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Abstract: We consider several hierarchical optimization programs: (general-
ized) semi-infinite and existence-constrained semi-infinite programs, minmax,
and bilevel programs. Multiple adaptive discretization-based algorithms have
been published for these program classes in recent decades. However, rigorous
numerical performance comparisons between these algorithms are lacking. In-
deed, if numerical comparisons are provided at all, they usually compare a small
selection of algorithms on small benchmark test sets, on different platforms, and
with different subsolvers, which are needed during the solution. Additionally,
some algorithms have hyperparameters, which impedes a fair comparison. Our
contribution is threefold: i) We present an open-source software called 1libDIPS
(Discretization-Based Semi-Infinite and Bilevel Programming Solvers), which
implements multiple adaptive discretization-based solvers. The main benefit of
libDIPS is that it lets the user flexibly change between the implemented solvers
within one program class and switch between the available subsolvers. ii) We
compile an extensive benchmark test set for (generalized) semi-infinite, minmax,
and bilevel programs, which, in total, contains over 600 problem instances. Our
set includes eight merged test sets and additional problem instances from over
80 literature sources. iii) We compare the solvers numerically on our benchmark
test set and identify tradeoffs in the hyperparameters tuning.

Keywords— semi-infinite programming, generalized semi-infinite programming,

bilevel programming, adaptive discretization, benchmark, software

1 Introduction

Generalized semi-infinite and semi-infinite programs ((G)SIPs), existence-constrained
semi-infinite programs (ESIPs), minmax programs (MINMAX), and bilevel programs
(BLPs) are hierarchical optimization programs that occur in many applications, e.g.,
robust optimization [9], flexibility analysis [112], gemstone cutting [127], and, thermo-
dynamics [20, 42].

A reliable and fast solution to such optimization programs is paramount but also
very challenging: the lower-level optimization problem must be solved globally even
to check the feasibility of a given candidate solution point. If the lower-level problems
of (G)SIPs, MINMAX, or BLPs are convex and satisfy some regularity conditions, the
hierarchical program can be reformulated as a single-level problem. However, in many
applications, the lower-level problems are nonconvex.

Multiple theoretical approaches for the global solution of hierarchical programs
without convexity assumptions have been developed over the past decades, with sub-
stantial recent advances. These include classical discretization methods, adaptive
discretization-based approaches and adaptions thereof, overestimation methods us-
ing interval methods and relaxation methods; optimal value function approaches; and
relaxation-based branch-and-bound methods [12-14, 26, 32, 35, 71, 73, 77, 78, 78, 98,
104, 117]. See [29] for more details.

Here, we focus on the adaptive discretization approaches. A primary benefit of
these adaptive discretization approaches is that they can utilize well-established opti-
mization solvers mainly as a black box. They have also been successfully applied in
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research and industry [63]. Over the last decades, numerous adaptive discretization-
based algorithms have been published to solve the different program classes, e.g., refer
to Table 2.

Evaluating the relative performance of these adaptive discretization-based algo-
rithms is difficult because computational performance is usually assessed on different
platforms and implementations. In addition, many algorithms use inherent algorith-
mic tuning parameters, i.e., hyperparameters that complicate direct comparison due
to their substantial influence on performance. Finally, no unified set of test problems
is used consistently across the publications, so performance evaluation is usually based
on an individual and small set of test problems. To remedy this, we implement mul-
tiple adaptive discretization-based algorithms in a coherent software framework and
compile an extensive test set of problem instances to compare the algorithms.

While we focus on comparing the implemented adaptive discretization-based al-
gorithms, these algorithms are already used as a point of comparison in numerical
evaluations of other algorithms. Specifically, [18, 60, 73] compared the numerical per-
formance of their approaches against the algorithms proposed by [26, 77, 79]. For
their comparisons, [18] used their own implementations of [77], [73] used the GAMS
implementation provided by [26], and [60] used the data reported by [79].

The additional effort to reimplement the respective adaptive discretization algo-
rithm, not having access to the required commercially distributed subsolvers, or the
need for a comparison that is not possible based solely on the original publication
might have discouraged other researchers from using them as a point of comparison.
An alternative to implementation would be to use one of the publicly available solvers
for hierarchical programs, listed in Table 1 with their respective capabilities. A po-
tential reason preventing these from being used in a comparison are limitations placed
on the problem type in the upper- or lower-level, the lack of a deterministic global
solution, or that the relevant problem class, i.e., GSIP, SIP, or BLP, is not supported.
Additionally, some solvers are commercially distributed or use proprietary dependen-
cies.

We remedy this by implementing multiple adaptive discretization-based algorithms
in a coherent open-source software called libDIPS — Discretization-Based Semi-Infinite
and Bilevel Programming Solvers. 1ibDIPS provides solvers for the deterministic global
solution of (G)SIPs, ESIPs, MINMAX, and BLPs with upper- and lower-levels of
MINLP type. Our software is not only freely available and easy to use but rather
is also a suitable framework to implement existing and new algorithms, whereby
discretization-based algorithms will be the easiest to implement. Additionally, we
compile an extensive test set of problem instances to compare the algorithms. The
combination of libDIPS and the test set arguably makes further comparisons between
algorithms easier for other researchers and makes the solution of hierarchical programs
more accessible.

In Section 2, for completeness, we shortly review the program classes (G)SIP,
ESIP, MINMAX, and BLP. In Section 3, we recapitulate the main ideas of adaptive
discretization-based algorithms for solving these program classes. We then introduce
in Section 4 an open-source C++ library, called libDIPS, which contains implementa-
tions of the algorithms reviewed in Section 3. In Section 5, we compile a benchmark
test set consisting of unified existing benchmark test sets and other test problems
found in the literature. Section 6 covers performance tests. We utilize the benchmark
test set to compare the overall performance of the implemented solvers for ‘best case’
hyperparameters for the benchmark test set. Additionally, we investigate the sensi-
tivity of the different solvers to their hyperparameters. We summarize our work in
Section 7 and propose future work.
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SIP  GSIP BLP Det. Type Algorithm Type
Global (upper-lower)*
EAGO [126] v v MINLP-MINLP Adaptive discretization
NSIPS [119, 120] v NLP-uncon- Discretization, transcription to integral
strained NLP

SIP with QP-LL [18] v v convex NLP-QP Adaptive discretization and Dualization
IbexSIP [73] v v NLP-NLP Interval Method with Branch & Bound
BASBL [61, 84] v v MINLP-MINLP Branch & Sandwich
B-POP [5] v v MIQP-MIQP Multi-parametric
GAMS EMP [36] v v NLP-convex NLP  KKT-based MPEC
libDIPS (this work) v v v v MINLP-MINLP Adaptive discretization

Table 1: Overview of available solvers for hierarchical programs. The solvers by [4, 11] are published but not publicly available. *: Type

describes the problem type of the upper- and lower-level problem, respectively.
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2 The Program Classes SIP, GSIP, ESIP, MIN-
MAX, and BLP

In the following, we state the problem formulations and notations used for the program
classes (G)SIP, ESIP, MINMAX, and BLP. While we highlight important aspects of
each program class, we discuss only the problem classes and their formulations that are
directly tractable with libDIPS. As an example, the algorithm for pessimistic bilevel
problems from [125] can easily be implemented in the discussed software framework,
but we do not discuss this problem class, because the algorithm is currently not imple-
mented. Furthermore, we focus on features related to the algorithmic ideas introduced
in Section 3. Most program classes are well-established, and we thus refer to surveys
for a more thorough discussion [29, 41, 83, 101]. For the problem class of ESIPs we
refer to [27].

Throughout the manuscript, we write vector-valued symbols in bold font and sets
in calligraphic font. While non-compact host sets can theoretically be handled with
adaptive discretization algorithms under certain assumptions [58], we assume compact
host sets herein and in our open-source software libDIPS. We assume that all occurring
functions are continuous on their respective host sets.

SIPs are formulated as

min  f(x)
st. g“(z,y) <0, Vyey _ (STP)
X = {zel[z’ "] S R™ :v™(x) <0, v"(x) = 0}

V= {y c [ylbyyub] S R™ : v'l(y) < 0, v (y) = 0};

with the objective function f : R"* — R, the semi-infinite constraint function g* :
R x R™ — R™9“ non-coupling upper-level equality and inequality constraints v® :
R"* — R"™ and v : R"* — R"v¢* non-coupling lower-level equality and inequality
constraints v : R™ — R™i and v® : R™ — R"e . We call & the upper-level
variables and y the lower-level variables. The set of all considered values of the lower-
level variables, the so-called lower-level feasible set ), is a set of infinity cardinality.
We consider MINMAX of the form

min  max f(x,y)

xreEX yeyY

st. X = {ze[z" 2] cR"™ :v"(z) <0, v*“(z) = 0} (MINMAX)

Yi={ye |y y"] cR™ :v'(y) <0, v (y) = 0};

with the objective function f : R"® x R™ — R and all other functions as defined in
(SIP). (MINMAX) is a specialization of (SIP), as can be seen from the reformulation

min t
TEX teR (MINMAX-REF)
st. flz,y)—t<O0Vye).

GSIPs are an extension to SIPs that allow dependency of the lower-level feasible
set on the upper-level variables. We consider GSIPs of the form

iy S

st. g“(z,y) <0, VyeV(x)
X:={xe [wlb,w“b] S R™ :v™(x) <0, v*“(z) = 0}
V(x) = {y € [y“’7y“b] ¢ R™ : gl(x,y) <0, v'(y) <0, v (y) = 0}7
(GSIP)
with the coupling lower-level inequality constraint function g' : R™* x R™ — R"s
and all other functions as defined in (SIP).
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ESIPs are another generalization of SIPs. ESIPs allow the modeling of an existence
constraint instead of a semi-infinite constraint:
min  f(x)
st. YVye)Y[Eze Z:g9"(x,y,2z) <0
o } (ESIP)
y = {y € [ylbyyub] c R™ - vil(y
Z:={ze " 2" 2 R™ :v*(

with g* : R™ x R™ x R"* — R"s ™ : R™ — R™ie p° : R™ — R"ve and all
other functions as defined in (SIP). Note that in the case of ESIPs, we write the logical
quantifiers in prefix notation because the order of the quantifiers V and 3 is essential.
As discussed later, ESIPs can be considered as SIPs with another hierarchical problem
embedded. In this sense, they can be considered a three-level optimization problem.
Generalizations to cases where the lower-level feasible set )V depends on the upper-
level variables @, or the feasible set of existence-constrained variables Z depends on
the lower-level variables y or the upper-level variables « are straightforward, but not
yet implemented in libDIPS. See [27] for these extensions.
The optimistic formulation of a BLP reads

L0 fz,y)

st. g“(z,y) <0

€arg min h(x,z
Yy gzey(z)( )

V(@) :={ye[y” y”] cR"™ : g'(x,y) <0, v"(y) <0, v"(y) = 0} ;
(BLP)
with the upper-level objective function f : R™® x R™ — R, the lower-level objective
function h : R™ x R™ — R, and all other functions defined as in (SIP). (BLP)
contains variables y which are constrained to be in the set of global optimizers of an
embedded optimization problem.

The reviewed problem classes are closely related and, thus, share some common
traits. For example, due to their hierarchical structure, establishing the feasibility
of a candidate solution point requires the global solution of an embedded optimiza-
tion problem for all classes. Thus, global optimization techniques are (implicitly or
explicitly) needed in general for the solution process, and consequently, all the prob-
lem classes mentioned are computationally demanding. Since ESIPs and GSIPs are
generalizations of SIPs and MINMAX problems are a specialization of SIPs, one can,
under certain assumptions, use any algorithm for solving ESIPs or GSIPs to solve the
other two problem classes. However, given the expected high computational cost of
solving these problems, implementing specialized algorithms is likely beneficial over
an implementation only addressing the most general problem class. BLPs and GSIPs
are closely related: if #& € X such that V(&) = &, (BLP) and (GSIP) are equivalent
[105]. However, there is a distinctive difference if a point & exists which leads to an
empty lower-level feasible set V(&) = ¢J; the point Z is infeasible in (BLP), while it
is feasible in (GSIP). The close relation of the problem classes is also mirrored in a
close connection in the algorithmic approaches discussed in the next section.

3 Adaptive Discretization-Based Algorithms

In this section, we introduce multiple adaptive discretization-based algorithms for the
solution of the hierarchical optimization programs covered in Section 2, which are
implemented in our open-source software libDIPS. We highlight similarities and con-
nections between algorithms to illustrate the benefits of collecting the implementations
of these adaptive discretization-based algorithms in one software.
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A significant benefit of adaptive discretization-based algorithms is that they can
utilize well-established optimization solvers mainly as a black box. The main challenge
in solving (SIP), (GSIP), (ESIP), (MINMAX), and (BLP) compared to standard non-
linear optimization problems is the infinite cardinality of the set ) and )(x), respec-
tively. This challenge can be addressed with different generalizations and adaptations
of the adaptive discretization-based algorithm for SIPs proposed by Blankenship and
Falk [14], which is in turn inspired by [90].

Conceptually, the approach of [14] replaces the infinite index set ) by a finite
discretized set Y < Y. This discretized problem gives an approximation of (SIP).
Through an adaptive refinement scheme, points are added to Y%, and the approxima-
tion of (SIP) is improved.

All the algorithms implemented as solvers in 1ibDIPS are conceptually closely
related to the approach of [14]. Therefore, we will give a conceptual description of
the algorithms in the context of adapting the central algorithmic idea of [14]. The
implemented solvers are listed in Table 2. We refer the interested reader to the original
publications listed in Table 2 for a detailed description of the algorithm underlying
the respective solver.

Program  Solver Name  Original Comment
Class Publication
SIP B&F [14] Finite termination with feasible
points not guaranteed
RRHS [78]
Oracle [117]
,,,,,,,, Hybrd __126] .
MINMAX  Minmaz (32]
GSIP GSIP-RRHS  [78] Finite termination not guaranteed
[49]
* (28] Relax GSIP to derive an SIP; solve

resulting SIP with any SIP solver
*_ c.f., Section 3.2

ESIP B&F [27] Upper-bounding procedure of [27]
not implemented

BLP BLP-Box  [2]
BLP-noBox  [79]

Table 2: Overview of the adaptive discretization-based algorithms implemented
in libDIPS.

3.1 Approaches for SIPs
Algorithmic Approach Underlying BéF

The SIP algorithm of Blankenship and Falk [14] proposes to relax (SIP) by replacing
the infinite index set with a finite one, i.e., Y'PP < ). We implement this algorithm
in libDIPS as the solver called B&F. The resulting single-level upper-level problem

min  f(x)

xe

ot g" (m’yk) <0, V y* e YLBD | (LBP)
X:={ze [z z"] cR"™ :v™(z) <0, v*"(z) = 0},
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yields a candidate point &; if (LBP) is solved globally, a lower bound (LBD) on (SIP)
is obtained. Feasibility of & is checked through a lower-level problem with fixed upper-
level variables
max max _g;(&,y)
veY  je{l.ngu} _ (LLP)
st. YVi={ye [y”’,y“b] ¢ R™ :v'(y) <0, vi(y) = 0}.

If the optimal objective value of (LLP) is less than or equal a predefined e* > 0, & is
e*-SIP-feasible (c.f., Definition 4); the algorithm terminates. If the optimal objective
value is strictly greater than €, the solution point y* of (LLP) is added to the
discretization, i.e., YEBP «— YLBP  y*; then, (LBP) is solved again.

Remark 1 Instead of solving a single lower-level problem, i.e., (LLP), where we max-
imize over all entries of g“, it is also possible to solve a separate lower-level problem
for each entry. Note that if we solve a separate lower-level problem for each entry of
g", we must solve ng, optimization problems, and up to ng, points are added to the
discretization in each iteration.

Another possibility is to introduce for each entry of g“ a separate discretization
Y3 with i = 1,..., ngy.

libDIPS supports both alternatives, but neither is used in the numerical experi-
ments in Section 6.

It has been proven numerous times in literature [14, 58, 77] that if (SIP) is fea-
sible and €* = 0, the accumulation points of this algorithm are optimal SIP-feasible
points (c.f., Definition 6). Additionally, if (SIP) is infeasible, (LBP) will be infeasible
after finitely many iterations. However, there can generally be no finite termination
guarantee for €* = 0. Finite termination can only be guaranteed for ¢* > 0, though
generating an SIP-feasible point is usually not generated in the latter case.

Algorithmic Approaches Underlying RRHS, Oracle, and Hybrid

Since the approach of B&F only generates lower bounds and generally does not termi-
nate finitely with an SIP-feasible point, several adaptions of the underlying algorithm
have been proposed to generate improving sequences of upper bounds (UBD). The fol-
lowing algorithms have in common that, akin to [14], they iteratively solve a sequence
of subproblems, i.e., a discretized upper-level problem and, subsequently, a lower-level
problem for fixed upper-level variables. The solution points of the lower-level problem
are then used to discretize the upper-level problem.

The upper-bounding approaches of the implemented solvers can be summarized as
follows: The algorithm proposed by [77], implemented as RRHS, achieves finite ter-
mination through an upper-bounding scheme in combination with the lower-bounding
scheme from B&F. The algorithm proposed by [117], implemented as Oracle, utilizes
an oracle problem to conduct a bisection search in the objective space. The algorithm
proposed by [26], implemented as Hybrid, attempts to combine the best of both, RRHS
and Oracle.

As mentioned in the introduction, other upper-bounding approaches exist, but
since they are not currently implemented in libDIPS, we refrain from reviewing them
here. For this reason, we focus on the mentioned algorithms in the following:

RRHS generates upper bounds by first relaxing (SIP) by replacing the set )
with a set of finite cardinality, i.e., YYBP < Y (equivalent to B&F). However, the dis-
cretized (semi-infinite) constraint is restricted by the right-hand side with a restriction
parameter " > 0, which is initialized with ™ > 0, to

min f(x)

xeX

k¢ YUBD (UBP)

(©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 7 of 38
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Similar to B&F, (UBP) and subsequently (LLP) are iteratively solved to determine
SIP-feasibility of the candidate points generated by (UBP) and the solution points of
(LLP) are used to populate YYBP . Note that neither a relaxation nor a restriction
of (SIP) is generally attained by (UBP) through the discretization combined with the
restriction. However, finite termination is guaranteed through a decreasing rule for "
as the algorithm proceeds, i.e., " « Ef%, which is applied under certain conditions; an
increasingly dense discretization YV 2P; and further suitable assumptions (existence of
an e’ -optimal SIP-Slater point, c.f., Definition 2; global solution of the subproblems;
continuity of all functions; and compact sets).

Note that the performance of the upper-bounding procedure is strongly influenced
by the initial restriction parameter €™, the rate of reduction "¢, and the initial
discretization YYEP. For example, a (too) fast reduction of the restriction parameter,
or a (too) large £™?, can lead to many iterations [26].

Oracle uses an oracle adaption of [14] to determine if a target objective value f*
is attainable. The adapted discretized upper-level problem is given as

. gt u k
mip maxq f(@) - f) mex  gf(@y") (ORA)
je{l...ngu}

st. X = {ze[z" "] cR™ :v"(z) <0, v*“(z) = 0},

with Y9%4 < Y. This problem can be reformulated to avoid the max-operator, c.f.,
(ORA-REF).

Given preexisting upper and lower bounds on the optimal objective value of (SIP),
a bisection search in the objective space is conducted. Analogous to B&F, (ORA) is
solved with a subsequent solution of (LLP) with fixed upper-level variables @. If the
optimal objective value of (ORA) is greater than 0, f* is not attainable. If (LLP)
proves the current candidate point & to be infeasible, the optimal solution point of
(LLP) is used for the discretization of Y°F4, Else & is feasible, and f* is attainable.

Although one might expect the method to inherit strong robustness from the bisec-
tion procedure, Oracle relies on stricter assumptions for finite convergence compared
to RRHS.

Hybrid aims to combine the ideas of the two previous approaches. Recall that
the performance of RRHS depends on the hyperparameters €™ and €"°?.  Hybrid
essentially uses the same iterative approach for the upper- and lower-bounding as
RRHS. Additionally, by solving

min -7
peXm RES
g“(z,y*) < —n-1, Vy* e YIFS (RES)

<
X = {z e [, ] € R™ : v™(z) < 0, v*“(z) = 0},

a modified version of the subproblem (ORA), an adaptive (optimal) update to the
restriction parameter € can be generated in some of the iterations. Using this updated
restriction parameter in (UBP), Hybrid aims to eradicate the performance dependence

on the hyperparameters €™ and "%,

Table 3 summarizes the subproblems of the SIP algorithms above. The user must
provide these subproblems to use the respective solver in libDIPS. The subproblems of
the respective solvers of the program classes GSIP, ESIP, MINMAX, and BLP, covered
in the following sections, are also listed in Table 3.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 8 of 38
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Program Solver Subproblems provided by the user
Class Name
SIP B&F (LBP), (LLP)
RRHS (LBP), (UBP), (LLP)
Oracle (LBP), (ORA), (LLP)
,,,,,,,,, Hybrid ___(LBP), (UBP), (RES), (LLP) _ _ ________
MINMAX Minmax (LBP), (LLP)
GSIP GSIP-RRHS (LBP), (UBP), (GSIP-LLP), (GSIP-AUX)
* see SIP solvers
BLP BLP- BLP-LBP), (BLP-UBP), (BLP-LLP),

(
noBox (BLP-AUX)
BLP-Boz ~ (BLP-LBP),  (BLP-UBP), (BLP-LLP),
(BLP-AUX), (BLP-AUX-V)
(

ESIP-LBP), (ESIP-MLP),(ESIP-LLP)

ESIP B&F

Table 3: List of subproblems used in the solvers. Note that the solvers auto-
matically generate some auxiliary problems.

Algorithmic Approach Underlying Minmax

In [32], a specialization of the approach from B&F is presented for (MINMAX). This
specialization is based on the fact that the best upper bound for a given upper-level
point & is given by the lower-level problem

max f(, y).

yey
As aresult, an upper bound is readily obtained without the upper-bounding procedures
discussed above. A solver using this unique structure is implemented as Minmazx in

libDIPS.

3.2 Approaches for GSIPs

In literature, two main approaches exist for the global solution of (GSIP) in the context
of adaptive discretization-based methods: (i) relaxation of (GSIP) to an SIP and the
solution thereof with an SIP approach and (ii) the adaption of the underlying approach
used in RRHS to GSIPs.

GSIP to SIP Reformulation and Relaxation

A common approach is to reformulate and relax (GSIP) to an SIP. By defining

gt relax . _ a0 {gf(w, y), min — g; (:]::7 y)} (GSIP-REF)

je{l...ngl

with ¢ € {1...ng4.} and inserting it as the semi-infinite constraint in (SIP), an SIP
relaxation of (GSIP) is obtained [25]. As shown in [43], this relaxation is under certain
assumptions equivalent to relaxing the feasible set of (GSIP) to its closure. Hence,
we assume that the minimum of the relaxed problem is equal to the infimum of the
original problem [25, 78]. If this property is not present, the relaxation can be strict.
State-of-the-art SIP solvers can be applied, as described in Section 3, for the solution
of the derived SIP. As it should be apparent whether an SIP or a derived SIP from a

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 9 of 38



libDIPS 4.12.2023

GSIP is considered, we use the same solver names as in Section 3 whenever a derived
SIP is solved with an SIP solver.

Adaption of RRHS for GSIPs

The previous approach, i.e., the solution of the derived SIP with SIP solvers, has the
inherent potential disadvantage that the original GSIP structure is ignored. On the
contrary, the algorithm published by [78], implemented as GSIP-RRHS, considers the
GSIP structure. Similar to RRHS, the authors in [78] employ a restriction of the right-
hand side approach to generate upper bounds and an adaption of B&F to generate
lower bounds. [78] use the aforementioned GSIP to SIP relaxation and reformulation
but then account for the GSIP structure when checking the feasibility of a candidate
point and when generating discretization points. The main change is that after the
GSIP lower-level problem

“* = max max gV (&,
g yey je{l.“ngu}g] ( y)
st. gl(z,y) <0

Vi={yely” y"’] cR™ :v'(y) <0, v(y) = 0}

(GSIP-LLP)

is solved to check the feasibility of the candidate point &, the auxiliary problem

. 1/—
min max z,

yey je{lmngl}g @ y)

s.t. max _gi(&,y) = a- g™ (GSIP-AUX)

V- fye 1" 9] € B s oil(y) < 0, v(y) - 0}

with a > 0 is solved to find a GSIP-LLP-Slater point, c.f., Definition 3. This GSIP-
LLP-Slater point is needed because only a discretization point that strictly fulfills
the coupling inequality constraints gl(w,y) < 0 will, if added to the discretization,
provide a restriction in the derived (LBP). The solution point of (GSIP-LLP) will not
necessarily provide a restriction if used as a discretization point.

The original publication searched for a GSIP-LLP-Slater point whose relative sub-
optimality in the lower level was bounded over all iterations by a fixed factor a > 0.
However, depending on the a-priory chosen «, generating a GSIP-LLP-Slater point
might fail [49]. The implementation of this approach, i.e., GSIP-RRHS, tries to address
the issues raised by [49] by adaptively choosing o whenever a GSIP-LLP-Slater point
is not attained by (GSIP-AUX), c.f., Section 4.2. However, in certain cases, numerical
issues connected to identifying GSIP-LLP Slater points persist for GSIP-RRHS, c.f.,
Section 6.2.

3.3 Approaches for ESIPs

The algorithmic extension to ESIPs, proposed in [27], can similarly be understood as
a direct extension of the ideas for SIP. Instead of the single-level optimization problem
(LLP), the following max-min problem

max min max ey, z
yeY zeZ je{lmngu}g]( Y )

st. YVi={ye [ylb,y“b] S R™ :v'(y) <0, vi(y) = o}
(ESIP-MINMAX)
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takes the place of the lower-level problem. A lower bound is obtained by solving the
subproblem

min f(x)
|yLBD|EZ
st. g"(z,9",2") <0, vke{1...|[Y"PP]}
X = {ze[z’ ] cR™ :v™(z) <0, v"“(z) = 0},
(ESIP-LBP)
where the key difference to (LBP) is the addition of a new entry for the existence
variables z for each discretization point in Y82,

zeX,zleZ...z

3.4 Approaches for BLPs

For BLPs we implement two solvers, namely BLP-Box based on [79] and BLP-
noBox based on [28]. For both, the connection to the approach of [14] is based on
the reformulation of the BLP to a GSIP using the value function reformulation

y € arg rr}l)i(n)h(m,z) > yeY(x) A [h(x,y) —h(x,z) <0, ¥V ze Y(z)]

Accordingly, both approaches utilize

poin fz,y)

st. g“(xz,y) <0 (BLP-LBP)
zeX(z") = h(z,y) — h(z,2") <0, V 2F e YLPP
X = {a} € [mlb,m“b] ¢ R"™ :v™(x) <0, v*(x) = 0},

to generate a LBD based on the discretization Y*ZP. The main difference is how
the set X is chosen. In [79], the authors compute boxes in each iteration k around
the current iterate for the upper-level variables & such that within these boxes, it can
be assured that the discretization point z* stays feasible concerning the lower-level
constraints. This approach is implemented in our solver BLP-Boz. The approach in
[28] generates the set X in a parametric way by setting X(z) = {@ e X : z € Y(x)}.
To generate discretization points, a Slater point of the lower level with respect to the
coupling constraint g' is searched similarly to the procedure in GSIP-RRHS but with
an absolute tolerance instead of the relative tolerance a in (GSIP-AUX).

Both approaches utilize a probing problem specifically catered toward BLPs to
generate upper bounds. The probing problem is given by

min z,
oin - f( 7y)
st. g“(Z,y) <0 (BLP-UBP)

h(Z,y) < h+e"VBP
LBD < f(z,y)

with the estimate h for the optimal value of the lower level at the current value for the
upper-level variables &, a small positive tolerance e"YEP | and a known lower bound
on the upper-level objective LBD.

4 NbDIPS — Discretization-Based Semi-Infinite
and Bilevel Programming Solvers

As motivated in the introduction and highlighted in Section 3, the reviewed algorithms

and implemented solvers are closely related and, hence, can benefit from a shared in-
frastructure. By combining all these solvers in one software, we can compare them
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more fairly because they use the same programming language, use a single common
code-base, and access subsolvers through the same interface. Therefore, we imple-
mented all solvers in the open-source C++ software libDIPS — Discretization-Based
Semi-Infinite and Bilevel Programming Solvers, already used in a preliminary form in
[25].

The latest version of libDIPS, including the text-based parser, support for the
MPI parallelized version of MAINGO [15], and interfaces to the supported subsolvers,
is open-source under the Eclipse Public License v2.0, accessible under https://git.
rwth-aachen.de/avt-svt/public/1libdips, and has been tested under Microsoft Win-
dows 10 and Linux. Further information on downloading and compiling 1ibDIPS and
its dependencies can be found on the documentation page on the libDIPS repository.

¥ libALE libDIPS Solvers 2
LBP &1 A\HiGHS
Objective Constraints P MAiNG
& RO @ GUROBI
Problem files ONORO . OPTIMIZATION

Symbol table IPOPT

e | T | | [S5P MEOAME  pLex
X 0 2 GSIP-RRHS FICO Xpress

LLP 2
L

Objective

O] expression
oRORO ipulat
'000 (OO
ON0) ESIP MINMAX

Fig. 1: Software structure overview.

The general structure of the software is depicted in Figure 1. Based on this struc-
ture, we summarize the following features of the software

e Problem description: Subproblems are provided by the user in an easily ed-
itable and human-readable form using the domain-specific language provided
by ibALE [134].

e libALE is used for reading the user input (subproblems), which then internally
stores the objective and constraints of each subproblem as logical expression
trees. The subproblems are represented symbolically using libALE. Variable
bounds and parameter values are tracked with a symbol table.

e The solvers listed in Table 2 are implemented in libDIPS. A framework for
discretization-based solvers allows for easy extension of the library with addi-
tional solvers. For example, necessary symbol and expression manipulations of
the subproblems needed by the solvers are carried out in libALE. This allows us
to robustly build the subproblems needed in the algorithms.

e libDIPS interfaces to several state-of-the-art optimization solvers, i.e., CPLEX
[56], GUROBI [46], IPOPT [122], FICO Xpress [31], and MAINGO [15] as well
as the GAMS C++ API [36]. This enables the user to switch between them
easily. Numerous additional solvers are accessible via GAMS, e.g., BARON
[96], ANTIGONE [75]. The modular structure allows the user to implement
interfaces to additional subsolvers as needed.

e Qutput is printed onto the command line, and additional log files are written.

There are two options for formulating a hierarchical optimization problem for the use
in libDIPS. A significant design decision was to allow the user to manually and indi-
vidually formulate the subproblems (in an opinionated way). Alternatively, we also
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definitions :
real [2] x in [-3, 3];

set{index} lbp k disc := {};
real [0,2] lbp_y_disc := 0;

objective:
2xx[1]"24+x[2]"2;

constraints :
x[1]+x[2] = 1.0;
forall k in lbp_k_disc :
min(x[1]4+1bp_y_disc[k ,1], x[2]+1bp_y_disc [k,2]) <= 0;

Listing 1: Listing of the file 1bp.txt for the solution of the exemplary problem
(Ex). Note that 1bp_y_disc represents VPP and is initialized as an empty set.
1bp_k_disc corresponds to the indices of iterations and is internally updated by
the used solver.

provide templated input files that allow deriving the necessary subproblems automat-
ically from a high-level problem description. In the following section, we elaborate on
the benefits of individually formulating the subproblems with a small example.

4.1 Exemplary Solution of an SIP via BéF
Suppose we want to solve the following SIP using BéF.

min f(zx) := 223 + 23
xeX:=[-3,3]2
st. g"(x,y) =min{z1 +y1,22 + y2} <0, Vye Y (Ex)
v(x) =21 +x2—1=0
y=[-11F

Using the domain-specific language provided by libALE, we can write the lower-
bounding subproblem as a direct transcription of (LBP), as shown in Listing 1 for
the 1bp.txt file. The syntax for the subproblems should be primarily intuitive. For
a detailed introduction to the domain-specific language provided by libALE and the
syntax on how to define an optimization problem, the reader may refer to the docu-
mentation of ibALE [134] and MAINGO [15].

If we were to naively or automatically generate the subproblem (LLP) from the
problem description (i.e. from f, g%, v and ), the resulting objective would read

ma;( min{xl + Y1, T2 + yz}. Because the user can define the subproblems indepen-
ye

dently from each other in libDIPS, we can use a different formulation in (LLP). In-
deed we should use the epigraph formulation ma)}}( tst. t<xi+uy, t<xzo+ Yo
ye

This formulation allows us to solve a linear optimization problem instead of a non-
linear one. From our experience, such an opinionated reformulation is paramount for
an efficient solution in bigger optimization problems, especially when binary variables
are involved. The opinionated subproblem formulation of (LLP), transcribed in the
11p.txt file, is shown in Listing 2.

In addition to the subproblem files, the user has to provide a definitions file, called
def .txt, which documents the meaning of some of the used symbols in the subprob-
lems. For B&F, the user must provide the algorithm with the lower-level variable
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definitions :
real t in [—4,4];
real [2] y in [-1, 1];

objective:
—t;

constraints :
x[1+y[l] >=t;
x[2]+y[2] >=t;

Listing 2: Listing of the file 11p.txt for the solution of (Ex). Note that all
subproblems are written as minimization problems.

programdefinitions(”1bp”):
set_disc (1) = Ibp_k_disc;
set_disc_parameter_src (1, lbp_y_disc) =y;

Listing 3: Listing of the file def.txt for the solution of (Ex) using B&F.

name, in this case, y, and the discretized semi-infinite set of the lower-bounding prob-
lem, 1bp_y_disc, and the index set 1bp_k_disc of the lower-bounding problem.

The interested reader may refer to Section S1 of the Supporting Information for
the necessary subproblem files and extended def.txt file for the solution of (Ex)
with RRHS. Further input example files for the other solvers are given in the libDIPS
repository.

4.2 TImplementation changes of the original algorithms in
libDIPS

As revisited in Section 2, the implemented algorithms are conceptually closely related.
Hence, we were able to enhance the implemented solvers by utilizing the ideas from
the publications of other algorithms. For example, some of the original publications
assume that the subproblems are solved exactly, i.e., the original algorithm statements
do not account for the fact that nonlinear problems may only be solved with a given
tolerance, while others do.

Additionally, we extended the solvers to, e.g., be able to handle multiple semi-
infinite constraints. Section S2 in the Supporting Information shows a detailed overview
of the improvements of the implemented algorithms in libDIPS.

5 Benchmark Test Set

As mentioned in the introduction, one of the main goals of this manuscript is to com-
pare the different algorithms on a more comprehensive array of benchmark problem
instances. For this task, we collected problem instances from the literature of the dif-
ferent program classes. All problem instances are available in the libDIPS repository.
The vast majority of the collected problem instances are academic examples that were
used for the algorithm presentation by the respective authors. With libDIPS, we pro-
vide easy-to-use software for the solution of hierarchical programs with which real-life
problem instances can be implemented and, in the future, be incorporated into the
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benchmark test set. Nonetheless, these academic examples contain numerous chal-
lenging problems that were specifically chosen by the respective authors to highlight
and pinpoint certain problems in existing/previous algorithms.

We did not exploit individual opinionated problem formulations within the bench-
mark test set, i.e., we tried to keep the problem formulations as close as possible to
the initially published problem formulation. However, there are several main changes
that we made during problem instance implementation, as we

e added appropriate (sufficiently large) variable bounds if none were provided

e performed trivial transformations to fit the problem instances in our template,
e.g., from minimization to maximization problems

e performed trivial reformulations to avoid division by zero
e made reasonable assumptions in case of ambiguous notation or typos

e replaced open or half-open host sets by closed host sets because all implemented
solvers assume closed host sets

e normalized minmax approximation problems in the MINMAX program category
to use the same squared objective. Specifically., min max |e(x, y)| was changed
z oy

to the equivalent formulation min max (e(x, y))? to be consistent with problems
z oy

with ambiguous formulation in the original literature and to avoid creating ar-
tificial duplicates. The latter formulation is choosen as it is preferable for the
used subsolvers.

We noted non-trivial changes as supplementary information in the def.txt file of the
corresponding problem instances.

We performed a two-step heuristic procedure to avoid duplicate problem instances
in the presented benchmark test set. First, we automatically searched for potential
duplicates, i.e., problem instances with the same number of variables, and close opti-
mal objective values or solution points. Second, we manually compared the potential
duplicates. When we found a duplicate, we named the problem instance according to
the older published source and added the newer source as supplementary information
to the def . txt file. For the BLP test set, we automatically checked for symbolic equiv-
alence of the objective functions to narrow down the number of potential duplicates
in the first step. For similar problem instances, e.g., the problem instances differed
by an additional constraint, we added both problem instances to the benchmark test
set and a remark in the corresponding def.txt files. Both problem instances were
added, even if the constraint did not change the optimal solution, as equivalence is
not straightforward to derive from the problem statement, and these additional con-
straints might influence the performance of the used subsolver. We proceeded in the
same manner when an original problem instance was cited, but the presented problem
instance was different.

For SIPs, we started with the existing benchmark test sets from [77, 120, 124].
Additionally, we added problem instances from numerous publications. Table 4 shows
a complete list of the used publications. Note that in Table 4 and in all following
listings, only the oldest found publication with the implemented problem instance is
listed. After removing duplicates, the benchmark test set contains 294 SIPs; for a
complete list of implemented problem instances, see Table S2 in Section S5 of the
Supporting Information.

For MINMAX, we collected problem instances from numerous publications. After
removing duplicates, the benchmark test set contains 83 problem instances of various
publications; for a complete list of implemented problem instances and summary of
used publications, see Table 4 and Table S3 in Section S5 of the Supporting Informa-
tion, respectively.
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For GSIPs, we started with the existing benchmark test set of [78] and added
problem instances from GSIPLib&Gen [99]. The problem instances taken from [99]
were reformulated to be compatible with our framework. We also added additional
problem instances from various other publications. This led to a total of 86 problem
instances after removing duplicates; for a complete list of implemented problem in-
stances and summary of used publications, see Table 4 and Table S4 in Section S5 of
the Supporting Information, respectively.

For BLPs, we started with the problem instances from [80] and combined them
with the existing benchmark test set BASLib [84] and BOLIB v2 [133]. For some of
the problem instances, we observed that there are constraints implemented as part of
the lower-level feasible set Y (x) but only depend on the upper-level variables . We
assumed that the original intent was to include these constraints as upper-level ones. In
these cases, we moved these constraints to the definition of the upper-level feasible set.
Our motivation behind this transformation is that these constraints can be trivially
detected, and without the transformation, the solvers encountered numerical issues
or had performance losses. Additionally, this detail does not change the feasible set
of individual problem instances. After removing duplicates, we obtained 167 problem
instances by combining the existing benchmark test sets.

Program  Used publications (oldest found)

Class

SIP [1, 6,8, 10, 12-14, 16, 17, 21, 22, 24, 33, 35, 37, 38, 40, 44, 45, 47—
49, 54, 55, 62, 64-66, 68-72, 74, 76, 80-82, 85-89, 94, 95, 97, 98,
102, 104, 108, 110, 111, 113, 114, 116, 117, 120, 123, 124, 128-132]

GSIP [6, 19, 24, 49, 50, 57, 59, 64, 67, 69, 78, 91-93, 97, 99, 100, 103,
104, 106, 107, 109, 115, 118, 121]

BLP [79, 84, 133]

MINMAX [2, 3, 7, 23, 24, 30, 34, 37, 39, 44, 51-53, 55, 74, 82, 130, 132]

Table 4: List of publications used in the benchmark test set.

We categorized all problem instances according to the program class of their re-
spective upper- and lower-level problems using the following categories

e LP — linear objective function subject to linear constraints

e (QP — quadratic objective function subject to linear constraints

e QCQP — quadratic objective function subject to quadratic constraints

e NLP — all problem instances not fitting the aforementioned problem categories

The composition of the benchmark test set is shown in Table 5.

6 Numerical Experiments

All calculations were conducted on the RWTH High-Performance Computing clus-
ter running Rocky Linux 8. No parallelization was used, and each computation was
performed on a single core with an Intel Xeon Platinum 8160 Processor “SkyLake”
running at 2.1 GHz. All subproblems are solved using MAINGO version 0.7.1. The
maximum CPU time per problem instance was set to 20 min. If a problem instance
is not solved within that time, the solution procedure is aborted, and the instance
is considered not solved (CPU time is set to infinity). The absolute inequality toler-
ance deltaIneq of MAINGO was set to 1 x 1072, Note that for some automatically
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UL LL LP QP QCQPNLP UL LL LP QP QCQPNLP
LP 22 22 1 75 LP 11 0 4 4
QP 1 5 2 21 QP 8 3 6 1
QCQP 2 12 5 11 QCQP 6 7 8 8
NLP 9 3 3 100 NLP 1 0 4 15
(a) SIP benchmark test set. (b) GSIP benchmark test set.
UL LL LP QP QCQPNLP UL LL LP QP QCQPNLP
LP 0 1 0 1 LP 31 0 0 0
QP 0 0 0 QP 7 0 0 0
QCQP 0 13 0 44 QCQP 18 41 7 0
NLP 0 3 0 21 NLP 2 9 10 42
(¢) MINMAX benchmark test set. (d) BLP benchmark test set.

Table 5: Composition of the benchmark test sets for the different problem
categories. UL = problem class of the upper level, specifically the respective
LBD with a given discretization, LL. = problem class of the lower level with
fixed upper-level variables.

generated subproblems, we use specific fixed settings to speed up the convergence of
MAINGO, e.g., in order to compute an initial upper bound in Oracle the objective
function is maximized absent any constraints and the relative optimality tolerance
rel_tol of MAINGO is set to max{rel_tol_lbp, 0.5}. For other subproblems, the op-
timality tolerances used can be configured by the user. The specific tolerances used
for each solver can be found in Table S1 in Section S3 of the Supporting Information.

All other settings of MAINGO except the output settings have been left at the
default values.

We use each program class’s problem instances of the benchmark test set presented
in Section 5. To compare the performance of the individual solvers within a program
class, we utilize Dolan-Moré plots; we plot the percentage of problem instances solved
over the CPU time or the time factor defined as

CPU time of problem instance i

Tvme factor = .
] CPU time of problem instance i of the fastest solver

We mainly discuss the time factor plots and, thus, relative performance. Our
motivation is to lessen the importance of the size of the problem instances. However,
for problems with very small solution times, minor absolute time differences can cause
a large difference in terms of the time factor. To combat this, all CPU times under
1 seconds have been rounded up to 1seconds as we can not fairly differentiate relative
run-time measurements for run times under 1second.

We briefly investigated the consistency of the measured run times by measuring
three repeated runs of RRHS on the SIP benchmark test set. On average, the stan-
dard deviation over the three repeated runs, normalized by the mean, is 0.02 and the
maximum of this normalized standard deviation is 0.16. Since we consider the devia-
tions insignificant, we refrain from repeating the computations of the more extensive
benchmark studies, which are discussed later in this section.
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As B&F terminates with e”-feasible points, we exclude B&F from the performance
tests.

6.1 Performance Results of SIP solvers
6.1.1 “Out of the box performance”

Figure 2a shows the “out of the box performance” of the SIP solvers with their default
parameters, i.e., the hyperparameters of each solver are set to the values of their
respective original publication, c.f., Table 6 (for CPU time plot see Figure Sla in
Section S4.1 of the Supporting Information). Quantitatively, the performance of the
solvers on the more extensive benchmark test set is similar to the results published
in [25]: Oracle is the fastest for the largest fractions of problems, but when it is
not the fastest, it is often significantly slower and is the least robust. In contrast,
RRHS is the most robust and can solve the most problems within a time factor of
10, but is the fastest solver in the least amount of problems. The solver Hybrid is
able to solve significantly more problems than Oracle and outperforms the RRHS
solver for the time-factor range up to factor 3. Owverall, the Hybrid solver is the
most well-rounded with default parameters. However, as shown in Figure 2b, after
hyperparameter tuning, RRHS is likely the better choice. In the following, we take a
closer look at the impact of tuning on two solvers RRHS and Hybrid.

90 90

[e0]
o
L
(o]
o
1

Problems solved / %
S
Problems solved / %
~
o

60 60
’-' = Oracle = Oracle
lf' == RRHS == RRHS
I « Hybrid wass Hybrid
50 T T T 50 T T T
10° 10! 102 103 10° 10! 102 103
Time factor Time factor

(a) “Out of the box performance;” Hyper- (b) Solvers with tuned hyperparameters.
parameters as in original publications.

Fig. 2: Time factor performance plots of SIP solvers: RRHS, Oracle, and Hybrid.
Without tuning, a clear trade-off between fraction of problem solved overall
and fraction of problem solved in the shortest exists between the solvers. With
tuning RRHS performs best.

6.1.2 Hyperparameter tuning for RRHS and Hybrid

Recall that the performance of the upper-bounding procedure, and hence overall per-
formance, of RRHS and Hybrid is influenced by the initial restriction parameter £™;
the rate of reduction, i.e., €"°?; and the initial discretization. Therefore, we per-
formed a hyperparameter study for RRHS and Hybrid varying the two hyperparam-
eters €™ = {0.1,1,2,5,8,10} and £™? = {1.2,1.5,2,2.5,5,10}. The results of the
parameter study are shown in Figures 3 and 4 (for the CPU time performance plots

see Figure S1b in Section S4.1 of the Supporting Information).
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Program Algorithm Hyperparemeters Tuned
Class Solver Name  in original publication hyperparameters
SIP RRHS g0 =1¢emd =15 e =0.1,e"4 =10
Oracle - -
Hybrid €0 =1, ¢ered =1.2 e =0.1,e"4 =10
GSIP GSIP-RRHS €0 =1,¢"4 =2, €0 =1, ered = 2,
a® =0.5, a™ = « a® =025, a0 =1.2
RRHS - g0 =5 ¢l =5
Oracle - -
Hybrid - e =0.1,e° =5

Table 6: Hyperparameter values used in the original publications [26, 77, 78, 117]
and tuned hyperparameter values. GSIP-RRHS: Note that [78] introduces re-
striction and reduction parameters that may diff between g% and for g'; however
[78] uses the same values for both. %: o™ is introduced in this work.

RRHS, for a fixed ¢™ = 1 (value in original publication [77]), performs best with
a fast reduction of ", c.f., Figure 3a. Furthermore, a small initial restriction €™ is
beneficial, c.f., Figure 3b. Hence, choosing a big value for £™*? and a small €"° seems
beneficial for the considered benchmark test set. With tuned hyperparameters, i.e.,
¢4 =10 and €™ = 0.1, RRHS was able to solve 87 % of the problem instances within
20 min. For a detailed listing of the reasons why the remaining problem instances were
not solved, refer to Table 7.

Hybrid, for a fixed €™ = 1 (value in original publication [26]), performs best with
a fast reduction of €”, c.f., Figure 4a. Furthermore, a small initial restriction ™ is
beneficial, c.f., Figure 4b. With tuned hyperparameters, i.e., e"°¢ = 10 and ¢"® = 0.1,
Hybrid was able to solve 85 % of the problem instances within 20 min. For a detailed
listing of the reasons why the remaining problem instances were not solved, refer to
Table 7.
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(a) RRHS: ¢© = 1 and ¢ = (b) RRHS: £° = {0.1,1,2,5,8,10} and
{1.2,1.5,2,2.5,5,10}. ered — 10,

Fig. 3: Time factor performance plots of SIP hyperparameter study for RRHS.
Performance improves with increasing £"*¢ and decreasing ™.
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Fig. 4: Time factor performance plots of SIP hyperparameter study for Hybrid.

Performance improves with increasing £7°?. No systematic behavior is seen for
0
e™.

Figure 2b shows that after hyperparameter tuning RRHS outperforms the other
solvers. Furthermore, by comparing the sensitivity of the solvers RRHS and Hybrid
(Figures 3 and 4), we can conclude that Hybrid is less sensitive to the choice of the
hyperparameters. This is most likely due to the additional subproblem (RES), which
is used to generate optimal updates for the restriction parameter €. However, this
update procedure comes with additional computational costs and can not compensate
for the reduced computational costs of RRHS if the tuned hyperparameters are chosen.
In summary, the performance of RRHS is superior compared to the other solvers,
especially if parameter tuning can be performed.

6.1.3 Performance Result of Minmax

Figure 5 shows the performance of Minmaz on the benchmark test set. We refrained
from a comparison to SIP solvers using the reformulation given in MINMAX-REF
as the specialized algorithm is clearly preferable: The specialized algorithm gives the
best upper-bound for each candidate point of the upper-level variables & and the
problems (RES), (ORA) and (UBP) used in the upper-bounding of the respective
solvers will not produce different candidate points (except when there are multiple
possible global solutions, in which case better performance would only be due to
randomness). Minmaz was able to solve 79 % of the problem instances within 20 min.
The remaining 21 % of problem instances were not solved due to subsolver errors, c.f.,
Table 7.

6.2 Performance Results of GSIP algorithms

We conducted a similar hyperparameter study for the GSIP solvers as for the SIP
solvers. The problem instances of the GSIP benchmark study were solved with
GSIP-RRHS and the corresponding derived SIPs, c.f., Section 3.2, with the SIP
solvers Oracle, RRHS, and Hybrid. We varied the hyperparameters €™ = {0.1, 1, 5},
e = {1.2,2,5}, a® = {0.25,0.5,0.95}, and a"*¢ = {1.2,2, 5} of the algorithms GSIP-
RRHS, RRHS, and Hybrid, respectively. Figure 6 clearly shows that GSIP-RRHS per-
forms best for many problems for tuned hyperparameters (for CPU time, subproblem
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Program Algorithm non-solved exceeded Subsolver Algorithmic
Class Solver Name  / total max. time €errors €rrors
SIP RRHS 38/294 7 18 13
Oracle 48/294 10 35 3
Hybrid 45/294 8 24 13
GSIP GSIP-RRHS 34/ 86 8 12 15
RRHS 26/ 86 8 17 1
Oracle 24/ 86 6 18 -
Hybrid 26/ 86 6 19 1
BLP BLP-noBox 28/167 6 17 5
BLP-Boz 84/167 31 41 12
MINMAX B&F 20/ 83 - 20 -

Table 7: Number of errors encountered in the benchmark study using tuned
hyperparameters, c.f., Table 6. The subsolver errors category includes problems
instances where MAINGO did not solve a subproblem globally or an exception
was thrown by MAINGO . The algorithmic errors category includes problems
instances where the maximum number of iterations max_iter was exceeded or
where algorithmic parameters, e.g., €”, were reduced below a certain threshold,
e.g., min_eps_res, c.f., Table S1
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Fig. 5: CPU time performance plot of Minmazx. Most problems are solved within
40 seconds.
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number, and subproblem factor performance plots see Figures S3 and S4 in Section S4.2
of the Supporting Information). One possible reason is that the SIP solvers solve
the derived (LLP) with (GSIP-REF), while GSIP-RRHS solves the (GSIP-LLP) and
(GSIP-AUX). The derived (LLP) is more expensive than (GSIP-LLP) and (GSIP-AUX)
(c.f., Figure S5 in Section S4.2 of the Supporting Information). This is probably due
to the non-smooth min in (GSIP-REF), which might lead to numerical disadvantages
in the employed subsolvers. However, it remains to be seen whether an improved
opinionated subproblem formulation of (LLP) could alter the findings. We also want
to point out that although GSIP-RRHS mostly outperforms the other solvers, it has
more problems where it does not converge. This is connected to the issue raised by
[49], which we try to address by reducing « iteratively whenever a GSIP-LLP-Slater
point is not attained by (GSIP-AUX), c.f., Sections 3.2 and 4.2. However, numerical
issues connected to identifying GSIP-LLP Slater points persist. For a detailed listing
of the reasons why some of the problem instances were not solved, refer to Table 7.

80

~
o
1

(o))
o
1

Problems solved / %
H w
o o
1 1

msm RRHS; eM0= 5;¢red= 5
* Hybrid; €"°=0.1;¢™= 5
GSIP—RRHS; e"°= 1;e™= 2;a°=0.25; a® =12

100 10! 102 103
Time factor

Fig. 6: Time factor performance plots of GSIP hyperparameter study for GSIP-
RRHS, Oracle, RRHS, Hybrid using tuned hyperparameters according to Ta-
ble 6. GSIP-RRHS is fastest most often, but solves less problems within the
time-limit.

6.3 Performance Results of BLP algorithms

We conducted a similar hyperparameter tuning study for the BLP solvers. For BLP-
Boz, we varied d° = {0.1,0.5,1} and d"*¢ = {0.1,0.5,0.9}. BLP-noBox performs best,
c.f., Figure 7. Note that a large part of BLP-Box’s performance disadvantage is due
to subsolver errors, c.f., Table 7. The best hyperparameters for BLP-Box are d° = 1
and d"°? = 0.9, while the influence of d"*? is less significant. For a detailed listing of
the reasons why some of the problem instances were not solved, refer to Table 7. We
conclude that the approach of choosing X of [28] is superior to [79].

6.4 Testing of Two Exemplary Scientific Hypotheses

The extensive benchmark test set in combination with libDIPS brings the advantage
that we can easily test scientific hypotheses for the algorithms. The following sections
briefly describe two exemplary hypotheses to further speed up convergence, which were
implemented in libDIPS and tested on the afore-introduced benchmark test set.
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Fig. 7: Time factor performance plots of BLP hyperparameter study for BLP-
noBox and BLP-Box with d° = {0.1,0.5,1} and d"*? = {0.1,0.5,0.9}. BLP-
noBox outperforms BLP-Box for all tested parameter values. Lines with the
same color correspond to the same value of the parameter d"*?. Changes in d"*?
seem to make little difference while increasing d° improves performance.

6.4.1 Introduction of a Guard for the Upper-bounding Procedure in
RRHS

RRHS, with tuned hyperparameters (e™ = 0.1, e"*? = 10), spends about 24 % of the
total CPU time for the upper-bounding procedure over all solved problem instances
(c.f, Figure S2 in Section S4.1 of the Supporting Information). The upper-bounding
problem of RRHS, (UBP), is generally neither a relaxation nor a restriction. If €” is a
small value, the discretization must be “very” fine for the upper-bounding procedure
to yield a feasible solution and thus a “good” upper bound. Hence, if €™ is a small
value and we start with an empty discretization YYBP = @, the first few upper-
bounding iterations will most likely be unsuccessful. In an attempt to further reduce
computation time, we added a guard such that the upper-bounding procedure of RRHS
is skipped until the lower-bounding procedure produces ¢®-SIP-feasible points with
€® > 0. Here, we choose € = 0.01 and refer to this introduced guard parameter as
gYPF = 0.01. Whenever the upper-bounding procedure is skipped, the discretization
of the YYBP is populated with the discretization point used in the lower-bounding
procedure. Hence, the upper-bounding procedure is skipped until the discretization
of YYBP has reached a sufficient density (in combination with €”). Figure 8 shows
that this heuristic benefits problems where the solver was already competitive with a
small time factor and does not negatively affect performance on the other problems
(for subproblem number and subproblem factor performance plots see Figure S6 in
Section S4.3 of the Supporting Information). Note that this heuristic does not impede
the convergence guarantees.

6.4.2 Bracketing of the Objective Function by Current Upper and
Lower Bound in RRHS

We test whether additional bracketing of the objective function speeds up convergence,
i.e., we added to (LBP) and (UBP) the constraint

LBD < f(z) < UBD, (1)
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Fig. 8: CPU time factor performance plot for introduced guard parameter as
gUBP = 0.01 in RRHS. Comparison with tuned hyperparameters for the re-
spective solvers. For small time-factors the guard significantly improves perfor-

mance.

where LBD and U BD are the current upper and lower bound. The idea is that brack-
eting of the objective function makes it easier for the used subsolvers to bound the
solution. Additionally, if €” is “to0” big but (UBP) is not directly infeasible, it is more
likely that through the added bracketing constraints, (UBP) is will become infeasible.
Whenever (UBP) is infeasible, £” is deemed “too” big; it will be reduced, and the sub-
sequent (unnecessary) solution of (LLP) is skipped. Exemplary, we test our hypothesis
on RRHS with tuned hyperparameters, c.f, Table 6. However, while the results shown
in Figure 9 indicate that this change can have a large positive impact for a given
problem instance, we did not see an overall improvement across the benchmark. The
bracketing of the objective function did not reduce the number of subproblems solved
(for subproblem number and factor performance plots see Figure S7 in Section S4.3
of the Supporting Information). In summary, bracketing the objective function is not
a promising approach for reducing computation time and the number of subproblems
to be solved.
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Fig. 9: Time factor performance plot comparing the approach using bracketing
(gBRET =True) against the default of not using it (%57 =False). Comparison
with tuned hyperparameters of RRHS. Bracketing does not improve perfor-
mance.
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7 Conclusion and outlook

We presented 1ibDIPS, an open-source software for adaptive discretization-based al-
gorithms for (G)SIPs, BLPs, ESIPs, and MINMAX programs, which provides solvers
based on the algorithms proposed and further developed by [14, 26-28, 78, 79, 117].
We optimized the solvers’ hyperparameters and compared these “tuned” solvers on an
extensive benchmark test set comprising over 600 problem instances and unifying 8
existing test sets using MAINGO as a subsolver. We found that for SIPs and BLPs,
the simpler algorithms outperform the more advanced ones, while for GSIPs, the more
advanced tailored algorithm outperforms the simpler ones.

The implemented solvers, which all belong to the class of adaptive discretization-
based algorithms, highly rely on the used subsolver. If the used subsolver performs
poorly, the performance of the algorithm is directly negatively influenced. Therefore,
it is recommended to try different subsolvers, as some subsolvers have strengths and
weaknesses depending on the problem class and the problem formulation. Implicitly,
subproblems with linear constraints and quadratic objectives are already handled by
a specialized solver in our tests, as MAINGO utilizes CPLEX in these cases. How-
ever, other problem classes or characteristics, such as convexity, could be exploited for
faster and more robust optimization. Indeed, in our tests, we encountered a significant
amount of numerical difficulties in the solution of the subproblems. This is partially
caused by the fact that with each level, stronger tolerances must be enforced. Ad-
ditionally, in later iterations, the lower-level problem must be solved more and more
accurately, as it becomes more likely to be inconclusive as the computed lower and
upper bounds are bracketing zero. This is due to the fact that in later iterations, the
computed solution becomes less and less infeasible, e.g., for SIPs ¢* — 0.

As a result, the user should always critically challenge their decision of the chosen
optimality tolerances as they might be overly restrictive compared to their model
accuracy because restrictive optimality tolerances greatly influence the solution time.
Additionally, they should explore if a solution approach, which guarantees a feasible
point upon termination, is necessary or if an ¢*-feasible point (with €* > 0) is sufficient
as generating a feasible point is more expensive.

The idea of trying different solvers also applies to the investigated adaptive dis-
cretization-based solvers. Oracle has excellent performance for some problems, while
it struggles with hard problems. Hence, it is likely beneficial to start with Oracle and
try a different solver if Oracle fails to solve the problem instance in a reasonable time.

The presented benchmark library consists of a large portion of easy problems, some
hard problems, and only a small number of medium hard problems (for the tested
solvers). It seems that many of the problems constructed as a challenge in previous
publications are fast and easy to solve after subsequent hardware and algorithmic im-
provements. Meanwhile, others are hardly tractable with the investigated approaches
(in combination with the used subsolver MAINGO). Therefore, it is likely necessary to
use expert knowledge of the problem to facilitate its solution (if the problem is hard).
Note that libDIPS offers the possibility to formulate the suproblems independently in
an opinionated way.

Similar to the gaps identified in the difficulty level, the categorization of the bench-
mark problem instances revealed that problems of several problem categories, e.g.,
MINMAX, with an upper level being QCQP, are underrepresented. This also holds
for application-based test problem instances. Hence, future work should consider more
test problem instances, especially application-based ones. To allow easy extension and
reuse of the benchmark test set, the interested reader may suggest additional bench-
mark problem instances via the Git issue system in the libDIPS repository.

Apart from further expanding the benchmark test set, we believe there are three
main promising directions for improvement, i.e., initialization strategies of the dis-
cretization, subproblem formulations and adaptions, and algorithm adaptions, includ-
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ing heuristics and extensions. One could apply an (advanced) initialization of the
discretized sets instead of starting, e.g., initializing the sets with KKT points of the
lower-level problem or with edge points of semi-infinite sets. To reduce the number
of iterations, the subproblems could be further adapted through using better suitable
formulations of the subproblems for the used subsolver, adding KKT conditions in the
upper-level problems or through considering higher order-cuts, c.f., [25]. Note that
the first proposed adaption is already possible in libDIPS. However, this will likely
make the subproblems more expensive to solve. Last but not least, algorithms can
be adapted, and additional ones can implemented, e.g., the interval-based method of
[12, 13]. For SIPs, promising ideas for algorithm adaptions include employing the
solver B&F' for SIPs, and then after a given feasibility tolerance is met, use (RES)
to search a feasible point that meets the given optimality tolerance, and testing the
impact of adapting Hybrid to a local solution of the (RES) subproblem. For GSIPs, hy-
bridization in the generation of the discretization points of GSIP-RRHS is promising.
GSIP-RRHS outperforms the other solvers. However, if GSIP-RRHS fails to con-
verge, i.e., when no GSIP-LLP-Slater point can be produced through (GSIP-AUX),
using the (LLP) with (GSIP-REF) might increase the numbers of solved problems.
Alternatively, one could simply solve (LLP) with (GSIP-REF) every n iterations and
populate the discretization with its solution. The impact of all these adaptions can be
easily evaluated using libDIPS and the presented benchmark test set.
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Appendices

A Further Subproblem Formulations

A.1 SIP solver
(ORA) of Oracle can be reformulated as

min v
xeX,v
s.t. fgw —-ft<v (ORA-REF)

g“(z,y*) <v-1, v yreYyora
€ [:z:lb,:z:“b] c R™ :v™(x) <0, v*“(x) = 0}.
A.2 ESIP solver
The lower-level problem of (ESIP-MINMAX) of B&F for fixed g and & reads

min max _g; (&, 9, 2) (ESIP-LLP)

zeZ je{l...ngu}

The upper-level problem of (ESIP-MINMAX) for fixed & and a finite set of discretiz-
tion points ZMLT is formulated as

. W/
max min max g7 (&, vy, 2)

J y I
yeY zezMLP je{l.”ngu

st. YVi={ye [y’ y"’] cR™ :v"(y) <0, v*(y) =0}

(ESIP-MLP)
A.3 BLP solvers
The lower-level problem of BLP-noBoxz and BLP-Boz is formulated as
min  h(x,
yeY(§) @ v) )
st. V(@)= {ye [y’ y"’] cR™ :g'(z,y) <0, v'(y) <0, v"(y) = 0}.
(BLP-LLP)
The auxiliary problem of BLP-noBox and BLP-Boz is formulated as follows:
min U
yeYV(&),ueR B
h(&E,y) < h+ VX
g'(@y) <u-1
V(@) = {ye [y y*’| cR™ :g'(x,y) <0, v'(y) <0, v(y) =0}

(BLP-AUX)

The auxiliary problem for BLP-Box for deciding whether or not a given box Xy

for the upper-level variables is small enough such that the given discretization point
g stays feasible in the lower level is given by

min — max g'(x,g). (BLP-AUX-V)

TEXpon je{l.“ngl}

Note that in [79] uses interval analysis to determine if Xpo. is valid.
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B Definitions

B.1 SIP-Slater Point

Definition 1 (SIP-Slater Point) A point ° € X is called an SIP-Slater point in (SIP)
if
g*(=%y) <0, vyeV.

Under compactness of Y and continuity of g if ° is an SIP-Slater point, there exists
% > 0, such that

gu<ws7y> < 753 : 17 v y€y7
c.f., Definition A.1 in [77].

B.2 &/-optimal SIP-Slater Point
Definition 2 A point 2° € X is called an e/-optimal SIP-Slater point in (SIP) if

f(a:s) < fraef /\g“(ms,y) <-¢°, Vyey

with e/, &% > 0, c.f., Lemma 2.4 in [77].

B.3 GSIP-LLP-Slater Point

Definition 3 (GSIP-LLP-Slater Point) A point y° € Y is called a GSIP-LLP-Slater
point at & in (GSIP) if

U~ .. S S
g(way)<_57

with some ¢ > 0, c.f., Assumption 4 in [78].

B.4 ¢%-(G)SIP-Feasible Point
Definition 4 A point & € X is ¢*-SIP-feasible in (SIP) if

gu(i:ay) Ssa'la VyEy(‘,'E)

with € > 0.
Definition 5 A point & € X is ¢*-GSIP-feasible in (GSIP) if

min {gf(m,y), ~ min gé(w,y)} <", Vie{l...ng}, Vyey
with e > 0.

Definition 6 A point & € X is called (G)SIP-feasible in (SIP) ((GSIP)) if it fulfills
Definition 4 (Definition 5) with £* = 0.
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