
©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 1 of 38

libDIPS – Discretization-Based Semi-Infinite and Bilevel
Programming Solvers

Daniel Jungen:,♦, Aron Zingler:,♦, Hatim Djelassi:, and Alexander Mitsos;,:,§,˚

date: December 4, 2023
Abstract: We consider several hierarchical optimization programs: (general-
ized) semi-infinite and existence-constrained semi-infinite programs, minmax,
and bilevel programs. Multiple adaptive discretization-based algorithms have
been published for these program classes in recent decades. However, rigorous
numerical performance comparisons between these algorithms are lacking. In-
deed, if numerical comparisons are provided at all, they usually compare a small
selection of algorithms on small benchmark test sets, on different platforms, and
with different subsolvers, which are needed during the solution. Additionally,
some algorithms have hyperparameters, which impedes a fair comparison. Our
contribution is threefold: i) We present an open-source software called libDIPS
(Discretization-Based Semi-Infinite and Bilevel Programming Solvers), which
implements multiple adaptive discretization-based solvers. The main benefit of
libDIPS is that it lets the user flexibly change between the implemented solvers
within one program class and switch between the available subsolvers. ii) We
compile an extensive benchmark test set for (generalized) semi-infinite, minmax,
and bilevel programs, which, in total, contains over 600 problem instances. Our
set includes eight merged test sets and additional problem instances from over
80 literature sources. iii) We compare the solvers numerically on our benchmark
test set and identify tradeoffs in the hyperparameters tuning.

Keywords— semi-infinite programming, generalized semi-infinite programming,

bilevel programming, adaptive discretization, benchmark, software

1 Introduction

Generalized semi-infinite and semi-infinite programs ((G)SIPs), existence-constrained
semi-infinite programs (ESIPs), minmax programs (MINMAX), and bilevel programs
(BLPs) are hierarchical optimization programs that occur in many applications, e.g.,
robust optimization [9], flexibility analysis [112], gemstone cutting [127], and, thermo-
dynamics [20, 42].

A reliable and fast solution to such optimization programs is paramount but also
very challenging: the lower-level optimization problem must be solved globally even
to check the feasibility of a given candidate solution point. If the lower-level problems
of (G)SIPs, MINMAX, or BLPs are convex and satisfy some regularity conditions, the
hierarchical program can be reformulated as a single-level problem. However, in many
applications, the lower-level problems are nonconvex.

Multiple theoretical approaches for the global solution of hierarchical programs
without convexity assumptions have been developed over the past decades, with sub-
stantial recent advances. These include classical discretization methods, adaptive
discretization-based approaches and adaptions thereof, overestimation methods us-
ing interval methods and relaxation methods; optimal value function approaches; and
relaxation-based branch-and-bound methods [12–14, 26, 32, 35, 71, 73, 77, 78, 78, 98,
104, 117]. See [29] for more details.

Here, we focus on the adaptive discretization approaches. A primary benefit of
these adaptive discretization approaches is that they can utilize well-established opti-
mization solvers mainly as a black box. They have also been successfully applied in

: Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen,
Germany
; JARA-CSD, 52056 Aachen, Germany
§ Institute of Energy and Climate Research: Energy Systems Engineering (IEK-10),
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
˚ Corresponding author: A. Mitsos
E-mail: amitsos@alum.mit.edu
♦ D.J. and A.Z. contributed equally to this work.

mailto:amitsos@alum.mit.edu

libDIPS 4.12.2023

research and industry [63]. Over the last decades, numerous adaptive discretization-
based algorithms have been published to solve the different program classes, e.g., refer
to Table 2.

Evaluating the relative performance of these adaptive discretization-based algo-
rithms is difficult because computational performance is usually assessed on different
platforms and implementations. In addition, many algorithms use inherent algorith-
mic tuning parameters, i.e., hyperparameters that complicate direct comparison due
to their substantial influence on performance. Finally, no unified set of test problems
is used consistently across the publications, so performance evaluation is usually based
on an individual and small set of test problems. To remedy this, we implement mul-
tiple adaptive discretization-based algorithms in a coherent software framework and
compile an extensive test set of problem instances to compare the algorithms.

While we focus on comparing the implemented adaptive discretization-based al-
gorithms, these algorithms are already used as a point of comparison in numerical
evaluations of other algorithms. Specifically, [18, 60, 73] compared the numerical per-
formance of their approaches against the algorithms proposed by [26, 77, 79]. For
their comparisons, [18] used their own implementations of [77], [73] used the GAMS
implementation provided by [26], and [60] used the data reported by [79].

The additional effort to reimplement the respective adaptive discretization algo-
rithm, not having access to the required commercially distributed subsolvers, or the
need for a comparison that is not possible based solely on the original publication
might have discouraged other researchers from using them as a point of comparison.
An alternative to implementation would be to use one of the publicly available solvers
for hierarchical programs, listed in Table 1 with their respective capabilities. A po-
tential reason preventing these from being used in a comparison are limitations placed
on the problem type in the upper- or lower-level, the lack of a deterministic global
solution, or that the relevant problem class, i.e., GSIP, SIP, or BLP, is not supported.
Additionally, some solvers are commercially distributed or use proprietary dependen-
cies.

We remedy this by implementing multiple adaptive discretization-based algorithms
in a coherent open-source software called libDIPS – Discretization-Based Semi-Infinite
and Bilevel Programming Solvers. libDIPS provides solvers for the deterministic global
solution of (G)SIPs, ESIPs, MINMAX, and BLPs with upper- and lower-levels of
MINLP type. Our software is not only freely available and easy to use but rather
is also a suitable framework to implement existing and new algorithms, whereby
discretization-based algorithms will be the easiest to implement. Additionally, we
compile an extensive test set of problem instances to compare the algorithms. The
combination of libDIPS and the test set arguably makes further comparisons between
algorithms easier for other researchers and makes the solution of hierarchical programs
more accessible.

In Section 2, for completeness, we shortly review the program classes (G)SIP,
ESIP, MINMAX, and BLP. In Section 3, we recapitulate the main ideas of adaptive
discretization-based algorithms for solving these program classes. We then introduce
in Section 4 an open-source C++ library, called libDIPS, which contains implementa-
tions of the algorithms reviewed in Section 3. In Section 5, we compile a benchmark
test set consisting of unified existing benchmark test sets and other test problems
found in the literature. Section 6 covers performance tests. We utilize the benchmark
test set to compare the overall performance of the implemented solvers for ‘best case’
hyperparameters for the benchmark test set. Additionally, we investigate the sensi-
tivity of the different solvers to their hyperparameters. We summarize our work in
Section 7 and propose future work.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 2 of 38

https://git.rwth-aachen.de/avt-svt/public/libdips
https://git.rwth-aachen.de/avt-svt/public/libdips

lib
D

IP
S

4
.1

2
.2

0
2

3

SIP GSIP BLP Det.
Global

Type
(upper-lower)*

Algorithm Type

EAGO [126] X X MINLP-MINLP Adaptive discretization
NSIPS [119, 120] X NLP-uncon-

strained NLP
Discretization, transcription to integral

SIP with QP-LL [18] X X convex NLP-QP Adaptive discretization and Dualization
IbexSIP [73] X X NLP-NLP Interval Method with Branch & Bound
BASBL [61, 84] X X MINLP-MINLP Branch & Sandwich
B-POP [5] X X MIQP-MIQP Multi-parametric
GAMS EMP [36] X X NLP-convex NLP KKT-based MPEC
libDIPS (this work) X X X X MINLP-MINLP Adaptive discretization

Table 1: Overview of available solvers for hierarchical programs. The solvers by [4, 11] are published but not publicly available. *: Type
describes the problem type of the upper- and lower-level problem, respectively.

©
J

u
n

gen
,

Z
in

gler,
D

jela
ssi

&
M

itso
s

O
p

tim
iza

tio
n

O
n

lin
e

P
age

3
of

38

libDIPS 4.12.2023

2 The Program Classes SIP, GSIP, ESIP, MIN-
MAX, and BLP

In the following, we state the problem formulations and notations used for the program
classes (G)SIP, ESIP, MINMAX, and BLP. While we highlight important aspects of
each program class, we discuss only the problem classes and their formulations that are
directly tractable with libDIPS. As an example, the algorithm for pessimistic bilevel
problems from [125] can easily be implemented in the discussed software framework,
but we do not discuss this problem class, because the algorithm is currently not imple-
mented. Furthermore, we focus on features related to the algorithmic ideas introduced
in Section 3. Most program classes are well-established, and we thus refer to surveys
for a more thorough discussion [29, 41, 83, 101]. For the problem class of ESIPs we
refer to [27].

Throughout the manuscript, we write vector-valued symbols in bold font and sets
in calligraphic font. While non-compact host sets can theoretically be handled with
adaptive discretization algorithms under certain assumptions [58], we assume compact
host sets herein and in our open-source software libDIPS. We assume that all occurring
functions are continuous on their respective host sets.

SIPs are formulated as

min
xPX

fpxq

s.t. gupx,yq ď 0, @ y P Y
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

;

(SIP)

with the objective function f : Rnx Ñ R, the semi-infinite constraint function gu :
Rnx ˆRny Ñ Rngu , non-coupling upper-level equality and inequality constraints viu :
Rnx Ñ Rnviu and veu : Rnx Ñ Rnveu , non-coupling lower-level equality and inequality
constraints vil : Rny Ñ Rnvil and vel : Rny Ñ Rnvel . We call x the upper-level
variables and y the lower-level variables. The set of all considered values of the lower-
level variables, the so-called lower-level feasible set Y, is a set of infinity cardinality.

We consider MINMAX of the form

min
xPX

max
yPY

fpx,yq

s.t. X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

;

(MINMAX)

with the objective function f : Rnx ˆ Rny Ñ R and all other functions as defined in
(SIP). (MINMAX) is a specialization of (SIP), as can be seen from the reformulation

min
xPX ,tPR

t

s.t. fpx,yq ´ t ď 0@ y P Y .
(MINMAX-REF)

GSIPs are an extension to SIPs that allow dependency of the lower-level feasible
set on the upper-level variables. We consider GSIPs of the form

min
xPX

fpxq

s.t. gupx,yq ď 0, @ y P Ypxq
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

Ypxq :“

y P
“

ylb,yub
‰

Ĺ Rny : glpx,yq ď 0, vilpyq ď 0, velpyq “ 0
(

,
(GSIP)

with the coupling lower-level inequality constraint function gl : Rnx ˆ Rny Ñ Rngl

and all other functions as defined in (SIP).

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 4 of 38

libDIPS 4.12.2023

ESIPs are another generalization of SIPs. ESIPs allow the modeling of an existence
constraint instead of a semi-infinite constraint:

min
xPX

fpxq

s.t. @ y P YrDz P Z : gupx,y,zq ď 0s

X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

Z :“

z P
“

zlb,zub
‰

Ĺ Rnz : viepzq ď 0, veepzq “ 0
(

;

(ESIP)

with gu : Rnx ˆ Rny ˆ Rnz Ñ Rngu , vie : Rnz Ñ Rnvie , vee : Rnz Ñ Rnvee , and all
other functions as defined in (SIP). Note that in the case of ESIPs, we write the logical
quantifiers in prefix notation because the order of the quantifiers @ and D is essential.
As discussed later, ESIPs can be considered as SIPs with another hierarchical problem
embedded. In this sense, they can be considered a three-level optimization problem.
Generalizations to cases where the lower-level feasible set Y depends on the upper-
level variables x, or the feasible set of existence-constrained variables Z depends on
the lower-level variables y or the upper-level variables x are straightforward, but not
yet implemented in libDIPS. See [27] for these extensions.

The optimistic formulation of a BLP reads

min
xPX ,yPY

fpx,yq

s.t. gupx,yq ď 0
y P arg min

zPYpxq
hpx,zq

Ypxq :“

y P
“

ylb,yub
‰

Ĺ Rny : glpx,yq ď 0, vilpyq ď 0, velpyq “ 0
(

;
(BLP)

with the upper-level objective function f : Rnx ˆ Rny Ñ R, the lower-level objective
function h : Rnx ˆ Rny Ñ R, and all other functions defined as in (SIP). (BLP)
contains variables y which are constrained to be in the set of global optimizers of an
embedded optimization problem.

The reviewed problem classes are closely related and, thus, share some common
traits. For example, due to their hierarchical structure, establishing the feasibility
of a candidate solution point requires the global solution of an embedded optimiza-
tion problem for all classes. Thus, global optimization techniques are (implicitly or
explicitly) needed in general for the solution process, and consequently, all the prob-
lem classes mentioned are computationally demanding. Since ESIPs and GSIPs are
generalizations of SIPs and MINMAX problems are a specialization of SIPs, one can,
under certain assumptions, use any algorithm for solving ESIPs or GSIPs to solve the
other two problem classes. However, given the expected high computational cost of
solving these problems, implementing specialized algorithms is likely beneficial over
an implementation only addressing the most general problem class. BLPs and GSIPs
are closely related: if Ex̄ P X such that Ypx̄q “ H, (BLP) and (GSIP) are equivalent
[105]. However, there is a distinctive difference if a point x̄ exists which leads to an
empty lower-level feasible set Ypx̄q “ H; the point x̄ is infeasible in (BLP), while it
is feasible in (GSIP). The close relation of the problem classes is also mirrored in a
close connection in the algorithmic approaches discussed in the next section.

3 Adaptive Discretization-Based Algorithms

In this section, we introduce multiple adaptive discretization-based algorithms for the
solution of the hierarchical optimization programs covered in Section 2, which are
implemented in our open-source software libDIPS. We highlight similarities and con-
nections between algorithms to illustrate the benefits of collecting the implementations
of these adaptive discretization-based algorithms in one software.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 5 of 38

https://git.rwth-aachen.de/avt-svt/public/libdips

libDIPS 4.12.2023

A significant benefit of adaptive discretization-based algorithms is that they can
utilize well-established optimization solvers mainly as a black box. The main challenge
in solving (SIP), (GSIP), (ESIP), (MINMAX), and (BLP) compared to standard non-
linear optimization problems is the infinite cardinality of the set Y and Ypxq, respec-
tively. This challenge can be addressed with different generalizations and adaptations
of the adaptive discretization-based algorithm for SIPs proposed by Blankenship and
Falk [14], which is in turn inspired by [90].

Conceptually, the approach of [14] replaces the infinite index set Y by a finite
discretized set Yd Ĺ Y. This discretized problem gives an approximation of (SIP).
Through an adaptive refinement scheme, points are added to Yd, and the approxima-
tion of (SIP) is improved.

All the algorithms implemented as solvers in libDIPS are conceptually closely
related to the approach of [14]. Therefore, we will give a conceptual description of
the algorithms in the context of adapting the central algorithmic idea of [14]. The
implemented solvers are listed in Table 2. We refer the interested reader to the original
publications listed in Table 2 for a detailed description of the algorithm underlying
the respective solver.

Program
Class

Solver Name Original
Publication

Comment

SIP B&F [14] Finite termination with feasible
points not guaranteed

RRHS [78]
Oracle [117]
Hybrid [26]

MINMAX Minmax [32]

GSIP GSIP-RRHS [78] Finite termination not guaranteed
[49]

* [28] Relax GSIP to derive an SIP; solve
resulting SIP with any SIP solver
*, c.f., Section 3.2

ESIP B&F [27] Upper-bounding procedure of [27]
not implemented

BLP BLP-Box [28]
BLP-noBox [79]

Table 2: Overview of the adaptive discretization-based algorithms implemented
in libDIPS.

3.1 Approaches for SIPs

Algorithmic Approach Underlying B&F

The SIP algorithm of Blankenship and Falk [14] proposes to relax (SIP) by replacing
the infinite index set with a finite one, i.e., YLBD Ĺ Y. We implement this algorithm
in libDIPS as the solver called B&F. The resulting single-level upper-level problem

min
xPX

fpxq

s.t. gu
`

x,yk
˘

ď 0, @ yk P YLBD
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

,

(LBP)

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 6 of 38

libDIPS 4.12.2023

yields a candidate point x̄; if (LBP) is solved globally, a lower bound (LBD) on (SIP)
is obtained. Feasibility of x̄ is checked through a lower-level problem with fixed upper-
level variables

max
yPY

max
jPt1...nguu

guj px̄,yq

s.t. Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

.
(LLP)

If the optimal objective value of (LLP) is less than or equal a predefined εa ě 0, x̄ is
εa-SIP-feasible (c.f., Definition 4); the algorithm terminates. If the optimal objective
value is strictly greater than εa, the solution point y˚ of (LLP) is added to the
discretization, i.e., YLBD Ð YLBD Y y˚; then, (LBP) is solved again.

Remark 1 Instead of solving a single lower-level problem, i.e., (LLP), where we max-
imize over all entries of gu, it is also possible to solve a separate lower-level problem
for each entry. Note that if we solve a separate lower-level problem for each entry of
gu, we must solve ngu optimization problems, and up to ngu points are added to the
discretization in each iteration.

Another possibility is to introduce for each entry of gu a separate discretization
Yd,i with i “ 1, ..., ngu.

libDIPS supports both alternatives, but neither is used in the numerical experi-
ments in Section 6.

It has been proven numerous times in literature [14, 58, 77] that if (SIP) is fea-
sible and εa “ 0, the accumulation points of this algorithm are optimal SIP-feasible
points (c.f., Definition 6). Additionally, if (SIP) is infeasible, (LBP) will be infeasible
after finitely many iterations. However, there can generally be no finite termination
guarantee for εa “ 0. Finite termination can only be guaranteed for εa ą 0, though
generating an SIP-feasible point is usually not generated in the latter case.

Algorithmic Approaches Underlying RRHS, Oracle, and Hybrid

Since the approach of B&F only generates lower bounds and generally does not termi-
nate finitely with an SIP-feasible point, several adaptions of the underlying algorithm
have been proposed to generate improving sequences of upper bounds (UBD). The fol-
lowing algorithms have in common that, akin to [14], they iteratively solve a sequence
of subproblems, i.e., a discretized upper-level problem and, subsequently, a lower-level
problem for fixed upper-level variables. The solution points of the lower-level problem
are then used to discretize the upper-level problem.

The upper-bounding approaches of the implemented solvers can be summarized as
follows: The algorithm proposed by [77], implemented as RRHS, achieves finite ter-
mination through an upper-bounding scheme in combination with the lower-bounding
scheme from B&F. The algorithm proposed by [117], implemented as Oracle, utilizes
an oracle problem to conduct a bisection search in the objective space. The algorithm
proposed by [26], implemented as Hybrid, attempts to combine the best of both, RRHS
and Oracle.

As mentioned in the introduction, other upper-bounding approaches exist, but
since they are not currently implemented in libDIPS, we refrain from reviewing them
here. For this reason, we focus on the mentioned algorithms in the following:

RRHS generates upper bounds by first relaxing (SIP) by replacing the set Y
with a set of finite cardinality, i.e., YUBD Ĺ Y (equivalent to B&F). However, the dis-
cretized (semi-infinite) constraint is restricted by the right-hand side with a restriction
parameter εr ą 0, which is initialized with εr0 ą 0, to

min
xPX

fpxq

s.t. gu
`

x,yk
˘

ď ´εr ¨ 1, @ yk P YUBD
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

.

(UBP)

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 7 of 38

libDIPS 4.12.2023

Similar to B&F, (UBP) and subsequently (LLP) are iteratively solved to determine
SIP-feasibility of the candidate points generated by (UBP) and the solution points of
(LLP) are used to populate YUBD. Note that neither a relaxation nor a restriction
of (SIP) is generally attained by (UBP) through the discretization combined with the
restriction. However, finite termination is guaranteed through a decreasing rule for εr

as the algorithm proceeds, i.e., εr Ð εr

εred
, which is applied under certain conditions; an

increasingly dense discretization YUBD; and further suitable assumptions (existence of
an εf -optimal SIP-Slater point, c.f., Definition 2; global solution of the subproblems;
continuity of all functions; and compact sets).

Note that the performance of the upper-bounding procedure is strongly influenced
by the initial restriction parameter εr0, the rate of reduction εred, and the initial
discretization YUBD. For example, a (too) fast reduction of the restriction parameter,
or a (too) large εred, can lead to many iterations [26].

Oracle uses an oracle adaption of [14] to determine if a target objective value f t

is attainable. The adapted discretized upper-level problem is given as

min
xPX

max

$

’

’

&

’

’

%

fpxq ´ f t, max
ykPYORA,

jPt1...nguu

guj
`

x,yk
˘

,

/

/

.

/

/

-

s.t. X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

,

(ORA)

with YORA Ĺ Y. This problem can be reformulated to avoid the max-operator, c.f.,
(ORA-REF).

Given preexisting upper and lower bounds on the optimal objective value of (SIP),
a bisection search in the objective space is conducted. Analogous to B&F, (ORA) is
solved with a subsequent solution of (LLP) with fixed upper-level variables x̄. If the
optimal objective value of (ORA) is greater than 0, f t is not attainable. If (LLP)
proves the current candidate point x̄ to be infeasible, the optimal solution point of
(LLP) is used for the discretization of YORA. Else x̄ is feasible, and f t is attainable.

Although one might expect the method to inherit strong robustness from the bisec-
tion procedure, Oracle relies on stricter assumptions for finite convergence compared
to RRHS.

Hybrid aims to combine the ideas of the two previous approaches. Recall that
the performance of RRHS depends on the hyperparameters εr0 and εred. Hybrid
essentially uses the same iterative approach for the upper- and lower-bounding as
RRHS. Additionally, by solving

min
xPX ,η

´η

s.t. fpxq ´ fRES ď 0

gu
`

x,yk
˘

ď ´η ¨ 1, @ yk P YRES
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

,

(RES)

a modified version of the subproblem (ORA), an adaptive (optimal) update to the
restriction parameter εr can be generated in some of the iterations. Using this updated
restriction parameter in (UBP), Hybrid aims to eradicate the performance dependence
on the hyperparameters εr0 and εred.

Table 3 summarizes the subproblems of the SIP algorithms above. The user must
provide these subproblems to use the respective solver in libDIPS. The subproblems of
the respective solvers of the program classes GSIP, ESIP, MINMAX, and BLP, covered
in the following sections, are also listed in Table 3.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 8 of 38

libDIPS 4.12.2023

Program
Class

Solver
Name

Subproblems provided by the user

SIP B&F (LBP), (LLP)
RRHS (LBP), (UBP), (LLP)
Oracle (LBP), (ORA), (LLP)
Hybrid (LBP), (UBP), (RES), (LLP)

MINMAX Minmax (LBP), (LLP)

GSIP GSIP-RRHS (LBP), (UBP), (GSIP-LLP), (GSIP-AUX)
* see SIP solvers

BLP BLP-
noBox

(BLP-LBP), (BLP-UBP), (BLP-LLP),
(BLP-AUX)

BLP-Box (BLP-LBP), (BLP-UBP), (BLP-LLP),
(BLP-AUX), (BLP-AUX-V)

ESIP B&F (ESIP-LBP), (ESIP-MLP),(ESIP-LLP)

Table 3: List of subproblems used in the solvers. Note that the solvers auto-
matically generate some auxiliary problems.

Algorithmic Approach Underlying Minmax

In [32], a specialization of the approach from B&F is presented for (MINMAX). This
specialization is based on the fact that the best upper bound for a given upper-level
point x̄ is given by the lower-level problem

max
yPY

fpx̄,yq.

As a result, an upper bound is readily obtained without the upper-bounding procedures
discussed above. A solver using this unique structure is implemented as Minmax in
libDIPS.

3.2 Approaches for GSIPs

In literature, two main approaches exist for the global solution of (GSIP) in the context
of adaptive discretization-based methods: (i) relaxation of (GSIP) to an SIP and the
solution thereof with an SIP approach and (ii) the adaption of the underlying approach
used in RRHS to GSIPs.

GSIP to SIP Reformulation and Relaxation

A common approach is to reformulate and relax (GSIP) to an SIP. By defining

gu relax
i :“ min

#

gui px,yq, min
jPt1...nglu

´ gljpx,yq

+

(GSIP-REF)

with i P t1 . . . nguu and inserting it as the semi-infinite constraint in (SIP), an SIP
relaxation of (GSIP) is obtained [25]. As shown in [43], this relaxation is under certain
assumptions equivalent to relaxing the feasible set of (GSIP) to its closure. Hence,
we assume that the minimum of the relaxed problem is equal to the infimum of the
original problem [25, 78]. If this property is not present, the relaxation can be strict.
State-of-the-art SIP solvers can be applied, as described in Section 3, for the solution
of the derived SIP. As it should be apparent whether an SIP or a derived SIP from a

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 9 of 38

libDIPS 4.12.2023

GSIP is considered, we use the same solver names as in Section 3 whenever a derived
SIP is solved with an SIP solver.

Adaption of RRHS for GSIPs

The previous approach, i.e., the solution of the derived SIP with SIP solvers, has the
inherent potential disadvantage that the original GSIP structure is ignored. On the
contrary, the algorithm published by [78], implemented as GSIP-RRHS, considers the
GSIP structure. Similar to RRHS, the authors in [78] employ a restriction of the right-
hand side approach to generate upper bounds and an adaption of B&F to generate
lower bounds. [78] use the aforementioned GSIP to SIP relaxation and reformulation
but then account for the GSIP structure when checking the feasibility of a candidate
point and when generating discretization points. The main change is that after the
GSIP lower-level problem

gu,˚ “ max
yPY

max
jPt1...nguu

guj px̄,yq

s.t. glpx,yq ď 0

Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

(GSIP-LLP)

is solved to check the feasibility of the candidate point x̄, the auxiliary problem

min
yPY

max
jPt1...nglu

glpx̄,yq

s.t. max
jPt1...nguu

guj px̄,yq ě α ¨ gu,˚

Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

(GSIP-AUX)

with α ą 0 is solved to find a GSIP-LLP-Slater point, c.f., Definition 3. This GSIP-
LLP-Slater point is needed because only a discretization point that strictly fulfills
the coupling inequality constraints glpx,yq ď 0 will, if added to the discretization,
provide a restriction in the derived (LBP). The solution point of (GSIP-LLP) will not
necessarily provide a restriction if used as a discretization point.

The original publication searched for a GSIP-LLP-Slater point whose relative sub-
optimality in the lower level was bounded over all iterations by a fixed factor α ą 0.
However, depending on the a-priory chosen α, generating a GSIP-LLP-Slater point
might fail [49]. The implementation of this approach, i.e., GSIP-RRHS, tries to address
the issues raised by [49] by adaptively choosing α whenever a GSIP-LLP-Slater point
is not attained by (GSIP-AUX), c.f., Section 4.2. However, in certain cases, numerical
issues connected to identifying GSIP-LLP Slater points persist for GSIP-RRHS, c.f.,
Section 6.2.

3.3 Approaches for ESIPs

The algorithmic extension to ESIPs, proposed in [27], can similarly be understood as
a direct extension of the ideas for SIP. Instead of the single-level optimization problem
(LLP), the following max-min problem

max
yPY

min
zPZ

max
jPt1...nguu

guj px̄,y,zq

s.t. Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

(ESIP-MINMAX)

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 10 of 38

libDIPS 4.12.2023

takes the place of the lower-level problem. A lower bound is obtained by solving the
subproblem

min
xPX ,z1PZ...z|YLBD|

PZ

fpxq

s.t. gu
`

x,yk,zk
˘

ď 0, @ k P

1 . . .
∣∣YLBD∣∣(

X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

,
(ESIP-LBP)

where the key difference to (LBP) is the addition of a new entry for the existence
variables z for each discretization point in YLBD.

3.4 Approaches for BLPs

For BLPs we implement two solvers, namely BLP-Box based on [79] and BLP-
noBox based on [28]. For both, the connection to the approach of [14] is based on
the reformulation of the BLP to a GSIP using the value function reformulation

y P arg min
zPYpxq

hpx,zq ðñ y P Ypxq ^ rhpx,yq ´ hpx,zq ď 0, @ z P Ypxqs.

Accordingly, both approaches utilize

min
xPX ,yPYpxq

fpx,yq

s.t. gupx,yq ď 0

x P X̃
`

zk
˘

ùñ hpx,yq ´ h
`

x,zk
˘

ď 0, @ zk P YLBD
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

,

(BLP-LBP)

to generate a LBD based on the discretization YLBD. The main difference is how
the set X̃ is chosen. In [79], the authors compute boxes in each iteration k around
the current iterate for the upper-level variables x̄ such that within these boxes, it can
be assured that the discretization point zk stays feasible concerning the lower-level
constraints. This approach is implemented in our solver BLP-Box. The approach in
[28] generates the set X̃ in a parametric way by setting X̃ pzq :“ tx P X : z P Ypxqu.
To generate discretization points, a Slater point of the lower level with respect to the
coupling constraint gl is searched similarly to the procedure in GSIP-RRHS but with
an absolute tolerance instead of the relative tolerance α in (GSIP-AUX).

Both approaches utilize a probing problem specifically catered toward BLPs to
generate upper bounds. The probing problem is given by

min
yPYpx̄q

fpx̄,yq

s.t. gupx̄,yq ď 0

hpx̄,yq ď h̄` εl,UBD

LBD ď fpx̄,yq

(BLP-UBP)

with the estimate h̄ for the optimal value of the lower level at the current value for the
upper-level variables x̄, a small positive tolerance εl,UBD, and a known lower bound
on the upper-level objective LBD.

4 libDIPS – Discretization-Based Semi-Infinite
and Bilevel Programming Solvers

As motivated in the introduction and highlighted in Section 3, the reviewed algorithms
and implemented solvers are closely related and, hence, can benefit from a shared in-
frastructure. By combining all these solvers in one software, we can compare them

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 11 of 38

libDIPS 4.12.2023

more fairly because they use the same programming language, use a single common
code-base, and access subsolvers through the same interface. Therefore, we imple-
mented all solvers in the open-source C++ software libDIPS – Discretization-Based
Semi-Infinite and Bilevel Programming Solvers, already used in a preliminary form in
[25].

The latest version of libDIPS, including the text-based parser, support for the
MPI parallelized version of MAiNGO [15], and interfaces to the supported subsolvers,
is open-source under the Eclipse Public License v2.0, accessible under https://git.

rwth-aachen.de/avt-svt/public/libdips, and has been tested under Microsoft Win-
dows 10 and Linux. Further information on downloading and compiling libDIPS and
its dependencies can be found on the documentation page on the libDIPS repository.

libALE

Objective Constraints
LBP

Symbol table

UBLBSymbol

20x

20yLLP
Objective

Problem files

parsed

libDIPS

B&F Oracle

RRHS Hybrid

GSIP-RRHS

Boxexpression
manipulation

https://www.svgrepo.com/svg/285998/nachos-mexican

Solvers

FICO Xpress

interface

Output

llp.log
lbp.log
lbp.log

SIP

GSIP

BLP

noBox

B&F

ESIP

Minmax

MINMAX

IPOPT

CPLEX
llp.txt
llp.txt
lbp.txt

def.txt

Fig. 1: Software structure overview.

The general structure of the software is depicted in Figure 1. Based on this struc-
ture, we summarize the following features of the software

• Problem description: Subproblems are provided by the user in an easily ed-
itable and human-readable form using the domain-specific language provided
by libALE [134].

• libALE is used for reading the user input (subproblems), which then internally
stores the objective and constraints of each subproblem as logical expression
trees. The subproblems are represented symbolically using libALE. Variable
bounds and parameter values are tracked with a symbol table.

• The solvers listed in Table 2 are implemented in libDIPS. A framework for
discretization-based solvers allows for easy extension of the library with addi-
tional solvers. For example, necessary symbol and expression manipulations of
the subproblems needed by the solvers are carried out in libALE. This allows us
to robustly build the subproblems needed in the algorithms.

• libDIPS interfaces to several state-of-the-art optimization solvers, i.e., CPLEX
[56], GUROBI [46], IPOPT [122], FICO Xpress [31], and MAiNGO [15] as well
as the GAMS C++ API [36]. This enables the user to switch between them
easily. Numerous additional solvers are accessible via GAMS, e.g., BARON
[96], ANTIGONE [75]. The modular structure allows the user to implement
interfaces to additional subsolvers as needed.

• Output is printed onto the command line, and additional log files are written.

There are two options for formulating a hierarchical optimization problem for the use
in libDIPS. A significant design decision was to allow the user to manually and indi-
vidually formulate the subproblems (in an opinionated way). Alternatively, we also

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 12 of 38

https://git.rwth-aachen.de/avt-svt/public/libdips
https://git.rwth-aachen.de/avt-svt/public/libdips
https://git.rwth-aachen.de/avt-svt/public/libdips

libDIPS 4.12.2023

1 definitions :
2 real [2] x in [−3, 3];
3
4 set{index} lbp k disc := {};
5 real [0,2] lbp y disc := 0;
6
7 objective :
8 2∗x[1]ˆ2+x[2]ˆ2;
9

10 constraints :
11 x[1]+x[2] = 1.0;
12 forall k in lbp k disc :
13 min(x[1]+lbp y disc[k ,1], x[2]+lbp y disc [k ,2]) <= 0;

Listing 1: Listing of the file lbp.txt for the solution of the exemplary problem
(Ex). Note that lbp y disc represents YLBD and is initialized as an empty set.
lbp k disc corresponds to the indices of iterations and is internally updated by
the used solver.

provide templated input files that allow deriving the necessary subproblems automat-
ically from a high-level problem description. In the following section, we elaborate on
the benefits of individually formulating the subproblems with a small example.

4.1 Exemplary Solution of an SIP via B&F

Suppose we want to solve the following SIP using B&F.

min
xPX :“r´3,3s2

fpxq :“ 2x21 ` x
2
2

s.t. gupx, yq :“ min tx1 ` y1, x2 ` y2u ď 0, @ y P Y
veupxq :“ x1 ` x2 ´ 1 “ 0

Y “ r´1, 1s2

(Ex)

Using the domain-specific language provided by libALE, we can write the lower-
bounding subproblem as a direct transcription of (LBP), as shown in Listing 1 for
the lbp.txt file. The syntax for the subproblems should be primarily intuitive. For
a detailed introduction to the domain-specific language provided by libALE and the
syntax on how to define an optimization problem, the reader may refer to the docu-
mentation of libALE [134] and MAiNGO [15].

If we were to naively or automatically generate the subproblem (LLP) from the
problem description (i.e. from f, gu, veu and Y), the resulting objective would read
max
yPY

mintx1 ` y1, x2 ` y2u. Because the user can define the subproblems indepen-

dently from each other in libDIPS, we can use a different formulation in (LLP). In-
deed we should use the epigraph formulation max

yPY
t s.t. t ď x1 ` y1, t ď x2 ` y2.

This formulation allows us to solve a linear optimization problem instead of a non-
linear one. From our experience, such an opinionated reformulation is paramount for
an efficient solution in bigger optimization problems, especially when binary variables
are involved. The opinionated subproblem formulation of (LLP), transcribed in the
llp.txt file, is shown in Listing 2.

In addition to the subproblem files, the user has to provide a definitions file, called
def.txt, which documents the meaning of some of the used symbols in the subprob-
lems. For B&F, the user must provide the algorithm with the lower-level variable

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 13 of 38

libDIPS 4.12.2023

1 definitions :
2 real t in [−4,4];
3 real [2] y in [−1, 1];
4
5 objective :
6 −t;
7
8 constraints :
9 x[1]+y[1] >= t;

10 x[2]+y[2] >= t;

Listing 2: Listing of the file llp.txt for the solution of (Ex). Note that all
subproblems are written as minimization problems.

1 programdefinitions(”lbp”):
2 set disc (1) = lbp k disc;
3 set disc parameter src (1, lbp y disc) = y;

Listing 3: Listing of the file def.txt for the solution of (Ex) using B&F.

name, in this case, y, and the discretized semi-infinite set of the lower-bounding prob-
lem, lbp y disc, and the index set lbp k disc of the lower-bounding problem.

The interested reader may refer to Section S1 of the Supporting Information for
the necessary subproblem files and extended def.txt file for the solution of (Ex)
with RRHS. Further input example files for the other solvers are given in the libDIPS
repository.

4.2 Implementation changes of the original algorithms in
libDIPS

As revisited in Section 2, the implemented algorithms are conceptually closely related.
Hence, we were able to enhance the implemented solvers by utilizing the ideas from
the publications of other algorithms. For example, some of the original publications
assume that the subproblems are solved exactly, i.e., the original algorithm statements
do not account for the fact that nonlinear problems may only be solved with a given
tolerance, while others do.

Additionally, we extended the solvers to, e.g., be able to handle multiple semi-
infinite constraints. Section S2 in the Supporting Information shows a detailed overview
of the improvements of the implemented algorithms in libDIPS.

5 Benchmark Test Set

As mentioned in the introduction, one of the main goals of this manuscript is to com-
pare the different algorithms on a more comprehensive array of benchmark problem
instances. For this task, we collected problem instances from the literature of the dif-
ferent program classes. All problem instances are available in the libDIPS repository.
The vast majority of the collected problem instances are academic examples that were
used for the algorithm presentation by the respective authors. With libDIPS, we pro-
vide easy-to-use software for the solution of hierarchical programs with which real-life
problem instances can be implemented and, in the future, be incorporated into the

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 14 of 38

https://git.rwth-aachen.de/avt-svt/public/libdips
https://git.rwth-aachen.de/avt-svt/public/libdips
https://git.rwth-aachen.de/avt-svt/public/libdips

libDIPS 4.12.2023

benchmark test set. Nonetheless, these academic examples contain numerous chal-
lenging problems that were specifically chosen by the respective authors to highlight
and pinpoint certain problems in existing/previous algorithms.

We did not exploit individual opinionated problem formulations within the bench-
mark test set, i.e., we tried to keep the problem formulations as close as possible to
the initially published problem formulation. However, there are several main changes
that we made during problem instance implementation, as we

• added appropriate (sufficiently large) variable bounds if none were provided

• performed trivial transformations to fit the problem instances in our template,
e.g., from minimization to maximization problems

• performed trivial reformulations to avoid division by zero

• made reasonable assumptions in case of ambiguous notation or typos

• replaced open or half-open host sets by closed host sets because all implemented
solvers assume closed host sets

• normalized minmax approximation problems in the MINMAX program category
to use the same squared objective. Specifically., min

x
max

y
|epx,yq| was changed

to the equivalent formulation min
x

max
y
pepx,yqq2 to be consistent with problems

with ambiguous formulation in the original literature and to avoid creating ar-
tificial duplicates. The latter formulation is choosen as it is preferable for the
used subsolvers.

We noted non-trivial changes as supplementary information in the def.txt file of the
corresponding problem instances.

We performed a two-step heuristic procedure to avoid duplicate problem instances
in the presented benchmark test set. First, we automatically searched for potential
duplicates, i.e., problem instances with the same number of variables, and close opti-
mal objective values or solution points. Second, we manually compared the potential
duplicates. When we found a duplicate, we named the problem instance according to
the older published source and added the newer source as supplementary information
to the def.txt file. For the BLP test set, we automatically checked for symbolic equiv-
alence of the objective functions to narrow down the number of potential duplicates
in the first step. For similar problem instances, e.g., the problem instances differed
by an additional constraint, we added both problem instances to the benchmark test
set and a remark in the corresponding def.txt files. Both problem instances were
added, even if the constraint did not change the optimal solution, as equivalence is
not straightforward to derive from the problem statement, and these additional con-
straints might influence the performance of the used subsolver. We proceeded in the
same manner when an original problem instance was cited, but the presented problem
instance was different.

For SIPs, we started with the existing benchmark test sets from [77, 120, 124].
Additionally, we added problem instances from numerous publications. Table 4 shows
a complete list of the used publications. Note that in Table 4 and in all following
listings, only the oldest found publication with the implemented problem instance is
listed. After removing duplicates, the benchmark test set contains 294 SIPs; for a
complete list of implemented problem instances, see Table S2 in Section S5 of the
Supporting Information.

For MINMAX, we collected problem instances from numerous publications. After
removing duplicates, the benchmark test set contains 83 problem instances of various
publications; for a complete list of implemented problem instances and summary of
used publications, see Table 4 and Table S3 in Section S5 of the Supporting Informa-
tion, respectively.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 15 of 38

libDIPS 4.12.2023

For GSIPs, we started with the existing benchmark test set of [78] and added
problem instances from GSIPLib&Gen [99]. The problem instances taken from [99]
were reformulated to be compatible with our framework. We also added additional
problem instances from various other publications. This led to a total of 86 problem
instances after removing duplicates; for a complete list of implemented problem in-
stances and summary of used publications, see Table 4 and Table S4 in Section S5 of
the Supporting Information, respectively.

For BLPs, we started with the problem instances from [80] and combined them
with the existing benchmark test set BASLib [84] and BOLIB v2 [133]. For some of
the problem instances, we observed that there are constraints implemented as part of
the lower-level feasible set Ypxq but only depend on the upper-level variables x. We
assumed that the original intent was to include these constraints as upper-level ones. In
these cases, we moved these constraints to the definition of the upper-level feasible set.
Our motivation behind this transformation is that these constraints can be trivially
detected, and without the transformation, the solvers encountered numerical issues
or had performance losses. Additionally, this detail does not change the feasible set
of individual problem instances. After removing duplicates, we obtained 167 problem
instances by combining the existing benchmark test sets.

Program
Class

Used publications (oldest found)

SIP [1, 6, 8, 10, 12–14, 16, 17, 21, 22, 24, 33, 35, 37, 38, 40, 44, 45, 47–
49, 54, 55, 62, 64–66, 68–72, 74, 76, 80–82, 85–89, 94, 95, 97, 98,
102, 104, 108, 110, 111, 113, 114, 116, 117, 120, 123, 124, 128–132]

GSIP [6, 19, 24, 49, 50, 57, 59, 64, 67, 69, 78, 91–93, 97, 99, 100, 103,
104, 106, 107, 109, 115, 118, 121]

BLP [79, 84, 133]
MINMAX [2, 3, 7, 23, 24, 30, 34, 37, 39, 44, 51–53, 55, 74, 82, 130, 132]

Table 4: List of publications used in the benchmark test set.

We categorized all problem instances according to the program class of their re-
spective upper- and lower-level problems using the following categories

• LP – linear objective function subject to linear constraints

• QP – quadratic objective function subject to linear constraints

• QCQP – quadratic objective function subject to quadratic constraints

• NLP – all problem instances not fitting the aforementioned problem categories

The composition of the benchmark test set is shown in Table 5.

6 Numerical Experiments

All calculations were conducted on the RWTH High-Performance Computing clus-
ter running Rocky Linux 8. No parallelization was used, and each computation was
performed on a single core with an Intel Xeon Platinum 8160 Processor “SkyLake”
running at 2.1 GHz. All subproblems are solved using MAiNGO version 0.7.1. The
maximum CPU time per problem instance was set to 20 min. If a problem instance
is not solved within that time, the solution procedure is aborted, and the instance
is considered not solved (CPU time is set to infinity). The absolute inequality toler-
ance deltaIneq of MAiNGO was set to 1ˆ 10´9. Note that for some automatically

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 16 of 38

libDIPS 4.12.2023

UL
LL

LP QP QCQP NLP

LP 22 22 1 75
QP 1 5 2 21
QCQP 2 12 5 11
NLP 9 3 3 100

(a) SIP benchmark test set.

UL
LL

LP QP QCQP NLP

LP 11 0 4 4
QP 8 3 6 1
QCQP 6 7 8 8
NLP 1 0 4 15

(b) GSIP benchmark test set.

UL
LL

LP QP QCQP NLP

LP 0 1 0 1
QP 0 0 0 0
QCQP 0 13 0 44
NLP 0 3 0 21

(c) MINMAX benchmark test set.

UL
LL

LP QP QCQP NLP

LP 31 0 0 0
QP 7 0 0 0
QCQP 18 41 7 0
NLP 2 9 10 42

(d) BLP benchmark test set.

Table 5: Composition of the benchmark test sets for the different problem
categories. UL = problem class of the upper level, specifically the respective
LBD with a given discretization, LL = problem class of the lower level with
fixed upper-level variables.

generated subproblems, we use specific fixed settings to speed up the convergence of
MAiNGO, e.g., in order to compute an initial upper bound in Oracle the objective
function is maximized absent any constraints and the relative optimality tolerance
rel tol of MAiNGO is set to maxtrel tol lbp, 0.5u. For other subproblems, the op-
timality tolerances used can be configured by the user. The specific tolerances used
for each solver can be found in Table S1 in Section S3 of the Supporting Information.

All other settings of MAiNGO except the output settings have been left at the
default values.

We use each program class’s problem instances of the benchmark test set presented
in Section 5. To compare the performance of the individual solvers within a program
class, we utilize Dolan-Moré plots; we plot the percentage of problem instances solved
over the CPU time or the time factor defined as

Time factor “
CPU time of problem instance i

CPU time of problem instance i of the fastest solver
.

We mainly discuss the time factor plots and, thus, relative performance. Our
motivation is to lessen the importance of the size of the problem instances. However,
for problems with very small solution times, minor absolute time differences can cause
a large difference in terms of the time factor. To combat this, all CPU times under
1 seconds have been rounded up to 1 seconds as we can not fairly differentiate relative
run-time measurements for run times under 1 second.

We briefly investigated the consistency of the measured run times by measuring
three repeated runs of RRHS on the SIP benchmark test set. On average, the stan-
dard deviation over the three repeated runs, normalized by the mean, is 0.02 and the
maximum of this normalized standard deviation is 0.16. Since we consider the devia-
tions insignificant, we refrain from repeating the computations of the more extensive
benchmark studies, which are discussed later in this section.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 17 of 38

libDIPS 4.12.2023

As B&F terminates with εa-feasible points, we exclude B&F from the performance
tests.

6.1 Performance Results of SIP solvers

6.1.1 “Out of the box performance”

Figure 2a shows the “out of the box performance” of the SIP solvers with their default
parameters, i.e., the hyperparameters of each solver are set to the values of their
respective original publication, c.f., Table 6 (for CPU time plot see Figure S1a in
Section S4.1 of the Supporting Information). Quantitatively, the performance of the
solvers on the more extensive benchmark test set is similar to the results published
in [25]: Oracle is the fastest for the largest fractions of problems, but when it is
not the fastest, it is often significantly slower and is the least robust. In contrast,
RRHS is the most robust and can solve the most problems within a time factor of
10, but is the fastest solver in the least amount of problems. The solver Hybrid is
able to solve significantly more problems than Oracle and outperforms the RRHS
solver for the time-factor range up to factor 3. Overall, the Hybrid solver is the
most well-rounded with default parameters. However, as shown in Figure 2b, after
hyperparameter tuning, RRHS is likely the better choice. In the following, we take a
closer look at the impact of tuning on two solvers RRHS and Hybrid.

(a) “Out of the box performance;” Hyper-
parameters as in original publications.

(b) Solvers with tuned hyperparameters.

Fig. 2: Time factor performance plots of SIP solvers: RRHS, Oracle, and Hybrid.
Without tuning, a clear trade-off between fraction of problem solved overall
and fraction of problem solved in the shortest exists between the solvers. With
tuning RRHS performs best.

6.1.2 Hyperparameter tuning for RRHS and Hybrid

Recall that the performance of the upper-bounding procedure, and hence overall per-
formance, of RRHS and Hybrid is influenced by the initial restriction parameter εr0;
the rate of reduction, i.e., εred; and the initial discretization. Therefore, we per-
formed a hyperparameter study for RRHS and Hybrid varying the two hyperparam-
eters εr0 “ t0.1, 1, 2, 5, 8, 10u and εred “ t1.2, 1.5, 2, 2.5, 5, 10u. The results of the
parameter study are shown in Figures 3 and 4 (for the CPU time performance plots
see Figure S1b in Section S4.1 of the Supporting Information).

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 18 of 38

libDIPS 4.12.2023

Program
Class

Algorithm
Solver Name

Hyperparemeters
in original publication

Tuned
hyperparameters

SIP RRHS εr0 “ 1, εred “ 1.5 εr0 “ 0.1, εred “ 10
Oracle – –
Hybrid εr0 “ 1, εred “ 1.2 εr0 “ 0.1, εred “ 10

GSIP GSIP-RRHS εr0 “ 1, εred “ 2,
α0 “ 0.5, αred “ ˚

εr0 “ 1, εred “ 2,
α0 “ 0.25 , αred “ 1.2

RRHS – εr0 “ 5, εred “ 5
Oracle – –
Hybrid – εr0 “ 0.1, εred “ 5

Table 6: Hyperparameter values used in the original publications [26, 77, 78, 117]
and tuned hyperparameter values. GSIP-RRHS : Note that [78] introduces re-
striction and reduction parameters that may diff between gu and for gl; however
[78] uses the same values for both. ˚: αred is introduced in this work.

RRHS , for a fixed εr0 “ 1 (value in original publication [77]), performs best with
a fast reduction of εr, c.f., Figure 3a. Furthermore, a small initial restriction εr0 is
beneficial, c.f., Figure 3b. Hence, choosing a big value for εred and a small εr0 seems
beneficial for the considered benchmark test set. With tuned hyperparameters, i.e.,
εred “ 10 and εr0 “ 0.1, RRHS was able to solve 87 % of the problem instances within
20 min. For a detailed listing of the reasons why the remaining problem instances were
not solved, refer to Table 7.

Hybrid , for a fixed εr0 “ 1 (value in original publication [26]), performs best with
a fast reduction of εr, c.f., Figure 4a. Furthermore, a small initial restriction εr0 is
beneficial, c.f., Figure 4b. With tuned hyperparameters, i.e., εred “ 10 and εr0 “ 0.1,
Hybrid was able to solve 85 % of the problem instances within 20 min. For a detailed
listing of the reasons why the remaining problem instances were not solved, refer to
Table 7.

(a) RRHS : εr0 “ 1 and εred “

t1.2, 1.5, 2, 2.5, 5, 10u.

(b) RRHS : εr0 “ t0.1, 1, 2, 5, 8, 10u and
εred “ 10.

Fig. 3: Time factor performance plots of SIP hyperparameter study for RRHS.
Performance improves with increasing εred and decreasing εr0.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 19 of 38

libDIPS 4.12.2023

(a) Hybrid : εr0 “ 1 and εred “

t1.2, 1.5, 2, 2.5, 5, 10u.

(b) Hybrid : εr0 “ t0.1, 1, 2, 5, 8, 10u and
εred “ 10.

Fig. 4: Time factor performance plots of SIP hyperparameter study for Hybrid.
Performance improves with increasing εred. No systematic behavior is seen for
εr0.

Figure 2b shows that after hyperparameter tuning RRHS outperforms the other
solvers. Furthermore, by comparing the sensitivity of the solvers RRHS and Hybrid
(Figures 3 and 4), we can conclude that Hybrid is less sensitive to the choice of the
hyperparameters. This is most likely due to the additional subproblem (RES), which
is used to generate optimal updates for the restriction parameter εr. However, this
update procedure comes with additional computational costs and can not compensate
for the reduced computational costs of RRHS if the tuned hyperparameters are chosen.
In summary, the performance of RRHS is superior compared to the other solvers,
especially if parameter tuning can be performed.

6.1.3 Performance Result of Minmax

Figure 5 shows the performance of Minmax on the benchmark test set. We refrained
from a comparison to SIP solvers using the reformulation given in MINMAX-REF
as the specialized algorithm is clearly preferable: The specialized algorithm gives the
best upper-bound for each candidate point of the upper-level variables x̄ and the
problems (RES), (ORA) and (UBP) used in the upper-bounding of the respective
solvers will not produce different candidate points (except when there are multiple
possible global solutions, in which case better performance would only be due to
randomness). Minmax was able to solve 79 % of the problem instances within 20 min.
The remaining 21 % of problem instances were not solved due to subsolver errors, c.f.,
Table 7.

6.2 Performance Results of GSIP algorithms

We conducted a similar hyperparameter study for the GSIP solvers as for the SIP
solvers. The problem instances of the GSIP benchmark study were solved with
GSIP-RRHS and the corresponding derived SIPs, c.f., Section 3.2, with the SIP
solvers Oracle, RRHS, and Hybrid. We varied the hyperparameters εr0 “ t0.1, 1, 5u,
εred “ t1.2, 2, 5u, α0

“ t0.25, 0.5, 0.95u, and αred “ t1.2, 2, 5u of the algorithms GSIP-
RRHS, RRHS, and Hybrid, respectively. Figure 6 clearly shows that GSIP-RRHS per-
forms best for many problems for tuned hyperparameters (for CPU time, subproblem

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 20 of 38

libDIPS 4.12.2023

Program
Class

Algorithm
Solver Name

non-solved
/ total

exceeded
max. time

Subsolver
errors

Algorithmic
errors

SIP RRHS 38/294 7 18 13
Oracle 48/294 10 35 3
Hybrid 45/294 8 24 13

GSIP GSIP-RRHS 34/ 86 8 12 15
RRHS 26/ 86 8 17 1
Oracle 24/ 86 6 18 –
Hybrid 26/ 86 6 19 1

BLP BLP-noBox 28/167 6 17 5
BLP-Box 84/167 31 41 12

MINMAX B&F 20/ 83 – 20 –

Table 7: Number of errors encountered in the benchmark study using tuned
hyperparameters, c.f., Table 6. The subsolver errors category includes problems
instances where MAiNGO did not solve a subproblem globally or an exception
was thrown by MAiNGO . The algorithmic errors category includes problems
instances where the maximum number of iterations max iter was exceeded or
where algorithmic parameters, e.g., εr, were reduced below a certain threshold,
e.g., min eps res, c.f., Table S1

Fig. 5: CPU time performance plot of Minmax. Most problems are solved within
40 seconds.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 21 of 38

libDIPS 4.12.2023

number, and subproblem factor performance plots see Figures S3 and S4 in Section S4.2
of the Supporting Information). One possible reason is that the SIP solvers solve
the derived (LLP) with (GSIP-REF), while GSIP-RRHS solves the (GSIP-LLP) and
(GSIP-AUX). The derived (LLP) is more expensive than (GSIP-LLP) and (GSIP-AUX)
(c.f., Figure S5 in Section S4.2 of the Supporting Information). This is probably due
to the non-smooth min in (GSIP-REF), which might lead to numerical disadvantages
in the employed subsolvers. However, it remains to be seen whether an improved
opinionated subproblem formulation of (LLP) could alter the findings. We also want
to point out that although GSIP-RRHS mostly outperforms the other solvers, it has
more problems where it does not converge. This is connected to the issue raised by
[49], which we try to address by reducing α iteratively whenever a GSIP-LLP-Slater
point is not attained by (GSIP-AUX), c.f., Sections 3.2 and 4.2. However, numerical
issues connected to identifying GSIP-LLP Slater points persist. For a detailed listing
of the reasons why some of the problem instances were not solved, refer to Table 7.

Fig. 6: Time factor performance plots of GSIP hyperparameter study for GSIP-
RRHS, Oracle, RRHS, Hybrid using tuned hyperparameters according to Ta-
ble 6. GSIP-RRHS is fastest most often, but solves less problems within the
time-limit.

6.3 Performance Results of BLP algorithms

We conducted a similar hyperparameter tuning study for the BLP solvers. For BLP-
Box, we varied d0 “ t0.1, 0.5, 1u and dred “ t0.1, 0.5, 0.9u. BLP-noBox performs best,
c.f., Figure 7. Note that a large part of BLP-Box ’s performance disadvantage is due
to subsolver errors, c.f., Table 7. The best hyperparameters for BLP-Box are d0 “ 1
and dred “ 0.9, while the influence of dred is less significant. For a detailed listing of
the reasons why some of the problem instances were not solved, refer to Table 7. We
conclude that the approach of choosing X̃ of [28] is superior to [79].

6.4 Testing of Two Exemplary Scientific Hypotheses

The extensive benchmark test set in combination with libDIPS brings the advantage
that we can easily test scientific hypotheses for the algorithms. The following sections
briefly describe two exemplary hypotheses to further speed up convergence, which were
implemented in libDIPS and tested on the afore-introduced benchmark test set.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 22 of 38

libDIPS 4.12.2023

Fig. 7: Time factor performance plots of BLP hyperparameter study for BLP-
noBox and BLP-Box with d0 “ t0.1, 0.5, 1u and dred “ t0.1, 0.5, 0.9u. BLP-
noBox outperforms BLP-Box for all tested parameter values. Lines with the
same color correspond to the same value of the parameter dred. Changes in dred

seem to make little difference while increasing d0 improves performance.

6.4.1 Introduction of a Guard for the Upper-bounding Procedure in
RRHS

RRHS, with tuned hyperparameters (εr0 “ 0.1, εred “ 10), spends about 24 % of the
total CPU time for the upper-bounding procedure over all solved problem instances
(c.f, Figure S2 in Section S4.1 of the Supporting Information). The upper-bounding
problem of RRHS, (UBP), is generally neither a relaxation nor a restriction. If εr is a
small value, the discretization must be “very” fine for the upper-bounding procedure
to yield a feasible solution and thus a “good” upper bound. Hence, if εr0 is a small
value and we start with an empty discretization YUBD “ H, the first few upper-
bounding iterations will most likely be unsuccessful. In an attempt to further reduce
computation time, we added a guard such that the upper-bounding procedure of RRHS
is skipped until the lower-bounding procedure produces εa-SIP-feasible points with
εa ą 0. Here, we choose εa “ 0.01 and refer to this introduced guard parameter as
gUBP “ 0.01. Whenever the upper-bounding procedure is skipped, the discretization
of the YUBD is populated with the discretization point used in the lower-bounding
procedure. Hence, the upper-bounding procedure is skipped until the discretization
of YUBD has reached a sufficient density (in combination with εr). Figure 8 shows
that this heuristic benefits problems where the solver was already competitive with a
small time factor and does not negatively affect performance on the other problems
(for subproblem number and subproblem factor performance plots see Figure S6 in
Section S4.3 of the Supporting Information). Note that this heuristic does not impede
the convergence guarantees.

6.4.2 Bracketing of the Objective Function by Current Upper and
Lower Bound in RRHS

We test whether additional bracketing of the objective function speeds up convergence,
i.e., we added to (LBP) and (UBP) the constraint

LBD ď fpxq ď UBD, (1)

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 23 of 38

libDIPS 4.12.2023

Fig. 8: CPU time factor performance plot for introduced guard parameter as
gUBP “ 0.01 in RRHS. Comparison with tuned hyperparameters for the re-
spective solvers. For small time-factors the guard significantly improves perfor-
mance.

where LBD and UBD are the current upper and lower bound. The idea is that brack-
eting of the objective function makes it easier for the used subsolvers to bound the
solution. Additionally, if εr is “too” big but (UBP) is not directly infeasible, it is more
likely that through the added bracketing constraints, (UBP) is will become infeasible.
Whenever (UBP) is infeasible, εr is deemed “too” big; it will be reduced, and the sub-
sequent (unnecessary) solution of (LLP) is skipped. Exemplary, we test our hypothesis
on RRHS with tuned hyperparameters, c.f, Table 6. However, while the results shown
in Figure 9 indicate that this change can have a large positive impact for a given
problem instance, we did not see an overall improvement across the benchmark. The
bracketing of the objective function did not reduce the number of subproblems solved
(for subproblem number and factor performance plots see Figure S7 in Section S4.3
of the Supporting Information). In summary, bracketing the objective function is not
a promising approach for reducing computation time and the number of subproblems
to be solved.

Fig. 9: Time factor performance plot comparing the approach using bracketing
(gBRKT =True) against the default of not using it (gBRKT =False). Comparison
with tuned hyperparameters of RRHS. Bracketing does not improve perfor-
mance.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 24 of 38

libDIPS 4.12.2023

7 Conclusion and outlook

We presented libDIPS, an open-source software for adaptive discretization-based al-
gorithms for (G)SIPs, BLPs, ESIPs, and MINMAX programs, which provides solvers
based on the algorithms proposed and further developed by [14, 26–28, 78, 79, 117].
We optimized the solvers’ hyperparameters and compared these “tuned” solvers on an
extensive benchmark test set comprising over 600 problem instances and unifying 8
existing test sets using MAiNGO as a subsolver. We found that for SIPs and BLPs,
the simpler algorithms outperform the more advanced ones, while for GSIPs, the more
advanced tailored algorithm outperforms the simpler ones.

The implemented solvers, which all belong to the class of adaptive discretization-
based algorithms, highly rely on the used subsolver. If the used subsolver performs
poorly, the performance of the algorithm is directly negatively influenced. Therefore,
it is recommended to try different subsolvers, as some subsolvers have strengths and
weaknesses depending on the problem class and the problem formulation. Implicitly,
subproblems with linear constraints and quadratic objectives are already handled by
a specialized solver in our tests, as MAiNGO utilizes CPLEX in these cases. How-
ever, other problem classes or characteristics, such as convexity, could be exploited for
faster and more robust optimization. Indeed, in our tests, we encountered a significant
amount of numerical difficulties in the solution of the subproblems. This is partially
caused by the fact that with each level, stronger tolerances must be enforced. Ad-
ditionally, in later iterations, the lower-level problem must be solved more and more
accurately, as it becomes more likely to be inconclusive as the computed lower and
upper bounds are bracketing zero. This is due to the fact that in later iterations, the
computed solution becomes less and less infeasible, e.g., for SIPs εa Ñ 0.

As a result, the user should always critically challenge their decision of the chosen
optimality tolerances as they might be overly restrictive compared to their model
accuracy because restrictive optimality tolerances greatly influence the solution time.
Additionally, they should explore if a solution approach, which guarantees a feasible
point upon termination, is necessary or if an εa-feasible point (with εa ą 0) is sufficient
as generating a feasible point is more expensive.

The idea of trying different solvers also applies to the investigated adaptive dis-
cretization-based solvers. Oracle has excellent performance for some problems, while
it struggles with hard problems. Hence, it is likely beneficial to start with Oracle and
try a different solver if Oracle fails to solve the problem instance in a reasonable time.

The presented benchmark library consists of a large portion of easy problems, some
hard problems, and only a small number of medium hard problems (for the tested
solvers). It seems that many of the problems constructed as a challenge in previous
publications are fast and easy to solve after subsequent hardware and algorithmic im-
provements. Meanwhile, others are hardly tractable with the investigated approaches
(in combination with the used subsolver MAiNGO). Therefore, it is likely necessary to
use expert knowledge of the problem to facilitate its solution (if the problem is hard).
Note that libDIPS offers the possibility to formulate the suproblems independently in
an opinionated way.

Similar to the gaps identified in the difficulty level, the categorization of the bench-
mark problem instances revealed that problems of several problem categories, e.g.,
MINMAX, with an upper level being QCQP, are underrepresented. This also holds
for application-based test problem instances. Hence, future work should consider more
test problem instances, especially application-based ones. To allow easy extension and
reuse of the benchmark test set, the interested reader may suggest additional bench-
mark problem instances via the Git issue system in the libDIPS repository.

Apart from further expanding the benchmark test set, we believe there are three
main promising directions for improvement, i.e., initialization strategies of the dis-
cretization, subproblem formulations and adaptions, and algorithm adaptions, includ-

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 25 of 38

https://git.rwth-aachen.de/avt-svt/public/libdips

libDIPS 4.12.2023

ing heuristics and extensions. One could apply an (advanced) initialization of the
discretized sets instead of starting, e.g., initializing the sets with KKT points of the
lower-level problem or with edge points of semi-infinite sets. To reduce the number
of iterations, the subproblems could be further adapted through using better suitable
formulations of the subproblems for the used subsolver, adding KKT conditions in the
upper-level problems or through considering higher order-cuts, c.f., [25]. Note that
the first proposed adaption is already possible in libDIPS. However, this will likely
make the subproblems more expensive to solve. Last but not least, algorithms can
be adapted, and additional ones can implemented, e.g., the interval-based method of
[12, 13]. For SIPs, promising ideas for algorithm adaptions include employing the
solver B&F for SIPs, and then after a given feasibility tolerance is met, use (RES)
to search a feasible point that meets the given optimality tolerance, and testing the
impact of adapting Hybrid to a local solution of the (RES) subproblem. For GSIPs, hy-
bridization in the generation of the discretization points of GSIP-RRHS is promising.
GSIP-RRHS outperforms the other solvers. However, if GSIP-RRHS fails to con-
verge, i.e., when no GSIP-LLP-Slater point can be produced through (GSIP-AUX),
using the (LLP) with (GSIP-REF) might increase the numbers of solved problems.
Alternatively, one could simply solve (LLP) with (GSIP-REF) every n iterations and
populate the discretization with its solution. The impact of all these adaptions can be
easily evaluated using libDIPS and the presented benchmark test set.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 26 of 38

libDIPS 4.12.2023

Appendices

A Further Subproblem Formulations

A.1 SIP solver

(ORA) of Oracle can be reformulated as

min
xPX ,ν

ν

s.t. fpxq ´ f t ď ν

gu
`

x,yk
˘

ď ν ¨ 1, @ yk P YORA
X :“

x P
“

xlb,xub
‰

Ĺ Rnx : viupxq ď 0, veupxq “ 0
(

.

(ORA-REF)

A.2 ESIP solver

The lower-level problem of (ESIP-MINMAX) of B&F for fixed ȳ and x̄ reads

min
zPZ

max
jPt1...nguu

guj px̄, ȳ,zq (ESIP-LLP)

The upper-level problem of (ESIP-MINMAX) for fixed x̄ and a finite set of discretiz-
tion points ZMLP is formulated as

max
yPY

min
zPZMLP

max
jPt1...nguu

guj px̄,y,zq

s.t. Y :“

y P
“

ylb,yub
‰

Ĺ Rny : vilpyq ď 0, velpyq “ 0
(

.
(ESIP-MLP)

A.3 BLP solvers

The lower-level problem of BLP-noBox and BLP-Box is formulated as

min
yPYp§q

hpx,yq

s.t. Ypxq :“

y P
“

ylb,yub
‰

Ĺ Rny : glpx,yq ď 0, vilpyq ď 0, velpyq “ 0
(

.
(BLP-LLP)

The auxiliary problem of BLP-noBox and BLP-Box is formulated as follows:

min
yPYpx̄q,uPR

u

hpx̄,yq ď h̄` εAUX

glpx̄,yq ď u ¨ 1

Ypxq :“

y P
“

ylb,yub
‰

Ĺ Rny : glpx,yq ď 0, vilpyq ď 0, velpyq “ 0
(

(BLP-AUX)
The auxiliary problem for BLP-Box for deciding whether or not a given box Xbox

for the upper-level variables is small enough such that the given discretization point
ȳ stays feasible in the lower level is given by

min
xPXbox

´ max
jPt1...nglu

glpx, ȳq. (BLP-AUX-V)

Note that in [79] uses interval analysis to determine if Xbox is valid.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 27 of 38

libDIPS 4.12.2023

B Definitions

B.1 SIP-Slater Point

Definition 1 (SIP-Slater Point) A point xS P X is called an SIP-Slater point in (SIP)
if

gu
´

xS ,y
¯

ă 0, @ y P Y.

Under compactness of Y and continuity of g if xS is an SIP-Slater point, there exists
εS ą 0, such that

gu
´

xS ,y
¯

ď ´εS ¨ 1, @ y P Y,

c.f., Definition A.1 in [77].

B.2 εf -optimal SIP-Slater Point

Definition 2 A point xS P X is called an εf -optimal SIP-Slater point in (SIP) if

f
´

xS
¯

ď f˚ ` εf ^ gu
´

xS ,y
¯

ď ´εS , @ y P Y

with εf , εS ą 0, c.f., Lemma 2.4 in [77].

B.3 GSIP-LLP-Slater Point

Definition 3 (GSIP-LLP-Slater Point) A point yS P Y is called a GSIP-LLP-Slater
point at x̄ in (GSIP) if

gl
´

x̄,yS
¯

ď ´εS ,

with some εS ą 0, c.f., Assumption 4 in [78].

B.4 εa-(G)SIP-Feasible Point

Definition 4 A point x̄ P X is εa-SIP-feasible in (SIP) if

gupx̄,yq ď εa ¨ 1, @ y P Ypx̄q

with εa ě 0.

Definition 5 A point x̄ P X is εa-GSIP-feasible in (GSIP) if

min

#

gui px,yq, min
jPt1...nglu

´ gljpx,yq

+

ď εa, @ i P t1 . . . nguu, @ y P Y

with εa ě 0.

Definition 6 A point x̄ P X is called (G)SIP-feasible in (SIP) ((GSIP)) if it fulfills
Definition 4 (Definition 5) with εa “ 0.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 28 of 38

libDIPS 4.12.2023

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) under Germany´s Excellence Strategy – Cluster of Excellence 2186 “The

Fuel Science Center” – ID: 390919832.

We gratefully acknowledge the financial support provided by Réseau de transport d’électricité

(RTE, France) through the project “Hierarchical Optimization for Worst-case and Flexibility

Analysis of Power Grids”.

We acknowledge the use of the GPT-3.5 language model developed by OpenAI as an imple-

mentation aid, i.e., as a code snippet generator, for creating shell scripts to automate the

execution of the benchmark tests on the RWTH High Performance Computing cluster and for

generating ideas for converting data formats to create the plots presented in this work.

Computations were performed with computing resources granted by RWTH Aachen Univer-

sity.

Special thanks to Jan-Frederic Laub, Yiju Chen, Inken Michael, Finja Backhaus, Jan Eifert,

Julia Jasovski, Jason Klein and My Pham for their help in collecting and implementing

(G)SIPs.

References

[1] E. J. Anderson and A. S. Lewis. An extension of the simplex algorithm for
semi-infinite linear programming. Math. Program., 44(1-3):247–269, 1989. ISSN
0025-5610. doi: 10.1007/BF01587092.

[2] D. O. Andreassen and G. A. Watson. Linear Chebyshev approximation without
Chebyshev sets. Bit, 16(4):349–362, 1976. ISSN 0006-3835. doi: 10.1007/
BF01932717.

[3] A. C. Atkinson and V. V. Federov. The design of experiments for discriminating
between two rival models. Biometrika, 62(1):57–70, 1975. ISSN 0006-3444. doi:
10.1093/biomet/62.1.57.

[4] A. Auslender, A. Ferrer, M. A. Goberna, and M. A. López. Comparative study
of RPSALG algorithm for convex semi-infinite programming. Comput. Optim.
Appl., 60(1):59–87, June 2015. ISSN 0926-6003. doi: 10.1007/s10589-014-9667-7.

[5] S. Avraamidou and E. N. Pistikopoulos. B-POP: Bi-level parametric optimiza-
tion toolbox. Computers & Chemical Engineering, 122:193–202, 2019. ISSN
0098-1354. doi: 10.1016/j.compchemeng.2018.07.007.

[6] A. Barragán and J.-F. Camacho-Vallejo. An exact algorithm based on the Kuhn–
Tucker conditions for solving linear generalized semi-infinite programming prob-
lems. J. Math., 2022:1–14, 2022. ISSN 2314-4629. doi: 10.1155/2022/1765385.

[7] I. Barrodale, L. M. Delves, and J. C. Mason. Linear Chebyshev approximation of
complex-valued functions. Math. Comput., 32(143):853, 1978. ISSN 0025-5718.
doi: 10.2307/2006490.

[8] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear pro-
grams. Oper. Res. Lett., 25(1):1–13, 1999. ISSN 0167-6377. doi: 10.1016/
S0167-6377(99)00016-4.

[9] A. Ben-Tal and A. Nemirovski. Robust optimization – methodology and
applications. Math. Program., 92(3):453–480, 2002. ISSN 0025-5610. doi:
10.1007/s101070100286.

[10] B. Betro. An accelerated central cutting plane algorithm for linear semi-infinite
programming. Math. Program., 101(3):479–495, 2004. ISSN 0025-5610. doi:
10.1007/s10107-003-0492-5.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 29 of 38

libDIPS 4.12.2023

[11] B. Beykal, S. Avraamidou, I. P. E. Pistikopoulos, M. Onel, and E. N. Pis-
tikopoulos. DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOn-
linear Problems. J. Global Optim., 78(1):1–36, 2020. ISSN 0925-5001. doi:
10.1007/s10898-020-00890-3.

[12] B. Bhattacharjee, W. H. Green Jr., and P. I. Barton. Interval methods for semi-
infinite programs. Comput. Optim. Appl., 30(1):63–93, 2005. ISSN 0926-6003.
doi: 10.1007/s10589-005-4556-8.

[13] B. Bhattacharjee, P. Lemonidis, W. H. Green Jr., and P. I. Barton. Global
solution of semi-infinite programs. Math. Program., 103(2):283–307, 2005. ISSN
0025-5610. doi: 10.1007/s10107-005-0583-6.

[14] J. W. Blankenship and J. E. Falk. Infinitely constrained optimization problems.
J. Optimiz. Theory App., 19(2):261–281, 1976. ISSN 0022-3239. doi: 10.1007/
BF00934096.

[15] D. Bongartz, J. Najman, S. Sass, and A. Mitsos. MAiNGO – McCormick-
based Algorithm for mixed-integer Nonlinear Global Optimization. Technical
report, Process Systems Engineering (AVT.SVT), RWTH Aachen University,
2018. URL http://www.avt.rwth-aachen.de/global/show_document.asp?id=

aaaaaaaaabclahw. accessed 07/20/2023.

[16] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization prob-
lems. Springer series in operations research. Springer, New York, 2000. ISBN
0387987053. doi: 10.1007/978-1-4612-1394-9.

[17] M. J. Cánovas, M. A. López, J. Parra, and M. I. Todorov. Stability and well-
posedness in linear semi-infinite programming. SIAM Journal on Optimization,
10(1):82–98, jan 1999. ISSN 1052-6234. doi: 10.1137/S1052623497319869.

[18] M. Cerulli, A. Oustry, C. D’Ambrosio, and L. Liberti. Convergent algorithms
for a class of convex semi-infinite programs. SIAM Journal on Optimization, 32
(4):2493–2526, oct 2022. ISSN 1052-6234. doi: 10.1137/21M1431047.

[19] Z. Chen. Optimality Conditions of Semi-Infinite Programming and Generalized
Semi-Infinite Programming. Ph.d. thesis, The Hong Kong Polytechnic Univer-
sity, Hong Kong, 2013.

[20] P. A. Clark and A. W. Westerberg. Bilevel programming for steady-state chem-
ical process design – I. fundamentals and algorithms. Computers & Chemical
Engineering, 14(1):87–97, 1990. ISSN 0098-1354. doi: 10.1016/0098-1354(90)
87007-C.

[21] I. D. Coope and C. J. Price. Exact penalty function methods for nonlinear
semi-infinite programming. In P. Pardalos, R. Horst, R. Reemtsen, and J.-J.
Rückmann, editors, Semi-Infinite Programming, volume 25 of Nonconvex Opti-
mization and Its Applications, pages 137–157. Springer US, Boston, MA, 1998.
ISBN 978-1-4419-4795-6. doi: 10.1007/978-1-4757-2868-2 5.

[22] I. D. Coope and G. A. Watson. A projected Lagrangian algorithm for semi-
infinite programming. Math. Program., 32(3):337–356, 1985. ISSN 0025-5610.
doi: 10.1007/BF01582053.

[23] A. R. Curtis and M. J. D. Powell. Necessary conditions for a minimax approxi-
mation. Comput. J., 8(4):358–361, 1966. ISSN 0010-4620. doi: 10.1093/comjnl/
8.4.358.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 30 of 38

http://www.avt.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabclahw
http://www.avt.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabclahw

libDIPS 4.12.2023

[24] M. Diehl, B. Houska, O. Stein, and P. Steuermann. A lifting method for general-
ized semi-infinite programs based on lower level Wolfe duality. Comput. Optim.
Appl., 54(1):189–210, 2013. ISSN 0926-6003. doi: 10.1007/s10589-012-9489-4.

[25] H. Djelassi. Discretization-based algorithms for the global solution of hierarchical
programs. Dissertation, RWTH Aachen University, 2020.

[26] H. Djelassi and A. Mitsos. A hybrid discretization algorithm with guaranteed
feasibility for the global solution of semi-infinite programs. J. Global Optim., 68
(2):227–253, 2017. ISSN 0925-5001. doi: 10.1007/s10898-016-0476-7.

[27] H. Djelassi and A. Mitsos. Global solution of semi-infinite programs with exis-
tence constraints. J. Optimiz. Theory App., 188(3):863–881, Feb. 2021. ISSN
0022-3239. doi: 10.1007/s10957-021-01813-2.

[28] H. Djelassi, M. Glass, and A. Mitsos. Discretization-based algorithms for gen-
eralized semi-infinite and bilevel programs with coupling equality constraints.
J. Global Optim., 75(2):341–392, 2019. ISSN 0925-5001. doi: 10.1007/
s10898-019-00764-3.

[29] H. Djelassi, A. Mitsos, and O. Stein. Recent advances in nonconvex semi-infinite
programming: Applications and algorithms. EURO Journal on Computational
Optimization, 9:100006, 2021. doi: 10.1016/j.ejco.2021.100006.

[30] B. P. M. Duarte, W. K. Wong, and A. C. Atkinson. A semi-infinite programming
based algorithm for determining T–optimum designs for model discrimination.
J. Multivariate Anal., 135:11–24, 2015. ISSN 0047-259X. doi: 10.1016/j.jmva.
2014.11.006.

[31] Fair Isaac Corporation. FICO Xpress-Optimizer, reference manual, 2023.
URL https://www.fico.com/fico-xpress-optimization/docs/. accessed
12/01/2023.

[32] J. E. Falk and K. Hoffman. A nonconvex max-min problem. Nav. Res. Logist.
Q., 24(3):441–450, 1977. ISSN 0028-1441. doi: 10.1002/nav.3800240307.

[33] S.-C. Fang, C.-J. Lin, and S.-Y. Wu. On solving convex quadratic semi-infinite
programming problems. Optimization, 31(2):107–125, 1994. ISSN 0233-1934.
doi: 10.1080/02331939408844009.

[34] M. C. Ferris and A. B. Philpott. An interior point algorithm for semi-infinite
linear programming. Math. Program., 43(1-3):257–276, 1989. ISSN 0025-5610.
doi: 10.1007/BF01582293.

[35] C. A. Floudas and O. Stein. The adaptive convexification algorithm: A feasible
point method for semi-infinite programming. SIAM Journal on Optimization,
18(4):1187–1208, jan 2008. ISSN 1052-6234. doi: 10.1137/060657741.

[36] GAMS Development Corporation. General Algebraic Modeling System (GAMS)
Release 43.3.0. Fairfax, VA, USA, 2023. URL http://www.gams.com/. accessed
12/01/2023.

[37] K. Glashoff and S.-Å. Gustafson. Linear optimization and approximation: An
introduction to the theoretical analysis and numerical treatment of semi-infinite
programs, volume 45 of Applied Mathematical Sciences. Springer New York, NY,
1 edition, 1983. ISBN 978-1-4612-1142-6. doi: 10.1007/978-1-4612-1142-6.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 31 of 38

https://www.fico.com/fico-xpress-optimization/docs/
http://www.gams.com/

libDIPS 4.12.2023

[38] M. A. Goberna and M. A. López. Linear semi-infinite optimization. Wiley
series in mathematical methods in practice. Wiley, Chichester, 1998. ISBN 978-
0471970408.

[39] S. Görner. Ein Hybridverfahren zur Lösung nichtlinearer semi-infiniter Opti-
mierungsprobleme. Dissertation, Technische Universität Berlin, Berlin, 1997.

[40] I. E. Grossmann and R. W. H. Sargent. Optimum design of chemical plants
with uncertain parameters. AIChE Journal, 24(6):1021–1028, nov 1978. ISSN
0001-1541. doi: 10.1002/aic.690240612.

[41] F. Guerra Vázquez, J.-J. Rückmann, O. Stein, and G. Still. Generalized semi-
infinite programming: A tutorial. J. Comput. Appl. Math., 217(2):394–419,
2008. ISSN 0377-0427. doi: 10.1016/j.cam.2007.02.012.

[42] Z. H. Gümüş. Reactive distillation column design with vapor/liquid/liquid equi-
libria. Computers & Chemical Engineering, 21(1-2):983–988, 1997. ISSN 0098-
1354. doi: 10.1016/S0098-1354(97)00177-4.

[43] H. Günzel, H. T. Jongen, and O. Stein. On the closure of the feasible set in
generalized semi-infinite programming. Cent. Europ. J. Oper. Re., 15(3):271–
280, 2007. ISSN 1435-246X. doi: 10.1007/s10100-007-0030-2.

[44] F. Guo and X. Sun. Semidefinite programming relaxations for linear semi-infinite
polynomial programming. Pac. J. Optim., 16(3):395–418, 2020. ISSN 1348-9151.

[45] F. Guo and M. Zhang. An SDP method for fractional semi-infinite programming
problems with SOS-convex polynomials. Optim. Lett., 2023. ISSN 1862-4472.
doi: 10.1007/s11590-023-01974-1.

[46] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL
https://www.gurobi.com. accessed 12/01/2023.

[47] S.-Å. Gustafson. On numerical analysis in semi-infinite programming. In
A. V. Balakrishnan, M. Thoma, and R. Hettich, editors, Semi-Infinite Pro-
gramming, volume 15 of Lecture Notes in Control and Information Sciences,
pages 51–65. Springer Berlin Heidelberg, 1979. ISBN 3-540-09479-2. doi:
10.1007/BFb0003883.

[48] S.-Å. Gustafson and K. O. Kortanek. Numerical treatment of a class of semi-
infinite programming problems. Nav. Res. Logist. Q., 20(3):477–504, 1973. ISSN
0028-1441. doi: 10.1002/nav.3800200310.

[49] S. M. Harwood. A note on generalized semi-infinite program bounding methods,
2019.

[50] S. M. Harwood and P. I. Barton. How to solve a design centering problem.
Math. Method. Oper. Res., 86(1):215–254, 2017. ISSN 1432-2994. doi: 10.1007/
s00186-017-0591-3.

[51] R. Hettich. Chebyshev approximation by H-polynomials: A numerical method.
J. Approx. Theory, 17(1):97–106, 1976. ISSN 0021-9045. doi: 10.1016/
0021-9045(76)90114-3.

[52] R. Hettich. A comparison of some numerical methods for semi-infinite program-
ming. In A. V. Balakrishnan, M. Thoma, and R. Hettich, editors, Semi-Infinite
Programming, volume 15 of Lecture Notes in Control and Information Sciences,
pages 112–125. Springer Berlin Heidelberg, 1979. ISBN 3-540-09479-2. doi:
10.1007/BFb0003887.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 32 of 38

https://www.gurobi.com

libDIPS 4.12.2023

[53] R. Hettich. An implementation of a discretization method for semi-infinite
programming. Math. Program., 34(3):354–361, 1986. ISSN 0025-5610. doi:
10.1007/BF01582235.

[54] R. Hettich and W. van Honstede. On quadratically convergent methods for
semi-infinite programming. In A. V. Balakrishnan, M. Thoma, and R. Hettich,
editors, Semi-Infinite Programming, volume 15 of Lecture Notes in Control and
Information Sciences, pages 97–111. Springer Berlin Heidelberg, 1979. ISBN
3-540-09479-2. doi: 10.1007/BFb0003886.

[55] R. Hettich and P. Zencke. Numerische Methoden der Approximation und
semi-infiniten Optimierung. Teubner Studienbücher: Mathematik. Teubner
and Vieweg+Teubner Verlag, Stuttgart, 1982. ISBN 978-3-519-02063-9. doi:
10.1007/978-3-322-93108-5.

[56] International Business Machines Corporation. IBM ILOG CPLEX v22.1.1. Ar-
monk, NY, USA, 2022.

[57] H. T. Jongen, J.-J. Rückmann, and O. Stein. Generalized semi-infinite opti-
mization: A first order optimality condition and examples. Math. Program., 83
(1-3):145–158, 1998. ISSN 0025-5610. doi: 10.1007/BF02680555.

[58] D. Jungen, H. Djelassi, and A. Mitsos. Adaptive discretization-based algorithms
for semi-infinite programs with unbounded variables. Math. Method. Oper. Res.,
96(1):83–112, 2022. ISSN 1432-2994. doi: 10.1007/s00186-022-00792-y.

[59] N. Kanzi. Lagrange multiplier rules for non-differentiable DC generalized semi-
infinite programming problems. J. Global Optim., 56(2):417–430, 2013. ISSN
0925-5001. doi: 10.1007/s10898-011-9828-5.

[60] P.-M. Kleniati and C. S. Adjiman. Branch-and-sandwich: a deterministic global
optimization algorithm for optimistic bilevel programming problems. Part II:
Convergence analysis and numerical results. J. Global Optim., 60(3):459–481,
2014. ISSN 0925-5001. doi: 10.1007/s10898-013-0120-8.

[61] P.-M. Kleniati and C. S. Adjiman. A generalization of the branch-and-sandwich
algorithm: From continuous to mixed-integer nonlinear bilevel problems. Com-
puters & Chemical Engineering, 72:373–386, 2015. ISSN 0098-1354. doi:
10.1016/j.compchemeng.2014.06.004.

[62] O. I. Kostyukova and T. V. Tchemisova. Sufficient optimality conditions for
convex semi-infinite programming. Optimization Methods & Software, 25(2):
279–297, 2010. ISSN 1055-6788. doi: 10.1080/10556780902992803.

[63] K.-H. Küfer, O. Stein, and A. Winterfeld. Semi-infinite optimization meets
industry: A deterministic approach to gemstone cutting. Siam News, 41 (8),
2008.

[64] P. Lemonidis. Global Optimization Algorithms for Semi-Infinite and Generalized
Semi-Infinite Programs. Ph.d. thesis, Massachusetts Institute of Technology,
USA, 2008.

[65] T. Leon and E. Vercher. A purification algorithm for semi-infinite program-
ming. Eur. J. Oper. Res., 57(3):412–420, 1992. ISSN 0377-2217. doi:
10.1016/0377-2217(92)90353-B.

[66] D.-H. Li, L. Qi, J. Tam, and S.-Y. Wu. A smoothing newton method for semi-
infinite programming. J. Global Optim., 30(2-3):169–194, 2004. ISSN 0925-5001.
doi: 10.1007/s10898-004-8266-z.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 33 of 38

libDIPS 4.12.2023

[67] S. J. Li. Semi-infinite programming and semi-definite optimization problems.
Ph.d. thesis, Hong Kong Polytechnic University, 2003.

[68] C.-J. Lin, S.-C. Fang, and S.-Y. Wu. A dual affine scaling based algo-
rithm for solving linear semi-infinite programming problems. In P. Pardalos,
R. Horst, D.-Z. Du, and J. Sun, editors, Advances in Optimization and Ap-
proximation, volume 1 of Nonconvex Optimization and Its Applications, pages
217–234. Springer US, Boston, MA, 1994. ISBN 978-1-4613-3631-0. doi:
10.1007/978-1-4613-3629-7 11.

[69] W. Liu and C. Wang. A smoothing Levenberg–Marquardt method for general-
ized semi-infinite programming. Comput. Appl. Math., 32(1):89–105, mar 2013.
ISSN 2238-3603. doi: 10.1007/s40314-013-0013-y.

[70] Y. Liu, K. L. Teo, and S. Ito. A dual parameterization approach to linear-
quadratic semi-infinite programming problems. Optimization Methods & Soft-
ware, 10(3):471–495, 1999. ISSN 1055-6788. doi: 10.1080/10556789908805725.

[71] C. G. Lo Bianco and A. Piazzi. A hybrid algorithm for infinitely constrained
optimization. Int. J. Syst. Sci., 32(1):91–102, 2001. ISSN 0020-7721. doi: 10.
1080/00207720121051.

[72] M. López and G. Still. Semi-infinite programming. Eur. J. Oper. Res., 180(2):
491–518, 2007. ISSN 0377-2217. doi: 10.1016/j.ejor.2006.08.045.

[73] A. Marendet, A. Goldsztejn, G. Chabert, and C. Jermann. A standard branch-
and-bound approach for nonlinear semi-infinite problems. Eur. J. Oper. Res.,
282(2):438–452, 2020. ISSN 0377-2217. doi: 10.1016/j.ejor.2019.10.025.

[74] S. Mehrotra and D. Papp. A cutting surface algorithm for semi-infinite convex
programming with an application to moment robust optimization. SIAM Journal
on Optimization, 24(4):1670–1697, jan 2014. ISSN 1052-6234. doi: 10.1137/
130925013.

[75] R. Misener and C. A. Floudas. ANTIGONE: Algorithms for coNTinuous /
Integer Global Optimization of Nonlinear Equations. J. Global Optim., 59(2):
503–526, Mar. 2014. ISSN 0925-5001. doi: 10.1007/s10898-014-0166-2.

[76] A. Mitsos. Test set of semi-infinite programs. Technical report, Process
Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Ger-
many, 2009. URL https://www.avt.rwth-aachen.de/cms/AVT/Forschung/

Systemverfahrenstechnik/~kpdo/A-Test-Set-of-Semi-Infinite-Programs/

?lidx=1. accessed 08/17/2023.

[77] A. Mitsos. Global optimization of semi-infinite programs via restriction of the
right-hand side. Optimization, 60(10-11):1291–1308, 2011. ISSN 0233-1934. doi:
10.1080/02331934.2010.527970.

[78] A. Mitsos and A. Tsoukalas. Global optimization of generalized semi-infinite
programs via restriction of the right hand side. J. Global Optim., 61(1):1–17,
2015. ISSN 0925-5001. doi: 10.1007/s10898-014-0146-6.

[79] A. Mitsos, P. Lemonidis, and P. I. Barton. Global solution of bilevel programs
with a nonconvex inner program. J. Global Optim., 42(4):475–513, dec 2008.
ISSN 0925-5001. doi: 10.1007/s10898-007-9260-z.

[80] A. Mitsos, P. Lemonidis, C. K. Lee, and P. I. Barton. Relaxation-based bounds
for semi-infinite programs. SIAM Journal on Optimization, 19(1):77–113, jan
2008. ISSN 1052-6234. doi: 10.1137/060674685.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 34 of 38

https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Systemverfahrenstechnik/~kpdo/A-Test-Set-of-Semi-Infinite-Programs/?lidx=1
https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Systemverfahrenstechnik/~kpdo/A-Test-Set-of-Semi-Infinite-Programs/?lidx=1
https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Systemverfahrenstechnik/~kpdo/A-Test-Set-of-Semi-Infinite-Programs/?lidx=1

libDIPS 4.12.2023

[81] L.-P. Pang and Q. Wu. A feasible proximal bundle algorithm with convexification
for nonsmooth, nonconvex semi-infinite programming. Numer. Algorithms, 90
(1):387–422, 2022. ISSN 1017-1398. doi: 10.1007/s11075-021-01192-9.

[82] L.-P. Pang, J. Lv, and J.-H. Wang. Constrained incremental bundle method
with partial inexact oracle for nonsmooth convex semi-infinite programming
problems. Comput. Optim. Appl., 64(2):433–465, 2016. ISSN 0926-6003. doi:
10.1007/s10589-015-9810-0.

[83] P. Pardalos, R. Horst, R. Reemtsen, and J.-J. Rückmann, editors. Semi-
Infinite Programming, volume 25. Springer US, Boston, MA, 1998. doi:
10.1007/978-1-4757-2868-2.

[84] R. Paulavičius and C. S. Adjiman. BASBLib – a library of bilevel test problems.
Computers & Chemical Engineering, 132:106609, 2020. ISSN 0098-1354. doi:
10.5281/zenodo.3266835.

[85] E. Polak, L. Qi, and D. Sun. First-order algorithms for generalized semi-infinite
min-max problems. Comput. Optim. Appl., 13(1/3):137–161, 1999. ISSN 0926-
6003. doi: 10.1023/A:1008660924636.

[86] M. J. D. Powell. Karmarkar’s algorithm: a view from nonlin-
ear programming, 1989. URL https://ir.canterbury.ac.nz/items/

50cd806f-63c4-456b-a66e-132f78653b64.

[87] C. J. Price. Non-linear semi-infinite programming. Ph.d. thesis, University of
Canterbury, New Zealand, 1992.

[88] C. J. Price and I. D. Coope. Numerical experiments in semi-infinite pro-
gramming. Comput. Optim. Appl., 6(2):169–189, 1996. ISSN 0926-6003. doi:
10.1007/BF00249645.

[89] L. Qi, S.-Y. Wu, and G. Zhou. Semismooth newton methods for solving semi-
infinite programming problems. J. Global Optim., 27(2/3):215–232, 2003. ISSN
0925-5001. doi: 10.1023/A:1024814401713.

[90] E. I. Remez. General computational methods of Chebyshev approximation: The
problems with linear real parameters. Translation series, AEC-tr-4491. U.S.
Atomic Energy Comission. Division of Technical Information, Oak Ridge, Tenn.,
1962.

[91] J. O. Royset, E. Polak, and A. Kiureghian. Adaptive approximations and ex-
act penalization for the solution of generalized semi-infinite min-max problems.
SIAM Journal on Optimization, 14(1):1–34, jan 2003. ISSN 1052-6234. doi:
10.1137/S1052623402406777.

[92] J.-J. Rückmann and A. Shapiro. First-order optimality conditions in general-
ized semi-infinite programming. J. Optimiz. Theory App., 101(3):677–691, 1999.
ISSN 0022-3239. doi: 10.1023/A:1021746305759.

[93] J.-J. Rückmann and A. Shapiro. Second-order optimality conditions in gener-
alized semi-infinite programming. Set-Valued Var. Anal., 9(1/2):169–186, 2001.
ISSN 1877-0533. doi: 10.1023/A:1011239607220.

[94] J.-J. Rückmann and A. Shapiro. Augmented Lagrangians in semi-infinite pro-
gramming. Math. Program., 116(1-2):499–512, 2009. ISSN 0025-5610. doi:
10.1007/s10107-007-0115-7.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 35 of 38

https://ir.canterbury.ac.nz/items/50cd806f-63c4-456b-a66e-132f78653b64
https://ir.canterbury.ac.nz/items/50cd806f-63c4-456b-a66e-132f78653b64

libDIPS 4.12.2023

[95] E. Rudnick-Cohen, J. W. Herrmann, and S. Azarm. Non-convex feasibility ro-
bust optimization via scenario generation and local refinement. J. Mech. Design,
142(5), 2020. ISSN 1050-0472. doi: 10.1115/1.4044918.

[96] N. V. Sahinidis. BARON 2023.6.23: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual , 2023. URL http://www.minlp.com/

downloads/docs/baron%20manual.pdf. accessed 04/09/2023.

[97] J. Schwientek, T. Seidel, and K.-H. Küfer. A transformation-based discretiza-
tion method for solving general semi-infinite optimization problems. Math.
Method. Oper. Res., 93(1):83–114, 2021. ISSN 1432-2994. doi: 10.1007/
s00186-020-00724-8.

[98] T. Seidel and K.-H. Küfer. An adaptive discretization method solving semi-
infinite optimization problems with quadratic rate of convergence. Optimization,
71(8):2211–2239, 2019. ISSN 0233-1934. doi: 10.1080/02331934.2020.1804566.

[99] T. Seidel and J. Schwientek. GSIPLib&Gen: A library and generator
of general semi-infinite programming test problems: Version 1.0, 2017.
URL https://www.itwm.fraunhofer.de/en/departments/optimization/

products-and-services/gsip-lib-and-gen.html.

[100] A. G. W. Selassie. A coarse solution of generalized semi-infinite optimiza-
tion problems via robust analysis of marginal functions and global optimiza-
tion. Dissertation, Technischen Universitat Ilmenau, 2005. URL https:

//www.db-thueringen.de/receive/dbt_mods_00002883.

[101] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: From
classical to evolutionary approaches and applications. IEEE Transactions on
Evolutionary Computation, 22(2):276–295, apr 2018. ISSN 1089-778X. doi:
10.1109/TEVC.2017.2712906.

[102] J. Spjøtvold, P. Tøndel, and T. A. Johansen. A method for obtaing continuos
solutions to multiparametric linear programs. IFAC Proceedings Volumes, 38(1):
253–258, 2005. ISSN 1474-6670. doi: 10.3182/20050703-6-CZ-1902.00903.

[103] O. Stein and P. Pardalos. Bi-level strategies in semi-infinite programming,
volume 71 of Nonconvex Optimization and Its Applications. Springer Sci-
ence+Business Media, Boston, MA, 2003. ISBN 978-1-4613-4817-7. doi:
10.1007/978-1-4419-9164-5.

[104] O. Stein and P. Steuermann. The adaptive convexification algorithm for semi-
infinite programming with arbitrary index sets. Math. Program., 136(1):183–207,
2012. ISSN 0025-5610. doi: 10.1007/s10107-012-0556-5.

[105] O. Stein and G. Still. On generalized semi-infinite optimization and bilevel
optimization. Eur. J. Oper. Res., 142(3):444–462, 2002. ISSN 0377-2217. doi:
10.1016/S0377-2217(01)00307-1.

[106] G. Still. Generalized semi-infinite programming: Theory and methods. Eur. J.
Oper. Res., 119(2):301–313, 1999. ISSN 0377-2217. doi: 10.1016/S0377-2217(99)
00132-0.

[107] G. Still. Generalized semi-infinite programming: numerical aspects. Optimiza-
tion, 49(3):223–242, 2001. ISSN 0233-1934. doi: 10.1080/02331930108844531.

[108] G. Still. Discretization in semi-infinite programming: the rate of conver-
gence. Math. Program., 91(1):53–69, 2001. ISSN 0025-5610. doi: 10.1007/
s101070100239.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 36 of 38

http://www.minlp.com/downloads/docs/baron%20manual.pdf
http://www.minlp.com/downloads/docs/baron%20manual.pdf
https://www.itwm.fraunhofer.de/en/departments/optimization/products-and-services/gsip-lib-and-gen.html
https://www.itwm.fraunhofer.de/en/departments/optimization/products-and-services/gsip-lib-and-gen.html
https://www.db-thueringen.de/receive/dbt_mods_00002883
https://www.db-thueringen.de/receive/dbt_mods_00002883

libDIPS 4.12.2023

[109] G. Still. Optimization problems with infinitely many constraints. Carpathian J.
Math., 18(2):343–354, 2002. ISSN 1222-1201.

[110] R. L. Streit and A. H. Nuttall. A general Chebyshev complex function approxi-
mation procedure and an application to beamforming. J. Acoust. Soc. Am., 72
(1):181–190, 1982. ISSN 0001-4966. doi: 10.1121/1.388002.

[111] K. Su, C. Xu, and L. Ren. Filter trust region method for nonlinear semi-infinite
programming problem. Math. Probl. Eng., 2018:1–9, 2018. ISSN 1024-123X.
doi: 10.1155/2018/3921592.

[112] R. E. Swaney and I. E. Grossmann. An index for operational flexibility in
chemical process design. part i: Formulation and theory. Aiche J., 31(4):621–
630, 1985. ISSN 0001-1541. doi: 10.1002/aic.690310412.

[113] Y. Tanaka, M. Fukushima, and T. Ibaraki. A globally convergent SQP method
for semi-infinite nonlinear optimization. J. Comput. Appl. Math., 23(2):141–153,
1988. ISSN 0377-0427. doi: 10.1016/0377-0427(88)90276-2.

[114] K. L. Teo, X. Q. Yang, and L. S. Jennings. Computational discretization algo-
rithms for functional inequality constrained optimization. Ann. Oper. Res., 98
(1/4):215–234, 2000. ISSN 0254-5330. doi: 10.1023/A:1019260508329.

[115] A. Tezel Özturan. Solving generalized semi-infinite programming problems with
a trust region method. Acta Phys. Pol. A, 128(2B):B–93–B–97, aug 2015. ISSN
0587-4246. doi: 10.12693/APhysPolA.128.B-93.

[116] R. Tichatschke and V. Nebeling. A cutting-plane method for quadratic semi
infinite programming problems. Optimization, 19(6):803–817, 1988. ISSN 0233-
1934. doi: 10.1080/02331938808843393.

[117] A. Tsoukalas and B. Rustem. A feasible point adaptation of the Blankenship
and Falk algorithm for semi-infinite programming. Optim. Lett., 5(4):705–716,
2011. ISSN 1862-4472. doi: 10.1007/s11590-010-0236-4.

[118] A. Tsoukalas, B. Rustem, and E. N. Pistikopoulos. A global optimization algo-
rithm for generalized semi-infinite, continuous minimax with coupled constraints
and bi-level problems. J. Global Optim., 44(2):235–250, 2009. ISSN 0925-5001.
doi: 10.1007/s10898-008-9321-y.

[119] A. I. F. Vaz, E. Fernandes, and M. Gomes. Nsips: Nonlinear semi-infinite
programming solver. Technical report, Technical Report ALG/EF/1-2001, 2001.
http://www. eng. uminho. pt/ dps/aivaz, 2004.

[120] A. I. F. Vaz, E. M. G. P. Fernandes, and M. P. S. F. Gomes. Sipampl. ACM
Trans. Math. Softw., 30(1):47–61, mar 2004. ISSN 0098-3500. doi: 10.1145/
974781.974784.

[121] F. G. Vázquez and J.-J. Rückmann. Extensions of the Kuhn–Tucker con-
straint qualification to generalized semi-infinite programming. SIAM Journal
on Optimization, 15(3):926–937, jan 2005. ISSN 1052-6234. doi: 10.1137/
S1052623403431500.

[122] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Math. Program.,
106(1):25–57, 2006. ISSN 0025-5610. doi: 10.1007/s10107-004-0559-y.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 37 of 38

libDIPS 4.12.2023

[123] G. A. Watson. A multiple exchange algorithm for multivariate Chebyshev ap-
proximation. SIAM Journal on Numerical Analysis, 12(1):46–52, mar 1975.
ISSN 0036-1429. doi: 10.1137/0712004.

[124] G. A. Watson. Numerical experiments with globally convergent methods for
semi-infinite programming problems. In A. V. Fiacco and K. O. Kortanek, edi-
tors, Semi-Infinite Programming and Applications, Lecture Notes in Economics
and Mathematical Systems, pages 193–205. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1983. ISBN 978-3-642-46477-5.

[125] W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem. Pessimistic bilevel
optimization. SIAM Journal on Optimization, 23(1):353–380, jan 2013. doi:
10.1137/120864015.

[126] M. E. Wilhelm and M. D. Stuber. EAGO.jl: easy advanced global optimization
in Julia. Optimization Methods & Software, 37(2):425–450, 2022. ISSN 1055-
6788. doi: 10.1080/10556788.2020.1786566.

[127] A. Winterfeld. Application of general semi-infinite programming to lapidary
cutting problems. Eur. J. Oper. Res., 191(3):838–854, 2008. ISSN 0377-2217.
doi: 10.1016/j.ejor.2007.01.057.

[128] S.-Y. Wu, D.-H. Li, L. Qi, and G. Zhou. An iterative method for solving KKT
system of the semi-infinite programming. Optimization Methods & Software, 20
(6):629–643, 2005. ISSN 1055-6788. doi: 10.1080/10556780500094739.

[129] Y. Xu, W. Sun, and L. Qi. On solving a class of linear semi-infinite programming
by SDP method. Optimization, pages 1–14, 2013. ISSN 0233-1934. doi: 10.1080/
02331934.2013.793325.

[130] S. Žaković and B. Rustem. Semi-infinite programming and applications to min-
imax problems. Ann. Oper. Res., 124(1-4):81–110, 2003. ISSN 0254-5330. doi:
10.1023/B:ANOR.0000004764.76984.30.

[131] L. Zhang, S.-Y. Wu, and M. A. López. A new exchange method for convex
semi-infinite programming. SIAM Journal on Optimization, 20(6):2959–2977,
jan 2010. ISSN 1052-6234. doi: 10.1137/090767133.

[132] J. L. Zhou and A. L. Tits. An SQP algorithm for finely discretized continuous
minimax problems and other minimax problems with many objective functions.
SIAM Journal on Optimization, 6(2):461–487, may 1996. ISSN 1052-6234. doi:
10.1137/0806025.

[133] S. Zhou, A. B. Zemkoho, and A. Tin. BOLIB: Bilevel Optimization LIBrary
of Test Problems. In S. Dempe and A. B. Zemkoho, editors, Bilevel op-
timization, volume 161 of Springer optimization and its applications, pages
563–580. Springer, Cham, Switzerland, 2020. ISBN 978-3-030-52119-6. doi:
10.1007/978-3-030-52119-6 19.

[134] A. Zingler, D. Jungen, H. Djelassi, and A. Mitsos. libALE – a library for
algebraic-logical expression trees, 2022. URL https://git.rwth-aachen.de/

avt.svt/public/libale.git. accessed 07/19/2022.

©Jungen, Zingler, Djelassi & Mitsos Optimization Online Page 38 of 38

https://git.rwth-aachen.de/avt.svt/public/libale.git
https://git.rwth-aachen.de/avt.svt/public/libale.git

	Introduction
	The Program Classes SIP, GSIP, ESIP, MINMAX, and BLP
	Adaptive Discretization-Based Algorithms
	Approaches for SIPs
	Approaches for GSIPs
	Approaches for ESIPs
	Approaches for BLPs

	libDIPS – Discretization-Based Semi-Infinite and Bilevel Programming Solvers
	Exemplary Solution of an SIP via B&F
	Implementation changes of the original algorithms in libDIPS

	Benchmark Test Set
	Numerical Experiments
	Performance Results of SIP solvers
	``Out of the box performance''
	Hyperparameter tuning for RRHS and Hybrid
	Performance Result of Minmax

	Performance Results of GSIP algorithms
	Performance Results of BLP algorithms
	Testing of Two Exemplary Scientific Hypotheses
	Introduction of a Guard for the Upper-bounding Procedure in RRHS
	Bracketing of the Objective Function by Current Upper and Lower Bound in RRHS

	Conclusion and outlook
	Further Subproblem Formulations
	SIP solver
	ESIP solver
	BLP solvers

	Definitions
	SIP-Slater Point
	-f-optimal SIP-Slater Point
	GSIP-LLP-Slater Point
	-a-(G)SIP-Feasible Point

