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1. Introduction

Convex multiobjective optimization problems have several objectives that are to be op-
timized simultaneously. A common task is to compute the nondominated set. Since the
number of nondominated solutions of a multiobjective optimization problem is in general
unbounded, approximation algorithms are often used. One common approach is to con-
struct an inner and outer polyhedral approximation of a convex bounded nondominated
set using nondominated points and their gradients. Algorithms of this type are often
called (Simplicial) Sandwiching algorithms (e.g. [5], [21], [32], [36]) or Benson-type algo-
rithms (e.g. [2], [8], [11], [27]). By iteratively computing additional nondominated points,
the inner and outer approximations describe the nondominated set more accurately.
The same algorithmic ideas are also applied to the approximation of convex functions

(e.g. [33]) and convex sets (e.g. [17], [18]). Recently, the idea of Sandwiching algorithms
has been applied to the approximation of multiple convex nondominated sets, e.g. for
multiobjective mixed-integer convex optimization in [6] (bi-objective problems) and [23]
(general number of objectives).
In this article, we will investigate the convergence behaviour of a Sandwiching algo-

rithm. In particular, we show that the algorithm converges and how fast the approxi-
mation error decreases with the number of Sandwiching iterations. This property is also
called convergence rate (see [33], [17], [21]). In contrast to the rate of convergence of
sequences from numerical analysis, this convergence rate is a property of sets. We obtain
the convergence rate result by extending the approach given in [17] for an algorithm for
the inner and outer approximation of convex compact sets to our Sandwiching algorithm
for multiobjective optimization and a class of different quality indicators.
For a variant of the Sandwiching algorithm, applied to the approximation of convex

functions, a proof of the convergence rate has been derived in 1992 for the two-dimensional
case [33]. This result has been transferred to the approximation of two-dimensional
nondominated sets in [21].
For another Sandwiching variant used to approximate convex compact sets by poly-

topes, a proof of the convergence rate of an inner and outer approximation algorithm of
convex compact sets has been published in 1996 by Kamenev for the general-dimensional
case [17]. The article was published in Russian only1. Therefore, we state some straight-
forward extensions of proofs given in [17] in the appendix to make them accessible to the
English-speaking community.
In this article, we will first introduce the Sandwiching algorithm for the approximation

of the nondominated sets of convex bounded multiobjective optimization problems. Then
we will state the algorithm for the inner and outer approximation of convex compact sets
introduced in [17] and expand it so that it can be related to our Sandwiching algorithm
for convex bounded multiobjective optimization.
Recently, in [3] a proof of the convergence rate of a polyhedral outer approximation al-

gorithm of convex bounded nondominated sets was introduced, also based on Kamenev’s

1We obtained the article in Russian and translated it. The article is cited in [28]. The citation list
of the book mentions that the article has been translated to English. However, the English version
cannot be found using the inter-library loan database digibib.
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work.
In Section 4 we extend the convergence rate results to the expanded algorithm with

a class of quality indicators. Then, we apply the results to the Sandwiching algorithm
for convex bounded multiobjective optimization problems in Section 5. The main results
of this article are given in Sections 5.2 and 5.3 where the convergence results for the
Sandwiching algorithm with the quality indicators polyhedral gauge and epsilon indicator
are derived.
Finally, we discuss the quality of the proved convergence rates. Under sufficient regu-

larity assumptions, the convergence rate of the Sandwiching algorithm is optimal.

2. Preliminaries

2.1. Bounded convex multiobjective optimization

A convex multiobjective optimization problem is defined as

min f(x) = (f1(x), . . . , fd(x)) subject to x ∈ X , (1)

(Definition 2.1.3 of [30]), where f(x) denotes the vector of d convex objective functions
fi : Rk → R, and the decision vectors x ∈ Rk are elements of the convex feasible set
X . We denote Y := {f(x)∀x ∈ X}. We assume that the problem is solved with respect
to a pointed, convex ordering cone C fulfilling 0 ∈ C and C ⊃ Rd≥. Additionally, we
assume that the problem is bounded in the sense that there is a point p̂ ∈ Rd such that
cl(Y + C) ⊂ {p̂}+ C where cl(·) denotes the closure [37].
A feasible solution x̂ ∈ X is called efficient if there is no other x ∈ X such that

f(x) ≤ f(x̂). The set of all efficient points is denoted XE . If x̂ is efficient, f(x̂) is
called nondominated .The set of all nondominated points is denoted YN . A feasible
solution x̂ ∈ X is called weakly efficient if there is no x ∈ X such that f(x) < f(x̂), i.e.
fi(x) < fi(x̂) ∀i = 1, . . . , d. If x̂ is weakly efficient, f(x̂) is called weakly nondominated
[10].
The weighted sum scalarization of problem is given by ((3.3) of [10])

min
x∈X

d∑
i=1

λifi(x) (2)

with values λ = (λ1, . . . , λd) ∈ Rd≥. Well-known results include that for a convex opti-
mization problem, every solution of the weighted sum problem is weakly nondominated
and that every element of the nondominated set can be computed by solving weighted
sum scalarization problems for λ ∈ C∗\{0} where C∗ denotes the dual cone (e.g. [10]).
A vector k ∈ Rd\{0} is called a direction of the cone C if {c + αk ∈ Rd : c ∈ C, α >

0} ⊂ C. The set of extreme directions of a convex cone is a minimal set of directions such
that all directions of the cone lie in their convex hull. If the solution of the weighted sum
scalarization problem (2) for all extreme directions of the dual cone C∗ of C is bounded,
the convex multiobjective optimization problem is bounded [37].
The point yN = (yN1 , . . . , y

N
d ) given by yNk := maxx∈XE

fk(x) = maxy∈YN ykis called
the nadir point of the multiobjective optimization problem (Definition 2.22.2 of [10]).
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2.2. The Sandwiching Algorithm and common quality indicators

2.2.1. The Algorithmic Idea of Sandwiching Algorithms

Sandwiching algorithms are used to approximate the nondominated sets of bounded
convex multiobjective optimization problems.
To apply the convergence rate proof that will be presented in this article, the set

that is approximated by the Sandwiching algorithm needs to be a convex compact set.
Adding the domination cone to the feasible objective set does not have any effect on
its nondominated set (Y)N = (Y + C)N (Lemma 1.1.5 of [22]), where (·)N denotes the
nondominated set operator. We use the property that Y+C is a convex set (Lemma 1.19
of [36]). To obtain a bounded set, we remove those parts of the nondominated set
exceeding the nadir point yN of the multiobjective optimization problem. No efficient
method for determinimg the nadir point for general multiobjective optimization problems
is known [10]. Therefore, in practice the nadir point is approximated as ỹN . Together,
we obtain the set that will be approximated by the Sandwiching algorithm

P := (Y + C)N ∩ (ỹN − Rd≥). (3)

Since we assume that the multiobjective optimization problem is bounded, removing the
part of the nondominated set exceeding ỹN makes P a convex compact set. If the nadir
estimation is exact, i.e. ỹN = yN , then (P)N = YN . If the nadir approximation is
not dominated by the true nadir point, a part of the nondominated set may be cut off.
Instead of ỹN , a different upper bound on the part of the nondominated set that the
decision maker is interested in can be used.
A similar approach of obtaining a convex compact set that is approximated by the

Sandwiching algorithm is used in [2], where a concave minimization problem is solved to
construct a halfspace that contains the nondominated set.
The Sandwiching algorithm as used in [22], [5], [36] is given in Algorithm 1. After an

initial approximation, e.g. consisting of the extreme compromise solutions, has been com-
puted, an inner and an outer approximation are constructed. The inner approximation
is defined as the convex hull of the nondominated points, extended by the domination
cone. The outer approximation is defined as the intersection of the half-spaces contain-
ing the nondominated set that support the nondominated points. Due to convexity,
the nondominated set is contained in the outer approximation and contains the inner
approximation.
Then, the approximation quality is determined. The approximation quality is the

maximal minimal distance between the inner and the outer approximation with respect
to some quality indicator. It is an upper bound on the approximation error. Common
quality indicators are the epsilon indicator and the polyhedral gauge. The facet of the
inner approximation where the largest distance to the outer approximation was attained
is used as the starting point for computing a new nondominated point zn+1 by using the
facet normal as the parameter for the weighted sum scalarization problem. Then, the
tangential hyperplane of the resulting weakly nondominated point is parallel to this facet
of the former inner approximation.
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Then, the inner approximation is updated by In+1 = conv{zn+1, In}, the outer ap-
proximation is updated by On+1 := HS(wn+1, bn+1) ∩On.

Algorithm 1 Scheme of the Sandwiching algorithm
Require: Target quality ε, quality indicator δ
1: Set n := 0. Compute initial approximations I0, O0, nadir point approximation ỹN ,

initial approximation quality δ := δ(I0, O0) and candidate weight π0.
2: while δ > ε do
3: Set n := n+ 1.
4: Solve z := min{

∑d
i=1 π

n−1
i fi(x), x ∈ X} to obtain a new nondominated point.

5: Update In := conv{z, In−1}, On := H(πn−1, πn−1z) ∩On.
6: Compute the approximation quality δ := δ(In, On) and compute the

candidate weight πn.
return In, On, δ

2.2.2. Common Quality Measures: Epsilon Indicator and Polyhedral Gauge

One quality criterion commonly used in Sandwiching algorithms (e.g. [5], [32]) but also
other algorithms approximating nondominated sets or studies in multiobjective optimiza-
tion, e.g. in [7], [25] or [38] is the epsilon indicator or ε-indicator.

Definition 2.1. The epsilon indicator δε(I,O) of a Sandwiching approximation I,O is
the smallest number ε ≥ 0 such that for every z ∈ O there exists a point in the inner
approximation z′ ∈ I such that z′ ≤ z + ε · e where e = (1, . . . , 1) ∈ Rd (Definitions 1
and 2 of [7]).

To determine the epsilon indicator between an inner and outer Sandwiching approx-
imation, it suffices to determine the epsilon indicator between vertices of the outer ap-
proximation and the inner approximation (Proposition 4.1 of [5]).
While the epsilon indicator is an absolute measure of the approximation quality, there

are also relative quality indicators. One example that is used to measure the approxi-
mation quality of the Sandwiching approximation, for example in [21] and [36], is based
on the polyhedral gauge. We translate the bounded nondominated set such that the
nadir point lies in the origin. For In, we define the reflected inner approximation as the
reflection set of In (see Definition 2 of [34])

InR := R(In) := ∪
z∈In

{
w ∈ Rd : |wi| = |zi| ∀i = 1, . . . , d

}
.

Definition 2.2. For a vertex s of the outer approximation, the polyhedral gauge

γInR(s) := min {λ ≥ 0 : z ∈ λInR}

(Definition 2.1.1 of [21]) describes the factor by which InR has to be scaled to reach s.
As a quality criterion we use the polyhedral gauge subtracted by one so that the quality
value is zero for exact approximation.
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Since all nondominated points and s lie in the same orthant Rd≤, we can omit reflecting
In and work with it directly.
Both the epsilon indicator and the polyhedral gauge distance between the inner and

outer approximation of a Sandwiching algorithm can be computed by solving a linear
program. For an efficient way to compute these qualities, see [24].

2.3. The convergence rate

The convergence rate is an asymptotic property of an approximation algorithm. It de-
scribes how fast the approximation error decreases with the number of iterations. While
this definition is used e.g. in [33], [17], [21] and [3], there also exist different definitions
of convergence rates in literature which might not be equivalent.

Definition 2.3. Let In be the inner, On the outer approximation constructed by the
Sandwiching algorithm in iteration n of a convex compact set or of the nondominated
set of a bounded convex multiobjective optimization problem.
Then the Sandwiching algorithm has the convergence rate r if r is the largest real

number such that for every ε > 0 there exists a n0 ∈ N such that for every n ≥ n0 it
holds

d(In, On) ≤ C(ε)n−r

for a constant C depending on ε and a metric d on finite-dimensional nonempty compact
sets, e.g. the Hausdorff metric.

3. Polyhedral approximation of convex compact sets

3.1. Introducing the Kamenev algorithm for the approximation of convex
compact sets

In his 1996 article [17] (in Russian), Kamenev introduces an algorithm for the simulta-
neous inner and outer approximation of convex compact sets. To distinguish between
those algorithms approximating convex compact sets and those algorithms that approx-
imate convex bounded nondominated sets, we use different notation. For the algorithms
approximating nondominated sets, the inner approximation is denoted by I , the outer
approximation is denoted by O. When approximating convex compact sets, we denote
the polytope forming the inner approximation by P and the outer approximation by Q.
Before stating the algorithm, we introduce some notation and definitions.
We denote by Bρ(x) a ball of radius ρ with centre x. The volume of a unit ball in Rd

is denoted by πd.

Definition 3.1 ( [17]). Let C be the set of convex compact subsets of Rd with nonempty
interior.
For C ∈ C we denote by ∂C the boundary of C. Its asphericity α(C) is defined as the

minimal ratio of the radii of concentric outer and inner spheres. The surface area of C
is denoted by σ(C).
For C ∈ C and u ∈ Rd let us introduce
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• the support function of C: gC(u) := max{〈u, x〉 : x ∈ C},

• the supporting half-space: HC(u) := {x ∈ Rd : 〈u, x〉 ≤ gC(u)},

• the supporting hyperplane: ∂HC(u) = {x ∈ Rd : 〈u, x〉 = gC(u)} and

• the set of tangent points: TC(u) := C ∩ ∂HC(u) = {x ∈ C : 〈u, x〉 = gC(u)},

where 〈·, ·〉 denotes the standard scalar product on Rd.

Definition 3.2. Let A ⊂ Rd be a compact subset. The set A has twice continuously
differentiable boundary if for every boundary point a ∈ ∂A there exists an open neigh-
bourhood U ⊂ Rd and a twice continuously differentiable function ψ : U → R that fulfils
A ∩ U = {x ∈ U : ψ(x) ≤ 0} and ∇ψ(x) 6= 0 ∀x ∈ U (adaptation of [12] p. 179).
Let C 2 be the set of convex compact subsets of Rd with non-empty interior, with twice

continuously differentiable boundary and positive principal curvatures ( [17]).
For C ∈ C 2 the radius of curvature of a point x ∈ ∂C is given by the maximal radius

of balls Br(y) for some y ∈ C that fulfil Br(y) ⊂ C and x ∈ ∂Br(y). We denote by
ρmin(C) and ρmax(C) the minimum and maximum radii of curvature of the surface of C.

Definition 3.3 (p. 16f of [9]). A polyhedron is defined as the intersection of a finite
number of closed half-spaces. A bounded polyhedron is also called a polytope.

Definition 3.4 ( [17]). Let P be the set of convex polytopes. For P ∈P we denote by
nv(P ) the number of its vertices, and by nf (P ) the number of its facets.
For C ∈ C let us introduce the set of inscribed polytopes P i(C) ⊂ C whose vertices

belong to the boundary ∂C of C, and the set of circumscribed polytopes Pc(C) ⊃ C
whose facets touch ∂C.
For P ∈ P we denote by U(P ) ⊂ Sd−1 := {x : ||x|| = 1} the set of vectors of unit

outer normals to the facets of P .

Definition 3.5 ( [17]). A (d − 1)-dimensional face of a polytope P ∈ P, P ⊂ Rd is a
called a facet of P .
In the case d = 3, for example, triangular faces are facets, while one-dimensional faces

are segments and zero-dimensional faces are points.

Next, we introduce the algorithm given in [17] for the inner and outer approximation
of convex compact sets with nonempty interior.
We construct an inner and outer approximation of C ∈ C . Let an initial inner and outer

approximation P 0 ∈ P i(C), Q0 ∈ Pc(C) be given. Algorithm 2 describes the (n + 1)-
th iteration of the algorithm. First, a facet of Pn with normal u∗ is determined where
the support function distance between the inner and outer approximation is maximal.
If the distance does not vanish, a point p∗ ∈ ∂C is determined that has normal u∗.
Then, the inner approximation is augmented by the new point p∗ by forming the convex
hull conv{{p∗} ∪ Pn}. The supporting hyperplane of C in p∗ cuts the former outer
approximation to yield the next outer approximation.
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Algorithm 2 Step n+1 of the inner and outer approximation of convex compact sets [17]

1: Let Pn ∈P i(C), Qn ∈Pc(C) be constructed.
2: Find u∗ ∈ arg max{gQn(u)− gPn(u) : u ∈ U(Pn)}
3: if gQn(u∗)− gPn(u∗) 6= 0 then
4: Find p∗ ∈ TC(u∗)
5: Set Pn+1 = conv{{p∗} ∪ Pn}.
6: Set Qn+1 = Qn ∩HC(u∗).
7: else
8: Stop.

Let us denote by LC(n) the number of problems of calculating the distance between
inner and outer approximation and the problems of finding a point of contact of C with
its supporting hyperplane, solved for finding approximating polytope Pn and Qn. Then,
(see [17])

nv(Pn) ≤ nv(P 0) + n, nf (Qn) ≤ nf (Q0) + n, LC(n) = LC(0) + n. (4)

3.2. Reformulating the Kamenev algorithm for a class of quality criteria

The Kamenev algorithm [17] (Algorithm 2) selects the facet of the inner approximation
starting from which a new point will be added by computing

u∗ = arg max{gQn(u)− gPn(u) : u ∈ U(Pn)},

the facet normal u∗ is selected where the support function distance between the inner and
outer approximation is maximal. The term gQn(u) − gPn(u) for u ∈ U(Pn) is therefore
used as a quality indicator of the current approximation.
We modify Algorithm 2 to allow different quality indicators and introduce a stopping

criterion. In the following, we will call this algorithm Sandwiching with variable selection.
We will call the Algorithm 2 version given in [17] Sandwiching with support function
selection.
Again, we assume that some initial inner and outer approximations are given. The

following Algorithm 3 describes the (n+ 1)-th iteration of the algorithm.

Algorithm 3 Sandwiching algorithm with variable selection
1: Select a facet of the inner approximation by its normal u∗ that attains the largest

distance (by some (pseudo)metric) to the outer approximation.
2: if the calculated distance does not satisfy the stopping criterion then
3: Find p∗ ∈ TC(u∗) (p∗ ∈ ∂C, u∗ is unit outer normal of C in p∗).
4: Add p∗ to the inner approximation: set Pn+1 = conv{p∗, Pn}.
5: Add the halfspace defined by the tangent of C with normal u∗ to the outer

approximation: Qn+1 = Qn ∩HC(u∗).
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4. Proving the convergence rate of an inner and outer
approximation algorithm for convex compact sets

In the following, we derive a convergence proof and a bound on the decrease of the
approximation error in the course of Algorithm 3. We achieve this by extending the proof
of the convergence rate of Algorithm 2 given in [17] to the more general Algorithm 3. To
provide a self-contained proof, we state some statements from previous work of the same
author, mostly from [16].

4.1. The quality criterion of the Kamenev algorithm and equivalent
metrics

The quality criterion δP of Algorithm 2 is defined using the support function. In this
section we will derive an upper and lower bound on the value δP (P,C) using the Hausdorff
distance δH(P,C). We introduce the class of metrics that are strongly equivalent to δH

and extend the bounds to those metrics.

Definition 4.1 (From [17]). For C,C ′ ∈ C and P ∈P let us define

δP (C,C ′) = max{|gC(u)− gC′(u)| : u ∈ U(P )}. (5)

Lemma 4.2. The function δP is a pseudometric on the set of convex compact sets C .

Proof. The values of δP are obviously non-negative and δP (C,C) = 0 ∀C ∈ C . The
function is symmetric since for A,B ∈ C , δP (A,B) = max{| − 1| · |gB(u)− gA(u)| : u ∈
U(P )} = δP (B,A).
The triangle inequality follows from the subadditivity of the maximum function and

the triangle inequality of the absolute value: Let A,B,C ∈ C . Then

δP (A,C) + δP (B,C) ≥ max{|gA(u)− gC(u)|+ |gB(u)− gC(u)| : u ∈ U(P )}
≥ max{|gA(u)− gB(u)| : u ∈ U(P )} = δP (A,B).

Note that δP is not a metric. It can hold δP (A,B) = 0 for A 6= B as long as their
support function value is the same in the finite number of directions U(P ).

Definition 4.3. The Hausdorff metric between two nonempty compact sets C1, C2 ⊂ Rd
can be defined using a norm || · || of Rd as

δH||·||(C1, C2) = max{sup{||x− C2|| : x ∈ C1}, sup{||x− C1|| : x ∈ C2}},

where ||x − C|| := inf{||x − y|| : y ∈ C}. For the Hausdorff metric with Euclidean
norm || · ||2 we use the abbreviation δH(C1, C2) := δH||·||2(C1, C2).

From [16], we get an upper and lower bound on δP using the Hausdorff metric.
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Lemma 4.4 (Theorem 1 of [16]). For C ∈ C and P ∈P i(C) it holds

δH(P,C)/α(P ) ≤ δP (P,C) ≤ δH(P,C) (6)

where δH denotes the Hausdorff metric and α(P ) the asphericity of P , i.e. the minimal
ratio of the radii of concentric outer and inner spheres.

To be able to apply the convergence rate proof derived in [17] to our Sandwiching
algorithm, we extended their algorithm to allow different criteria that select the facet
that is used to compute a new approximation point (see Algorithm 3). In particular,
we will extend the convergence rate proof of [17] to a class of selection criteria that
are strongly equivalent to the Hausdorff metric. After defining strong equivalence, we
extend Equation 6 of Lemma 4.4 to metrics that are strongly equivalent to the Hausdorff
metric. We will call the Sandwiching algorithm with variable selection (Algorithm 3)
for selection criteria that are strongly equivalent to δH also Sandwiching algorithm with
strongly equivalent selection.

Definition 4.5. Let X denote a non-empty set and δA, δB two metrics on X. The
metrics δA and δB are strongly equivalent if and only if there exist positive constants
c1, c2 > 0 such that for every x, y ∈ X it holds

c1δA(x, y) ≤ δB(x, y) ≤ c2δA(x, y).

Remark 1. • When the two metrics δA, δB are induced by norms ‖ · ‖A and ‖ · ‖B
respectively, then strong equivalence of the metrics is equivalent to the equivalence
of the norms, i.e. c1‖x‖A ≤ ‖x‖B ≤ c2‖x‖A ∀x ∈ X.

• The Hausdorff metric δH||·|| defined using norm || · || of Rd is strongly equivalent to
δH||·||2 = δH since the norms || · ||2 and || · || are equivalent in the finite dimensional
vector space Rd.

• From Lemma 4.4 we do not obtain that δP is strongly equivalent to δH . Additionally
to δP not being a metric, α(P ) is not constant.

Let δ be a metric on the set C that is strongly equivalent to the Hausdorff metric.
Then there exist constants c1, c2 > 0 such that for C ∈ C and P ∈P i(C) it holds

c1δ(P,C) ≤ δH(P,C) ≤ c2δ(P,C). (7)

Equation 6 describes the relation between δH(P,C) and δP (P,C). Together with the
strong equivalence of δ and δH in Equation 7, we obtain the following relation between
δ(P,C) and δP (P,C):

c1
α(P )

δ(P,C) ≤ 1

α(P )
δH(P,C) ≤ δP (P,C) ≤ δH(P,C) ≤ c2δ(P,C). (8)

In a part of the convergence rate proof, we will need another lower bound on the
support function quality which is an extension of Lemma 1 of [17]. The proof is stated
in the Appendix.
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Lemma 4.6. Let C ∈ C 2, P ∈P i(C), δH(P,C) < ρmin(C) and C ′ ∈ C ,
P ∈ P i(C ′). Let δ be a metric that is strongly equivalent to the Hausdorff metric with
constants c1, c2 > 0. Then

c2δ(P,C
′) ≥ δH(P,C ′) ≥ δP (P,C ′) ≥

(
1− δH(P,C)

ρmin(C)

)
δH(P,C ′).

4.2. Convergence rate of Sandwiching with strongly equivalent selection
criteria

The general idea of the convergence rate proof is to estimate the volume added to the
inner and removed from the outer approximation within one iteration of Algorithm 3.
This is done in the following way.
In Lemma 4.8, a result estimating the volume of a pyramid defined by a sphere, an

external point and a hyperplane is used to estimate the change in volume of the in-
ner and outer approximation in one iteration of the Sandwiching algorithm in terms of
the distance between the inner and outer approximation. This result is developed in
Lemma 4.9 to a bound on the distance between inner and outer approximation in terms
of the iteration number which can also be used to prove the convergence of the algo-
rithm in Theorem 4.10. After estimating the volume difference between the inner and
outer approximation from one iteration to the other in Lemma 4.11, the convergence rate
proof for convex compact sets is completed in Theorem 4.12. An improved convergence
rate of convex compact sets with twice continuously differentiable boundary is proved in
Theorem 4.15.
In the original proof in [17], the quality of the approximation, i.e. the distance be-

tween the inner and outer approximation, is measured using two quality indicators, the
Hausdorff metric (see Definition 4.3) and the symmetric difference volume metric.

Definition 4.7 ( [17]). For C1, C2 ∈ C the symmetric difference volume metric is defined
as δS(C1, C2) := µ(C1∆C2) with µ the Lebesgue measure and C1∆C2 = (C1\C2) ∪
(C2\C1).

We first extend a result from [17] to metrics that are strongly equivalent to the Haus-
dorff metric. It uses a result estimating the volume of a pyramid defined by a sphere, an
external point and a hyperplane to estimate the change in volume of the inner and outer
approximation in one iteration of the Sandwiching algorithm.

Lemma 4.8. Let (Pn, Qn) belong to a sequence of pairs of polyhedra generated by the
Sandwiching algorithm with strongly equivalent selection (Algorithm 3) using a metric δ
that is strongly equivalent to the Hausdorff metric with constants c1, c2 > 0. Let C ∈ C ,
u∗ ∈ U(Pn) and p∗ ∈ TC(u∗) the direction and point, chosen at an iteration of the
algorithm, and ζ = max{ζ1, ζ2} where

ζ1 := inf

{
||p∗ − z||

r
: z ∈ C, Br(z) ⊂ Pn

}
,

ζ2 := inf

{
||p− z||

r
: z ∈ C, Br(z) ⊂ C, p ∈ TQn(u∗)

}
.
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Let δ be a metric that is strongly equivalent to the Hausdorff metric. Then

δS(Pn, Qn)− δS(Pn+1, Qn+1)

≥ πd−1
2d−1d

(ζ2 − 1)(1−d)/2 (α(Pn))−d
(
δH(Pn, Qn)

)d
≥ πd−1

2d−1d
(ζ2 − 1)(1−d)/2

(
c1

α(Pn)

)d
(δ(Pn, Qn))d .

Additionally, it holds

An illustration of ζ1 and ζ2 is given in Figure 1.

(a) ||p∗ − z||/r is an upper bound on ζ1 (b) ||p− z||/r is an upper bound on ζ2

Figure 1: Illustration of definitions of Lemma 4.8 and Lemma 2 of [17]

Proof. From Lemma 2 of [17] we obtain for (Pn, Qn) elements of a sequence of pairs
of polyhedra, generated by the Sandwiching algorithm with support function selection
(Algorithm 2),

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ πd−1
2d−1d

(ζ2 − 1)(1−d)/2[δPn(Pn, Qn)]d.

Note that in the original version of Lemma 2 in [17], ζ2 is defined with Br(z) ⊂ Pn. We
believe this to be a mistake and will use Br(z) ⊂ C in the following. Since this result is an
important step in the convergence proof and it is only available in Russian, we state the
proof in the Appendix. Note that the proof given in [17] for the Sandwiching algorithm
with support function selection also holds for variable selection since the proof does not
depend on the selection process. In particular, gQn+1(u∗) = 〈u∗, p∗〉 = gPn+1(u∗) holds
for every selection criterion.
Equation 8 contains the relation

c1
α(Pn)

δ(Pn, Qn) ≤ 1

α(Pn)
δH(Pn, Qn) ≤ δPn(Pn, Qn).

12



We want to replace α(Pn) by a term that is independent of the current iteration. The
asphericity of Pn is defined as the minimal ratio of the radii of concentric outer and
inner spheres, we denote α(Pn) = router(P

n)/rinner(P
n). Using the relations router(C) ≥

router(P
n) and rinner(P

n) ≥ rinner(P
0) we can bound the asphericity of Pn from above

by α(Pn) ≤ router(C)/rinner(P
0). The statement then follows with Equation 8.

Using Lemma 4 of [17], a result on monotonically decreasing sequences stated in the
Appendix as Lemma A.1, a bound on the distance between inner and outer approximation
in terms of the iteration number is derived.

Lemma 4.9. Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra generated by the
Sandwiching algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C . Let
δ be the metric equivalent to the Hausdorff metric with constants c1, c2 > 0 that is used
as a selection criterion in the Sandwiching algorithm. Let z ∈ C and r,R > 0 such that
Br(z) ⊂ P 0 ⊂ Q0 ⊂ BR(z). Then for n ≥ d+ 1 it holds

δS(Pn, Qn) ≤ (λan
1/(d−1))−1; δH(Pn, Qn) ≤ (λbn

1/(d−1))−1; δ(Pn, Qn) ≤ (c1λbn
1/(d−1))−1.

where the quantities λa and λb depend only on d, r and R and c1 only depends on the
metric δ.

Proof. The proof is similar to that of Lemma 5 in [17] and given in the Appendix.

Using Lemma 4.9, the convergence of the Sandwiching algorithm with strongly equiv-
alent selection can be proven.

Theorem 4.10. Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra generated by
the Sandwiching algorithm with strongly equivalent selection (Algorithm 3) with a metric
δ that is strongly equivalent to the Hausdorff metric for C ∈ C . Then, for δ̃ = δS , δH or
δ it holds limn→∞ δ̃(P

n, C) = limn→∞ δ̃(Q
n, C) = 0.

Proof. Since δ̃(Pn, Qn) ≥ max{δ̃(Pn, C), δ̃(C,Qn}, for δ̃ = δS , δH , δ, the assertions of
the theorem follow directly from Lemma 4.9.

Convergence rate of the Sandwiching algorithm for convex compact sets

After showing that the Sandwiching algorithm converges, we will now investigate the
convergence rate, i.e. how fast the approximation error decreases in the course of the
algorithm. We derive two different convergence rates depending on the regularity of the
convex compact set. First, we show the result for a general convex compact set.
To do this, we estimate the volume difference between the inner and outer approxima-

tion from one iteration to the other in terms of the Hausdorff distance between the inner
and outer approximation.

Lemma 4.11. Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra generated by
the Sandwiching algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C ,
α(C) 6= 1. Let δ be the metric used as a selection criterion in the Sandwiching algorithm

13



that is strongly equivalent to the Hausdorff metric with constants c1, c2 > 0. Then for
any ε with 1 > ε > 0, there exists a number n0 so that for all n ≥ n0 it holds

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ ξ1(ε)[δH(Pn, Qn)]d,

with ξ1(ε) = (1− ε) πd−1
2d−1d

(
α(C)2 − 1

)(1−d)/2
α(C)−2d

(
c1
c2

)d
.

Proof. The proof is similar to that of Lemma 6 in [17] and given in the Appendix.

We can now complete the proof of the convergence rate for convex compact sets.

Theorem 4.12. Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra generated by
the Sandwiching algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C
with α(C) 6= 1. Let δ be the metric strongly equivalent to the Hausdorff metric with
constants c1, c2 > 0 that is used as a selection criterion in the algorithm. Then for any
ε > 0 there exists a number n0 such that for n ≥ n0 it holds

δS(Pn, Qn) ≤ (1 + ε)
(
b1K(n)1/(d−1)

)−1
δH(Pn, Qn) ≤ (1 + ε)

(
b2K(n)1/(d−1)

)−1
δ(Pn, Qn) ≤ (1 + ε)

(
c1b2K(n)1/(d−1)

)−1
where

b1 =
1

2

(
(d− 1)

πd−1
d

1

σ(C)d

)1/(d−1)
(α(C)2 − 1)−1/2α(C)2d/(1−d)

(
c1
c2

)d/(d−1)
,

b2 =
1

2

(
d− 1

d

πd−1
d

1

σ(C)

)1/(d−1)
(α(C)2 − 1)−1/2α(C)2d/(1−d)

(
c1
c2

)d/(d−1)
and K(n) can stand for the number of iterations n, the number of vertices of the inner
approximation nv(Pn) or the number of facets of the outer approximation nf (Qn).

Proof. The proof is similar to that of Theorem 2 of [17] and given in the Appendix.

Remark 2. The assumption α(C) 6= 1 excludes sets with an asphericity of one, i.e. d-
dimensional spheres. These sets belong to the class C 2 for which a stronger result will
be shown in Theorem 4.15.

Convergence rate of the Sandwiching algorithm for convex compact sets with twice
continuously differentiable boundary

After showing the convergence rate for general convex compact sets, the result is improved
for convex compact sets with twice continuously differentiable boundary. When the set
C to be approximated is in C 2, for every point on the boundary of C, a sphere can be
placed inside of C that touches this point. Then, Lemma 4.13 can be applied which adds
a factor δH(Pn, Qn) to the bound that ultimately leads to the improved convergence
rate.
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Lemma 4.13 (Blaschke’s rolling theorem (as stated in [20])).
Let C ∈ C 2 and x ∈ ∂C. Then, for any r ≤ ρmin(C) there exists z ∈ C such that
Br(z) ⊂ C and x ∈ Br(z). Moreover, for any r ≥ ρmax(C), there exists a z ∈ Rd such
that C ⊂ Br(z) and x ∈ Br(z).
Lemma 4.14. Let {Pn, Qn}n=0,1,... be a sequence of pairs of polyhedra generated by the
Sandwiching algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C 2. Let
δ be the metric strongly equivalent to the Hausdorff metric with constants c1, c2 > 0 that
is used as a selection criterion in the algorithm. Then for any ε, 1 > ε > 0, there exists
a value γ(ε), 1 > γ(ε) > 0, such that for δH(Pn, Qn) ≤ γ(ε)ρmin(C) (with the minimal
radius of curvature ρmin(C), see Definition 3.2) it holds

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ ξ2(ε, ρmin(C))[δH(Pn, Qn)](d+1)/2

where ξ2(ε, ρmin) = (1− ε) πd−1
2d−1d

(ρmin

2

)(d−1)/2(c1rinner(P
0)

c2router(C)

)d
.

Proof. The proof is similar to that of Lemma 7 in [17] and given in the Appendix.

Theorem 4.15. Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra, generated by
the Sandwiching algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C 2.
Let δ be the metric strongly equivalent to the Hausdorff metric with constants c1, c2 > 0
that is used as the selection criterion in the algorithm. Then for any ε > 0 there exists a
number n0 such that for n ≥ n0 it holds

δS(Pn, Qn) ≤ (1 + ε)
(
b3K(n)2/(d−1)

)−1
δH(Pn, Qn) ≤ (1 + ε)

(
b4K(n)2/(d−1)

)−1
δ(Pn, Qn) ≤ (1 + ε)

(
c1b4K(n)2/(d−1)

)−1
where b3 =

(
d− 1

2

πd−1
d

(
c1rinner(P

0)

c2router(C)

)d
1

σ(C)(d+1)/2

)2/(d−1)
ρmin(C)

8
,

b4 =

(
d− 1

d+ 1

πd−1
d

(
c1rinner(P

0)

c2router(C)

)d
1

σ(C)

)2/(d−1)
ρmin(C)

8

and K(n) can stand for the number of iterations n, the number of vertices of the inner
approximation nv(Pn) or the number of facets of the outer approximation nf (Qn).

Proof. The proof is similar to that of Theorem 3 of [17] and is given in the Appendix.

5. Applying the convergence results to the Sandwiching
algorithm from multiobjective optimization

We now want to apply the convergence results developed in Section 4 for Algorithm 3
that approximation convex compact sets to the Sandwiching algorithm (Algorithm 1) for
the approximation of certain nondominated sets in multiobjective optimization.
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We first compare Algorithm 3 to the Sandwiching Algorithm 1 for the approximation
of convex bounded nondominated sets.
The Sandwiching Algorithm 1 will always select a facet of the inner approximation as

a new weight for the weighted sum scalarization problem if the solution of the quality
calculation is nondegenerate (see Lemmata 2.3.1 and 2.3.2 of [22]). In the degenerate
case, the normal of a lower-dimensional facet may also be an optimal dual solution. In
this case, the normal of a facet can still be obtained using strategies outlined in Section 2.3
of [22].
The new nondominated point computed in an iteration of our Sandwiching algorithm

fulfils p∗ ∈ TC(u∗) (Lemma 2.3.3 of [22]).
Finally, the update process of inner and outer approximation is the same in Algo-

rithms 1 and 3.

5.1. Applying results for convex compact sets to multiobjective
optimization

We demonstrated that the Algorithms 3 and 1 are comparable. To apply the conver-
gence rate results from Section 4 it therefore remains to show which requirements on
the multiobjective optimization problem are necessary to fulfil the assumptions of the
theorems. In particular, under which requirements does the nondominated set have a
twice continuously differentiable boundary?

Lemma 5.1 (Chapter 4.1 of [37]). In a convex multiobjective optimization problem with
X 6= ∅, the set cl(Y + C) is convex and closed.

By assuming that the multiobjective optimization problem is bounded and defining
the set to be approximated (see Equation 3) as

P := (Y + C) ∩ (ỹN − Rd≥),

we obtain that P is a convex compact set.
Under the additional condition that the extreme compromise solutions must not coin-

cide, P has nonempty interior.
Using the following lemma, we can also note that the nondominated set of such a

multiobjective optimization problem will be connected.

Definition 5.2 (Definition 3.31 of [10]). A set S ⊂ Rd is called not connected if it can
be written as S = S1 ∪ S2 with S1,S2 6= ∅, clS1 ∩ S2 = S1 ∩ clS2 = ∅.
Otherwise, S is called connected.

Lemma 5.3 (Theorem 3.35 of [10]). If Y is closed, convex and Rd≥-compact then YN is
connected.

In Section 6.3 of [28], the application of algorithms designed for the approximation
of convex compact sets to the approximation of bounded convex nondominated sets
is discussed. In the context of augmentation methods (which are inner approximation
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methods for convex compact sets), it is noted that every convergent augmentation scheme
can be directly applied to the approximation of bounded convex nondominated sets if
the initial approximation is given by the cone p+ Rd≥ for a nondominated point p.

Note that this assumption on the initial approximation leads to a full-dimensional (i.e.
d − 1-dimensional) approximation of the nondominated set even if the nondominated
set itself is of a lower dimension. The Sandwiching algorithm, both the variants for
sets (Algorithm 2/3) and for multiobjective optimization (Algorithm 1) can in principle
also be applied to lower-dimensional sets. In this article, however, we assume that the
nondominated set is of full dimension. Requirements for a full-dimensional nondominated
set have been derived in [15].
In summary, we obtain the following result.

Theorem 5.4. The Sandwiching algorithm (Algorithm 1) using a quality criterion that is
strongly equivalent to the Hausdorff metric to approximate the full-dimensional nondom-
inated set of a convex bounded multiobjective optimization problem in which the extreme
compromises do not coincide, converges (see Theorem 4.10) and the convergence rate
result of Theorem 4.12 applies.

Note that this result holds for every pointed, convex domination cone C ⊃ Rd≥.

Requirements for a nondominated set with twice continuously differentiable
boundary

In Theorem 4.15 we showed an improved convergence rate for a Sandwiching approx-
imation of convex compact sets with twice continuously differentiable boundary (see
Definition 3.2). We investigate conditions under which the set to be approximated P of
a multiobjective optimization problem has twice continuously differentiable boundary.
Let min f(x) s.t. x ∈ X be a multiobjective optimization problem with convex objective

functions f : Rk → Rd and a convex decision space

X := {x ∈ Rk : g(x) ≤ 0, h(x) = 0}

defined using convex functions g : Rk → R|I| and linear functions h : Rk → R|J | with
|I| <∞ and |J | <∞. Let f , g, h be three times continuously differentiable.
We define w : Rk × Rd → R. w(x, γ) :=

∑
i=1,...,d γifi(x) and consider the weighted

sum scalarization problem (see Section 2.1) as a parametric optimization problem

min
x∈X

w(x, γ). (WS(γ))

Every nondominated point of the convex multiobjective optimization problem is the
solution of an instance of (WS(γ)) for some γ ∈ C∗\{0} (Theorem 1.24 of [36]). Since
the fi are three times continuously differentiable, w(x, γ) is also three times continuously
differentiable in x.
Our aim is now to show that the function mapping a weighted sum parameter to a

weakly nondominated point is twice continuously differentiable. To prepare for the result,
we state some definitions from nonlinear optimization. These can be found e.g. in [4],
we follow the notation of [35].
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Definition 5.5. A feasible point x∗ ∈ X is called stationary point for problem (WS(γ))
if there exist λ∗ ∈ R|I| and µ∗ ∈ R|J | with

Dxw(x∗, γ) +
∑
i∈I

λiDgi(x
∗) +

∑
j∈J

µjDhj(x
∗) = 0,

λi ≥ 0 for all i ∈ I,
λigi(x

∗) = 0 for all i ∈ I.

The triple (x∗, λ∗, µ∗) is called Karush-Kuhn-Tucker point (short: KKT point). The
Lagrange function L : Rk × R|I| × R|J | → R is defined as

L(x, λ, µ) := w(x, γ) +
∑
i∈I

λigi(x) +
∑
j∈J

µjhj(x).

If, for every i ∈ I, exactly one of the values gi(x∗) and λi equals zero, one says that strict
complementarity slackness holds.

Definition 5.6. A feasible point x ∈ X satisfies the Linear Independence Constraint
Qualification (short: LICQ) for problem (WS(γ)), if for the set of active indices I0(x) :=
{i ∈ I : gi(x) = 0} the vectors Dgi(x), i ∈ I0(x) and Dhj(x), j ∈ J are linearly
independent.

Definition 5.7. A KKT point (x∗, λ∗, µ∗) is said to satisfy the Second-Order Sufficient
Condition (short: SOSC), if dTD2

1L(x∗, λ∗, µ∗)d > 0 for every d ∈ T (x∗), d 6= 0,

where T (x∗) :=

d ∈ Rk :
Dgi(x

∗)d ≤ 0 for i ∈ I0(x∗) with λi = 0,
Dgi(x

∗)d = 0 for i ∈ I0(x∗) with λi > 0,
Dhj(x

∗)d = 0 for j ∈ J

 .

Applying the implicit function theorem for differentiable functions, we can obtain the
following result.

Lemma 5.8 (Modification of Theorem 2.13, together with Theorem 2.5 of [35]). For a
given parameter vector γ∗ ∈ C∗\{0} let (x∗, λ∗, µ∗) be a KKT point of WS(γ∗). Moreover,
assume that for WS(γ∗) the following is true:

• at x∗ LICQ is satisfied,

• x∗, λ∗ fulfil the strict complementary slackness condition

• x∗, λ∗, µ∗ satisfy the second-order sufficient condition SOSC.

Then there are δ > 0, ε > 0 and a twice continuously differentiable function
ν = (x, λ, µ) : Bδ(γ

∗)→ Rd×R|I|×R|J |, such that, for every γ ∈ Bδ(γ∗) the point x(γ)
is a local minimum of (WS(γ)) which is unique in Bε(x

∗). Since (WS(γ)) is convex,
x(γ) is also the global minimum of (WS(γ)).
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Remark 3. If the objective functions f are strictly convex, then SOSC is fulfilled. Oth-
erwise, SOSC has to be verified for the Lagrange function of (WS(γ)). Strict comple-
mentarity does not hold when the set of active constraints changes, i.e. in vertices of the
feasible set.
What remains to discuss is whether the conditions of Theorem 4.15 are met, i.e. if

the set that is approximated by the algorithm has a twice continuously differentiable
boundary.
The Sandwiching algorithm approximates the set (see Equation 3) P = (Y + C)N ∩

(ỹN − Rd≥). Obviously, the set has a non-differentiable boundary in ỹN and is poten-
tially non-differentiable on the relative boundary of the nondominated set. However, the
(ỹN − Rd≥) part of P is already fully approximated by the initial approximation con-
taining the extreme compromise solutions and the nadir point approximation ỹN . In
the following iterations of the Sandwiching approximation, the set P is approximated by
only computing nondominated solutions. Thus, in practice the convergence behaviour of
the Sandwiching algorithm is not impaired by this non-differentiability.
If a twice continuously differentiable boundary is needed for theoretical studies, the

edges can be "rounded" by adding a sphere to the non-differentiable parts. Since the
radius of the sphere is known, points approximating this part of P can be computed
without solving an optimization problem.
It remains to show that the part of the boundary of P that is formed by the nondom-

inated set is twice continuously differentiable (see Definition 3.2).

Lemma 5.9. Let the function x be defined as in Lemma 5.8. Let us assume that f(x(γ))
is injective for γ ∈ Bδ(γ

∗). For every γ ∈ Bδ(γ
∗) for the open ball Bδ(γ∗), the point

f(x(γ)) is a twice continuously differentiable boundary point of
G := f(x(Bδ(γ

∗))) + C (with the domination cone C), i.e. there exists an open environ-
ment U = U(f(x(γ))) and a twice continuously differentiable function ρ : U → R that
fulfils U ∩G = {x ∈ U : ρ(x) < 0} and d

dxρ(x) 6= 0 ∀x ∈ U .
Proof. We define the function p : Bδ(γ

∗) × R → Rd as p(γ, t) := f(x(γ)) − te where e
denotes the vector of ones. Since every solution x(γ) is a weakly efficient point, there
cannot exist γ1 and γ2 and a t > 0 with f(x(γ1)) = f(x(γ2))− te or x(γ1) would not be
efficient. Therefore, p is injective if the function f(x(γ)) is injective. Then, p is bijective
on its image.
Therefore, there exists a twice continuously differentiable inverse function

p−1 : p(Bδ(γ
∗) × R) → (Bδ(γ

∗)) × R of p. When projecting the image of p−1 to the t
component, we obtain a function with the required properties: its value is zero on the
boundary of G, i.e. on the nondominated set, smaller than zero in the interior of G, i.e.
the dominated region and greater than zero outside of G, i.e. in the unattainable region.
Since it is linear in t with coefficient e, its derivative is never zero.

In summary, we obtain the following result.

Theorem 5.10. Consider the Sandwiching algorithm for convex bounded multiobjective
optimization (Algorithm 1) using a quality criterion that is strongly equivalent to the
Hausdorff metric. Let the multiobjective optimization problem fulfil
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• the multiobjective optimization problem is convex and bounded, the extreme com-
promises do not coincide and the nondominated set is of full dimension,

• the objective functions f and the functions g, h defining the feasible set are three
times continuously differentiable,

• for the KKT points (x∗, λ∗, µ∗) of the weighted sum problem for every weight γ ∈
C∗\{0} the strict complementarity slackness condition, LICQ and SOSC are ful-
filled,

• the function mapping a weight γ to a weakly nondominated point is injective.

Then the algorithm converges (see Theorem 4.10), the set P has twice continuously dif-
ferentiable boundary and therefore the improved convergence rate result of Theorem 4.15
applies.

Until now, the quality indicator was not specified. To apply the convergence results,
it is necessary that the quality criterion is a metric that is strongly equivalent to the
Hausdorff metric. In the next two subsections, we will show for two quality indicators,
the polyhedral gauge and the epsilon indicator, that they are strongly equivalent to the
Hausdorff metric and determine the corresponding equivalence constants. Then, we can
formulate the convergence rate results for these specific Sandwiching algorithms.

5.2. Convergence rate of Sandwiching with polyhedral gauge quality

To assess the approximation quality of the Sandwiching algorithm, we measure the dis-
tance between the inner and outer approximation. A way to measure the approximation
quality using the polyhedral gauge introduced in Section 2.2.2 is the value |γInR(q̄) − 1|
with q̄ the solution of max{γInR(q) s.t. q ∈ OnR}. We will also denote γInR(OnR) := γInR(q̄).
The general idea of this distance measure is to determine the factor by which the inner
approximation would need to be scaled to fully contain the outer approximation.
In the following, we will show that this distance measure is strongly equivalent to the

Hausdorff metric. Then, we formulate the convergence rate results for the Sandwiching
algorithm that uses the polyhedral gauge to determine the approximation quality and to
select the location of the next approximation point.
Since we are considering the Sandwiching algorithm for the approximation of convex

bounded nondominated sets (in comparison to the algorithm for convex compact sets of
Sections 3 and 4), we denote the inner approximation by I , and the outer approximation
by O.

Strong equivalence to the Hausdorff metric

To discuss the polyhedral gauge, we denote the reflection set of the inner approximation
(see Section 2.2.2) by InR := R(In).
The reflected inner approximation InR is a polytope in Rd that contains the origin in its

interior and is symmetric with respect to the origin. From Lemma 6 of [34] we obtain that
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the polyhedral gauge with unit ball InR is a norm in Rd. Since in a finite-dimensional
vector space all norms are equivalent (see Theorem 1.18 of [14]), the block norm γ is
in particular equivalent to the Euclidean norm || · ||2. Let us denote the equivalence
constants by c̃1 and c̃2.

Lemma 5.11. For InR and OnR the reflection sets of inner and outer approximations
generated by the Sandwiching algorithm (Algorithm 1), it holds

c̃1|γInR(q̄)− 1| ≤ δH(InR, O
n
R) ≤ c̃2|γInR(q̄)− 1|

with the norm equivalence constants c̃1 and c̃2 of the polyhedral gauge and the Euclidean
norm, c̃1γInR(x) ≤ ||x||2 ≤ c̃2γInR(x).

Proof. The first bound is obtained using norm equivalence and the reversed triangle
inequality and that supp∈InR infq∈On

R
||q − p|| = 0 due to InR ⊂ OnR,

δH(InR, O
n
R) = max{ sup

p∈InR
inf
q∈On

R

||q − p||, sup
q∈On

R

inf
p∈InR
||q − p||} = sup

q∈On
R

inf
p∈InR
||q − p||

≥ c̃1 sup
q∈On

R

inf
p∈InR

γInR(q − p) ≥ c̃1 sup
q∈On

R

inf
p∈InR
|γInR(q)− γInR(p)|

= c̃1 sup
q∈On

R

|γInR(q)− 1| = c̃1|γInR(q̄)− 1|.

For the second bound we can derive with the norm equivalence

δH(InR, O
n
R) = sup

q∈On
R

inf
p∈InR
||q − p|| ≤ c̃2 sup

q∈On
R

inf
p∈InR

γInR(q − p). (9)

Now, using that γInR(q) ≥ 1 ∀q ∈ OnR because InR ⊂ OnR, that γInR(p) = 1 ∀p ∈ InR and
that q̄ solves max γInR(q) s.t. q ∈ OnR, we obtain

|γInR(q̄)− 1| = γInR(q̄)− 1 = max
q∈On

R

γInR(q)− 1 = max
q∈On

R

min
p∈InR

(
γInR(q)− γInR(p)

)
. (10)

To obtain the bound, it remains to show that

max
q∈On

R

min
p∈InR

γInR(q − p) = max
q∈On

R

min
p∈InR

(
γInR(q)− γInR(p)

)
. (11)

To show Equation 11, we take a closer look at the left side of the equation. In particular,
for a given q̃ ∈ OnR, we determine the value of minp∈InR γI

n
R

(q̃ − p).
First, note that the supremum over OnR will always be attained on the boundary, i.e.

by some q ∈ ∂OnR and that the infimum of the difference to OnR over InR will also be
attained by some p ∈ ∂InR. Since 0 ∈ InR ⊂ OnR, for every q̃ ∈ ∂OnR there is a p̃ ∈ ∂InR
that fulfils q̃ = λp̃ for some λ ≥ 1. We write λ = λ(q̃). Since for every p ∈ ∂InR it holds
γInR(p) = 1, the difference between q̃ and p̃ in γInR is

γInR(q̃ − p̃) = γInR(λ(q̃)p̃− p̃) = (λ(q̃)− 1)γInR(p̃) = λ(q̃)− 1.
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In comparison to this, examine the difference between q̃ and an arbitrary point p ∈
∂InR. It holds, γInR(q̃) = γInR(λ(q̃)p̃) = λ(q̃)γInR(p̃) = λ(q̃).and using the reversed triangle
inequality (Remark 1.5 of [14]),

γInR(q̃ − p) ≥ |γInR(q̃)− γInR(p)| = |λ(q̃)− 1| = λ(q̃)− 1.

So, γInR(q̃ − p) attains its minimum at p̃ defined by q̃ = λ(q̃)p̃ for some λ(q̃) ≥ 1.
Using this result, we can express the left side of Equation 11 as

max
q∈On

R

min
p∈InR

γInR(q − p) = max
q∈On

R

(λ(q)− 1)

with λ(q) ≥ 1 such that q = λ(q)p for some p ∈ InR. Following the same argument with
the right side of Equation 11 yields

max
q∈On

R

min
p∈InR

(
γInR(q)− γInR(p)

)
= max

q∈On
R

γInR(q)− 1 =

(
max
q∈On

R

λ(q)

)
− 1.

Combining Equations 9, 10 and 11, we obtain the second bound.

Next, we determine the values of c̃1 and c̃2.

Lemma 5.12. The constants

rinner = min
γIn

R
(u)=1

||u||, router = max
γIn

R
(u)=1

||u||

fulfil rinnerγInR(x) ≤ ||x||2 ≤ routerγInR(x) ∀x ∈ Rd.
The constant rinner is the largest radius of a ball inside of InR and centred in the origin.

Analogously, router is the smallest radius of a ball that contains InR and that is also centred
in the origin.

Proof. For x ∈ Rd, we define u := x/γInR(x). Then, it holds ||x||2/γInR(x) = || x
γIn

R
(x) ||2 =

||u||2. Since u fulfils γInR(u) = 1, we obtain ||x||/γInR(x) ≥ rinner.
Analogously, we obtain router = maxγIn

R
(u)=1 ||u||.

Convergence rate of Sandwiching with polyhedral gauge selection

We denote by gInR(On) := |γInR(On) − 1| the quality criterion based on the polyhedral
gauge. In the previous subsection we have shown that the Hausdorff metric between inner
and outer approximations created by the Sandwiching algorithm is strongly equivalent
to this quality criterion, rinner gInR(On) ≤ δH(InR, O

n
R) ≤ router gInR(On).

Therefore, the convergence results of Section 4 hold for the Sandwiching algorithm
with polyhedral gauge selection. In particular, the algorithm converges (Theorems 4.10
and 5.4).
As one of the main results of this article, we can now show the convergence rate of the

Sandwiching algorithm with polyhedral gauge quality.
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Theorem 5.13. Let {(In, On)}n=0,1,... be a sequence of inner and outer approximations
generated by the Sandwiching algorithm (Algorithm 1) with polyhedral gauge selection for
a convex bounded multiobjective optimization problems in which the extreme compromises
do not coincide and which has a full-dimensional nondominated set. Then for any ε > 0
there exists a number n0 such that for n ≥ n0 it holds

δS(In, On) ≤ (1 + ε)C1 n
−1/(d−1)

δH(In, On) ≤ (1 + ε)C2 n
−1/(d−1)

gInR(On) ≤ (1 + ε)C2r
−1
inner n

−1/(d−1)

with C1 := 1/b1, C2 := 1/b2 with b1, b2 defined in Theorem 4.12.

Proof. Since the polyhedral gauge is strongly equivalent to the Hausdorff
metric (Lemma 5.11), the result follows directly from Theorems 4.12 and 5.4.

Under additional regularity assumptions, we obtain an improved convergence rate of
the Sandwiching algorithm with polyhedral gauge quality.

Theorem 5.14. Consider a convex bounded multiobjective optimization problem in which
the extreme compromises do not coincide and which has a full-dimensional nondominated
set. Let additionally the regularity assumptions of Theorem 5.10 hold, i.e. the objective
functions and the functions forming the feasible set are three times continuously dif-
ferentiable, the function mapping a weight γ to a weakly nondominated point is locally
injective, and for the KKT points of the weighted sum problem the strict complemen-
tary slackness condition, LICQ and SOSC are fulfilled. Let the nondominated set of this
MOP be approximated by the Sandwiching algorithm (Algorithm 1) with polyhedral gauge
quality.
Then for any ε > 0 there exists a number n0 such that for n ≥ n0 it holds

δS(In, On) ≤ (1 + ε)C3 n
−2/(d−1)

δH(In, On) ≤ (1 + ε)C4 n
−2/(d−1)

gInR(On) ≤ (1 + ε)C4r
−1
inner n

−2/(d−1)

with C3 := 1/b3, C4 := 1/b4 with b3, b4 defined in Theorem 4.15.

Proof. Since the polyhedral gauge is strongly equivalent to the Hausdorff metric (Lemma 5.11),
the result follows directly from Theorems 4.15 and 5.10.

5.3. Convergence rate of Sandwiching with epsilon indicator selection

The epsilon indicator has been introduced in Section 2.2.2. We first show that the
epsilon indicator is strongly equivalent to the Hausdorff metric. Then, we formulate the
convergence rate results for the Sandwiching algorithm that uses the epsilon indicator to
determine the approximation quality and to select the location of the next approximation
point.
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Strong equivalence of the epsilon indicator to the Hausdorff metric

Both [25] and [5] state that the calculation of the ε-indicator value is equivalent to the
Hausdorff metric using a one-sided maximum metric

ε(Z,A) = δH
d̃

(Z,A) = max
z∈Z

min
a∈A

d̃(a, z) (12)

with d̃(a, b) = maxi=1,...,d max{bi − ai, 0}.
We want to select a new facet to be improved by measuring the distance between the

outer and inner approximation using the epsilon indicator ε(In, On).
Lemma 1 of [7] states that the ε-indicator ε(Z,A) of a closed, non-empty approximation

A ⊆ Z + Rd≥ of the closed set of attainable objective vectors Z ⊆ Rd can be represented
as ε(Z,A) = δH∞(Z,A+ Rd≥) := supz∈Z infz′∈A+Rd

≥
||z′ − z||∞.

Remember that due to the definition of the set to be approximated P, adding the
domination cone to the inner approximation does not change the approximation and
therefore δ(On, In) = δ(On, In + Rd≥) for every quality measure δ. Thus, we obtain that
the ε-indicator between the inner and outer approximation calculated by the Sandwiching
algorithm ε(In, On) is equivalent to the Hausdorff distance with maximum metric.

ε(In, On) = δH
d̃

(In, On) = δH∞(In, On + Rd≥) = δH∞(In, On). (13)

Lemma 5.15. The epsilon indicator is strongly equivalent to the Hausdorff metric with
constants c1 = 1 and c2 =

√
d.

Proof. The maximum norm is equivalent to the Euclidean norm with the constants (see
[14]) ||x||∞ ≤ ||x||2 ≤

√
d||x||∞, x ∈ Rd. Using (13) we obtain δH∞(P,C) ≤ δH(P,C) ≤√

d δH∞(P,C) for C ∈ C and P ∈P i(C).

Convergence rate of Sandwiching with epsilon indicator selection

In the previous section we have shown that the ε-indicator between the inner and outer
approximations of the Sandwiching algorithm is strongly equivalent to the Hausdorff met-
ric. Therefore, the convergence results of Section 4 hold for the Sandwiching algorithm
with epsilon indicator selection. In particular, the algorithm converges (Theorems 4.10
and 5.4).
As one of the main results of this article, we can now show the convergence rate of the

Sandwiching algorithm with epsilon indicator quality.

Theorem 5.16. Let {(In, On)}n=0,1,... be a sequence of inner and outer approximations
generated by the Sandwiching algorithm (Algorithm 1) with epsilon indicator selection for
a convex bounded multiobjective optimization problem in which the extreme compromises
do not coincide and which has a full-dimensional nondominated set. Then for any ε > 0
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there exists a number n0 such that for n ≥ n0 it holds

δS(In, On) ≤ (1 + ε)C1 n
−1/(d−1)

δH(In, On) ≤ (1 + ε)C2 n
−1/(d−1)

δH∞(In, On) ≤ (1 + ε)C2 n
−1/(d−1)

with C1 := 1/b1, C2 := 1/b2 with b1, b2 defined in Theorem 4.12.

Proof. Since the epsilon indicator is strongly equivalent to the Hausdorff metric (Lemma 5.15),
the result follows directly from Theorems 4.12 and 5.4.

Under additional regularity assumptions, we obtain an improved convergence rate of
the Sandwiching algorithm with epsilon indicator quality.

Theorem 5.17. Consider a convex bounded multiobjective optimization problem in which
the extreme compromises do not coincide and which has a full-dimensional nondominated
set. Let additionally the regularity assumptions of Theorem 5.10 hold, i.e. the objective
functions and the functions forming the feasible set are three times continuously dif-
ferentiable, the function mapping a weight γ to a weakly nondominated point is locally
injective, and for the KKT points of the weighted sum problem the strict complemen-
tary slackness condition, LICQ and SOSC are fulfilled. Let the nondominated set of this
MOP be approximated by the Sandwiching algorithm (Algorithm 1) with epsilon indicator
quality.
Then for any ε > 0 there exists a number n0 such that for n ≥ n0 it holds

δS(In, On) ≤ (1 + ε)C3 n
−2/(d−1)

δH(In, On) ≤ (1 + ε)C4 n
−2/(d−1)

δH∞(In, On) ≤ (1 + ε)C4 n
−2/(d−1)

with C3 := 1/b3, C4 := 1/b4 with b3, b4 defined in Theorem 4.15.

Proof. Since the epsilon indicator is strongly equivalent to the Hausdorff
metric (Lemma 5.15), the result follows directly from Theorems 4.15 and 5.10.

6. Conclusion and Discussion

In this article, we showed the convergence rate of a Sandwiching algorithm for the approx-
imation of convex bounded nondominated sets using two different quality indicators, the
epsilon indicator and polyhedral gauge. We achieved this by extending a convergence rate
result published in 1996 in Russian [17] for the approximation of convex compact sets to
a class of quality indicators and to the approximation of convex bounded nondominated
sets in multiobjective optimization.
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The convergence rate of the Sandwiching algorithm for variable selection criteria (The-
orem 4.15) is optimal for the approximation of convex compact nondominated sets with
twice continuously differentiable boundary, see Chapter 1.10.4 of [13].
For general convex compact nondominated sets, the convergence rate proved in this

article is not optimal. While the convergence rate of the pure inner approximation is
optimal (see [28], Theorems 8.29 and 8.30), the outer approximation is updated in a
non-optimal way. This is intuitive, since the selection of the new approximation point
in the Sandwiching algorithm (Algorithm 1) as the point whose tangential hyperplane is
parallel to a facet of the inner approximation depends only on the inner approximation
and therefore cannot be optimal with respect to the outer approximation.
If the inner and outer approximation are treated completely separately, then optimal

strategies can be chosen for each and the overall convergence rate will be optimal, even
in the general convex compact case. Two examples for these algorithms have been intro-
duced in [18]. The cost of this improved convergence rate is the computation of a higher
number of approximation points. While in our algorithm, an approximation point is used
to improve both the inner and the outer approximation, in these algorithms approxima-
tion points are computed to improve only either the inner or the outer approximation.
Our Sandwiching algorithm (Algorithm 1) can be regarded as an inner approximation

algorithm that also creates an outer approximation using tangent information that is
automatically obtained when using the weighted sum scalarization to compute approxi-
mation points.
Our main priority in approximating a nondominated set is to obtain a good inner

approximation quickly. Since it is feasible, this approximation can then be presented to
the decision maker, e.g., in a navigation process [1], [31]. The outer approximation serves
the important purpose to give an upper bound on the approximation error. But since
the elements of the outer approximation are either points that are already known or that
are infeasible, the outer approximation has no further practical purpose in our following
decision-making process. Therefore, in our context it is not useful to update the inner
approximation only in some iterations and the additional optimization problems that
need to be solved to obtain the outer approximation with an optimal convergence rate
are too costly for little added value.
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A. Proofs that are direct extensions of proofs by Kamenev

Proof of Lemma 4.6. Lemma 1 of [17] states: Let C ∈ C 2, P ∈P i(C),
δH(P,C) < ρmin(C) and C ′ ∈ C , P ∈P i(C ′). Then

δP (P,C ′) ≥
(

1− δH(P,C)

ρmin(C)

)
δH(P,C ′).

Since its proof is only available in Russian, we state it here. Let x ∈ ∂P . According
to Lemma 2 of [16] , δP (P,C ′) ≥ ξ(P )δH(P,C ′). In addition, for C ∈ C 2, P ∈ P(C)
and δH(P,C) < ρmin(C), according to Lemma 4 of [16] , it holds ξ(P ) ≥ [ρmin(C) −
δH(P,C)]/ρmin(C), which yields

δP (P,C ′) ≥ ξ(P ) δH(P,C ′) ≥ ρmin(C)− δH(P,C)

ρmin(C)
δH(P,C ′)

=

(
1− δH(P,C)

ρmin(C)

)
δH(P,C ′).

29



The statement of Lemma 4.6 then follows using δP (P,C) ≤ δH(P,C) ≤ c2δ(P,C)
(from Equation 8).

Proof of Lemma 2 of [17], used in the proof of Lemma 4.8. Note that, according to the
algorithm, Pn+1 = conv{{p∗} ∪ Pn} ⊇ Pn and
Qn+1 = Qn ∩HC(u∗) ⊆ Qn. Therefore

δS(Pn, Qn)− δS(Pn+1, Qn+1) = δS(Pn, Pn+1) + δS(Qn, Qn+1).

Denote by hP := gPn+1(u∗) − gPn(u∗) and hQ := gQn(u∗) − gQn+1(u∗). From the
scheme of the algorithm it follows that gQn+1(u∗) = 〈u∗, p∗〉 = gPn+1(u∗), so hP + hQ =
δPn(Pn, Qn).Let z ∈ C and r > 0 such that Br(z) ⊂ Pn. The value of δS(Pn, Pn+1) is
not less than the volume cut off from the cone of visibility of the ball Br(z) from point
p∗ by a hyperplane with norm u∗, which is supporting Pn. This situation is illustrated
in Figure 1.
Lemma 1 of [19] estimates the volume of a pyramid defined by a sphere, an external

point and a hyperplane: Suppose we are given the sphere Bρ(z) ⊂ Rd, the exterior point
y and the hyperplane H separating the sphere and the exterior point. The hyperplane H
has distance h to the point y. Then H cuts a pyramid from the visibility cone of Bρ(z)
from the point y with a volume not less than

πd−1
d

((
||z − y||)

ρ

)2

− 1

)(1−d)/2

hd.

Therefore, we have

δS(Pn, Pn+1) ≥ πd−1
d

[(
||p∗ − z||

r

)2

− 1

](1−d)/2
hdP ≥

πd−1
d

(ζ21 − 1)(1−d)/2hdP .

Analogously, let p ∈ TQn(u∗), z ∈ C and r > 0 such that Br(z) ⊂ C. Then

δS(Qn, Qn+1) ≥ πd−1
d

[(
||p− z||

r

)2

− 1

](1−d)/2
hdQ ≥

πd−1
d

(ζ22 − 1)(1−d)/2hdQ

Since for any t, s, a > 0 with t+ s = a we have td + sd ≥ ad/2d−1, it follows

hdP + hdQ ≥ (hP + hQ)d/2d−1 = δPn(Pn, Qn)d/2d−1.

Therefore, we get

δS(Pn, Qn)− δS(Pn+1, Qn+1) = δS(Pn, Pn+1) + δS(Qn, Qn+1)

≥ πd−1
d

(ζ21 − 1)(1−d)/2hdP +
πd−1
d

(ζ22 − 1)(1−d)/2hdQ

≥ πd−1
d

(
max{ζ21 , ζ22} − 1

)(1−d)/2
(hdP + hdQ) ≥ πd−1

d
(ζ2 − 1)(1−d)/2

δPn(Pn, Qn)d

2d−1
.

30



Lemma A.1 (Lemma 4 of [17]). Let {an}n=0,1,... and {bn}n=0,1,... be monotonically de-
creasing sequences of positive numbers, and let there exist constants c1, c2 > 0 and β > 1
such that an − an+1 ≥ c1b

β
n and c2bn ≥ an at n = 0, 1, . . .. Then for any n ≥ 1 it holds

an ≤ (λan
1/(β−1))−1, where

λa =

(
(β − 1)c1

cβ2

)1/(β−1)

.

In addition, for any number n0 > β, n ≥ n0 it holds bn ≤ (λbn
1/(β−1))−1, where

λb =

(
(β − 1)c1
βc2

(
1− β

n0

)1/β
)1/(β−1)

.

Proof of Lemma 4.9. The proof is similar to that of Lemma 5 in [17].
Let z ∈ C and r,R > 0 be such that Br(z) ⊂ P 0 ⊂ Q0 ⊂ BR(z). Then the inclusions

Br(z) ⊂ Pn ⊂ Qn ⊂ BR(z) hold for any n ≥ 0.
According to Equation 8 it holds δ(P,C) ≥ 1

c2α(P )δ
H(P,C). The asphericity α(Pn) is

defined as the minimal ratio of the radii of concentric outer and inner spheres. Therefore,
it holds α(Pn) ≤ R/r. Hence, δ(P,C) ≥ r

c2R
δH(P,C).

We can see that it holds R/r ≥ ζ, where ζ = max{ζ1, ζ2} is defined as in Lemma 4.8:
For every p ∈ TQn we have R ≥ ||p − z|| and therefore also R ≥ ||p∗ − z|| for every
p∗ ∈ ∂C. Thus we obtain

R

r
≥ ||p

∗ − z||
r

≥ ζ1 and
R

r
≥ ||p− z||

r
≥ ζ2.

Using Lemma 4.8, we obtain that

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ πd−1
2d−1d

(ζ2 − 1)(1−d)/2
(

c1
α(Pn)

)d
(δ(Pn, Qn))d

≥ πd−1
2d−1d

((
R

r

)2

− 1

)(1−d)/2 ( r
R

)d
cd1

(
r

c2R

)d (
δH(Pn, Qn)

)d
≥ πd−1

2d−1d

((
R

r

)2

− 1

)(1−d)/2(
c1
c2

)d(R
r

)−2d
︸ ︷︷ ︸

=:c̃

(
δH(Pn, Qn)

)d
,

so

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ c̃ δH(Pn, Qn)d,

with c̃ defined above. In the case δ = δH we obtain

c̃ :=
πd−1
2d−1d

((
R

r

)2

− 1

)(1−d)/2 ( r
R

)d
.
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Lemma 3 of [17] states: Let C ∈ C and let R ∈ R and z ∈ Rd be chosen such that
C ⊂ BR(z). Then for ε > 0 µ((C)ε)− µ(C) ≤ πd[(R+ ε)d −Rd].
Denote δS(Pn, Qn) by xn and δH(Pn, Qn) by yn. Since Qn ⊂ (Pn)yn , using Lemma 3

of [17] we obtain

xn =µ((Pn\Qn) ∪ (Qn\Pn)) = µ(Qn\Pn) = µ(Qn)− µ(Pn)

≤µ((Pn)yn)− µ(Pn) ≤ πd((R+ yn)d −Rd).

Using the binomial theorem and yn < R, we have

((R+ yn)d −Rd) =

d∑
k=0

(
d

k

)
Rd−kykn −Rd = Rd +Rd−1yn +

d∑
k=2

(
d

k

)
Rd−kykn −Rd

≤

(
1 +

d∑
k=2

(
d

k

))
Rd−1yn =

(
d∑

k=0

(
d

k

)
− 1

)
Rd−1yn = (2d − 1)Rd−1yn

Therefore xn ≤ d̃yn, where d̃ := πd(2
d−1)Rd−1. In addition, the sequences {xn}n=0,1,...

and {yn}n=0,1,... are positive and monotonically decreasing. Therefore with bn := yn and
the constant β = d ≥ 1 the conditions of Lemma A.1 hold and hence for any n ≥ 1
xn = δS(Pn, Qn) ≤ (λan

1/(d−1))−1,where λa depends only on β, c1 and c2, and therefore
only on d, δ, R, and r. Furthermore, let n0 = β + 1. Then, by the same Lemma A.1,
for n ≥ n0 it holds yn = δH(Pn, Qn) ≤ (λbn

1/(d−1))−1where λb depends only on β, c1, c2
and n0, and therefore only on d, δ, R, and r. From Equation 7 we can conclude

δ(Pn, Qn) ≤ 1

c1
yn ≤ (c1λbn

1/(d−1))−1.

Proof of Lemma 4.11. The proof is similar to that of Lemma 6 in [17].
Let r′ and R′ be the radii of concentric inner and outer balls for C such that

α(C) = R′/r′. Since, by Theorem 4.10, the sequences {Pn}n=0,1,... and {Qn}n=0,1,...

converge to C, then for any ε′, 0 < ε′ < 1, we can find a n0 ∈ N such that δH(Pn, Qn) <
ε′r′ for n ≥ n0. Denote by r = (1 − ε′)r′ and R = (1 + ε′)R′. Let z ∈ C such that
Br′(z) ⊂ C ⊂ BR′(z). By Lemma 2 of [19] we have Br(z) ⊂ Pn.

Using ρ := δH(C,Qn) it holds Qn ⊂ (C)ρ. From C ⊂ BR′(z) and
ρ = δH(C,Qn) ≤ δH(Pn, Qn) < ε′r′ < ε′R′ it follows Qn ⊂ (C)ρ ⊂ BR′+ρ(z) ⊂
BR′+ε′R′(z).Therefore, we have the inclusion Qn ⊂ BR(z).
According to Equation 8 it holds δ(Pn, Qn) ≥ 1/(c2α(Pn))δH(Pn, Qn), therefore

δ(Pn, Qn) ≥ r/(c2R)δH(Pn, Qn). In addition, R/r ≥ ζ (see the proof of Lemma 4.9)
where ζ is defined in Lemma 4.8. Hence, as in the proof of Lemma 4.9, for n ≥ n0,

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ πd−1
2d−1d

((
R

r

)2

− 1

)(1−d)/2(
c1
c2

)d(R
r

)−2d (
δH(Pn, Qn)

)d
.
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Consider that R/r = α(C)(1+ ε′)/(1− ε′) and α(C) 6= 1. Let us choose ε′ > 0 so small
that ((

α(C)
1 + ε′

1− ε′

)2

− 1

)(1−d)/2(
1 + ε′

1− ε′

)−2d
≥ (1− ε)(α(C)2 − 1)(1−d)/2. (∗1)

Then, for n ≥ n0 we obtain

δS(Pn, Qn)− δS(Pn+1, Qn+1)

≥ πd−1
2d−1d

((
R

r

)2

− 1

)(1−d)/2(
c1
c2

)d(R
r

)−2d (
δH(Pn, Qn)

)d
=

πd−1
2d−1d

((
α(C)

1 + ε′

1− ε′

)2

− 1

)(1−d)/2(
1 + ε′

1− ε′

)−2d
α(C)−2d

(
c1
c2

)d (
δH(Pn, Qn)

)d
(∗1)
≥ πd−1

2d−1d

(
α(C)2 − 1

)(1−d)/2
(1− ε)α(C)−2d

(
c1
c2

)d (
δH(Pn, Qn)

)d
.

Proof of Theorem 4.12. The proof is similar to that of Theorem 2 of [17].
Let {(Pn, Qn)}n=0,1,... be a sequence of pairs of polyhedra generated by the Sandwich-

ing algorithm with strongly equivalent selection (Algorithm 3) for C ∈ C , α(C) 6= 1. Let
us denote δS(Pn, Qn) by xn and δH(Pn, Qn) by yn. Then, according to Lemma 4.11, for
any ε1, 0 < ε1 < 1, there exists a n1 such that for n ≥ n1 we have xn − xn+1 ≥ ξ1(ε1)ydn.

Define a constant αn > 1 such that δ(Pn, αnPn) = δH(Pn, Qn). Due to the scheme of
the algorithm, we have Qn ⊂ αnPn. Then

xn = δS(Pn, Qn) ≤ δS(Pn, αnP
n) and it holds (14)

σ(Pn)δH(Pn, Qn) ≤ δS(Pn, αnP
n). (15)

Note that limn→∞ δ
S(Pn, αnP

n) = 0 and limn→∞ σ(Pn)δH(Pn, Qn) = 0. Using the
convergence of these sequences together with the reversed triangle inequality ( [14] remark
1.5), the nonnegativity of the sequences and Equation 15 we get that for every ε̃ there
exists a number N ∈ N such that∣∣∣∣δS(Pn, αPn)

∣∣− ∣∣σ(Pn)δH(Pn, Qn)
∣∣∣∣ ≤ ∣∣δS(Pn, αPn)

∣∣+
∣∣σ(Pn)δH(Pn, Qn)

∣∣ < ε̃

⇔ δS(Pn, αPn) ≤ σ(Pn)δH(Pn, Qn) + ε̃, ∀n > N.

From this result and Equation 14 and defining ε2 = ε̃/maxn{δH(Pn, Qn)} = ε̃/δH(P 0, Q0)
we obtain that for all ε2 > 0 there exists an n2 ∈ N such that

xn ≤ δS(Pn, αPn) ≤ (σ(Pn) + ε2) yn ∀n > n2.
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For convex compact sets A, B with A ⊂ B it holds σ(A) ≤ σ(B) (Theorem 15.8 and
Remark 15.4 of [26]). Therefore, from Pn ⊂ C we obtain σ(Pn) ≤ σ(C) and conclude
that for any ε2 > 0 there exists a number n2, at which

xn ≤ (σ(Pn) + ε2)yn ≤ (σ(C) + ε2)yn, n ≥ n2.

In addition, the terms of the sequences {xn}n=0,1,... and {yn}n=0,1,... are positive and
monotonically decreasing. Therefore, for n ≥ n3 = max{n1, n2} the conditions of
Lemma A.1 are valid with constants c1 = ξ1(ε1), c2 = σ(C) + ε2 and β = d. From
Lemma A.1 we obtain

xn =δS(Pn, Qn) ≤

(
(d− 1)ξ1(ε1)

[
1

σ(C) + ε2

]d
n

)1/(1−d)

=

(
(d− 1)(1− ε1)

πd−1
2d−1d

(
α(C)2 − 1

)(1−d)/2
α(C)−2d

(
c1
c2

)d [ 1

σ(C) + ε2

]d
n

)1/(1−d)

and

yn = δH(Pn, Qn)

≤

(d− 1

d
ξ1(ε1)

1

σ(C) + ε2

(
1− d

ñ

)1/d
)1/(d−1)

n1/(d−1)

−1

=

(
d− 1

d
ξ1(ε1)

1

σ(C) + ε2
n

)1/(1−d)(
1− d

ñ

)1/(d(1−d))
for any ñ > d, n ≥ ñ.

Since
(
1− d

ñ

)1/(d(1−d))
> 1 is constant, we can rewrite the statement: for any ε3 > 0

there exists a number n4 ≥ n3, for which

yn = δH(Pn, Qn) ≤ (1 + ε3)

(
d− 1

d
ξ1(ε1)

1

σ(C) + ε2
n

)1/(1−d)

= (1 + ε3)

(
(d− 1)(1− ε1)

πd−1
2d−1d2

(
α(C)2 − 1

)(1−d)/2
α(C)−2d

(
c1
c2

)d 1

σ(C) + ε2
n

)1/(1−d)

,

n ≥ n4. Let us choose ε1, ε2 and ε3 such that

(1 + ε3)(1− ε1)1/(1−d)
(

1 +
ε2

σ(C)

)d/(d−1)
≤ 1 + ε. (∗2)

Then, using (∗2) and introducing the constant b1 defined in the formulation of Theo-
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rem 4.12, we get the first statement of the theorem:

xn ≤

(
(d− 1)(1− ε1)

πd−1
2d−1d

(
α(C)2 − 1

)(1−d)/2
α(C)−2d

(
c1
c2

)d [ 1

σ(C) + ε2

]d
n

)1/(1−d)

=2
(

(d− 1)
πd−1
d

)1/(1−d)
(1− ε1)1/(1−d)(α(C)2 − 1)1/2α(C)2d/(d−1)

(
c1
c2

)d/(1−d)
(

1 +
ε2

σ(C)

)d/(d−1)
σ(C)d/(d−1)n1/(1−d)

=

1

2

(
(d− 1)

πd−1
d

1

σ(C)d

)1/(d−1)
(α(C)2 − 1)−1/2α(C)2d/(1−d)

(
c1
c2

)d/(d−1)
︸ ︷︷ ︸

=b1

n1/(d−1)


−1

(1− ε1)1/(1−d)
(

1 +
ε2

σ(C)

)d/(d−1)
(∗2)
≤ (1− ε)

(
b1n

1/(d−1)
)−1

for n ≥ n0 = n4.

Similarly, we obtain the second statement

yn ≤(1 + ε3)

(
(d− 1)(1− ε1)

πd−1
2d−1d2

(
α(C)2 − 1

)(1−d)/2
α(C)−2d

(
c1
c2

)d 1

σ(C) + ε2
n

)1/(1−d)

=

(
1

2

(
d− 1

d

πd−1
d

)1/(d−1)
(α(C)2 − 1)−1/2α(C)2d/(1−d)

(
c1
c2

)d/(d−1)
n1/(d−1)

)−1

(1 + ε3)(1− ε1)1/(1−d)
(

1 +
ε2

σ(C)

)1/(d−1)
σ(C)1/(d−1)

=

1

2

(
d− 1

d

πd−1
d

1

σ(C)

)1/(d−1)
(α(C)2 − 1)−1/2α(C)2d/(1−d)

(
c1
c2

)d/(d−1)
︸ ︷︷ ︸

=b2

n1/(d−1)


−1

(1 + ε3)(1− ε1)1/(1−d)
(

1 +
ε2

σ(C)

)1/(d−1)

(∗2)
≤ (1 + ε)

(
b2n

1/(d−1)
)−1

for n ≥ n0 = n4.

From Equation 7 we can conclude

δ(Pn, Qn) ≤ 1

c1
yn ≤ (1 + ε)

(
c1b2n

1/(d−1)
)−1

for n ≥ n0 = n4.

Now, the assertions of Theorem 4.12 for the number of iterations K(n) = n have
been proven. The validity of them when K(n) is the number of vertices of the inner
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approximation nv(Pn) or the number of facets of the outer approximation nf (Qn) follows
from Equation 4.

Proof of Lemma 4.14. The proof is similar to that of Lemma 7 in [17] and given in the
Appendix.
Since, by Theorem 4.10, {Pn}n=0,1,... and {Qn}n=0,1,... converge to C, then for any γ,

0 < γ < 1, we can find n0 such that δH(Pn, C) ≤ δH(Pn, Qn) ≤ γρmin(C) for n ≥ n0.
By Lemma 4.6, with δH(Pn, C) ≤ γ(ε)ρmin(C) and Equation 8, we have

δ(Pn, Qn) ≥ 1

c2
(1− γ(ε)) δH(Pn, Qn).

By Lemma 4.8,

δS(Pn, Qn)− δS(Pn+1, Qn+1) ≥ πd−1
2d−1d

(ζ2 − 1)(1−d)/2
(
c1rinner(P

0)

router(C)

)d
(δ(Pn, Qn))d .

Let us evaluate ζ. Let u∗ and p∗ be the direction and point chosen for (Pn, Qn) at step
1 of the algorithm. Denote ρmin(C) by ρ. By Blaschke’s rolling theorem (Lemma 4.13),
there exists a z ∈ C such that Bρ(z) ⊂ C and p∗ ∈ Bρ(z). By Lemma 2 of [19], it follows
that Bρ′(z) ⊂ Pn where ρ′ = ρ− δH(Pn, C). Therefore

ζ1 = inf

{
||p∗ − z||

r
: z ∈ C, Br(z) ⊂ Pn

}
≤ ||p

∗ − z||
ρ′

=
ρ

ρ′
=

ρ

ρ− δH(Pn, C)
.

Since ρ > γρ ≥ δH(Pn, Qn) ≥ δH(Pn, C), it holds

ζ1 ≤
ρ

ρ− δH(Pn, C)
≤ ρ

ρ− δH(Pn, Qn)
=

(
ρ− δH(Pn, Qn)

ρ

)−1
=

(
1− δH(Pn, Qn)

ρ

)
.

With x = δH(Pn,Qn)
ρ it holds 1

1−x ≤ 1 + x
1−γ since x ≤ γ due to δH(Pn, Qn) ≤ γρ:

1

1− x
≤ 1 +

x

1− γ
⇔ 1

1− x
− x

1− γ
≤ 1⇔ (1− γ)− x(1− x)

(1− x)(1− γ)
≤ 1

⇔1− γ − x+ x2 ≤ 1− γ − x+ xγ ⇔ x ≤ γ.

We thus obtain

ζ1 ≤ 1 +
δH(Pn, Qn)

ρmin(C)(1− γ)
.

Now let p ∈ TQn(u∗) and p′ the projection of p on C. Since C is a nonempty, closed
and convex set, this projection exists and is unique (Theorem 1.46 of [29]). The point
p′ is the element of C with the smallest distance to p and the (unique) tangent on C in
p′ is perpendicular to (p − p′) (Lemma 1.47 of [29]). By the Blaschke rolling theorem
(Lemma 4.13), there exists z ∈ C such that Bρ(z) ⊂ C with p′ ∈ Bρ(z). This ball
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touches C in p′. The vector (p′ − z) is orthogonal to the tangent of C in p′. Therefore,
p′ ∈ [z, p].
It holds ||p− p′|| ≤ δH(Qn, C). Since we have 1

1−γ > 1 and δH(Pn, C) ≤ δH(Pn, Qn),
it follows

ζ2 ≤
||p− z||

ρ
=
||p′ − z||+ ||p− p′||

ρ
≤ ρ+ δH(Qn, C)

ρ
= 1 +

δH(Qn, C)

ρ

≤ 1 +
δH(Qn, C)

ρ

1

1− γ
≤ 1 +

δH(Pn, Qn)

ρ(1− γ)
.

Since ζ = max{ζ1, ζ2} we get

ζ ≤ 1 +
δH(Pn, Qn)

ρmin(C)(1− γ)
.

Now we obtain

ζ2 − 1 ≤
(

1 +
δH(Pn, Qn)

ρmin(C)(1− γ)

)2

− 1 = 1 + 2
δH(Pn, Qn)

ρmin(C)(1− γ)
+

δH(Pn, Qn)2

ρmin(C)2(1− γ)2
− 1

≤ 2
δH(Pn, Qn)

ρmin(C)(1− γ)
+

2δH(Pn, Qn)

ρmin(C)(1− γ)

1

1− γ
γ

2
since

δH(Pn, Qn)

ρmin(C)
≤ γ

=
2δH(Pn, Qn)

ρmin(C)(1− γ)

(
1 +

1

1− γ
γ

2

)
So, using Lemma 4.8 and δ(Pn, Qn) ≥ 1/c2(1− γ)δH(Pn, Qn),

δS(Pn, Qn)− δS(Pn+1, Qn+1)

≥ πd−1
2d−1d

(ζ2 − 1)(1−d)/2
(
c1rinner(P

0)

router(C)

)d
(δ(Pn, Qn))d

≥ πd−1
2d−1d

(
2δH(Pn, Qn)

ρmin(C)(1− γ)

(
1 +

1

1− γ
γ

2

))(1−d)/2(
c1rinner(P

0)

router(C)

)d
(δ(Pn, Qn))d

≥ πd−1
2d−1d

(
2δH(Pn, Qn)

ρmin(C)(1− γ)

(
1 +

1

1− γ
γ

2

))(1−d)/2(
c1rinner(P

0)

router(C)

)d
(

1

c2

)d
(1− γ)d

(
δH(Pn, Qn)

)d
=

πd−1
2d−1d

(
1

(1− γ)

(
1 +

1

1− γ
γ

2

))(1−d)/2
(1− γ)d

(
ρmin(C)

2

)(d−1)/2

(
c1rinner(P

0)

c2router(C)

)d (
δH(Pn, Qn)

)(d+1)/2
.

To obtain the statement of the lemma, we need to choose γ such that

(1− γ)d
(

1

1− γ

(
1 +

γ

2

1

1− γ

))(1−d)/2
≥ 1− ε

and put γ(ε) = γ.
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Proof of Theorem 4.15. The proof is similar to that of Theorem 3 of [17].
Let {Pn, Qn}n=0,1,... be a sequence of pairs of polyhedra, generated by Sandwiching

with strongly equivalent selection (Algorithm 3) for C ∈ C 2. Denote δS(Pn, Qn) by xn
and δH(Pn, Qn) by yn. Then, according to Lemma 4.14, for any ε1, 0 < ε1 < 1, there
exists n1 such that for n ≥ n1 we have xn − xn+1 ≥ ξ2(ε1, ρmin(C))y

(d+1)/2
n .

According to properties of the surface area σ(·) (see the proof of Theorem 4.12), for
any ε2 > 0 there exists a number n2 at which xn ≤ (σ(C) + ε2)yn for n ≥ n2. Besides,
the terms of the sequences {xn}n=0,1,... and {yn}n=0,1,... are positive and monotonically
decreasing. Therefore, for n ≥ n3 = max{n1, n2} the conditions of Lemma A.1 are valid
with constants c1 = ξ2(ε1, ρmin(C)), c2 = σ(C) + ε2 and β = (d+ 1)/2. Therefore for any
ε3 > 0 there exists a number n4 ≥ n3 for which

xn = δS(Pn, Qn) ≤

(
d− 1

2
ξ2(ε1, ρmin(C))

[
1

σ(C) + ε2

](d+1)/2

n

)2/(1−d)

=

(
d− 1

2
(1− ε1)

πd−1
2d−1d

(
ρmin(C)

2

)(d−1)/2(c1rinner(P
0)

c2router(C)

)d [
1

σ(C) + ε2

](d+1)/2

n

)2/(1−d)

and

yn = δH(Pn, Qn)

≤
(

1− d+ 1

2ñ

)2/(1−d2)(d− 1

d+ 1
ξ2(ε1, ρmin(C))

1

σ(C) + ε2
n

)2/(1−d)
, ñ >

d+ 1

2

≤ (1 + ε3)

(
d− 1

d+ 1
ξ2(ε1, ρmin(C))

1

σ(C) + ε2
n

)2/(1−d)
, n ≥ n4

≤ (1 + ε3)

(
d− 1

d+ 1
(1− ε1)

πd−1
2d−1d

(
ρmin(C)

2

)(d−1)/2

(
c1rinner(P

0)

c2router(C)

)d
1

σ(C) + ε2
n

)2/(1−d)

, n ≥ n4.

Let’s choose ε1, ε2 and ε3 so that

(1 + ε3)(1− ε1)2/(1−d)[1 + ε2/σ(C)]2d/(d−1) ≤ 1 + ε. (∗3)

Then, using (∗3) and introducing the constants b3 and b4 defined in the formulation of
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Theorem 4.15, we get the statement of the theorem:

xn ≤

(
d− 1

2
(1− ε1)

πd−1
2d−1d

(
ρmin(C)

2

)(d−1)/2(c1rinner(P
0)

c2router(C)

)d [
1

σ(C) + ε2

](d+1)/2

n

)2/(1−d)

=

(
d− 1

2

πd−1
d

(
c1rinner(P

0)

c2router(C)

)d
1

σ(C)(d+1)/2

)2/(1−d)
8

ρmin(C)︸ ︷︷ ︸
=b−1

3

(1− ε1)2/(1−d)
(

1 +
ε2

σ(C)

)(d+1)/(d−1)
n2/(1−d)

(∗3)
≤ (1 + ε)

(
b3n

2/(d−1)
)−1

and

yn ≤ (1 + ε3)(
d− 1

d+ 1
(1− ε1)

πd−1
2d−1d

(
ρmin(C)

2

)(d−1)/2(c1rinner(P
0)

c2router(C)

)d
1

σ(C) + ε2
n

)2/(1−d)

=

(
d− 1

d+ 1

πd−1
d

(
c1rinner(P

0)

c2router(C)

)d
1

σ(C)

)2/(1−d)
8

ρmin(C)︸ ︷︷ ︸
=b−1

4

(1− ε1)2/(1−d)(σ(C) + ε2)
2/(d−1)n2/(1−d)

(∗3)
≤ (1 + ε)

(
b4n

2/(d−1)
)−1

for n ≥ n0 = n4.

From Equation 7 we can conclude δ(Pn, Qn) ≤ 1
c1
yn ≤ (1 + ε)

(
c1b4n

2/(d−1))−1 for n ≥
n0 = n4.
Now, the assertions of Theorem 4.15 are proved for K(n) = n. The validity of them for

K(n) equal to the number of vertices of the inner approximation nv(Pn) or the number
of facets of the outer approximation nf (Qn) follows from Equation 4.

39


	Introduction
	Preliminaries
	Bounded convex multiobjective optimization
	The Sandwiching Algorithm and common quality indicators
	The Algorithmic Idea of Sandwiching Algorithms
	Common Quality Measures: Epsilon Indicator and Polyhedral Gauge

	The convergence rate

	Polyhedral approximation of convex compact sets
	Introducing the Kamenev algorithm for the approximation of convex compact sets
	Reformulating the Kamenev algorithm for a class of quality criteria

	Proving the convergence rate of an inner and outer approximation algorithm for convex compact sets
	The quality criterion of the Kamenev algorithm and equivalent metrics
	Convergence rate of Sandwiching with strongly equivalent selection criteria

	Applying the convergence results to the Sandwiching algorithm from multiobjective optimization
	Applying results for convex compact sets to multiobjective optimization
	Convergence rate of Sandwiching with polyhedral gauge quality
	Convergence rate of Sandwiching with epsilon indicator selection

	Conclusion and Discussion
	Proofs that are direct extensions of proofs by Kamenev

