.8 6.52 0 143 77 80 70 80 44 44
1 1400/15/40 10 6.81 4.96 6.52 0 156 87 79 67 80 45 44
2 1400/18/40 1 6.81 7.8 6.38 0 117 76 79 70 83 43 44
2 1400/18/40 2 5.67 7.66 6.38 0 143 104 74 65 73 46 44
2 1400/18/40 3 4.25 4.25 6.67 0 169 85 76 63 77 43 44
2 1400/18/40 4 5.39 4.96 6.52 0 195 95 76 62 73 43 44
2 1400/18/40 5 4.25 6.81 5.39 0 104 100 77 69 76 43 44
2 1400/18/40 6 6.81 7.8 6.52 0 156 89 77 65 81 44 45
2 1400/18/40 7 7.8 7.8 6.52 0 143 90 81 68 83 43 44
2 1400/18/40 8 7.8 4.25 6.52 0 130 86 79 68 77 45 44
2 1400/18/40 9 7.8 7.8 6.67 0 182 78 79 64 79 44 44
2 1400/18/40 10 6.81 6.81 6.67 0 104 82 75 69 78 46 44
3 1400/20/40 1 4.25 4.25 6.38 0 117 92 78 68 78 43 44
3 1400/20/40 2 6.81 6.81 6.52 0 169 92 74 61 73 46 45
3 1400/20/40 3 4.25 7.8 6.52 0 169 102 75 62 75 43 44
3 1400/20/40 4 6.81 4.96 6.52 0 221 110 75 58 73 44 44
3 1400/20/40 5 4.96 6.81 6.38 0 117 89 76 66 72 42 44
3 1400/20/40 6 7.8 6.81 5.39 0 104 75 76 67 74 44 44
3 1400/20/40 7 4.25 7.8 6.52 0 156 72 78 66 77 43 44
3 1400/20/40 8 4.96 7.8 6.67 0 117 65 75 68 76 44 44
3 1400/20/40 9 4.25 7.8 6.38 0 156 78 76 65 78 44 44
3 1400/20/40 10 4.25 4.25 6.38 0 143 84 74 64 72 46 45
4 1400/15/45 1 7.8 14.47 6.67 0 65 85 79 75 79 49 50
4 1400/15/45 2 7.8 1.42 6.67 0 169 78 77 63 76 50 50
4 1400/15/45 3 6.67 5.53 6.38 0 156 73 78 67 80 50 50
4 1400/15/45 4 1.42 9.22 6.38 0 52 63 77 73 77 48 49
4 1400/15/45 5 7.8 6.67 6.52 0 130 67 79 69 81 50 49
4 1400/15/45 6 7.8 7.8 6.38 0 143 67 80 71 81 49 49
4 1400/15/45 7 6.67 5.53 6.38 0 91 57 80 74 82 51 50
4 1400/15/45 8 5.53 6.67 6.67 0 117 101 80 71 77 51 49
4 1400/15/45 9 6.67 7.8 6.38 0 91 68 79 72 78 52 50
4 1400/15/45 10 1.42 1.42 6.67 0 169 74 78 64 79 50 50
5 1400/18/45 1 5.53 7.8 6.67 0 117 96 78 69 78 50 49
5 1400/18/45 2 6.67 7.8 6.67 0 117 63 74 65 74 50 50
5 1400/18/45 3 6.67 5.53 6.67 0 143 89 75 65 80 50 50
5 1400/18/45 4 6.67 1.42 6.38 0 169 83 75 61 73 49 50
5 1400/18/45 5 6.67 6.67 6.38 0 156 97 77 65 74 50 49
5 1400/18/45 6 5.53 11.2 6.38 0 104 99 78 71 76 49 49
5 1400/18/45 7 5.53 6.67 6.38 0 65 79 78 73 77 50 50
5 1400/18/45 8 5.53 7.8 6.52 0 117 102 77 68 77 51 49
5 1400/18/45 9 6.67 7.8 6.38 0 78 67 76 70 77 51 50
5 1400/18/45 10 7.8 7.8 6.67 0 117 71 76 66 76 50 50
6 1400/20/45 1 6.67 7.8 6.67 0 130 96 75 66 77 50 49
6 1400/20/45 2 6.67 1.42 6.67 0 130 65 74 62 72 50 50
6 1400/20/45 3 6.67 5.53 6.52 0 169 112 74 61 72 50 50
6 1400/20/45 4 1.42 1.42 6.52 0 156 77 75 61 73 48 49
6 1400/20/45 5 6.67 7.8 6.38 0 91 108 77 69 81 50 49
6 1400/20/45 6 4.4 13.47 6.38 0 65 96 78 72 77 49 49
6 1400/20/45 7 4.4 6.67 6.52 0 104 85 76 68 77 51 50
6 1400/20/45 8 5.53 15.6 6.52 0 39 94 75 73 74 51 49
6 1400/20/45 9 7.8 7.8 6.52 0 104 91 74 67 76 51 50
6 1400/20/45 10 1.42 7.8 6.67 0 143 68 74 62 75 49 49

Table 5: Computational results of the mask models for patient configurations 1− 6
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
7 1600/15/40 1 7.09 15.6 6.81 2 78 145 89 84 82 51 50
7 1600/15/40 2 7.8 9.64 5.96 0 143 130 89 78 86 49 51
7 1600/15/40 3 6.38 6.38 6.24 1 169 104 90 77 89 51 51
7 1600/15/40 4 4.25 12.05 6.24 2 52 96 85 84 87 52 50
7 1600/15/40 5 1.84 7.8 6.24 2 169 110 86 77 91 52 51
7 1600/15/40 6 1.84 7.8 6.24 0 143 92 90 79 90 50 50
7 1600/15/40 7 6.38 11.35 6.95 0 91 82 88 82 88 51 51
7 1600/15/40 8 7.8 9.64 6.24 2 65 109 89 86 90 50 50
7 1600/15/40 9 1.84 7.8 6.38 2 143 94 88 78 88 51 50
7 1600/15/40 10 6.38 7.8 6.38 0 156 92 87 78 90 51 50
8 1600/18/40 1 6.24 7.09 7.09 0 156 139 88 76 85 51 50
8 1600/18/40 2 7.8 15.6 6.24 1 130 121 86 77 85 49 50
8 1600/18/40 3 6.38 7.8 7.09 0 130 91 87 77 85 52 50
8 1600/18/40 4 1.84 10.64 6.38 1 104 89 85 77 84 52 50
8 1600/18/40 5 7.09 7.8 6.38 0 182 106 87 73 92 52 50
8 1600/18/40 6 7.8 7.8 6.24 0 143 103 87 76 91 50 50
8 1600/18/40 7 7.8 7.8 6.95 1 130 80 86 77 88 51 51
8 1600/18/40 8 1.84 16.31 7.09 1 39 103 87 86 87 49 50
8 1600/18/40 9 6.38 7.8 7.09 0 169 87 85 73 83 51 51
8 1600/18/40 10 7.8 7.8 6.24 0 143 91 87 76 84 51 50
9 1600/20/40 1 1.84 8.51 7.09 0 104 120 84 78 86 51 50
9 1600/20/40 2 4.25 10.64 6.38 0 117 106 84 76 82 49 50
9 1600/20/40 3 6.38 6.38 7.09 0 169 88 86 73 85 50 51
9 1600/20/40 4 7.8 12.05 6.95 0 39 110 84 81 83 51 50
9 1600/20/40 5 6.38 7.8 6.95 0 169 111 85 72 89 52 50
9 1600/20/40 6 7.8 7.8 6.38 0 169 114 84 72 87 50 50
9 1600/20/40 7 6.38 11.35 6.95 0 91 103 85 78 85 50 51
9 1600/20/40 8 1.84 17.44 6.1 0 26 117 86 84 84 49 50
9 1600/20/40 9 1.84 7.8 6.52 0 195 80 84 69 85 51 51
9 1600/20/40 10 6.38 7.8 6.38 0 143 84 85 73 85 52 50
10 1600/15/45 1 7.8 20.71 6.24 2 39 133 87 85 87 57 57
10 1600/15/45 2 6.24 12.91 6.95 2 39 114 85 84 82 55 56
10 1600/15/45 3 5.11 19.43 5.96 1 26 131 86 85 82 55 56
10 1600/15/45 4 6.38 23.4 7.09 1 65 136 88 85 89 57 57
10 1600/15/45 5 6.38 17.44 6.24 2 65 127 84 80 81 57 57
10 1600/15/45 6 7.8 27.23 7.09 2 26 125 87 87 87 57 56
10 1600/15/45 7 6.38 21.98 7.09 1 52 138 88 84 85 56 57
10 1600/15/45 8 7.8 7.8 6.95 3 195 138 87 74 83 57 57
10 1600/15/45 9 6.38 17.73 7.09 1 52 120 88 86 88 56 57
10 1600/15/45 10 6.24 12.91 6.38 1 78 111 87 81 83 55 56
11 1600/18/45 1 6.24 14.04 6.1 1 65 110 84 80 83 56 56
11 1600/18/45 2 6.38 6.38 7.09 1 130 122 84 74 82 55 57
11 1600/18/45 3 6.38 28.51 6.24 0 0 138 84 83 85 55 57
11 1600/18/45 4 6.38 23.4 6.38 1 52 151 86 84 85 57 57
11 1600/18/45 5 6.38 23.4 6.95 2 52 168 81 79 74 57 57
11 1600/18/45 6 0.57 29.78 6.38 2 52 139 84 82 82 58 56
11 1600/18/45 7 6.38 27.23 6.38 1 52 130 85 82 81 56 56
11 1600/18/45 8 6.38 15.6 6.38 2 143 165 83 75 77 57 57
11 1600/18/45 9 7.09 5.11 5.96 1 143 152 83 75 79 57 57
11 1600/18/45 10 5.11 14.04 6.95 1 52 111 85 80 84 55 56
12 1600/20/45 1 7.09 21.84 6.24 1 39 141 81 80 80 57 56
12 1600/20/45 2 5.11 12.91 7.09 0 52 102 82 79 79 55 56
12 1600/20/45 3 5.11 28.51 6.38 0 0 145 82 81 74 55 57
12 1600/20/45 4 6.38 21.98 7.09 0 26 132 85 84 84 56 56
12 1600/20/45 5 1.84 16.31 7.09 2 52 148 80 78 77 57 57
12 1600/20/45 6 7.8 28.51 7.09 0 13 122 83 82 79 58 56
12 1600/20/45 7 7.8 20.71 6.38 1 52 144 84 79 80 56 56
12 1600/20/45 8 6.38 19.43 6.38 1 65 148 82 78 78 57 57
12 1600/20/45 9 5.11 20.71 6.38 1 39 104 84 81 81 56 56
12 1600/20/45 10 5.11 12.91 7.09 0 78 109 82 76 80 55 56

Table 6: Computational results of the mask models for patient configurations 7− 12
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C-ID Patient Run objective value/ # unsuc. appointment # regular slots # chronic slots
Config. deviation ω requests drw(·)

∑
k∈K

nµ(r, k)
∑
k∈K

nµ(c, k)

Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob-F RobM-F Det-F Rob(M)-F
13 2000/15/40 1 5.39 34.75 6.52 20 260 292 83 83 84 63 63
13 2000/15/40 2 5.67 14.61 6.67 19 286 285 82 79 83 65 63
13 2000/15/40 3 5.67 14.89 5.39 17 312 299 87 79 84 60 63
13 2000/15/40 4 4.68 22.69 6.38 21 299 297 84 82 86 64 62
13 2000/15/40 5 4.96 38.86 5.81 19 273 312 85 82 87 62 63
13 2000/15/40 6 7.09 21.98 6.52 19 260 297 83 82 83 63 62
13 2000/15/40 7 7.09 26.95 6.52 19 286 301 83 80 83 63 63
13 2000/15/40 8 7.09 16.88 6.38 19 260 270 84 83 86 63 62
13 2000/15/40 9 5.39 25.81 6.52 20 273 298 83 82 83 64 63
13 2000/15/40 10 4.96 18.01 6.38 17 286 259 84 81 85 63 63
14 2000/18/40 1 5.81 34.75 6.38 20 234 258 82 82 83 65 63
14 2000/18/40 2 5.67 15.46 5.81 17 247 262 82 80 81 64 63
14 2000/18/40 3 4.68 18.01 6.38 16 260 250 86 80 85 62 63
14 2000/18/40 4 7.09 29.78 6.67 17 247 266 85 83 85 63 62
14 2000/18/40 5 3.55 38.86 5.39 17 247 288 83 81 86 62 63
14 2000/18/40 6 7.09 20.28 6.52 16 260 268 83 81 84 63 63
14 2000/18/40 7 4.68 19.15 6.67 19 247 273 81 81 82 64 63
14 2000/18/40 8 5.39 6.38 6.52 18 260 257 84 81 84 62 62
14 2000/18/40 9 4.68 22.69 6.52 18 247 293 84 83 85 64 63
14 2000/18/40 10 4.96 25.81 6.38 17 221 242 84 84 85 63 63
15 2000/20/40 1 4.68 23.4 6.38 16 208 230 81 82 84 65 62
15 2000/20/40 2 7.09 14.61 6.52 15 234 249 83 79 81 64 63
15 2000/20/40 3 7.09 11.35 6.38 15 260 256 86 78 82 61 64
15 2000/20/40 4 5.81 25.81 6.38 18 260 269 83 81 85 64 62
15 2000/20/40 5 5.67 26.24 4.96 17 234 270 82 81 85 64 63
15 2000/20/40 6 7.09 14.89 6.52 15 234 262 83 80 79 63 63
15 2000/20/40 7 5.81 29.78 6.52 16 221 258 82 81 83 63 63
15 2000/20/40 8 5.39 18.01 6.81 16 247 267 84 80 82 62 63
15 2000/20/40 9 5.39 34.75 6.67 17 208 258 83 84 86 64 63
15 2000/20/40 10 4.68 24.68 6.38 16 221 245 84 82 82 63 63
16 2000/15/45 1 7.8 41.55 7.09 19 247 292 78 78 77 72 71
16 2000/15/45 2 5.81 21.41 11.2 21 286 305 76 75 78 71 71
16 2000/15/45 3 7.8 41.13 11.49 21 221 287 78 80 81 71 71
16 2000/15/45 4 7.8 40.42 11.49 20 273 304 77 76 77 72 71
16 2000/15/45 5 2.13 17.73 6.52 21 247 277 76 78 79 72 70
16 2000/15/45 6 7.8 15.6 6.95 19 286 304 78 77 79 71 70
16 2000/15/45 7 7.8 30.92 7.09 20 273 315 78 76 76 69 71
16 2000/15/45 8 7.8 36.02 7.09 19 273 296 78 77 77 71 71
16 2000/15/45 9 4.82 36.02 14.04 21 299 311 77 75 78 71 71
16 2000/15/45 10 6.38 29.78 6.52 21 299 308 76 74 75 71 71
17 2000/18/45 1 7.8 42.55 7.37 17 234 284 78 78 78 72 71
17 2000/18/45 2 6.38 21.98 9.93 19 286 304 77 74 74 70 71
17 2000/18/45 3 4.82 46.8 9.64 21 208 274 77 80 83 71 71
17 2000/18/45 4 2.13 40.42 12.05 20 260 307 75 75 75 72 71
17 2000/18/45 5 7.8 21.98 6.81 18 221 256 76 78 78 72 70
17 2000/18/45 6 4.82 23.4 7.52 21 286 297 76 75 78 72 71
17 2000/18/45 7 6.38 24.82 6.81 19 273 299 77 75 76 69 71
17 2000/18/45 8 7.8 31.2 6.95 18 260 294 79 77 77 70 70
17 2000/18/45 9 7.8 28.22 11.49 19 286 306 77 74 76 70 71
17 2000/18/45 10 2.13 29.78 10.92 21 247 269 75 76 77 72 71
18 2000/20/45 1 4.82 33.75 6.38 17 208 272 78 78 76 72 71
18 2000/20/45 2 5.81 21.98 12.05 17 273 265 78 73 76 69 71
18 2000/20/45 3 7.8 41.13 10.35 18 182 256 76 80 83 71 71
18 2000/20/45 4 7.8 40.42 15.17 18 247 268 76 75 81 71 71
18 2000/20/45 5 7.8 17.73 7.09 18 208 243 76 78 78 72 70
18 2000/20/45 6 5.67 19.15 6.95 19 273 268 76 75 79 72 71
18 2000/20/45 7 7.8 25.53 8.51 20 260 297 76 74 75 71 71
18 2000/20/45 8 2.13 28.22 7.09 17 286 289 78 74 76 69 71
18 2000/20/45 9 4.82 29.07 14.75 19 286 302 76 74 77 70 71
18 2000/20/45 10 5.81 37.01 13.19 18 208 239 74 77 77 72 71

Table 7: Computational results of the mask models for patient configurations 13− 18
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 59.43 9.31 9.33 3.28 5.07 2.05 2.04 1.81 1.27 0.98
2 1400/18/40 45.11 9.33 13.38 4.08 3.91 1.86 2.11 1.33 1.17 1.96
3 1400/20/40 58.82 9.87 11.96 2.01 5.28 1.68 1.6 2.28 0.83 1.69
4 1400/15/45 53.38 10.5 12.71 4.1 4.65 2.88 2.51 1.52 1.64 1.53
5 1400/18/45 50.49 10.04 8.73 4.27 5.04 2.24 2.54 2.39 3.17 1.8
6 1400/20/45 53.88 9.63 12.43 3.94 4.19 2.68 2.52 1.78 2.02 1.89
7 1600/15/40 100.65 18.04 21.48 9.68 10.39 4.8 6.92 5.47 5.82 5.67
8 1600/18/40 73.42 22.05 18.49 11.54 13.25 7.73 9 7.37 5.8 8.58
9 1600/20/40 97.9 19.67 23.84 10.57 12.64 6.37 11.05 6.3 9.2 6.27
10 1600/15/45 90.92 18.73 21.65 12.47 13.59 10.13 9.66 11.57 7.83 10.85
11 1600/18/45 96.96 23.17 21.48 14.46 17.23 11.58 10 10.58 9.51 8.05
12 1600/20/45 106.76 22.34 25 17.5 12.13 10.63 13.09 11.14 5.17 8.92
13 2000/15/40 257.01 68.46 67.54 67.51 53.61 53.46 48.89 51.12 56.07 52.32
14 2000/18/40 238.15 74.33 69.82 68.05 59.23 50.63 48.24 50.23 60.84 48.47
15 2000/20/40 227.15 76.88 65.48 72.86 53.47 52.05 53.72 53.46 51.89 45.22
16 2000/15/45 242.28 85.6 80.73 83.49 64.6 65.97 72.86 61.79 62.6 59.45
17 2000/18/45 230.46 86.4 74.72 77.64 77.15 67.71 67.32 60.04 64.66 65.12
18 2000/20/45 247.95 79.36 79.37 76.95 64.7 71.22 63.24 62.71 61.89 57.73

Table 8: Average overtime of the PCP among the ten runs
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 493.98 492.26 847.05 602.85 425.84 391.59 390.48 404.27 397.6 402.49
2 1400/18/40 516.51 480.46 824.52 583.96 416.16 390.62 409.91 387.45 392.84 397.65
3 1400/20/40 516.48 480.49 832.95 567.63 423.71 398.27 392.75 401.54 393.65 386.67
4 1400/15/45 492.17 462.7 782.85 566.4 395.8 366.98 376.37 374.37 372 367.86
5 1400/18/45 481.35 464.48 771.33 538.41 386.08 365.15 376.66 374.3 370.52 367.46
6 1400/20/45 485.01 444.78 770.05 528.41 381.47 371.14 361.77 382.39 370.07 368.61
7 1600/15/40 375.92 362.27 622.13 433.88 292.27 280.89 277.53 273.45 258.72 265.81
8 1600/18/40 376.54 349.4 622.37 437.73 285.24 270.78 271.72 272.38 271.97 257.19
9 1600/20/40 372.02 344.86 615.21 427.01 296.2 268.28 280.94 269.57 264.3 268.33
10 1600/15/45 337.32 314.56 584.57 393.52 268.51 263.69 267.45 258.6 240.58 250.07
11 1600/18/45 345.3 337.23 561.82 394.51 268.45 264.58 256.87 259.8 241.26 242.31
12 1600/20/45 323.86 325.86 586.08 394.26 275.01 260.96 258.22 254.06 239.98 248.45
13 2000/15/40 115.65 166.94 326.26 246.4 132.41 120.31 107.06 109.46 104.84 98.88
14 2000/18/40 115.14 167.14 324.67 217.99 120.01 129.02 113.47 116.95 106.66 110.29
15 2000/20/40 114.43 160.84 327.18 251.75 135.78 124.38 119.52 109.33 99.78 107.21
16 2000/15/45 81.36 145.07 280.86 217.63 118.66 101.68 90.83 103.01 90.5 106.18
17 2000/18/45 96.07 153.06 273.15 215.01 111.84 98.47 98 102.32 81.95 90.34
18 2000/20/45 99.88 135.05 293.59 208.47 111.9 96.36 106.29 100.57 97.26 97.02

Table 9: Average idle time of the PCP among the ten runs

C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 0.65 0.59 0.62 0.55 0.54 0.49 0.46 0.38 0.49 0.46
2 1400/18/40 0.65 0.61 0.62 0.53 0.51 0.5 0.5 0.41 0.48 0.46
3 1400/20/40 0.62 0.58 0.62 0.54 0.55 0.51 0.72 0.58 0.58 0.45
4 1400/15/45 0.66 0.56 0.6 0.52 0.49 0.48 0.52 0.55 0.4 0.4
5 1400/18/45 0.63 0.54 0.61 0.51 0.51 0.48 0.56 0.41 0.4 0.42
6 1400/20/45 0.64 0.57 0.62 0.48 0.49 0.44 0.52 0.63 0.44 0.38
7 1600/15/40 0.6 0.54 0.63 0.5 0.49 0.54 0.39 0.4 0.44 0.51
8 1600/18/40 0.62 0.55 0.63 0.5 0.52 0.56 0.48 0.46 0.41 0.4
9 1600/20/40 0.59 0.57 0.61 0.5 0.49 0.55 0.53 0.46 0.41 0.42
10 1600/15/45 0.6 0.53 0.59 0.53 0.51 0.54 0.53 0.42 0.45 0.5
11 1600/18/45 0.6 0.5 0.59 0.49 0.52 0.58 0.53 0.43 0.45 0.51
12 1600/20/45 0.59 0.57 0.59 0.49 0.5 0.55 0.38 0.58 0.45 0.48
13 2000/15/40 0.65 0.53 0.54 0.49 0.46 0.47 0.35 0.39 0.45 0.42
14 2000/18/40 0.62 0.52 0.55 0.47 0.47 0.52 0.43 0.52 0.48 0.44
15 2000/20/40 0.59 0.51 0.54 0.47 0.44 0.44 0.41 0.57 0.49 0.48
16 2000/15/45 0.55 0.5 0.53 0.46 0.44 0.5 0.43 0.64 0.41 0.41
17 2000/18/45 0.57 0.47 0.52 0.44 0.46 0.49 0.48 0.66 0.38 0.47
18 2000/20/45 0.55 0.53 0.54 0.45 0.46 0.52 0.45 0.47 0.43 0.41

Table 10: Average maximum deviation of the actual from the optimal PCP’s workload
among the ten runs
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 1.11 5.1 2.41 6.29 2.2 1.89 2.03 2.24 2.31 2.23
2 1400/18/40 1.11 5.03 2.35 6.14 2.13 1.96 2.06 2.25 2.37 2.24
3 1400/20/40 1.1 5.05 2.3 6.06 2.09 1.95 2.1 2.23 2.32 2.18
4 1400/15/45 1.13 6.29 2.55 4.53 2.31 2 2.04 2.28 2.34 2.22
5 1400/18/45 1.13 6.31 2.49 4.55 2.26 2.04 2.05 2.23 2.29 2.16
6 1400/20/45 1.13 6.3 2.44 4.6 2.21 2.1 2.02 2.23 2.32 2.28
7 1600/15/40 1.15 6.43 2.82 4.28 2.59 2.04 2.03 2.22 2.27 2.25
8 1600/18/40 1.15 6.36 2.75 4.33 2.52 2.01 2.07 2.19 2.34 2.22
9 1600/20/40 1.14 6.37 2.69 4.32 2.48 1.97 2.05 2.21 2.34 2.23
10 1600/15/45 1.2 7.35 2.98 4.86 2.73 2.16 2.16 2.21 2.47 2.36
11 1600/18/45 1.2 7.33 2.92 4.8 2.67 2.15 2.13 2.21 2.43 2.31
12 1600/20/45 1.19 7.35 2.87 4.81 2.64 2.16 2.16 2.25 2.36 2.39
13 2000/15/40 1.36 7.74 3.88 6.01 3.48 2.54 2.45 2.54 2.57 2.62
14 2000/18/40 1.33 7.71 3.74 6.02 3.37 2.52 2.36 2.43 2.51 2.48
15 2000/20/40 1.31 7.72 3.66 5.95 3.3 2.5 2.32 2.49 2.42 2.46
16 2000/15/45 1.46 7.93 4.73 7 4.09 2.72 2.57 2.63 2.75 2.65
17 2000/18/45 1.42 7.93 4.6 6.97 3.97 2.69 2.53 2.59 2.71 2.69
18 2000/20/45 1.4 7.94 4.48 6.99 3.9 2.71 2.56 2.56 2.69 2.58

Table 11: Average access time to an appointment for regular patients among the ten runs

C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 1.41 4.71 1.71 2.84 1.52 3 3.09 3.22 3.1 3.3
2 1400/18/40 1.41 4.67 1.71 2.82 1.52 3.02 3.14 3.19 3.17 3.23
3 1400/20/40 1.41 4.69 1.71 2.81 1.53 3.08 3.16 3.09 3.07 3.05
4 1400/15/45 1.4 5.93 1.75 3.32 1.54 3.12 2.97 3.25 3.09 3.14
5 1400/18/45 1.4 5.96 1.75 3.33 1.54 3.15 2.91 3.04 2.95 2.98
6 1400/20/45 1.4 5.96 1.75 3.36 1.55 3.23 2.88 3.07 2.97 3.18
7 1600/15/40 1.4 6.07 1.71 3.44 1.53 3.08 2.88 3.22 3.05 3.22
8 1600/18/40 1.4 6.03 1.71 3.45 1.54 3.01 3 3.02 3.15 3.09
9 1600/20/40 1.4 6.02 1.71 3.48 1.54 3.06 2.98 3.11 3.12 3.21
10 1600/15/45 1.41 7.04 1.78 4.58 1.6 3.08 3.14 3.12 3.23 3.27
11 1600/18/45 1.41 7.05 1.79 4.53 1.6 3.07 3.07 3.05 3.16 3.09
12 1600/20/45 1.4 7.06 1.79 4.51 1.6 3.08 3.05 3.22 3 3.22
13 2000/15/40 1.39 7.34 1.81 5.61 1.62 3.25 3.03 3.11 3.07 3.15
14 2000/18/40 1.39 7.33 1.81 5.6 1.62 3.28 2.92 3 2.99 3
15 2000/20/40 1.39 7.35 1.82 5.56 1.62 3.28 2.89 3.19 2.89 2.97
16 2000/15/45 1.42 7.5 1.97 6.57 1.77 3.27 2.84 3.02 2.86 2.87
17 2000/18/45 1.42 7.48 1.97 6.56 1.79 3.27 2.86 3.04 2.94 3.04
18 2000/20/45 1.42 7.5 1.96 6.58 1.79 3.35 3.03 3.05 2.95 2.88

Table 12: Average access time to an appointment for chronic patients among the ten runs
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 988.1 5172.7 2940.8 4872.7 2763.5 1346.1 1488.2 1729.7 1358.4 1353.7
2 1400/18/40 942.5 4985.8 2756.1 4692.2 2579.4 1398.8 1422.8 1693.3 1307.4 1300.9
3 1400/20/40 916.1 4869.9 2643.6 4574.2 2465.3 1284.7 1422.5 1662.8 1233.5 1311
4 1400/15/45 985.2 5123.4 3155.2 5023.2 2979.5 1310.6 1468.2 1675.7 1392.1 1371.8
5 1400/18/45 941.3 4946.5 2983.1 4845.7 2802.1 1316.9 1437.6 1669.5 1328.5 1273.6
6 1400/20/45 912.4 4828.2 2869.3 4728.3 2690 1289.9 1384.7 1578.1 1295.4 1247.2
7 1600/15/40 1209.9 5927.5 3975.1 5857.1 3793.6 1716.6 1805.1 1915.7 1489.2 1611.4
8 1600/18/40 1150.2 5722.3 3772.1 5646.8 3590.3 1639.8 1712.3 1910.1 1529.6 1529.1
9 1600/20/40 1113.3 5581.3 3637.7 5514.1 3456.8 1465.5 1631.9 1844 1504.5 1418.7
10 1600/15/45 1261.8 5889.8 4220.3 5846.4 4045.7 1868.1 1732.1 1875.7 1701.5 1706.1
11 1600/18/45 1201.1 5687.4 4023.5 5647 3848 1761.8 1666.9 1851.2 1596.7 1617.3
12 1600/20/45 1161 5551.8 3891.2 5510 3715.7 1710.6 1662.8 1742 1523.8 1630.7
13 2000/15/40 1991.4 7429.4 5980.5 7384.4 5813.2 3026.5 2978.2 3082.6 2659.4 2921.7
14 2000/18/40 1851.8 7168.9 5725.9 7119.1 5557.5 2853.7 2748.4 2836.4 2482.1 2708.3
15 2000/20/40 1769.4 6996.6 5561.5 6948.2 5393.8 2744.2 2620.8 2735 2334.1 2627.8
16 2000/15/45 2219.3 7460.5 6358.9 7414.3 6202.7 3339.8 3385.9 3314.4 3101.8 3252.2
17 2000/18/45 2055.9 7203.9 6118.4 7159.2 5953.2 3160.1 3128 3121.1 2839 3035.2
18 2000/20/45 1953.9 7031.1 5956.3 6991.1 5791.7 3025.2 2979.3 2976.2 2719 2837.8

Table 13: Average total number of patient with an unsuccessful appointment request
among the ten runs

C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 94.8 9.4 25.7 3.4 6.8 0.4 0.8 1.3 0 0
2 1400/18/40 95.4 9.8 26.1 5.9 4.8 0.1 0.5 0.6 0.3 0.2
3 1400/20/40 101.3 8.1 28.7 2 5.7 0.2 0.6 0.6 0.3 0.3
4 1400/15/45 88 10.6 22.5 4.2 5.9 0.3 0.5 0.2 0.2 0.2
5 1400/18/45 91.4 9.3 21.4 4.3 7.3 0.5 0.5 0.5 0.2 0
6 1400/20/45 94.7 9.9 21.6 3.1 5.7 0.7 0.1 0.9 0 0
7 1600/15/40 163.2 29.3 55.5 16.5 23.7 3 3.2 2.2 1.7 1.7
8 1600/18/40 169.8 36.6 56.3 18.6 25.3 3.3 4.8 4 2.1 2.4
9 1600/20/40 176 30.5 54.7 19.6 24.5 2.1 4.1 3.3 3.5 2.6
10 1600/15/45 160.9 34 58.4 22.1 27.1 7.8 3.6 5.1 2.3 2.7
11 1600/18/45 172 41.5 55.6 25.6 26.5 6.5 5.7 4.7 3.4 3.4
12 1600/20/45 175.5 43 61.3 23.8 28.8 6.7 3.8 5 4.3 4.6
13 2000/15/40 350.4 264.2 263.9 209.6 218.4 99.4 82.5 68.4 76.6 60.4
14 2000/18/40 364.5 268.2 273.3 222 212.3 104.8 82.8 74.1 75 73.5
15 2000/20/40 370.2 263.5 271.2 215.4 213.8 100.8 77.5 80.3 72.3 73.3
16 2000/15/45 378.1 319.9 305.2 267.9 253.3 152.7 123.6 120.8 102.6 104.5
17 2000/18/45 386.2 315.1 304.7 276.9 250.3 149.3 119.7 126.8 105.4 109.3
18 2000/20/45 399.7 304.1 303.2 280.3 259.1 152 119.9 114.1 108 97.4

Table 14: Average total number of rejected walk-ins among the ten runs
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 54.9 8 19.7 2.5 4.9 0.1 0.3 0.7 0 0
2 1400/18/40 51.3 7.6 19.9 4.3 3.3 0.1 0.4 0.4 0.2 0.2
3 1400/20/40 51.3 6.9 20.2 1.7 3.4 0.1 0.3 0.5 0.2 0.2
4 1400/15/45 53.1 7.7 18.1 3.7 5.3 0.3 0.3 0.1 0 0.2
5 1400/18/45 50 6.9 16.6 3.5 5.4 0.2 0.3 0.4 0.2 0
6 1400/20/45 49.7 7.2 16 2.9 3.6 0.6 0.1 0.7 0 0
7 1600/15/40 107 22.2 45.6 14 18.8 1.7 1.6 1.3 0.6 1.2
8 1600/18/40 100.1 28.6 42.5 14.7 19.3 1.4 3 2.1 0.5 0.8
9 1600/20/40 100.2 22.8 41 14.8 16.9 0.8 2.1 1.6 2 0.9
10 1600/15/45 108.7 27.5 46.9 17.6 21.9 5.2 1.8 3 1.4 1.5
11 1600/18/45 107.1 31.5 44.1 18.8 20.2 4.1 2.9 3.3 1.6 2.2
12 1600/20/45 105.4 31.5 46.6 16.9 20.2 4 2.1 2.6 1.9 2.6
13 2000/15/40 247 200.8 217.8 162.4 181.5 70.5 55.7 47.8 47.6 38.6
14 2000/18/40 237.6 196.7 217.2 164.8 168.8 69.4 51.4 45 42 47.1
15 2000/20/40 228.9 183.4 210.9 161 161.9 63.5 47.3 48.3 37.3 41.7
16 2000/15/45 269 232.1 255.2 198.4 210.4 113.8 87.8 85 65 74.9
17 2000/18/45 254.4 223.6 243.5 200.9 193.4 104.8 79.4 84.6 64.6 71.9
18 2000/20/45 251.7 209.8 234.7 199 198.4 97.5 72.8 73.1 60.5 59.3

Table 15: Average total number of rejected walk-ins who previously had an unsuccessful
appointment request among the ten runs

C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 5.84 3.54 3.06 3.42 5.67 6.32 6.29 6.27 6.18 6.19
2 1400/18/40 5.84 3.39 3.09 3.6 5.84 6.17 6.04 6.06 6.38 6.26
3 1400/20/40 6 3.4 3.18 3.45 5.89 6.14 6.14 6.17 6.06 6.24
4 1400/15/45 5.91 3.4 3.17 3.41 5.72 6.36 6.36 6.12 6.34 6.11
5 1400/18/45 5.97 3.53 3.25 3.33 5.8 6.46 6.21 6.21 6.38 6.3
6 1400/20/45 5.91 3.64 3.21 3.46 5.76 6.25 6.19 6.26 6.2 6.42
7 1600/15/40 6.16 3.51 3.48 3.54 5.87 6.32 6.49 6.37 6.45 6.44
8 1600/18/40 6.15 3.64 3.41 3.31 5.69 6.32 6.64 6.28 6.26 6.61
9 1600/20/40 6.22 3.62 3.39 3.49 5.74 6.52 6.59 6.6 6.49 6.52
10 1600/15/45 6.33 3.55 3.48 3.46 5.8 6.42 6.42 6.62 6.3 6.56
11 1600/18/45 6.5 3.7 3.47 3.38 5.84 6.43 6.59 6.38 6.52 6.48
12 1600/20/45 6.54 3.59 3.4 3.53 5.81 6.55 6.54 6.72 6.43 6.4
13 2000/15/40 6.71 3.52 3.6 3.49 5.74 6.67 6.62 6.47 6.68 6.59
14 2000/18/40 6.71 3.66 3.63 3.48 5.71 6.5 6.42 6.48 6.58 6.51
15 2000/20/40 6.67 3.52 3.64 3.4 5.61 6.52 6.54 6.62 6.42 6.39
16 2000/15/45 6.72 3.59 3.76 3.33 5.71 6.56 6.42 6.43 6.51 6.4
17 2000/18/45 6.73 3.38 3.67 3.6 5.64 6.32 6.52 6.45 6.46 6.37
18 2000/20/45 6.82 3.43 3.71 3.48 5.7 6.52 6.4 6.57 6.52 6.46

Table 16: Average waiting time for treatment within the practice for patients with ap-
pointments among the ten runs
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C-ID Config. IBFI AA AM HM 2B M RM-52 RM-13 MM-52 MM-13
1 1400/15/40 101.91 29.28 46.96 40.54 67.01 65.88 60.77 60.13 65.85 64.05
2 1400/18/40 97.06 29.45 47.55 40.9 67.17 64.24 57.99 59.1 64.57 63.73
3 1400/20/40 95.82 29.76 47.11 40.44 67.48 63.23 58.42 58.81 62.87 63.48
4 1400/15/45 100.76 30.26 45.9 40.97 65.98 67.92 62.27 60.87 65 66.24
5 1400/18/45 96.3 30.11 45.62 40.53 66.4 67.13 62.65 60.73 66.18 64.48
6 1400/20/45 94.61 29.94 45.91 41.03 66.51 65.43 62.88 60.18 63.19 64.01
7 1600/15/40 108.9 36.07 51.26 47.66 72.03 75.93 70.65 68.02 77.24 73.94
8 1600/18/40 103.64 36.24 50.74 47.16 71.81 74.86 70.95 67.96 76.22 73.98
9 1600/20/40 102.74 36.25 51.11 47.78 71.35 72.95 71.29 68.87 73.89 72.95
10 1600/15/45 110 37.1 51.17 48.98 71.99 78.96 75.72 73.77 80.16 77.95
11 1600/18/45 106.28 37.63 51.46 48.5 72.73 76.9 74.58 73.28 78.87 76.21
12 1600/20/45 104.69 36.99 50.99 48.41 71.54 75.77 73.67 73.2 78.57 75.52
13 2000/15/40 121.75 51.22 62.63 62.81 84.51 93.31 91.24 89.86 100.14 94.17
14 2000/18/40 119.57 51.52 63.25 63.09 84.93 92.34 90.03 90.12 98.92 93.97
15 2000/20/40 117.72 51.6 62.64 63.02 84.52 91.72 90.32 90.16 97.58 93.32
16 2000/15/45 120.79 53.55 64.8 64.85 85.86 97.19 93.28 95.23 100.73 97.88
17 2000/18/45 118.97 53.59 64.16 65.28 86.21 96.06 93.19 95.76 100.12 98.11
18 2000/20/45 118.51 53.14 64.61 64.81 86.17 96.26 93.04 94.83 99.65 97.24

Table 17: Average waiting time for treatment within the practice for walk-ins among the
ten runs
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