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Abstract
In this paper, we present a new method to solve a certain type of Semidefinite Programming (SDP) problems.
These types of SDPs naturally arise in the Quadratic Convex Reformulation (QCR) method and can be used
to obtain dual bounds of Quadratic Unconstrained Binary Optimization (QUBO) problems. QUBO problems
have recently become the focus of attention in the quantum computing and optimization communities as they
are well suited to both gate-based and annealing-based quantum computers on one side, and can encompass
an exceptional variety of combinatorial optimization problems on the other. Our new method can be easily
warm-started, making it very effective when embedded into a branch-and-bound scheme and used to solve
the QUBO problem to global optimality. We test our method in this setting and present computational results
showing the effectiveness of our approach.

1. Introduction
This paper is concerned with the Quadratic Unconstrained Binary Optimization (QUBO) problem

max x⊤𝑄x + c⊤x, x ∈ {0, 1}𝑛, (QUBO)

where 𝑄 ∈ ℝ𝑛×𝑛 is a symmetric matrix and c ∈ ℝ𝑛 is the linear term. QUBO problems are known to
be NP-hard [3]. An exceptional variety of combinatorial optimization problems can be transformed to the
QUBO format, see, e.g., [28, 29, 36] for an exhaustive number of examples. QUBOs are currently the most
widely adopted optimization model used to access quantum computers, and as such they receive significant
attention of researchers both on the classical and quantum side. For a detailed discussion on the connection
between QUBOs and Quantum Computing we refer the interested reader to [17].

Most approaches to solve the QUBO problem to global optimality rely on the branch and bound algorithm
[33]. The main idea of this algorithm is to split the original problem into subproblems which are easier to solve
(branching). By repeatedly branching on the subproblems, a search tree is obtained. At each subproblem,
primal and dual bounds are computed. Primal bounds correspond to objective values of feasible solutions and
in general they are computed by classic or quantum heuristics. In contrast, dual bounds bound the objective
of the optimal solution from above (below in case of minimization). The rationale is that the bounds lead to
detecting and pruning suboptimal nodes of the tree that cannot contain improving solutions. This is the case
if the best known feasible solution has a better objective value than the bound of the subproblem at hand. This
way, the algorithm tries to avoid having to enumerate exponentially many subproblems.

Branching typically involves splitting a domain of one variable into two subdomains. Becuase of this,
subproblems close to each other in the search tree tend to be very similar. Consequently, warmstarting plays
an extremly important role in the solver used to obtain dual bounds. Warmstarting refers to the methods’ ability
to use the solution of one problem as a starting point for the solving of a different but similar problem. To
illustrate the importance of warmstarting in branch and bounds algorithms, we note that the capability of the
Dual Simplex algorithm to be warmstarted is one of the main reason why it is still a de-facto standard method
used to obtain dual bounds in MIP problems [1]. In contrast, inherent challenges in effectively warmstarting
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the IPM method [15] have limited its applicability in branch and bound algorithms, in spite of its superior
worst-case runtime guarantees.

In this paper, we will use the Quadratic Convex Reformulation (QCR) method [21] to compute dual bounds
of QUBO problems. We will give more details on the QCR and how it bounds the QUBO problem in
Section 2. In its heart, the QCR method involves solving a certain type of a Semidefinite Programming (SDP)
problem. Existing QUBO bounding approaches based on the QCR method all solve the related SDP problem
by off-the-shelf SDP approaches [9, 38, 11, 10, 30, 49, 43]. To the best of our knowledge, in this work we
provide the first approach which exploits the special structure of this SDP and develops a tailored method to
solve it. One of the main benefits of the proposed method is that it is well suited for warmstarting.

1.1 Related Work
In the literature, several streams related to computing dual bounds for QUBOs exist. Apart from the QCR
method, several authors, including [30, 43, 49] among others, consider the “classical” SDP relaxation of
QUBO. In fact, this SDP relaxation is related to the SDP occurring in the QCR method, see Section 2.
Another class of methods exploits a concept known as roof duality to derive QUBO bounds, see [20, 12, 37].
Stemming from the equivalence between the QUBO and the well-known MaxCut problem [4], all methods
used to bound MaxCut problem can be used to bound QUBOs, e.g., [47, 45, 46, 42, 19, 32, 23].

In terms of solving SDP problems, the current approaches can in general be divided into those based on the
interior point method, see [41, 40, 2, 25], and those based on the cutting plane method, see [48, 27, 35, 50,
31, 34, 26].

1.2 Contribution
The contributions of this paper are as follows. We present a new method that can solve SDPs coming out the
QCR method used to bound QUBOs. Our method consists of two parts: i) the transformation of the SDP
problem into an equivalent constrained convex problem and ii) the solving of the transformed problem. For the
first part, we present the necessary transformations and show how the two problems are connected in Section
3.1. These transformations exploit the fact that the feasible region of the SDP in question is unbounded in the
direction oposite the objective function. For the second part, in Section 3.4, we propose an algorithm tailored
to our goal of solving the QUBO problem to global optimality in a branch-and-bound scheme. What makes
this algorithm effective in the branch-and-bound context is that it can be easily warmstarted.

Additionally, in Section 3.2, we present function oracles which can be used as building blocks to construct
optimization algorithms over the transformed problem. We show how the special structure of the SDP used to
bound QUBOs can be exploited to obtain efficient implementations of oracles for computing boundary points
of the feasible set, evaluating the objective function at a given point and computing its gradient direction.
Lastly, we present computational experiments demonstrating the effectiveness of our approach.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the QCR method and
how QUBO bounds can be extracted from it. Section 3 presents our method to solve the SDP resulting
from the QCR method in the context of solving QUBOs. Lastly, in Section 4, we present the computational
experiemnts.

2. The QCR method and dual bounds for QUBOs
A QUBO problem is in general non-linear and non-convex. However, it is possible to reformulate it to
an equivalent convex problem. This was first observed by Hammer and Rubin [21] and later extended by
Billionnet et al. [9, 11, 10]. The resulting method is called Quadratic Convex Reformulation. In this Section,
we will provide a brief overview of this method and how dual bounds for QUBO problems can be extracted
from it.
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For a given Problem (QUBO), the QCR method is based on computing a shift vector u ∈ ℝ𝑛 such that
𝑄 − diag{u} ⪯ 0, where diag{u} is the diagonal matrix obtained from the vector u. Then, since 𝑥𝑖 is binary,
x𝑇diag{u}x = u𝑇x. Thus, the original problem can be equivalently written as

max 𝑔u (x) = x𝑇 (𝑄 − diag{u})x + (c + u)𝑇x s.t. x ∈ {0, 1}𝑛, (1)

which is a convex QUBO, i.e., its continuous relaxation is convex. For a given shift u the QUBO dual
bound 𝛽u is obtained by solving the continuous relaxation of Problem (1), i.e., 𝛽𝑢 = max 𝑔u (x) subject to
x ∈ [0, 1]𝑛. In theory, one could use any perturbation vector u that fulfils 𝑄 − diag{u} ⪯ 0 to obtain a valid
QUBO dual bound.

Billionnet et al. [9] present a method to compute an optimal u∗ that leads to the tightest dual bound 𝛽u∗ . The
vector u∗ is part of an optimal solution of the SDP as follows:

𝑟∗ = min
𝑟 ,u

𝑟 s.t.
[

𝑟 −(c + u)𝑇/2
−(c + u)/2 diag(u) −𝑄

]
⪰ 0. (2)

The authors of [9] also show that 𝛽u∗ = 𝑟∗ holds at optimality, which means that once we solve the SDP (2),
we directly obtain the tightest QUBO dual bound and do not have to solve the continuous relaxtion of the
convexified QUBO (1). Additionally, observe that any feasible solution of Problem (2) leads to a valid
convexification shift and hence a valid bound. This can also be seen from the fact that the SDP (2) is the dual
problem of the classical SDP relaxation of QUBO, see [9]. Thus, the objective values of all feasible solutions
to Problem (2) are valid bounds.

The remainder of the paper will now focus on solving the SDP (2).

3. Transforming the SDP relaxation using a plane projection
As discussed in Section 2, solving the SDP (2) leads to our desired QUBO bound. In this Section, we present
a new method to solve this SDP. The method consists of two parts: i) we will transform the SDP problem to a
constrained convex problem and show how the optimum of the second problem directly reveals the optimum
of the first. We will refer to this part of the method as the plane projection as it will involve orthogonal
projections of points from the feasible region of the SDP onto a certain hyperplane. ii) We will show how
to solve the transformed problem, effectively obtaining a bound to the QUBO problem. We will denote the
convex objective function of the transformed problem as 𝑓 (formally defined in (5)). The intersection of the
above-mentioned hyperplane with the feasible region of the SDP (2) will form the domain of 𝑓 .

In Section 3.1 we present the plane projection method for the SDP (2). Then, we derive efficient computational
oracles to compute the value and the gradient of 𝑓 , as well as an oracle to compute the intersection between
a ray and the boundary of the domain of 𝑓 , as presented in Section 3.2. Section 3.3 shows how to compute a
starting feasible point for our method. These algebraic operations are necessary tools to develop a practical
method to solve the transformed problem, presented in Section 3.4.

3.1 The plane projection method for bounding a QUBO
The feasible region of the SDP in (2) is given by the following Linear Matrix Inequality (LMI):

S := {y ∈ ℝ𝑛+1 | 𝐹 (y) = 𝐴0 + 𝐴1𝑦1 + · · · + 𝐴𝑛+1𝑦𝑛+1 ⪰ 0}, (3)

where

𝐴0 =

[
0 −c𝑇/2
−c/2 −𝑄

]
, 𝐴𝑛+1 =

[
1 0𝑇𝑛
0𝑛 0𝑛×𝑛

]
,

𝐴𝑖 ∈ 𝕊𝑛×𝑛 : 𝐴𝑖 (1, 𝑖 + 1) = 𝐴𝑖 (𝑖 + 1, 1) = −1
2
, 𝐴(𝑖 + 1, 𝑖 + 1) = 1, 𝑖 = 1, . . . , 𝑛.

(4)
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Note that y has one additional coordinate compared to u, and the coordinates that correspond to u are exactly
the same, i.e., y = [u, 𝑟]. Last, note that the objective vector of the SDP is the standard orthonormal vector
𝑒𝑛+1.

We will consider a hyperplane H which is perpendicular to 𝑒𝑛+1 and cuts the feasible region S, defining
an intersection with a positive volume. Then, we will define a convex function over this intersection whose
optimal solution will directly lead to the optimal solution of the SDP (2). Since the projection onto H is
trivial, to improve the presentation of our method, we define the convex problem as an 𝑛-dimensional problem
instead of (𝑛 + 1)-dimensional.

In particular, let H := {[u, 𝑟]}, ∀u ∈ ℝ𝑛 be a hyperplane with 𝑟 ∈ ℝ such that H defines a non-empty
intersection with S: Vol𝑛 (H ∩ S) > 0. For convencience, we denote the intersection as D = H ∩ S.

Let us now define the function 𝑓𝑟 (u) : D → ℝ as:

𝑓𝑟 (u) = inf{𝑡 ∈ ℝ | 𝐹 ( [u, 𝑟] + 𝑡𝑒𝑛+1) ⪰ 0} (5)

Intuitively speaking, for a given point u ∈ D, 𝑓𝑟 (u) gives the negative of the algebraic value of the length of
the line segment from D to the boundary of the feasible region S, in the direction of the negative objective
−𝑒𝑛+1. Observe that the graph {u, 𝑓𝑟 (u) | u ∈ D} is exactly the boundary of the feasible region S of the
SDP below the hyperplane H . Additionally, notice that we invert the sign of length in (5), i.e., 𝑓𝑟 (u) ≤ 0
for all u ∈ D. We do this for the convenience of working with a convex, rather than a concave function, see
Lemma 2.

We can find the optimal solution u∗ of 𝑓𝑟 (i.e., point u∗ with the maximum length of the line segment to the
boundary S, see above) by solving the following optimization problem:

min 𝑓𝑟 (u),

s.t.
[

𝑟 −(c + u)𝑇/2
−(c + u)/2 𝑑𝑖𝑎𝑔(u) −𝑄

]
⪰ 0.

(6)

Observe that in (6), the value 𝑟 is fixed. Additionally, notice that the constraints of (6) exactly define D,
the domain of 𝑓𝑟 (u). Now we show how the optimal solutions between the SDP and the problem in (6) are
connected.

Theorem 1. Let 𝑟, 𝑓𝑟 , and D be defined as in (5). Then, [u∗, 𝑟 + 𝑓𝑟 (u∗)] ∈ ℝ𝑛+1 is an optimal solution of
the SDP (2) iff u∗ is an optimal solution of the optimization problem (6).

Proof. Let the optimal solution of the SDP (2) be [u∗, 𝑟∗] ∈ 𝜕S (optimal solutions always lie on the boundary
of S). Clearly, 𝑟 > 𝑟∗ must hold by definition (so that H has a non-empty intersection with S, see the
definition of (5)). First, we will prove that [u∗, 𝑟] ∈ D. 𝑟 is already in H by definition, so we have to show
that u∗ lies inside S. Since 𝑑𝑖𝑎𝑔(u∗) −𝑄 ⪰ 0 and 𝑟 > 𝑟∗, we have that[

𝑟 −(c + u∗)𝑇/2
−(c + u∗)/2 𝑑𝑖𝑎𝑔(u∗) −𝑄

]
⪰ 0,

as increasing a single diagonal element of a PSD matrix will again yield a PSD matrix, and thus, [u∗, 𝑟] ∈ D.
In fact, this shows that the feasible regionS of the SDP (2) is unbounded in the direction opposite the objective
vector 𝑒𝑛+1, as the claim holds for any 𝑟 > 𝑟∗. This allows for a intuitive geometrical interpretation of the
proof, see Figure 1. For our method, this also shows that any value of 𝑟 that leads to a non-empty intersection
D suffices for the theorem to hold.

Second, we will prove that u∗ is the optimum of (6). We already showed that the projection of the optimum
of (2) along 𝑒𝑛+1 onto H lies in D. To finish the proof, we need to show that there does not exist any other
𝑢 ∈ D such that 𝑓𝑟 (u) < 𝑓𝑟 (u∗), which we will do by contradition. Recall that by definition, for any point
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Figure 1: Depiction of the feasible region S of
the SDP (2) (unbounded in the direction op-
posite the objective funciton), the intersection
D = S ∩ H , where the hyperplane H is per-
pendicular to the objective vector. The set D
is the domain of the function 𝑓𝑟 (·) in (5). The
value of 𝑓𝑟 (·) at a point on D is the negative
of the algebraic value of the length of the line
segment from D to the boundary of the feasi-
ble region S, in the direction of the objective
vector, as illustrated in the figure. The part of
the boundary of S belowD corresponds to the
graph of 𝑓𝑟 (·).

u ∈ D, the point [u, 𝑟 + 𝑓𝑟 (u)] lies on the boundary 𝜕S below the plane H , and as the objective vector os
the SDP (2) is 𝑒𝑛+1, the 𝑛 + 1-th coordinate of this point is the objective value of SDP (2). Let there exist a
u ∈ D with 𝑓𝑟 (u) < 𝑓𝑟 (u∗). Then, 𝑟 + 𝑓𝑟 (u) < 𝑟 + 𝑓𝑟 (u∗) = 𝑟∗. This is a contradiction because 𝑟∗ is the
optimum of the SDP (2) and there does not exist any 𝑟 = 𝑟 + 𝑓𝑟 (u) with a better value. The proof for the other
direction, i.e. if u∗ ∈ D is an optimal solution of the problem in (6) then the [u∗, 𝑟 + 𝑓𝑟 (u∗)] ∈ ℝ𝑛+1 is an
optimal solution of the SDP (2), can easily be verified with the same argument.

□

Lemma 2. The problem (6) is a convex optimization problem.

Proof. As the feasible set S of the SDP (2) is convex, D, an intersection of S with a hyperplane is trivially
convex as well. As D is the feasible set of our problem (6), we have left to show that 𝑓𝑟 (u) is a convex
function. By definition, the part of the boundary of S below the planeH corresponds to the graph of 𝑓𝑟 . Let
[y1, 𝑟], [y2, 𝑟] ∈ D. Observe that we use the (𝑛 + 1)-dimensional notation forD for the purpose of the proof
here. Then, since S is a convex region, for all 0 ≤ 𝑧 ≤ 1, it holds that

𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟] ∈ D ⊂ S. (7)

Since for any point [y, 𝑟] ∈ D, the point [y, 𝑟 + 𝑓𝑟 (y)] corresponds to the point on the boundary 𝜕S, see
definition of (5), for the convex combination of the two boundary points, we have,

𝑧( [y1, 𝑟] + 𝑓𝑟 (y1)e𝑛+1) + (1 − 𝑧) ( [y2, 𝑟] + 𝑓𝑟 (y2)e𝑛+1) =
(𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟]) + (𝑧 𝑓𝑟 (y1) + (1 − 𝑧) 𝑓𝑟 (y2))e𝑛+1 ∈ S,

(8)

which follows directly from the convexity of S. Thus, the point,

𝑧[y1, 𝑟 + 𝑓𝑟 (y1)] + (1 − 𝑧) [y2, 𝑟 + 𝑓𝑟 (y2)] =
[𝑧y1 + (1 − 𝑧)y2, 𝑟 + 𝑧 𝑓𝑟 (y1) + (1 − 𝑧) 𝑓𝑟 (y2)],

(9)

belongs to the interior of S.

5



By definition of (5), the point

[𝑧y1 + (1 − 𝑧)y2, 𝑟 + 𝑓𝑟 (𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟])], (10)

lies on the boundary 𝜕S. Clearly, the points [𝑧y1 + (1 − 𝑧)y2, 𝑟] and those of (9) and (10) lie on the line
[𝑧y1 + (1 − 𝑧)y2, 𝑟] + 𝑡𝑒𝑛+1 ∈ ℝ𝑛+1. Because of the convexity of S and, since

(𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟]) + 𝑓𝑟 (𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟])e𝑛+1 (11)

lies on the boundary 𝜕S, we have:

𝑓𝑟 (𝑧[y1, 𝑟] + (1 − 𝑧) [y2, 𝑟]) ≤ 𝑧 𝑓𝑟 (y1) + (1 − 𝑧) 𝑓𝑟 (y2). (12)

□

3.2 Function oracles
We provide three algorithms, called function oracles: (i) an algorithm to compute the value of function
𝑓𝑟 (u) for u ∈ D (evaluation oracle), (ii) an algorithm to compute a vector proportional to the gradient, i.e.,
𝛼∇ 𝑓𝑟 (u), 𝛼 > 0 (gradient oracle), and (iii) an algorithm to compute the intersection of a ray starting from u
with 𝜕D. These oracles will form the base for obtaining a performant method to solve (6).

Evaluation oracle. Notice that 𝑓𝑟 (u), u ∈ D is given by the length1 of the part of the ray ℓ(𝑡) :=
{[u, 𝑟] − 𝑡𝑒𝑛+1 ∈ ℝ𝑛+1 | 𝑡 ∈ ℝ+} in the interior of S. Thus, we consider the ray shooting defined by ℓ(𝑡) and
hitting the 𝜕S at the boundary point s ∈ ℝ𝑛+1. Then, 𝑓𝑟 (u) is equal to the length of the segment defined by
the points [u, 𝑟] and s.

Finally, as Polyak et. al. show in [44], this length is given by the smallest positive eigenvalue of the following
Generalized Eigenvalue Problem (GEP): 𝐹 (ℓ(𝑡))x = 0. In our case, we can exploit the special structure of
the LMI of (2) and simplify this GEP as follows:

𝐹 (ℓ(𝑡))x = 0⇒ [𝐹 (y) − 𝑡 (𝐹 (e𝑛+1) − 𝐴0)]x = 0⇒
(𝐹 (y) − 𝑡𝐴𝑛+1)x = 0⇒ 𝐹 (y)x − 𝑡𝐴𝑛+1x = 0,

(13)

where y = [u, 𝑟]. Clearly, the GEP in (13) has only one real (and bounded) eigenvalue, since only one
element in 𝐴𝑛+1 is non-zero. Thus, we can solve the following GEP: 𝜆𝐹 (y)x− 𝐴𝑛+1x = 0. We then invert its
single non-zero real eigenvalue to obtain the wanted eigenvalue of the GEP in (13). This GEP is equivalent
to the following eigenvalue problem:

𝐹 (y)−1𝐴𝑛+1x − 𝜆x = 0. (14)

The matrix 𝐹 (y)−1𝐴𝑛+1 is a zero matrix except for its first column, which is equal to the solution of the
following linear system:

𝐹 (y)z = 𝐴𝑛+1 (:, 1) ⇒ 𝐹 (y)z =
[
1 0 . . . 0

]𝑇
. (15)

Finally, the wanted eigenvalue is the leftmost top (first column - first row) element of the matrix 𝐹 (y)−1𝐴𝑛+1
which is equal to the first element of vector z. Summarizing, 𝑓𝑟 (u) = −1/𝑧1, where 1/𝑧1 is the inverse of the
first element of z. To compute z we have to solve the linear system in (15).
Remark 3. To evaluate the function 𝑓𝑟 (u) at a point u ∈ D it takes 𝑂 (𝑛𝜔) operations, where 𝜔 is the matrix
multiplication constant, 𝜔 ≈ 2.37.

1. Again, notice the slight abuse of terminology here: the sign of ”length” is inverted so that we have negative values. cf. the definition
of problem (5).
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Gradient oracle. Recall that 𝑓𝑟 is a function on ℝ𝑛, while the boundary of S lies in ℝ𝑛+1. Also, recall that
the graph of function 𝑓𝑟 is exactly the boundary of S lying below the hyperplane H . Thus, ∇ 𝑓𝑟 (u) is equal
to the normal vector of the tangent plane on the boundary point [u, 𝑟 + 𝑓𝑟 (u)], projected (orthogonally) down
onto D.

Since 𝜕S is given by det𝐹 (y) = 0, y ∈ ℝ𝑛+1, the gradient ∇ 𝑓𝑟 (u) is the first 𝑛 coordinates of the gradient
∇det𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)]). From [13] we get that,

(x𝑇 𝐴1x, . . . ,x
𝑇 𝐴𝑛+1x) = 𝛼∇det𝐹 ( [u, 𝑟 + 𝑓𝑟∗ (u)]) =

𝛼[∇ 𝑓𝑟 (u),x𝑇 𝐴𝑛+1x], 𝛼 > 0,
(16)

where x is any non-trivial vector from the kernel of 𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)]). It turns out that the solution vector of
(15) satisfies this condition, as shown in Lemma 4:

Lemma 4. The solution vector z ∈ ℝ𝑛+1 of the linear system in (15) is a non-trivial vector from the kernel of
𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)]).

Proof. Since 𝑓𝑟 (u) = 1/𝑧1 is equal to the smallest positive eigenvalue of the GEP in (13) we have that,

𝐹 (y)x + 𝑓𝑟 (u)𝐴𝑛+1x = 0⇒ (𝐹 ( [u, 𝑟]) + 𝑓𝑟 (u)𝐴𝑛+1)x = 0⇒
𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)])x = 0.

(17)

Thus, the corresponding eigenvector of the eigenvalue 𝑓𝑟 (u) is a non-trivial vector from the kernel of
𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)]) and we can use it to compute the gradient in (16).

Now we prove that this eigenvector is the solution vector z of the linear system in (15). According to (14)
the wanted eigenvector is identical to the eigenvector that corresponds to the sole non-zero eigenvalue of the
matrix 𝑊 = −𝐹 (y)−1𝐴𝑛+1. This eigenvalue is 𝑧1, where 𝐹 (y)z = −𝐴𝑛+1 (:, 1). Now, notice that the first
column of 𝑊 is equal to the vector z, while the rest of its elements are equal to zero. Therefore, 𝑊z = 𝑧1z
holds, and thus, the vector z is the eigenvector that corresponds to the eigenvalue 𝑧1. □

Remark 5. Given the solution of the linear system in (15), to compute a vector proportional to the gradient of
𝑓𝑟 (u) takes 𝑂 (𝑛) operations since each coordinate x𝑇 𝐴𝑖x, 𝑖 ∈ [𝑛] can be computed in 𝑂 (1) operations.

One could also compute the actual ∇ 𝑓𝑟 (u) following [13]. However, that would be computationally more
expensive, since it requires to compute all the eigenvalues of the matrix 𝐹 ( [u, 𝑟 + 𝑓𝑟 (u)]), while our method
will not require to compute the actual gradient, see Section 3.4.

Boundary oracle. Let the ray ℓ(𝑡) := {[u, 𝑟] + 𝑡 [d, 0] | 𝑡 ∈ ℝ+}, where d ∈ ℝ𝑛 gives the direction of the
ray inD. To obtain the intersection ℓ(𝑡) ∩ 𝜕D, we need to compute the smallest positive eigenvalue 𝜆∗ of the
following GEP,

𝐹 (ℓ(𝑡))x = 0⇒ 𝐹 ( [u, 𝑟] + 𝑡 [d, 0])x = 0⇒
(𝐹 ( [u, 𝑟]) + 𝑡 [𝐹 ( [d, 0]) − 𝐴0])x = 0⇒ (𝐶1 + 𝑡𝐶2)x = 0,

(18)

where,

𝐶1 =

[
𝑟 −(c + u)𝑇/2

−(c + u)/2 𝑑𝑖𝑎𝑔(u) −𝑄

]
, 𝐶2 =

[
0 d𝑇/2

d/2 𝑑𝑖𝑎𝑔(d)

]
. (19)

Then, the intersection point can be computed easily as, [u, 𝑟] + 𝜆∗ [d, 0] = ℓ(𝑡) ∩ 𝜕S.

Lemma 6 (From [13]). The arithmetic complexity to compute the intersection ℓ(𝑡) ∩𝜕S up to precision 𝜖 > 0
is 𝑂 (𝑛𝜔 + 𝑛 log(1/𝜖)).

In section 4 we provide an efficient algorithm based on Lanczos method to compute the wanted eigenvalue
regarding practical performance.
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3.3 Computing a feasible SDP point
Our methods require a starting feasible point of the convex problem (6) to start computations. Notice that this
point would also be a feasible point of the SDP (2). To compute such a feasible point we first compute a trivial
convexification vector, that is, u = 𝜆max (𝑄)1𝑛, where 1𝑛 is an 𝑛-dimensional vector with all coordinates
equal to 1. Since 𝑑𝑖𝑎𝑔(u) −𝑄 ⪰ 0, we need to compute a scalar 𝑟 such that 𝐹 ( [u, 𝑟]) ≻ 0.

To this end, we set the initial y to be equal to u in the corresponding coordinates, and leave the (𝑛 + 1)th
coordinate to any random value 𝑟𝑑 . To compute a feasible scalar 𝑟 we consider the intersection between the
ray ℓ(𝑡) = {y − 𝑡e𝑛+1}, 𝑡 ∈ ℝ+, and the boundary of the feasible region S. This is given by the smallest
positive eigenvalue of the following GEP:

𝐹 (ℓ(𝑡))x = 0⇒ [𝐹 (y) − 𝑡 (𝐹 (e𝑛+1) − 𝐴0)]x = 0⇒ 𝐹 (y)x − 𝑡𝐴𝑛+1x = 0. (20)

Thus, following the methodology in Section 3.2, we solve the linear system in (15) and invert the first
coordinate of its solution z. Summarizing, 𝑟 = 𝑟𝑑 − 1/𝑧1, and since this value leads us to the boundary of
the feasible region S, we set 𝑟 ← (𝑟𝑑 + 1/𝑧1) (1 + 𝜖), 𝜖 > 0, to obtain a point in the interior. Notice that the
approach above computes a feasible point of the SDP (2) for any vector u ∈ ℝ𝑛 s.t. 𝑑𝑖𝑎𝑔(u) −𝑄 ⪰ 0

3.4 Solving the transformed problem
In this section, we will present an algorithm to solve the transformed problem (6). Observe that as this is
a constrained convex optimization problem, any method targeting such problems would suffice to solve it,
e.g., the constrained coordinate descend algoritm [39], the Frank-Wolfe algorithm [16], etc. Both mentioned
methods come with worst-case convergence guarantees, meaning that at convergence we would obtain the
optimal solution of (6). Depending on the application area, some methods might be more suitable than others.
In this paper, we will showcase the proposed methods by solving the QUBO problem in a branch-and-bound
scheme, where we solve (6) at each node of the search tree to obtain a valid bound for the node. Depending
on the instance at hand, it can be beneficial for the algorithm to obtain weaker bounds faster at a given node
and branch (hope here is that the children will be easier to solve), rather than spend a lot of time obtainin
a strong bound for the node. Observe that by allowing the algorithm to use weaker but valid bounds in the
nodes, it will still converge to global optimality as in the worst case it callapses to enumerating all possible
solutions. In conclusion, for our case, the determining factor for performance of the overall algorithm will be
the trade-off between the quality of the solution of (6) and the time to obtain it. The algorithm we present
reflects this, as it does not necessarily produce an optimal solution of (6) and will stop early if it detects slow
progress, allowing the branch-and-bound scheme to branch and look for easier subproblems.

Lastly, before presenting our algorithm, we mention that in the case of the constrained coordinate descent
algorithm from [39], we were able to design an algorithm that optimally solves the problem (6) and has a
better worst case complexity compared to the state-of-the-art SDP algortihm in [25] when it is applied to
solve the QUBO’s dual SDP relaxation of (2) by exploiting the special structure of our problem, in a similar
way we were able to simplify the function oracles presented in Section 3.2. However, the resulting algorithm
still significantly underperformed in our experiments compared to the algorithm presented in this Section.
Similarly, for the Frank-Wolfe algorithm, the linear minimization oracle is a SDP problem itself, making it too
expensive for our setting (see [24] for details on the Frank-Wolfe algorithm). We do not further consider these
methods for this conference submission due to space restrictions, but we plan on presenting the reductions
and computational results for these methods as well in the extended version of this paper.

Our method is presented in Alg. 1. It takes as input a feasible point of the problem (6) and outputs a valid
upper bound for (QUBO). It employs gradient directions to improve the solution in each iteration, with a limit
of 𝑁 iterations. Its implementation requires the function oracles defined in Section 3.2. Simply, in each step,
our method computes the normalized gradient at the current point u, see Line 3. It shoots a ray starting from
u towards the negative gradient direction and computes the boundary point s where the ray hits the boundary
𝜕D, using the boundary oracle presented in Section 3.2, see Line 4.
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Algorithm 1
Input: Point [u, 𝑟] ∈ S, iteration limits 𝑁, 𝑘1, 𝑘2 ∈ ℕ+.
Output: Upper bound 𝑟 + 𝑓𝑟 (û) for the (QUBO) where û is a solution of (6).

1: 𝑖 ← 1; 𝑗 ← 0
2: while 𝑖 ≤ 𝑁 do
3: 𝑑 ← ∇ 𝑓𝑟 (u) / ∥∇ 𝑓𝑟 (u)∥
4: s← u − 𝑡∇ 𝑓𝑟 (u), 𝑡 = sup{𝑡 ∈ ℝ+ | 𝐹 ( [u, 𝑟] − 𝑡 [∇ 𝑓𝑟 (u), 0]) ⪰ 0)}
5: 𝑞 ← 1; u+ ← s; u− ← u; 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← true
6: while 𝑞 ≤ 𝑘1 do
7: ū← (u+ + u−)/2
8: if ⟨∇ 𝑓𝑟 (ū), (u+ − u−)⟩ > 0 then
9: u+ ← ū; 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← false

10: else
11: u− ← ū
12: end if
13: 𝑞 ← 𝑞 + 1
14: end while
15: if 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 then
16: 𝑗 ← 𝑗 + 1
17: if 𝑗 == 𝑘2 then
18: break
19: end if
20: end if
21: 𝑖 ← 𝑖 + 1
22: end while
23: û← u; 𝑟 ← 𝑟 + 𝑓𝑟 (û)
24: return û, 𝑟

Then, our method applies a search to approximate the best point according to 𝑓𝑟 on the segment defined by u
and s , i.e. it computes,

ū := argmin
x∈{𝑡u+(1−𝑡 )s}

𝑓𝑟 (x), 0 ≤ 𝑡 ≤ 1. (21)

To approximate ū we provide a bisection method applied on the segment {𝑡u + (1 − 𝑡)s, 0 ≤ 𝑡 ≤ 1. Let
u− , u+ ∈ D the extreme points of the segment in each iteration of the bisection method. First, we project the
normalized gradient ∇ 𝑓𝑟 (u)

∥∇ 𝑓𝑟 (u) ∥ onto the segment defined by the extreme points u− , u+, say,

d =
⟨∇ 𝑓𝑟 (u), (u+ − u−)⟩
∥∇ 𝑓𝑟 (u)∥∥u+ − u− ∥2

(u+ − u−). (22)

Then, we employ the innner product ⟨d, (u+ − u−)⟩ to decide in which sub-interval between {u− ,u} and
{u,u+} to continue searching. In particular, if ⟨∇ 𝑓𝑟 (u), (u+ − u−)⟩ > 0, we continue within {u− ,u},
otherwise we continue within {u,u+}, see Lines 8 through 12. The bisection iteration limit 𝑘1 allows us to
stop when the search segments become small enough.

Lastly, in addition to the global iteration limit 𝑁 , our method also features a stopping criterion tailored for
the edge-case when it converges to a point on the boundary of D. It will stop the algorithm if it detects
that for 𝑘2 consecutive iterations (search directions), the bisection method did not once move away from the
boundary 𝜕D (the bisection method approximated the boundary point 𝑠), see Line 17. This criterion prevents
our method from getting stuck on the boundary 𝜕D as it terminates the method when the current iterate is
very close to the boundary and the gradient direction can not move it away from it.
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Table 1: References and sizes of our test set.

test set reference #instances #variables density

Gset [53] 24 800 - 14000 0.00 - 0.06
BQP [5] 60 50-2500 0.09 - 0.11
BQPGKA [18] 45 20 - 500 0.07 - 0.99

4. Computational study
In this section, we present a computational analysis of Algorithm 1. First, we give some details on the
computational setup, before we highlight the efficiency of Algorithm 1 to solve the SDP (2) when a warmstart
is given. We also show that this is in contrast to the state-of-the-art SDP solvers SDPA and DSDP, which lack
this feature. After that, we integrate Algorithm 1 as a dual solver into a branch-and-bound framework to solve
QUBOs to optimality and conduct a comparative analysis against both SDPA and DSDP as the dual solvers.

4.1 General computational setup
All our experiments were carried out on a PC with a 11th Gen Intel® Core™ i7-1165G7 CPU with 8 cores,
2.8 GHz, and 32 GB RAM running Ubuntu 20. We implemented Algorithm 1 using C++-11.

In order to compute the smallest positive eigenvalue of the GEP in (18) we adopt the most efficient practical
approach according to [22, 13, 51]. That is, we compute the largest eigenvalue of the GEP: (𝐶2 + 𝑡𝐶1)x = 0,
and invert the computed eigenvalue. Since it holds that 𝐶1 ⪰ 0, one could transform this GEP into a regular
symmetric eigenvalue problem by employing the cholesky factorization of𝐶1 = 𝐿𝑇𝐿. Then, the GEP becomes
equivalent to (𝐵 − 𝑡 𝐼)x = 0, where 𝐵 = −𝐿−𝑇𝐶2𝐿

−1. Since this is a symmetric eigenvalue problem, its
maximum eigenvalue can be efficiently computed using a power method, e.g., via the Lanczos algorithm.
With this approach the eigenvalue can be computed after 𝑂 (𝑛3) operations. In our implementation, we use the
Lanczos algorithm implemented in the C++ library Spectra. Further parameterizations and implementation
details of Algorithm 1 are experiment-specific and are thus specified in the following two subsections.

For our computational comparisons, we also linked DSDP [6, 8, 7] and SDPA 7 [52] and used both with its
default settings.

Overall, we used 129 instances from three publicly available instance collections for our evaluations. We
provide a reference per subset and details on the number of instances, number of variables, and densities in
Table 1. The test set is diverse in terms of instance sizes and density. While the Gset instances are rather
large in terms of the number of variables, all instances are very sparse. In contrast, the instances contained in
BQPGKA are small to mid-sized but cover a wide range from sparse to very dense. The BQP instances are
sparse and range from small to large. Note that we aimed for a test set that is balanced w.r.t. the number of
solvable and unsolvable instances. This allows to analyze both runtimes to optimality and final relative gaps
when running into the time limit. Since all of the instances in Gset are challenging, we randomly selected a
subset of 24 instances from the 71 instances contained in Gset.

4.2 Warmstarting ability
In this Section, we focus on showing the ability of our method to be warmstarted, in contrast to the interior
point methods in DSDP and SDPA. To this end, we will intialize the three methods once with a solution far
away from the optimum (coldstart) and once with a solution close to the optimum (warmstart), and we will
record how the performance of the three methods changes.

For these experiments, we paremeterized Algorithm 1 as follows: we set 𝑁 = 50,000, 𝑘1 = 5, and 𝑘2 = 2.
For the coldstart, we initialize the methods with the vector u = 𝑐𝜆max (𝑄)1𝑛, where 𝑐 > 1.05 is a factor we
compute using a binary search such that the relative gap of the objective value of the coldstart solution to the
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Table 2: Computational results of the three methods for both a cold- and a warmstart of the SDP relaxation
(2) of the instances in Table 1. StartGap stands for the average relative gap to the optimal value of the starting
point, Iters for the average number of iterations until termination, Time for the average runtime, and SolGap
for the arithmetic mean of the relative gap to the optimal value of the computed solution.

Algorithm 1 SDPA DSDP

StartGap Iters Time SolGap Iters Time Iters Time

BQPGKA 91.4% 72.2 0.16 2.5% 28.9 20.7 70.6 66.2
7.4% 6.1 0.03 1.6% 28.9 20.3 68.2 65.0

BQP 88.3% 43.7 9.8 2.0% 30.6 18.5 104.3 213.6
7.8% 4.9 1.1 2.4% 30.6 18.5 67.0 202.5

Gset 280% 2.0 1.1 232% 32.8 232.0 158.5 620.1
7.5% 2.0 1.2 2.3% 32.7 229.1 158.8 615.0

optimal objective value lies between 85% and 95%. If the initial gap is larger than 95% for 𝑐 = 1.05, we keep
that solution. This is the case for all the instances in Gset. For the warmstart, we perturb the optimal solution
u∗ by setting u𝑖 = u∗

𝑖
+ 𝑤𝜌, where 𝜌 is a uniformly distributed number in [𝑤110𝑌−1, 𝑤210𝑌 ], 𝑌 represents

the order of magnitude of u∗
𝑖

and 𝑤1, 𝑤2 ∈ ℝ+ are factors such that the relative gap of the warmstart to the
optimal objective value lies between 7% and 8%.

Table 2 gives the arithmetic mean of the number of iterations and the runtime for each of the three methods
for the instances from Table 1 and for both variants, cold- and warmstarted. For Algorithm 1, we also
give the arithmetic mean of the relative gap of the output solution compared to the optimal solution. Note
that SDPA and DSDP both compute an optimal solution up to some tolerance. It is noteworthy that both
SDPA and DSDP require a similar number of iterations and runtime to solve the SDP relaxation no matter
if the solve is cold- or warmstarted. This is expected, since both methods cannot exploit a warmstart. The
only exception to this are the instances in BQP, for which DSDP needs significantly less iterations when a
warmstart is given. However, the runtime is improved only by around 5 %. On the contrary, our method
exhibits significantly fewer iterations and smaller runtimes when initiated with a warmstart, achieving better
or similar relative accuracy. In all cases, our method terminates due to the boundary termination criterion
of Line 17 in Algorithm 1, which indicates a stoppage when the method becomes confined to the boundary.
Further, for all instances in Gset, Algorithm 1 consistently terminates after 2 iterations, independent of a cold-
or a warmstart. This consistent termination pattern suggests that the instances pose considerable challenges
for our method. However, when initialized with a warmstart, Algorithm 1 achieves an error comparable
to that it achieves in the other two test sets. As expected, our method is not as accurate as SDPA and
DSDP. Nevertheless, its ability to rapidly enhance the input solution and attain a valid QUBO bound suggests
applicability in improving branch-and-bound methods for solving QUBO to optimality.

4.3 Performance evaluation within a QUBO branch-and-bound approach
In this section, we evaluate how our proposed method performs inside a QCR-based branch-and-bound ap-
proach for solving QUBOs to global optimality, i.e., we equip a branch-and-bound framework with Algorithm 1
to solve all bounding problems (2). In order to focus our analysis solely on the dual side, we implemented a
branch-and-bound algorithm with the following properties:

• We neither use presolve nor primal heuristics. Instead, we inject the best primal solution value known
to us at the root node. Hence, at each node, only the dual solver is run.

• We use a basic but deterministic branching rule, which always branches on the free binary variable with
the minimum index.
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Table 3: Shifted geometric means of runtimes, and statistics on runtimes and number of branch-and-bound
nodes for the 47 instances that all configurations solve.

shifted geo. means runtimes in seconds branch-and-bound nodes

unscaled scaled min. max. mean median min. max. mean median

DSDP 69.52 5.00 0.31 3033.23 347.20 33.98 21 64205 7339.21 1871
SDPA 40.71 2.93 0.11 3441.03 333.06 13.27 3 311547 14483.94 579
Algorithm 1 13.89 1.00 0.06 829.92 53.90 2.54 47 445247 35557.34 3735

• We always select the problem with the weakest dual bound from the heap as the next node to be
processed.

We realized this branch-and-bound implementation by using the C++ branch-and-bound framework PEBBL;
see [14]. For the branch-and-bound experiment, we paremeterized Algorithm 1 as in Section 4.2 except for
the maximum number of iterations which we set to 𝑁 = 5. The rationale is that due to the warmstarting ability
of our method, in most cases a few iterations are enough to improve the dual bound enough. Preliminary
experiments confirmed that this setting is the best trade-off between node throughput and solving each node to
optimality to obtain a bound as tight as possible; see also the computational results in the previous subsection.
We also set the scale factor that is used to push a point on the boundary of the feasible region S into the
interior of S to (1 + 𝜖) = 1.1; see also Section 3.3. Since our method depends a lot on being warmstarted,
we always solve the root node SDP with SDPA, because it is faster than our method started from a coldstart.
All subsequent bounding SDPs are solved by Algorithm 1. In each node, we project the SDP solution of the
parent problem to the feasible space of the node problem to obtain a starting solution.

To the best of our knowledge, our method is the first that specifically targets the SDP (2). Hence, as a
reference for comparison, we adopt the approach taken by existing literature on solving QUBOs via the QCR
method and use the same branch-and-bound framework as detailed above but equipped with a state-of-the-art,
off-the-shelf SDP solver. We test the two widely used open-source solvers DSDP and SDPA, with default
settings. In the following, we compare the three configurations on the instances as specified in Table 1, each
which a time limit of 3600 s.

For 47 out of the 129 instances, all configuration find the optimal solution. For this subset of instances, we
report shifted geometric means (with a shift of 10) of runtimes as well as minimum, maximum, mean, and
median runtimes and branch-and-bound nodes in Table 3. We observe that DSDP is entirely dominated by
SDPA, so we will not further comment on DSDP in the following due to space restrictions of the conference
submission. Further, we observe that Algorithm 1 outperforms SDPA significantly by a factor of 2.93 for the
shifted geometric mean. This is supported by the mean and median runtimes, which show speedups of around
6 and 5 times compared to SDPA in the mean and median. We also observe that Algorithm 1 requires more
branch-and-bound nodes than the other two configurations. As discussed in Section 3.4, this is due to the fact
that our method focuses more on node throughput than on solving each node to optimality. This is even more
pronounced due to the maximum number of iterations, which we set to 𝑁 = 5 in this experiment.

Apart from the instances that all configurations solve, there are eight additional instances that at least one
solver solves. There are three instances that are only solved by SDPA and Algorithm 1 with mean runtimes of
1368.62 s and 530.78 s, respectively. In comparison to SDPA, our approach solves four additional instances
with a mean runtime of 453 s. SDPA reports a mean relative gap of 1.89 % for these instances. SDPA also
solves one instance (in 569 s) that our approach cannot solve. In fact, our solver runs into memory issues for
this instance after 1851 s with a relative gap of 2.54 %. Note that we treat this instance as it would have run
into the time limit with the final relative gap of of 2.54 % in our computational study.

The remaining 74 instances remain unsolved by all branch-and-bound configurations. For these instances,
we provide minimum, maximum, mean, and median relative gaps in Table 4. We observe that on this subset
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Table 4: Metrics based on relative gaps for the 74 instances, for which all configurations run into the time
limit.

relative gap in %

minimum maximum mean median

DSDP 1.84 180255.94 5509.02 8.74
SDPA 0.92 151.95 11.79 8.58
Algorithm 1 1.79 64.94 10.82 8.89

of instances, SDPA and our method are quite comparable. While our method performs slightly better w.r.t.
the mean, SDPA performs marginally better in terms of median relative gaps. Overall, the branch-and-bound
configuration with our method as the dual solver can be considered the best performing configuration in our
analysis. It solves the most instances and solves instances that all configurations solve significantly faster
than the competing configurations. For the instances for which all configurations run into the time limit, all
configurations perform equally well.

In a full-length paper, we aim to further improve our method and to include a more detailed computational
study. Possible steps into this direction are to tailor subroutines of our method to sparse instances, perform
a thorough parameter tuning of our method, and compare it to both other exact methods as well as general-
purpose heuristics for solving the bounding SDPs.
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