
Adaptive Partitioning for Chance-Constrained Problems
with Finite Support

Marius Roland, Alexandre Forel, Thibaut Vidal

Abstract. This paper studies chance-constrained stochastic optimization
problems with finite support. It presents an iterative method that solves
reduced-size chance-constrained models obtained by partitioning the scenario
set. Each reduced problem is constructed to yield a bound on the optimal
value of the original problem. We show how to adapt the partitioning of
the scenario set so that our adaptive method returns the optimal solution
of the original chance-constrained problem in a finite number of iterations.
At the heart of the method lie two fundamental operations: refinement and
merging. A refinement operation divides a subset of the partition, whereas
a merging operation combines a group of subsets into one. We describe how
to use these operations to enhance the bound obtained in each step of the
method while preserving the small size of the reduced model. Under mild
conditions, we prove that, for specific refinement and merge operations, the
bound obtained after solving each reduced model strictly improves throughout
the iterative process. Our general method allows the seamless integration of
various computational enhancements, significantly reducing the computational
time required to solve the reduced chance-constrained problems. The method’s
efficiency is assessed through numerical experiments on chance-constrained
multidimensional knapsack problems. We study the impact of our method’s
components and compare its performance against other methods from the
recent literature.

1. Introduction

We consider Chance-Constrained Stochastic Programs (CCSPs). Solving a CCSP
amounts to finding the optimal value of a decision variable vector x ∈ X ⊆ Rn that
minimizes an objective function f : X → R. This decision variable has to satisfy a
constraint that depends on an uncertain parameter ξ ∈ Ξ with a probability of (1−τ).
Here, the parameter τ ∈ [0, 1] represents the risk tolerance of the decision-maker.
The CCSP reads

v∗ = min
x∈X

f(x) (1a)

s.t. Pξ[x ∈ X(ξ)] ≥ 1− τ. (1b)

CCSPs were first introduced in [9]. Such models are used in a variety of fields
such as power systems [10, 26], vehicle routing [13], finance [8], and contextual
optimization [28].

More specifically, we focus on CCSPs whose uncertain parameters ξ ∈ Ξ have
finite support. The uncertain parameters belong to the set Ξ := {ξs : s ∈ S} where
each ξs ∈ Rd is a multi-dimensional vector representing a single realization of the
uncertain parameters with probability ps and S is a set of scenarios. When ξ has

Date: August 8, 2024.
2020 Mathematics Subject Classification. 90C15, 90C11.
Key words and phrases. Chance Constraints, Adaptive Partitioning, Stochastic Optimization.

1

2 M. ROLAND, A. FOREL, T. VIDAL

finite support, Model (1) can be reformulated as

v∗ = min
x∈X

f(x) (2a)

s.t.
∑
s∈S

ps1 (x ∈ Xs) ≥ 1− τ, (2b)

where 1 is the indicator function, and Xs = X(ξs) is the set of feasible decisions for
realization ξs. Models of the type (2) are for instance obtained when the generic
CCSP (1) is approximatied using as Sample Average Approximation (SAA). The
SAA method is a widely adopted approach, particularly when the distribution of ξ
is unknown [3, 24]. This is primarily because of its simplicity and the theoretical
guarantees it offers [21].

By introducing a binary variable zs ∈ {0, 1} for each s ∈ S, Model (2) can be
reformulated as

v∗ = min
x∈X

f(x) (3a)

s.t. zs = 1(x ∈ Xs), s ∈ S, (3b)∑
s∈S

pszs ≥ 1− τ, (3c)

zs ∈ {0, 1}, s ∈ S (3d)

Model (3) is regularly solved by introducing so-called “big-M” coefficients. Big-M
coefficients allow to reformulate the indicator constraints (3b) without introducing
additional variables or constraints. Let the feasible set of a scenario Xs be fully
characterized by an inequality system Gs(x) ≤ 0, where Gs : Rn → Rm. Further,
assume that an upper bound Ms

i exists on the maximum violation of the i-th
constraint of scenario s for x in the set of feasible solutions of Model (3). Then, we
may write

v∗ = min
x∈X

f(x) (4a)

s.t. Gs(x) ≤Ms(1− zs), s ∈ S, (4b)∑
s∈S

pszs ≥ 1− τ, (4c)

zs ∈ {0, 1}, s ∈ S, (4d)

where Ms is a vector of entries Ms
i . Large values for Ms

i result in a loose continuous
relaxation of Model (3), see, e.g., [27]. This is one of the reasons why optimization
solvers designed to take advantage of continuous relaxations struggle to solve chance-
constrained problems even when their constraints and objective function are linear.
In addition, finding tight values for Ms

i can be very time-consuming.

1.1. Contributions.
(1) We propose an adaptive partitioning method for solving CCSPs with finite

support to optimality. The method is based on iteratively solving reduced-
size CCSPs that yield lower bounds on the optimal objective of the original
CCSP. The partitions are adapted so that solutions obtained in previous
iterations of the method are excluded from the feasible set of the reduced
problem. By construction, the adaptive partitioning method terminates
after a finite number of iterations and returns the optimal solution to the
original CCSP.

(2) We specify the main operations of the method that are based on mathe-
matical arguments. Namely, we study how to refine and merge an existing
partition of the scenario set so that the lower bound obtained by solving

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 3

a partitioned problem is guaranteed to strictly increase. This property
has significant benefits when solving partitioned problems, it implies that
big-M coefficients can be reused and tightened in successive iterations. This
tightens the continuous relaxation of the reduced CCSPs that are solved
and reduces the time needed to solve them. It further allows us to take
increasing advantage of screening [26] as the number of iterations of the
method increases.

(3) We discuss how to create partitions that, by construction, result in a lower
bound on the original optimal objective that is tighter than the well-studied
quantile bound [2]. In certain cases, this initial partition results in points
that are feasible and hence optimal for the original CCSP.

(4) We compare the performance of the adaptive partitioning method for solving
CCSPs with binary and continuous variables with state-of-the-art methods.
The results demonstrate the computational advantage of the proposed
method. We highlight why the proposed method performs well numerically
by examining the effect of the main operations of the method.

1.2. Related Literature. This paper lies at the interface between two branches of
literature. The first branch concerns solving CCSPs with finite support. Different
families of valid inequalities have been proposed for solving CCSPs. The intersection
between well-studied mixing inequalities [16] and CCSPs have received a lot of
attention [20, 22, 1, 19]. Quantile cuts and their relationship with mixing inequali-
ties [37] have also been studied [27, 18]. In [36] the authors propose to solve CCSPs
using a branch-and-cut approach that exploits cuts based on irreducibly infeasible
subsystems of scenarios. Other approaches that do not use valid inequalities have
also been proposed. In [2] the authors study solution methods based on relaxations
of the original CCSP. Moreover, they propose a scenario decomposition approach
tailored to CCSPs with binary decision variables. The scenario decomposition ap-
proach is designed to iteratively solve the same relaxation of the original CCSP and
add “no-good” cuts to exclude previously obtained solutions from the feasible set. In
their conclusion, they highlight that a promising research direction is to investigate
other techniques for excluding feasible solutions. This paper is in direct connection
with our work since we take a similar direction for solving CCSPs. Moreover, our
approach is independent of the types of variables that are considered. Further, some
approaches are concerned with developing alternative problem formulations without
binary variables [35, 34]. The tightening of big-M parameters has also received
much attention [26, 27].

The second branch of literature related to this paper is scenario reduction for
solving stochastic problems with large scenario sets. We differentiate between meth-
ods that carry out the scenario reduction separately from the optimization process
and the approaches that consider both aspects simultaneously. A priori scenario
reduction is performed by minimizing the Wasserstein distance [17, 12] between the
original and a smaller size scenario set. This idea is extended by some authors by
incorporating objective function information in the scenario reduction problem [23,
6]. Recently, in [31] the authors prove tight bounds on the approximation error of a
reduced scenario set obtained via Wasserstein distance minimization. Combining
scenario reduction and optimization is rather recent and has been applied to some
stochastic optimization models. The generalized adaptive partition method (APM)
for two-stage stochastic problems with fixed recourse in [33] has a strong link with
our contribution. This method was initially proposed in [14] for CVaR minimization
and is based on the ideas presented in [7]. Recently, in [30] the generalized APM
ideas were extended to the case where the uncertain parameters follow a continuous

4 M. ROLAND, A. FOREL, T. VIDAL

distribution. Moreover, APMs have been combined with decomposition methods [25],
stochastic dual dynamic programming [32], and Benders decomposition [29].

To the best of our knowledge, APMs have not been proposed for chance-
constrained problems, despite being strongly connected to the scenario decom-
position approach presented in [2]. We bridge this gap by proposing an adaptive
partitioning approach for solving general CCSPs with finite support.

1.3. Outline. Section 2 presents the general adaptive partitioning method and
discusses how to obtain upper and lower bounds on the original problem objective
by solving partitioned problems. Section 3 studies how to efficiently refine partitions
by excluding existing feasible solutions. Section 4 shows similar results for merge
operations. Section 5 presents how to create partitions with a guaranteed tight lower
bound on the objective of the original CCSP. Section 5 presents practical strategies
that enhance the behavior of the algorithm. Section 6 evaluates the computational
performance of our algorithm and compares it with state-of-the-art methods on
classical instances of the CCSP literature. Finally, Section 7 summarizes our findings
and suggests directions for future work.

2. Adaptive Partitioning Method

Our approach is based on creating partitions of the scenarios set, that is, grouping
scenarios into subsets. We first formally define a partition. Then, we present two
reduced-size models obtained via a partitioning of the scenario set. Both models
yield bounds on the optimal objective of the original CCSP. After, we discuss
how reduced-size models obtained via partitioning allow to compute tight big-M
parameters for Model (4). Finally, we explain the APM and discuss its finite
termination.

Definition 1. A partition P =
{
P1, P2, . . . , P|P|

}
is a collection of non-empty

subsets of the scenario set S such that
⋃

P∈P P = S and Pi ∩Pj = ∅, for all Pi, Pj ∈
P.

2.1. Partitioned CCSPs. We now present how a reduced size CCSP is obtained
by leveraging a partition P of a scenario set S. By aggregating the constraints of
all the scenarios in a subset, we can construct two smaller-size chance-constrained
problems that yield an upper and a lower bound on the optimal objective of the
original CSSP. In the reduced CCSP each subset P ∈ P represents a unique scenario
and the feasible set for P ∈ P is XP =

⋂
s∈P Xs.

In [2] the authors present the following reduced-size CCSP,

vL(P) = min
x∈X

f(x) (5a)

s.t. zP = 1(x ∈ XP), P ∈ P, (5b)∑
P∈P

qP zP ≥
∑
P∈P

qP − τ, (5c)

zP ∈ {0, 1}, P ∈ P, (5d)

where for each subset P ∈ P the probability qP = mins∈P ps.

Proposition 1 (from [2]). The partitioned model (5) is a relaxation of the CCSP (3),
i.e., vL(P) ≤ v∗.

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 5

Conversely, if we set the probability of each subset P ∈ P to q̃P =
∑

s∈P ps.
Then, another reduced-size CCSP reads

vU(P) = min
x∈X

f(x) (6a)

s.t. zP = 1(x ∈ XP), P ∈ P, (6b)∑
P∈P

q̃P zP ≥ 1− τ, (6c)

zP ∈ {0, 1}, P ∈ P. (6d)

Proposition 2. The scenario grouping model (6) is a restriction of the CCSP (3),
i.e., v∗ ≤ vU(P).

Proof. Let x′ ∈ X be any point inside the feasible set of Model (6) and let z′P satisfy
Constraint (6b). We set zs = z′P for all P ∈ P and s ∈ P . Then, Constraint (6c)
yields

∑
s∈S pszs =

∑
P∈P q̃P zP ≥ 1− τ and x′ is feasible for Model (3). □

2.2. Adaptive Partitioning Method. We now discuss how the APM works. The
lower bound model (5) and the upper bound model (6) are core components of the
APM. The partition P is modified so that tighter upper and lower bounds on the
original CCSP are obtained. Algorithm 1 describes the general idea of the APM.

Algorithm 1: Adaptive Partitioning Method.
Input : scenario set S, stopping criterion ε ∈ (0, 1).
Output : optimal solution x∗ of Model (3).
Initialize : j ← 0, vU ← +∞, vL ← −∞.

1 Design the first partition P0.
2 while (vU − vL)/|vU| ≥ ε do

/* Compute a tighter lower bound. */
3 Find x

¯
j , the solution of Model (5) for the partition Pj .

4 if v(x
¯

j) > vL then
5 Set vL ← v(x

¯
j).

6 end
/* Compute a tighter upper bound. */

7 Find x̄j , the solution of Model (6) for the partition Pj .
8 if v(x̄j) < vU then
9 Set xU ← x̄j and vU ← v(x̄j).

10 end
/* Modify the partition. */

11 Modify Pj to obtain a new partition Pj+1.
12 Increment iteration j ← j + 1.
13 end
14 return xU

Algorithm 1 contains three main steps: computing a lower bound, computing
an upper bound, and modifying the partition. The modification of the partition
has the biggest influence on the computational performance of the APM. Typically,
Algorithm 1 exhibits a trade-off between solving a large number of computationally
tractable CCSPs or solving a small number of computationally intensive CCSPs.
The performance of Algorithm 1 also depends on the design of the initial partition P0

as it dictates the tightness of the initial bounds w.r.t. the optimal value v∗. The
initial partition P0 also influences the structure of any subsequent partition.

6 M. ROLAND, A. FOREL, T. VIDAL

Algorithm 1 runs until a user-specified optimality gap is reached. This termina-
tion condition can be replaced by a time limit T < Tmax, where the parameters T
and Tmax represent the elapsed time and the maximum computation time, respec-
tively. The time limit should be sufficiently large to find initial lower and upper
bounds. When the time limit is reached, the algorithm can return the current best
solution xU and the relative optimality gap (vU − vL)/|vU|.

2.3. Finite Termination. As long as |Pj | increases over the course of the iterations,
Algorithm 1 terminates in a finite number of iterations and recovers the optimal
solution of Model (3). Indeed, if |Pj+1| > |Pj | holds for all j, the partition Pj will
eventually contain exactly one scenario per subset P ∈ Pj . In that case, Model (5)
reduces to Model (3), and Algorithm 1 returns the optimal solution of Model (3).
The worst-case number of iterations needed by Algorithm 1 to recover the optimal
solution of Model (3) is |S| − |P0|. However, the aim when applying Algorithm 1
is to avoid reaching the point where Pj equals S because in that case there is no
computational advantage of using the APM.

Our presentation of Algorithm 1 allows for flexibility in designing each of its main
steps. For instance, computing the upper bound can be performed by a heuristic
that does not necessarily solve a reduced size problem obtained via a partitioning of
the scenarios. In the following, we present several methods to design and modify
partitions that preserve finite termination of the method. These methods are based
on refinements that split a scenario subset into two new subsets. These operations
are discussed in detail in the next section. In particular, we show how to construct
minimal-size refinements that guarantee a strict increase of the resulting lower
bound.

3. On Constructing Minimal Size Refinements

In this section, we present how we propose to modify a partition in Algorithm 1.
We make the following assumption throughout the document.

Assumption 1. All scenarios are equiprobable, i.e. ps = 1/|S| for all s ∈ S.

Assumption 1 is introduced mainly to simplify the notation. For instance, it
always holds when scenarios are obtained via a sample-average approximation.
Further, any scenario set with rational probabilities can be modified to satisfy
Assumption 1 by duplication of scenarios. Naturally, this increases the size of the
scenario set but does not change the feasible set of Model (3).

Remark 1. If Assumption 1 is satisfied, then Constraint (5c) is equivalent to∑
P∈P

zP ≥ |P| − ⌊τ |S|⌋. (7)

Remark 1 is obtained by observing that Assumption 1 implies that qP =
mins∈P 1/|S| = 1/|S| and that all the variables zP are binary. Remark 1 highlights
that any partition P should satisfy |P| > ⌊τ |S|⌋. Indeed, if |P| ≤ ⌊τ |S|⌋, then
Constraint (5c) is always trivially satisfied and any x ∈ X is feasible for Model (5)
with P.

3.1. Solution Exclusion by Refinement. We carry out the partition modification
step in the APM using refinements as described in Definition 2. This is explained
by the fact that successive refinement operations guarantee finite termination of the
APM at the optimal solution of the original CCSP.

Definition 2. A partition R is a refinement of a partition P if for any R ∈ R
there exists a subset P ∈ P such that R ⊆ P .

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 7

We now study how to perform efficient refinement operations. We refine a partition
by excluding the solution obtained in the previous iteration of the APM. We prove
that if this solution is unique, then we can create a minimal size refinement R of P
such that vL(R) > vL(P).

To carry out this proof, we proceed in the following way. First, in Proposition 3,
we show that for any refinement R of a partition P , Model (5) with P is a relaxation
of Model (5) with R. Second, in Proposition 4, we discuss how we can design
refinements such that a specific feasible point of Model (5) with P, which is not
feasible for Model (3), becomes infeasible for Model (5) with R. Using the ideas of
Proposition 4 we introduce a simple procedure for producing such refinements in
Algorithm 2. Third, in Proposition 5, we prove the validity of a lower bound on the
number of refinements needed to exclude a feasible solution. Then, by combining
Proposition 4 and Proposition 5 in Corollary 1, we show that this bound is tight
for any refinement obtained with Algorithm 2. Finally, in Theorem 1, we use the
previous results to show how a refinement R satisfying vL(R) > vL(P) is obtained
in Algorithm 1.

To simplify the presentation, we use the following notation throughout the
remainder of this section. We let P denote a partition of the scenario set S and R
be a partition resulting from a refinement of P. Given any point x ∈ X , we
define zP (x) = 1(x ∈

⋂
s∈P Xs) the value of the indicator variables associated with

a subset P ∈ P, as well as PF(x) := {P ∈ P : x ∈ XP } the set of subsets that
are feasible for x and PI(x) := {P ∈ P : x /∈ XP } the set of subsets of P that
are infeasible for x. Naturally, P = PF(x) ∪ PI(x). Similarly to PI(x), for any
point x ∈ X , we define SI(x) := {s ∈ S : x /∈ Xs} the set of scenarios that are
infeasible for x.

Proposition 3. If R is a refinement of partition P, then Model (5) with P is a
relaxation of Model (5) with R, i.e.,

v∗ ≥ vL(R) ≥ vL(P).

Proof. First, we reformulate the model of vL(R) as a standalone CCSP. We introduce

κR =
qR∑

R′∈R qR′
, ε =

τ∑
R′∈R qR′

.

This yields the following CCSP,

vL(R) = min
x∈X

f(x) (8a)

s.t. zR = 1(x ∈ XR), R ∈ R, (8b)∑
R∈R

κRzR ≥ 1− ε, (8c)

zR ∈ {0, 1}, R ∈ R. (8d)

This reformulation shows that R can be considered as a standalone scenario set that
parameterizes Model (8). Each subset R ∈ R can be seen as an individual scenario
of the CCSP (8) with associated feasible set XR and probability κR.

Since R is a refinement of P and a standalone scenario set for Model (8) the
partition P can be seen as a partition of R. We introduce the notation P(R)
and P(S) to highlight the case in which P is defined using R or using S, respectively.
By Proposition 1, we have vL(R) ≥ vL(P(R)). We proceed by showing that
the model of vL(P(R)) is equivalent to the model of vL(P(S)). If this holds,
then vL(R) ≥ vL(P(R)) = vL(P(S)) = vL(P).

8 M. ROLAND, A. FOREL, T. VIDAL

We write Constraint (5c) for the model of vL(P(R)), it reads,∑
P∈P(R)

qP zP ≥
∑

P∈P(R)

qP − ε,

∑
P∈P(R)

min
R∈P

(κR)zP ≥
∑

P∈P(R)

min
R∈P

(κR)− ε,

∑
P∈P(R)

min
R∈P

(min
s∈R

(ps))zP ≥
∑

P∈P(R)

min
R∈P

(min
s∈R

(ps))− τ,

which is equivalent to Constraint (5c) for the model of vL(P(S)). Similarly, we state
Constraint (3b) for the model of vL(P(R)),

zP = 1(x ∈ XP) = 1(x ∈
⋂
R∈P

XR) = 1(x ∈
⋂
R∈P

⋂
s∈R

Xs),

which is equivalent to Constraint (3b) for the model of vL(P(S)). Hence, vL(P(R)) =
vL(P(S)) and Model (5) with P is a relaxation of Model (5) with R. □

Remark 2. Proposition 3 holds whether Assumption 1 is satisfied or not.

Remark 3. By Proposition 3 we know that any big-M coefficient obtained for a
partition P is valid for any refinement R of P. This property allows to keep the
same big-M values through the iterations of Algorithm 1 if only refinements are
carried out.

Next, we show that for any feasible solution x
¯

of Model (5) with P that is infeasible
for Model (3) we can construct a refinement R of P such that x

¯
is infeasible for

Model (5) with R.

Proposition 4. Let the point x
¯

be feasible for Model (5) with P but infeasible for
Model (3). There exists a refinement R of P with size |R| = |P|+ µ, where

µ = ⌊τ |S|⌋+ 1− |PI(x¯
)|,

such that x
¯

is infeasible for Model (5) with R.

Proof. For what follows, we fix the value of parameter µ to ⌊τ |S|⌋+ 1− |PI(x¯
)|. In

addition, we introduce the sets

P1(x¯
) = {P ∈ P : |P ∩ SI(x¯

)| = 1}, S1(x¯
) = SI(x¯

) ∩ (∪P∈P1(x
¯
)P),

P2(x¯
) = {P ∈ P : |P ∩ SI(x¯

)| ≥ 2}, S2(x¯
) = SI(x¯

) ∩ (∪P∈P2(x
¯
)P),

We have |P1(x¯
)| = |S1(x¯

)|. Since x
¯

is infeasible for Model (3) we know that |SI(x¯
)| ≥

⌊τ |S|⌋+ 1, this implies that

µ ≤ |SI(x¯
)| − |PI(x¯

)|,
≤ |S1(x¯

)|+ |S2(x¯
)| − |P1(x¯

)| − |P2(x¯
)|,

= |S2(x¯
)| − |P2(x¯

)|. (9)

By Equation (9) we know that there exist at least µ scenarios s ∈ S2(x¯
) that can

be removed from a set P ∈ P2(x¯
) while ensuring that |PI(x¯

)| stays unchanged. We
carry out this removal and create R by giving birth to exactly µ infeasible subsets.

As a consequence, we have

|R| = |P|+ µ,

= |PF(x¯
)|+ ⌊τ |S|⌋+ 1,

=
∑
R∈R

zR(x¯
) + ⌊τ |S|⌋+ 1, (10)

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 9

where we used that |P(x
¯
)| = |PI(x¯

)| + |PF(x¯
)| and

∑
R∈R zR(x¯

) = |RF(x¯
)| =

|PF(x¯
)| =

∑
P∈P zP (x¯

). By reorganizing the terms in Equation (10), we observe
that x

¯
is not feasible for Model (5) with R. □

The proof of Proposition 4 describes a method that requires low computational
effort for creating a refined partition R where x

¯
is excluded from the feasible set of

Model (5) with R. Algorithm 2 describes this method. As explained in the proof of
Proposition 4, R is created by splitting µ subsets that contain at least two infeasible
scenarios. Each split creates two new subsets that contain at least one infeasible
scenario. We draw attention to the fact that in Line 5 of Algorithm 2, the method
for allocating the remaining scenarios is not specified. This omition is intentional,
as this step is discussed in detail in Section 5.3. The next proposition describes a
lower bound on the size of R.

Algorithm 2: Minimal Size Refinement.
Input : scenario set S, partition P of S, point x

¯
∈ X .

Output : refinement R of P, where x
¯

is not feasible for Model (5) with R.
Initialize :R ← P and µ← ⌊τ |S|⌋+ 1− |PI(x¯

)|.
1 while |R| < |P|+ µ do
2 Select R1 ∈ RI(x¯

) such that |R1 ∩ SI(x¯
)| ≥ 2.

3 Select two infeasible scenarios s1, s2 ∈ R1 ∩ SI(x¯
).

4 Set Rleft ← {s1} and Rright ← {s2}.
5 Allocate all remaining scenarios s ∈ R1 \ {s1, s2} to Rleft and Rright.
6 Set R ← R \ {R1} ∪ {Rleft, Rright}.
7 end
8 return R

Proposition 5. Let the point x
¯

be feasible for Model (5) with P but infeasible
for Model (3). If a refinement R of P is such that x

¯
is not feasible for Model (5)

with R, then
|R| − |P| ≥ µ = ⌊τ |S|⌋+ 1− |PI(x¯

)|.

Proof. It is not possible to refine subsets P ∈ PF(x¯
) into subsets R ∈ RI(x¯

) using
only split operations. Hence, for any refinement R of partition P we have |RF(x¯

)| ≥
|PF(x¯

)|. By assumption, x
¯

is infeasible for Model (5) with R, we have

|R| − ⌊τ |S|⌋ − 1 ≥
∑
P∈R

zP (x¯
) = |PF(x¯

)| = |P| − |PI(x¯
)|. (11)

Finally, by reorganizing terms in Equation (11) we get

|R| − |P| ≥ ⌊τ |S|⌋+ 1− |PI(x¯
)|.

□

Given a point x
¯

that is feasible for Model (5) with P and infeasible for Model (3),
Proposition 5 provides a lower bound on the size of any refinement R that renders
the point infeasible for Model (5) with R.

Corollary 1. Let the point x
¯

be feasible for Model (5) with P but infeasible for
Model (3). Let R be a refinement of P obtained by applying Algorithm 2. Then, R
is the smallest size refinement of P such that x

¯
is infeasible for Model (5) with R.

Proof. By Proposition 4, Algorithm 2 generates a refinement R of size |R| =
|P|+ ⌊τ |S|⌋+ 1− |PI(x¯

)|. Proposition 5 confirms this is a lower bound. □

10 M. ROLAND, A. FOREL, T. VIDAL

Corollary 1 shows that Algorithm 2 produces the smallest size refinement R of P
such that x

¯
is infeasible for Model (5) on R. The following theorem is the main

result used in Algorithm 1 for obtaining refinements R such that vL(R) > vL(P).

Theorem 1. Let the point x
¯

be an optimal solution of Model (5) with P. If x
¯

is
unique and infeasible for Model (3), then the refinement R of P created by applying
Algorithm 2 is the smallest size refinement of P such that

vL(R) > vL(P).

Proof. Proposition 7 proves that any refinement R of P is such that Model (5)
with P is a relaxation of Model (5) with R. Then, if R is created by applying
Algorithm 2 we know by Proposition 4 that x

¯
is not feasible for Model (5) with R.

Moreover, if x
¯

is the unique point such that solving Model (5) with P returns the
value vL(P), it follows that

vL(R) > vL(P).
In addition, Corollary 3 proves that R is of minimal size. □

4. On Constructing Minimal Size Mergers

Adaptive partitioning methods based uniquely on refinement operations strictly
increase the size of the partition P with the iterations. As a consequence, the
number of indicator variables z and the time required to solve Model (4) increase
over time. We suggest adding merging operations to address this issue.

Definition 3. A partitionM of a set S is a merger of a partition P if for any P ∈ P
there exists M ∈M such that P ⊆M .

In general, it is not possible to perform a merge without increasing the lower
bound obtained by solving Model (5). This is stated in the following corollary.

Corollary 2. For any merger M of a partition P, we have vL(M) ≤ vL(P).

Proof. The proof is a direct consequence of Definition 3. If M is a merger of P
then P is a refinement of M and Proposition 3 holds. □

Corollary 2 suggests that a merging operation should not be performed in
Algorithm 1 if we request a strict increasing lower-bound. Still, studying merging
operations can provide both algorithmic benefits and structural insights. First,
we show that an “a-posteriori” merge may be performed in the APM, resulting in
strictly tighter lower bounds. Second, we investigate the conditions under which
mergers can be constructed such that vL(M) = vL(P). This provides general insight
into when small partitions that yield optimal solutions are likely to exist.

4.1. Solution Exclusion by Merging. We now study how to perform efficient
merging operations. We prove that, if certain conditions are satisfied, given
a refinement R of a partition P, we can construct a merger M of R such
that vL(M) > vL(P). To carry out this proof, we proceed in the following way.
First, in Propositions 6 and 7 we identify conditions that guarantee vL(M) ≥ vL(P).
Second, in Corollary 3, we show that, if additional assumptions are made on M,
then vL(M) > vL(P). Third, in Proposition 8, we propose a procedure for creating
a merger that satisfies the aforementioned conditions. Fourth, in Theorem 2, we use
the previous results to show how a mergerM satisfying vL(M) > vL(P) is obtained
in Algorithm 1. Finally, in Proposition 9 we show that any infeasible point that has
an objective value smaller or equal to vL(P) cannot become feasible after a merge
operation. This result implies that no cycling between two solutions with the same
objective function value can occur when merge operations are considered.

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 11

To simplify the presentation, we use the following notation throughout the paper,
unless stated otherwise. Let P be a partition of the scenario set S and let R be a
refinement of P. LetM be a merger of R. Let NA be the subsets of an arbitrary
partition A of S that are not in P, i.e., NA = A \ P. Further, let ρP denote the
minimum cost of the solution that satisfies the constraint of a subset P ∈ P, i.e.,

ρP = min
x
{f(x) : x ∈ XP ∩ X}. (12)

We now identify conditions that ensure vL(M) ≥ vL(P).

Proposition 6. Let R be a refinement of a partition P. If M is a merger of R
and |M| ≥ |P|, then

vL(M) ≥ min

{
vL(P), min

M∈NM
ρM

}
.

Proof. Let x
¯
M be the optimal solution of Model (5) withM. We distinguish two

cases.
Case 1. If zM (x

¯
M) = 0 for all M ∈ NM we know that x

¯
M is also feasible for

Model (5) with partition P and thus vL(M) ≥ vL(P).
Case 2. If there exists a M ∈ NM such that zM (x

¯
M) = 1 it holds that vL(M) ≥

ρM . □

Furthermore, we present a simpler method to evaluate situations where a merge
operation guarantees that the lower bound is non-decreasing.

Proposition 7. Let R be a refinement of a partition P. If M is a merger of R
and |M| ≥ |P|, then

vL(M) ≥ min

{
vL(P), min

R∈NR
ρR

}
.

Proof. Since the partitionM is a merger of R,

min
M∈M

ρM ≥ min
R∈R

ρR.

It follows from Proposition 6 that

vL(M) ≥ min(vL(P), min
M∈NM

(ρM)) ≥ min(vL(P), min
R∈NR

(ρR)).

□

Propositions 6 and 7 describe straightforward conditions on the value that ρP
may take to guarantee vL(M) ≥ vL(P). If minP∈NR ρP ≥ vL(P), Proposition 7
highlights that vL(M) ≥ vL(P) for any M obtained by merging the refinement R.
Moreover, if ρR ≤ vL(P) for at least one R ∈ NR it may be possible to construct a
new partition M such that minM∈NM ρM ≥ vL(P).

Corollary 3. Let x
¯

be the optimal solution of Model (5) with P. Let M be such
that |M| ≥ |P|. Let minM∈NM ρM > vL(P) or minR∈NR ρR > vL(P). If x

¯
is

unique and infeasible for Model (5) with M, then

vL(M) > vL(P).

Proof. Let x
¯
M be the optimal solution of Model (5) withM. To prove the statement

we consider two cases.
Case 1. Let zM ′(x

¯
M) = 0 for all M ′ ∈ NM. We know that x

¯
M is also feasible for

Model (5) with partition P. However, the point x
¯

is unique and not feasible for
Model (5) with partition M, so vL(M) cannot be equal to vL(P), and vL(M) >
vL(P).
Case 2. Let a subset M ′ ∈ NM exist such that zM ′(x

¯
M) = 1. If minM∈NM ρM >

12 M. ROLAND, A. FOREL, T. VIDAL

vL(P) then vL(M) ≥ ρM ′ ≥ minM∈NM ρM > vL(P). Otherwise, if minR∈NR ρR >
vL(P), then vL(M) ≥ ρM ′ ≥ minM∈NM ρM ≥ minR∈NR ρR > vL(P). □

Corollary 3 states a set of conditions that allows to identify when a merge
operation leads to a strictly increasing lower bound. Notice that Model (6) does
not need to be solved, instead it is sufficient to compute the value of minM∈NM ρM
and minR∈NR ρR.

We now show how to design a mergerM such that x
¯

is not feasible for Model (5)
withM. Moreover, we wantM to be of minimal size, i.e., |M| = |P|. The following
proposition describes a valid way to create such a partition.

Proposition 8. Let the point x
¯

be feasible for Model (5) with P but infeasible for
Model (3) and let R be a refinement of the partition P such that |R| = |P| + µ,
with µ = ⌊τ |S|⌋+1−|PI(x¯

)|. Then, a mergerM of the partition R satisfying |M| =
|P| exists such that the point x

¯
is not feasible for Model (5) with M.

Proof. First, we show that ifM satisfies the following two properties,

|M| = |P|, (13)
|MF(x¯

)| = |PF(x¯
)| − µ, (14)

then x
¯

is not feasible for Model (5) withM. By combining Equations (13) and (14)
we have

|MF(x¯
)| = |PF(x¯

)| − ⌊τ |S|⌋ − 1 + |PI(x¯
)|,

= |P| − ⌊τ |S|⌋ − 1,

= |M| − ⌊τ |S|⌋ − 1,

which, by Remark 1, implies that x
¯

is not feasible for Model (5) withM.
Second, we describe how to construct a merger M of R that satisfies Equa-

tions (13) and (14). Observe that it is not possible to refine subsets P ∈ PF(x¯
)

into subsets R ∈ RI(x¯
) using split operations. Hence, for any refinement R of

partition P the inequality |RF(x¯
)| ≥ |PF(x¯

)| holds. We distinguish two cases.
Case 1. If |P| = ⌊τ |S|⌋ + 1, then µ = |P| − |PI(x¯

)| = |PF(x¯
)| ≤ |RF(x¯

)|. A
valid mergerM is obtained by merging µ subsets in RF(x¯

) together with exactly
one subset in RI(x¯

). This is always possible because RF(x¯
) contains at least µ

elements and RI(x¯
) is not empty since x

¯
would otherwise necessarily be feasible for

Model (3). This yields a merger M of size |P| satisfying Equation (13). Moreover,
exactly µ sets R ∈ RF(x¯

) are merged with a set R′ ∈ RI(x¯
) such that Equation (14)

is satisfied.
Case 2. If |P| ≥ ⌊τ |S|⌋+2, then µ ≤ |P|−|PI(x¯

)|−1 = |PF(x¯
)|−1 ≤ |RF(x¯

)|−1.
We create the mergerM by merging µ+1 sets inside RF(x¯

). This yields a mergerM
of size |P| satisfying Equation (13). Moreover, µ+ 1 sets are merged to form one
subset M ∈MF(x¯

) and Equation (13) is satisfied. □

Proposition 8 gives a simple procedure for creating a maximum-size merger that
excludes the point x

¯
. Algorithm 3 summarizes how to carry out this procedure. The

following theorem is the main result used in Algorithm 1 for obtaining mergers M
such that vL(M) > vL(P).

Theorem 2. Let x
¯

be the optimal solution of Model (5) with P. Let R be a
refinement of P constructed by applying Algorithm 2 such that minR∈NR ρR > vL(P).
If x

¯
is unique and infeasible for Model (3), then the merger M of R obtained by

applying Algorithm 3 is such that |M| = |P| and

vL(M) > vL(P).

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 13

Algorithm 3: Maximal Size Merger.
Input : scenario set S; partition P of S; refinement R of P; point x

¯
∈ X .

Output :merger M of R, where x
¯

is not feasible for Model (5) with M.
Initialize :M←R and µ← ⌊τ |S|⌋+ 1− |PI(x¯

)|.
1 if |P| = ⌊τ |S|⌋+ 1 then
2 Select all M1, . . . ,Mµ ∈MF(x¯

) and Mµ+1 ∈MI(x¯
).

3 else
4 Select M1, . . . ,Mµ+1 ∈MF(x¯

).
5 end
6 Set Mµ+2 ←

⋃
i∈[µ+1] Mi and M←M\ {M1, . . . ,Mµ+1} ∪ {Mµ+2}.

7 returnM

Proof. The partition R is constructed by applying Algorithm 2. This means
that |R| = |P| + µ, with µ = ⌊τ |S|⌋ + 1 − |PI(x¯

)|. By applying Algorithm 3,
we construct a mergerM as described in the proof of Proposition 8. Consequently,
the point x

¯
is not feasible for Model (5) with M and |M| = |P|. Since x

¯
is not

feasible for Model (5) withM and minR∈NR ρR > vL(P) or minM∈NM ρM > vL(P)
we know by Corollary 3 that vL(M) > vL(P). □

Finally, the next proposition shows that any solution that is infeasible for Model (5)
with P as has an objective value smaller than or equal to vL(P) will never become
feasible for Model (5) with M.

Proposition 9. Let R be a refinement of P constructed by applying Algorithm 2
and such that minR∈NR ρR > vL(P). Let M be a merger of R obtained by applying
Algorithm 3. If x

¯
is not feasible for Model (5) with P and is such that f(x

¯
) ≤ vL(P)

then x
¯

is not feasible for Model (5) with M.

Proof. Since M is a merger of R, we have |MF(x¯
)| ≤ |RF(x¯

)|. Similarly, we
have |RF(x¯

)| ≤ |PF(x¯
)|, otherwise minR∈NR ρR ≤ vL(P) holds and we have a

contradiction. Since the point x
¯

is infeasible for Model (5) with P the equa-
tion |PF(x¯

)| ≤ |P| − ⌊τ |S|⌋ − 1 holds following Remark 1. Further, Proposition 8
shows that Algorithm 3 creates a merger of size |M| = |P|. Combining these
equations results in the inequality

|MF(x¯
)| ≤ |RF(x¯

)| ≤ |PF(x¯
)|,

≤ |P| − ⌊τ |S|⌋ − 1,

= |M| − ⌊τ |S|⌋ − 1,

which, by Remark 1, implies that x
¯

is not feasible for Model (5) with M. □

Proposition 9 describes the conditions in which a point remains infeasible after
a refinement and merge operations. These conditions are always satisfied using
Algorithms 2 and 3 for refinement and merge respectively and when merging is only
performed when the condition minR∈NR ρR > vL(P) is satisfied. In that case, a
point excluded during previous refinement and merge operations cannot become
feasible in a subsequent partition. As a consequence, our algorithm is ensured never
to cycle.

4.2. Mergers with equal value. In what follows, we state conditions ensuring
the existence of a merger M of partition P that satisfies vL(M) = vL(P). Note
that, contrarily to the previous section, the setM is now a merger of P and not a
merger of R. We introduce two sets necessary for discussing the aforementioned
results. First, for an arbitrary P, we define O(P) = {x ∈ X : f(x) ≤ vL(P)} the

14 M. ROLAND, A. FOREL, T. VIDAL

set of points x ∈ X that have an objective value smaller than or equal than vL(P).
Furthermore, for an arbitrary partition P and any positive integer δ ∈ N we define
the set of δ-feasible points as

F(P, δ) =

{
x ∈ O(P) :

∑
P∈P

zP (x) ≥ |P| − ⌊τ |P|⌋ − δ

}
.

This set represents the region of O(P) satisfying δ fewer subsets than necessary in
Model (5) with P.

Proposition 10. Let P1,P2 ⊆ P such that |P1| = |P2| = δ ∈ N≥1 and P1 ∩P2 = ∅.
If F(P, δ) ⊆ (∩P∈P1

XP) ∪ (∩P∈P2
XP), then there exists a merger M of size

|M| = |P| − δ such that
vL(M) = vL(P).

Proof. We construct M by removing all the subsets of P1 and P2 from P by
creating δ new subsets, each obtained by taking the union of one subset in P1 and
one subset in P2. The order in which the subsets are taken has no importance. M
is a merger of P and |M| = |P| − δ.

It remains to show that vL(M) = vL(P). Assume that there exists a point x
¯feasible for Model (5) with M and such that f(x

¯
) < vL(P). First, we show the

validity of two inequalities for x
¯
. Second, we combine these inequalities to show

that x
¯

is necessarily feasible for Model (5) with P , hence contradicting the statement.
Recall the notation NM =M\P.

Inequality 1. Let M be an arbitrary subset in NM. Let P1 ∈ P1 and P2 ∈ P2

be the unique subsets selected to create M , i.e. M = P1 ∪ P2. If zM (x
¯
) = 1 then,

by construction, zP1(x¯
) = zP2(x¯

) = 1.
Recall that x

¯
is feasible for Model (5) withM. This implies that x

¯
∈ F(P, δ) ⊆

(∩P∈P1
XP) ∪ (∩P∈P2

XP). Hence, x
¯
∈ ∩P∈P2

XP or x
¯
∈ ∩P∈P1

XP . As a conse-
quence, if zM (x

¯
) = 0 we have zP1

(x
¯
) = 1 or zP2

(x
¯
) = 1. For every M ∈ NM, the

inequality
zP1

(x
¯
) + zP2

(x
¯
) ≥ zM (x

¯
) + 1

is valid. Summing over all M ∈ NM yields∑
P1∈P1

zP1(x¯
) +

∑
P2∈P2

zP2(x¯
) ≥

∑
M∈NM

zM (x
¯
) + |NM|. (15)

Inequality 2. Let M now be an arbitrary subset in M\NM. By construction,
there is exactly one P ∈ P such that P = M . This means that for every M ∈
M \NM, the inequality

zP (x¯
) ≥ zM (x

¯
)

is valid. Summing over all M ∈M \NM yields∑
P∈P\P1\P2

zP (x¯
) ≥

∑
M∈M\NM

zM (x
¯
). (16)

Finally, by combining Inequality (15) and Inequality (16), we obtain∑
P∈P

zP (x¯
) =

∑
P1∈P1

zP1(x¯
) +

∑
P2∈P2

zP2(x¯
) +

∑
P∈P\P1\P2

zP (x¯
),

≥
∑

M∈M
zM (x

¯
) + |NM|,

≥ |P| − ⌊τ |S|⌋,

where, in order, we use Inequality (7) and |P| = |M|+ |NM|. The last inequality
states that the point x

¯
is feasible for Model (5) with P , which is a contradiction. □

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 15

Corollary 4. Let P̃ ⊆ P such that |P̃| = δ ∈ N≥2. If F(P, δ− 1) ⊆ ∩P∈P̃X
P , then

there exists a merger M of size |M| = |P| − δ + 1 such that

vL(M) = vL(P).

Proof. Suppose without loss of generality that there is a numbering of the subsets
of P̃, i.e., P̃ = {P0, . . . , Pδ−1}. We construct inductively a series of mergers Mi.
Let M1 = P0 ∪ P1, and Mi = Mi−1 ∪ Pi for all i ∈ {1, . . . , δ − 1}. Then, we create
M0 = P \ {P0, P1} ∪ {M0}, andMi = P \ {Mi−1} ∪ {Mi} for all i ∈ {1, . . . , δ− 1}.
The set Mδ−1 has size |M| = |P| − δ + 1 and is a merger of P by construction.
Since the property F(Mi, i) ⊆ F(P, δ−1) ⊆ ∩P∈P̃X

P ⊆ (XMi−1 ∪XPi) is satisfied
for all i ∈ {1, . . . , δ − 1}, we can apply Proposition 10 in an inductive fashion and
obtain vL(Mδ−1) = · · · = vL(M0) = vL(P). □

Proposition 10 and Corollary 4 show that merging operations can be conducted
without decreasing the objective value when some subsets have overlapping feasible
regions. Intuitively, if a subset is such that its feasible region strongly overlaps with
the feasible region of a CCSP, most of the optimal points of that CCSP are likely
to lay inside of the feasible region of the overlapping subset. Hence, merging this
subset with other similar subsets will not create new feasible points that induce a
lower objective value.

An interesting extension of Proposition 10 and Corollary 4 is studying the existence
of completely sufficient partitions, as introduced in [33]. Indeed, a merger M of the
trivial partition P = {{s1}, . . . , {s|S|}} is a completely sufficient partition in the
sense of [33], if vL(M) = vL(P) = v∗.

5. Strong Partitions and Practical Strategies

This section covers the remaining components that complement the presentation
of the general APM summarized in Algorithm 1. First, we highlight how tight big-M
coefficients can be computed by taking advantage of Proposition 1. Second, we
discuss how to build partitions from scratch such that solving Model (5) yields tight
lower bounds on v∗. Third, we propose a method for refining selected subsets by
maximizing the value of minR∈NR ρR. Fourth, we explain how we select scenarios
to be refined and merged to take advantage of the proposed refinement method.
Finally, a heuristic for projecting an infeasible solution to the set of feasible solutions
of the original model (3) is proposed.

5.1. Big-M Tightening. As discussed in Section 1, tightening big-M coefficients is
of major importance for problems with indicator variables [5]. The value of big-M
coefficients directly influences the size of the continuous relaxation of Model (4).
Thus, it also indirectly influences the time required to solve Model (4) to optimality.
For any chance-constrained problem, the tightest value for the big-M parameter of
the i-th constraint of a scenario s is obtained by solving the following optimization
problem, see, e.g., [35],

M̄s
i = max

x∈X
Gs

i (x) (17a)

s.t. Gs(x) ≤Ms(1− zs), s ∈ S, (17b)∑
s∈S

qszs ≥ 1− τ, (17c)

zs ∈ {0, 1}, s ∈ S, (17d)

Model (17) is a chance-constrained problem and it can be as hard to solve as
Model (4). Thus, it is largely unpractical to consider such an approach for every
big-M that needs to be computed.

16 M. ROLAND, A. FOREL, T. VIDAL

The partitioned CCSP (5) can be used to obtain tight big-M coefficients. Indeed,
Proposition 3 states that Model (5) is a relaxation of Model (3) which means that
Model (5) can be used to find a tight approximation of M̄s

i . Given a partition P,
we state the partitioned big-M tightening model,

Ms
i = max

x∈X
Gs

i (x) (18a)

s.t. Gs(x) ≤Ms(1− zP), P ∈ P, s ∈ P, (18b)∑
P∈P

qP zP ≥
∑
P∈P

qP − τ, (18c)

zP ∈ {0, 1}, P ∈ P, (18d)

where M̄s
i ≤Ms

i . We observe that any partition P of S allows to produce a valid
big-M value.

5.2. Partitions for Tight Lower Bounds. In what follows, we use the minimum
subset cost coefficients ρP introduced in Equation (12). Moreover, we use the
coefficients ρs, which are defined exactly as in Equation (12) but the set XP is
replaced by the set Xs.

We describe a procedure for building a partition P of size ⌊τ |S|⌋ + 1 such
that vL(P) ≥ vQ, where vQ is the well-known quantile bound [37]. Let ϕ be a
permutation of S that satisfies ρϕ1

≥ · · · ≥ ρϕ|S| . In [2] the quantile bound is defined
as vQ = ρϕq

where q = min{k ∈ {1, . . . , |S|} :
∑k

l=1 qϕl
> τ}.

Proposition 11 (from [2]). The quantile bound vQ is a lower bound on the optimal
objective of the CCSP (3), i.e., vQ ≤ v∗.

We now discuss how to obtain a partition P such that vL(P) ≥ vQ. We use the
permutation ϕ introduced earlier. First, we fix the size of P to ⌊τ |S|⌋+ 1. Second,
we assign the scenarios ϕi to the set Pj , where j ≡ i mod |P| for all i ∈ {1, . . . , |S|}.
In other words, scenario ϕ1 is assigned to set P1, scenario ϕ2 is assigned to set P2,
and so forth, until the set P|P| is reached. This assignment is continued at P1 until
all scenarios are assigned to a set.

Proposition 12. If P is created by a sequential assignment of the ordering given
by the permutation ϕ into ⌊τ |S|⌋+ 1 disjoint sets, then

vL(P) ≥ vQ.

Proof. From Remark 1 it follows that∑
P∈P

zP ≥ |P| − ⌊τ |S|⌋ = 1.

Since we sequentially dispatch the scenarios based on ρs, each set P ∈ P will contain
at least one scenario ϕl with l ∈ {1, . . . , ⌊τ |S|⌋+ 1}. When Assumption 1 holds, we
know that q = ⌊τ |S|⌋+ 1 and it follows that

vL(P) ≥ min
l∈{1,...,⌊τ |S|⌋+1}

ρϕl
= ρϕq

= vQ.

□

Proposition 12 implies that if P is obtained by a sequential assignment of the
permutation ϕ into ⌊τ |S|⌋ + 1 disjoint sets, then vL(P) ≥ vQ. This result, when
combined with Theorems 1 and 2, ensures a strict increase of a tight lower bound
produced by Algorithm 1, while keeping the size of the considered partitions as
small as possible.

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 17

5.3. Refinements that Promote Merging. We now propose a model that,
when solved to optimality, splits the subset R1 into the subsets Rleft and Rright
as described in Algorithm 2. We propose to split R1 in a way that maxi-
mizes the value of minR∈{Rleft,Rright} ρR. Two observations support this approach.
First, as described in Proposition 7, when the subsets Rleft and Rright are such
that minR∈{Rleft,Rright} ρR > vL(P) we know that a merger M of size |P| can
be constructed so that vL(M) > vL(P). Second, it is preferable that the value
of minR∈{Rleft,Rright} ρR is as large as possible because the feasible regions XRleft

and XRright may be selected in the optimal solution of Model (5) with R. Indeed,
if zRleft or zRright are equal to one for the optimal solution of Model (5) with R,
then vL(R) > min(ρRleft , ρRright).

A naive way to maximize minR∈{Rleft,Rright} ρR is computing its value for every
possible split of R1. The number of models that need to be solved is given by
the Stirling numbers of the second kind [15]. Hence, the complexity of this naive
approach grows exponentially as the number of scenarios inside the subset R1

increases.
We propose an optimization-based approach for chance-constrained linear prob-

lems that can be used when the decision variables are continuous or binary. Our
approach is based on formulating the splitting problem as a bi-level optimization
problem [11]. The upper-level yields an assignment of scenarios to the subsets Rleft
and Rright while maximizing the value of minR∈{Rleft,Rright} ρR. The lower-level
computes the subset costs ρRleft and ρRright given a scenario assignment. For ev-
ery s ∈ R1 we introduce two binary assignment variables πsRleft and πsRright to track
whether this scenario is assigned to subset Rleft or Rright. The upper-level problem
is given by

ρdiv = max
π

min
R∈{Rleft,Rright}

ρR(π) (19a)

s.t.
∑

R∈{Rleft,Rright}

πsR = 1, s ∈ R1, (19b)

∑
s∈R1∩SI(x¯

)

πsR ≥ 1, R ∈ {Rleft, Rright}, (19c)

πsR ∈ {0, 1}, s ∈ R1, R ∈ {Rleft, Rright}. (19d)

Constraint (19b) states that every scenario is assigned to a subset. Constraint (19c)
ensures that at least one s ∈ SI(x¯

) is assigned to each subset.
When the chance-constrained linear problem involves only continuous variables,

the value of ρR(π) for R ∈ {Rleft, Rright} is the solution of the lower-level problem,

ρR(π) = min
x

c⊤x (20a)

s.t. AXx ≥ bX , (20b)
πsRA

sx ≥ πsRb
s, s ∈ R1. (20c)

Model (20) computes the single subset cost ρR as defined in Equation (12) for a
set of assignment variables π. Constraint (20b) is the equivalent of x ∈ X when we
assume that Model (4) is linear. Constraint (20c) is the equivalent of x ∈ Xs when
we assume that Model (4) is linear. If integer variables are present, Model (20) is a
linear relaxation and provides a lower bound on the true value of the single subset
cost.

18 M. ROLAND, A. FOREL, T. VIDAL

Proposition 13. Model (19) can be reformulated as a single-level problem of the
form

ρdiv = max
π,η

α (21a)

s.t. α ≤ (bX)⊤ηXR +
∑
s∈R1

(bs)⊤ηsR, R ∈ {Rleft, Rright}, (21b)

(AX)⊤ηXR +
∑
s∈R1

(As)⊤ηsR = c, R ∈ {Rleft, Rright}, (21c)

1− πsR = 1(ηsRi = 0), s ∈ R1, i ∈ I(s), R ∈ {Rleft, Rright}, (21d)∑
R∈{Rleft,Rright}

πsR = 1, s ∈ R1, (21e)

∑
s∈R1∩SI(x

¯
)

πsR ≥ 1, R ∈ {Rleft, Rright}, (21f)

πsR ∈ {0, 1}, s ∈ R1, R ∈ {Rleft, Rright}, (21g)
η ≥ 0. (21h)

Proof. Since Model (20) is linear, strong duality holds. Let η be the dual variables
of Model (20). The dual of Model (20) for R ∈ {Rleft, Rright} reads

ρR(π) = max
η

(bX)⊤ηX +
∑
s∈R1

πsR(b
s)⊤ηs (22a)

s.t. (AX)⊤ηX +
∑
s∈R1

πsR(A
s)⊤ηs = c, (22b)

η ≥ 0. (22c)

Let I(s) be the set of constraint indices for scenario s ∈ S. For every i ∈ I(s), the
dual variable ηsi in Model (22) is always multiplied by the same binary variable πsR.
The product πsR · ηsi is equal to ηsi when πsR = 1 and 0 when πsR = 0. Hence, we
can replace πsR · ηsi with ηsi and add the constraint 1−πsR = 1(ηsi = 0). Model (22)
now reads

ρR(π) = max
η

(bX)⊤ηX +
∑
s∈R1

(bs)⊤ηs (23a)

s.t. (AX)⊤ηX +
∑
s∈R1

(As)⊤ηs = c, (23b)

1− πsR = 1(ηsi = 0), s ∈ R1, i ∈ I(s), (23c)
η ≥ 0. (23d)

Further, we introduce the variable α = minR∈{Rleft,Rright} ρR(π). By construc-
tion, α ≤ ρR(π) holds for all R ∈ {Rleft, Rright}. Hence, Model (19) is equivalent to

ρbest = max
π

α (24a)

s.t. α ≤ ρR(π), R ∈ {Rleft, Rright}, (24b)∑
R∈{Rleft,Rright}

πsR = 1, s ∈ R1, (24c)

∑
s∈R1∩SI(x¯

)

πsR ≥ 1, R ∈ {Rleft, Rright}, (24d)

πsR ∈ {0, 1}, s ∈ R1, R ∈ {Rleft, Rright}. (24e)

Finally, we replace ρR(π) in Model (24) by Model (23), which yields Model (21). □

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 19

Proposition 13 provides an efficient method to compute refinements that max-
imize the value of minR∈{Rleft,Rright} ρR. The solution of Model (21) is such
that minR∈{Rleft,Rright} ρR(π

∗) = ρdiv when all variables are continuous and
minR∈{Rleft,Rright} ρR(π

∗) ≥ ρdiv when integer variables are present. In both cases,
if the condition ρdiv > v(P) is satisfied, then a merger M of size |P| that en-
sures vL(M) > vL(P) can be constructed.

Remark 4. It is straightforward to generalize the single-level reformulation of
Model (21) to the case where a subset is split into more than two subsets.

5.4. Subset Selection for Refinement and Merging. We now explain how to
select the subsets used in refinement and merging operations at each iteration of our
adaptive method. Our methods aim to maximize the number of merging operations
that are carried out.

We know from Proposition 7 that any refinement such that minR∈{Rleft,Rright} ρR >

vL(P) allows to perform a subsequent merge operation. Hence, when possible, we
always select a subset R1 ∈ RI(x¯

) that satisfies ρdiv > vL(P) where ρdiv is obtained
by solving Model (21). When several subsets satisfy the condition ρdiv > vL(P), we
select the one with the smallest ρdiv value. When no subset satisfies the condition,
i.e., all subsets are such that ρdiv ≤ vL(P), we select R1 = argmaxR∈RI(x¯

) ρdiv.
When merging, we select the feasible subsets M ∈MF(x¯

) with the largest single
subset costs. When an infeasible subset is necessary to construct the merger (see
the second case in Algorithm 3), we select the subset with the largest value for ρs.
This strategy ensures that vL(M) is large when the newly created subset Mµ+2 is
selected in the next iteration.

5.5. Recovering Feasible Solutions. We propose a simple projection heuristic
to recover valid primal solutions when the optimal solution x

¯
of Model (5) is not

feasible for Model (3). We construct this feasible point x̄ by selecting additional
scenarios to be satisfied until Constraint (3c) is valid. We introduce the set E which
contains all the scenarios that are satisfied for obtaining the point x̄. Initially, this
set E is composed of every s ∈ SF(x¯

). Then, scenarios s ∈ SI(x¯
) are greedily added

to E based on their feasibility w.r.t. x
¯
. That is, we iteratively add the scenario

with the smallest value of maxi∈I(s) G
s
i (x¯

) to E until |E| = |S| − ⌊τ |S|⌋. Finally, we
obtain x̄ by solving the following model

vproj = min
x∈X

f(x)

s.t. Gs(x) ≤ 0, s ∈ E.

Further, each time the value of ρ is computed for a scenario or a subset we check
if the associated solution is feasible for Model (4) and improves the current best
upper bound.

6. Numerical Study

This section presents the numerical results of the APM when compared to state-
of-the-art methods. To assess the value of the APM and its components, we run
repeated experiments on CCSP instances taken from the literature. Our numerical
study investigates the performance of our method by measuring the time taken to
solve an instance to optimality, or the optimality gap when the instance cannot
be solved to optimality in the allocated time. To understand the strengths and
weaknesses of our method, we also study a single run of the APM in detail. This
allows us to analyze the occurrence and the effectiveness of the strategies proposed

20 M. ROLAND, A. FOREL, T. VIDAL

in Section 5. For instance, we show how the lower and upper bounds evolve and
how the size of the partition evolves as the number of iterations increases.

All computations have been executed on a remote server. Each experiment is
run on a single core of an Intel Gold 6148 Skylake with 2.4GHz and is allocated
16GB RAM. A time limit of 120min is enforced. Our implementation is made
with the programming language Python. All optimization models are solved using
Gurobi 10.0.3. The code used to produce all numerical results is publicly available
at the online repository: https://github.com/alexforel/AdaptiveCC.

6.1. Experimental Setting. We follow the experimental setting of recent works
on CCSPs in which multi-dimensional knapsack problems with either binary or
continuous variables are used. All instances are generated according to the method
described in [35] and [2]. Each chance-constrained instance is created by sampling a
set of scenarios from a deterministic instance. A scenario is obtained by perturbing
the left-hand side constraint matrix of the original deterministic instance. We
consider three base instances: mk-10-10, mk-20-10, and mk-40-30, which have 10, 10,
and 30 constraints per scenario, respectively, as well as 10, 20, and 40 decision
variables, respectively. We generate five perturbed instances per deterministic
instance.

6.1.1. Implementation and Benchmarks. The final adaptive method, referred to
as Pfinal, is implemented following the description of the APM displayed in Al-
gorithm 1. Moreover, we implemented all the strategies discussed in Section 5.
Obtaining big-M coefficients using Model (18) in each iteration of the APM is too
time-consuming. Therefore, we use the less computationally heavy approach of [5]
each time a new model is solved. In preliminary experiments, we observed that
a large amount of big-M constraints (5c) are unnecessary for solving a reduced
model (5). This is explained by the fact that each individual scenario is obtained by
perturbing a deterministic set of constraints. We observe that, when scenarios are
inside the same subset of a partition, a constraint of a scenario is often dominated by
a constraint of another scenario. These dominated constraints are thus not necessary
for representing the feasible set of the reduced model (5). As a consequence, the
computational performance of the APM improves when implementing the big-M
scenario constraints (5c) as lazy constraints. Lazy constraints are initially inactive
and placed in a lazy constraint pool. They are activated when a feasible solution
is found that violates them, causing the solution to be discarded and the violated
constraints to be added to the model. This is implemented by setting Gurobi’s Lazy
parameter to 1 for all big-M constraints.

We compare the APM with two benchmarks that the big-M formulation of the
original CCSP as given in Model (4). These two methods differ in the way the big-M
parameters are computed. The first benchmark, referred to as “Song Big-M”, follows
the method proposed in [35] and also evaluated in [2]. This method is tailored
to chance-constrained packing problems and therefore to the multi-dimensional
chance-constrained knapsack problems that we consider. It is based on solving a
series of single-dimensional continuous knapsack problems from which extremely
tight upper bounds on the big-M coefficients can be computed using a quantile
argument. The second benchmark, referred to as “Belotti Big-M”, is based on
the problem-agnostic method of [5]. To obtain the big-M coefficients, a single-
dimensional knapsack problem is solved for each scenario/constraint combination
using a valid lower bound on the original CCSP. For both benchmarks, we do not
see a distinct improvement when Gurobi’s Lazy parameter is set to 1 for big-M
constraints (4b), and therefore leave it to its default value. To allow for a fair

https://github.com/alexforel/AdaptiveCC

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 21

comparison between the results of different methods we include the time needed to
compute the big-M coefficients in the total computation time.

6.1.2. Big-M Computation Time. Obtaining tight big-M coefficients can require
a large amount of time. In particular, the method outlined in [35] requires solv-
ing |S|2|I|2 single-dimensional continuous knapsack problems and thus scales quadrat-
ically with the number of constraints and scenarios. Our implementation of [35] is
coded in C++ and interfaced with our code using Cython [4]. Further, it exploits
the symmetry of the problem to avoid performing unnecessary sorting operations.
The time needed to obtain the big-M coefficients for our two benchmarks is given in
Table 1.

Table 1. Computation time needed to obtain all big-M parameters.

Song Big-M
Belotti Big-M

Continuous Binary

mk-10-10

500 3.96s 2.42s 7.45s
1000 15.81s 5.37s 13.97s
3000 140.77s 14.35s 41.59s
5000 381.66s 24.29s 67.13s

mk-20-10

500 11.94s 4.50s 15.87s
1000 46.86s 8.87s 52.52s
3000 374.02s 25.79s 91.37s
5000 1291.11s 43.58s 237.90s

mk-40-30

500 221.48s 21.85s 111.83s
1000 861.83s 44.63s 205.68s
3000 - 134.08s 626.63s
5000 - 223.13s 1099.25s

As expected, the general method of [5] is very fast. In contrast, the method of [35],
which is tailored for multi-dimensional knapsack problems, does not scale well with
the problem size. It cannot terminate within the time limit for large problems. More
precisely, big-M coefficients cannot be computed for the instance mk-40-30 when
there are more than |S| = 3000 scenarios. This can be anticipated from the time
needed to compute big-M coefficients when |S| = 1000 since increasing the scenario
number threefold increases the computation times by a factor of nine. Still, we want
to emphasize that our implementation of [35] is particularly efficient: the times
needed to compute the big-M coefficients are approximately three times smaller
than those presented in [2].

6.2. Optimal Solutions and Bounds. The main experimental results are pre-
sented in Table 2 and Table 3 for instances with continuous and binary variables,
respectively. The tables are produced using the method described in [2]. Each row
presents the performance metric of all methods averaged over the five perturbed
instances. If all instances are solved, we show in the column called Ta, the average
time needed to solve the considered instance to optimality. If at least one instance
cannot be solved, we show the average optimality gap over the non-solved instances
and the number of solved instances in parentheses. In each row of the table, the
best-performing method is shown in bold. For the APM method Pfinal, we also show
the average number of iterations Ita as well as the average size of the final partition
|P |a, both rounded to the nearest integer.

22 M. ROLAND, A. FOREL, T. VIDAL

Table 2. Computational comparison of a selection of methods for
multi-dimensional knapsack problems with continuous variables.

MILPM APM

Song Big-M Belotti Big-M Pfinal

Instance τ |S| Ta Ta Ta Ita |P |a

mk-10-10

0.1

500 24.75s 631.91s 113.94s 33 66
1000 0.01%(4) 0.65%(0) 1710.02s 66 130
3000 0.86%(0) 2.88%(0) 0.59%(0) 177 320
5000 1.19%(0) 4.07%(0) 0.94%(0) 287 513

0.2

500 1901.41s 0.15%(4) 1497.49s 59 132
1000 0.52%(0) 1.55%(0) 0.33%(0) 89 232
3000 1.34%(0) 4.77%(0) 1.01%(0) 203 616
5000 2.08%(0) 6.73%(0) 1.67%(0) 313 1011

mk-20-10

0.1

500 0.02%(4) 0.16%(4) 0.03%(4) 56 79
1000 0.59%(0) 1.41%(0) 0.34%(0) 86 124
3000 1.50%(0) 4.45%(0) 1.09%(0) 195 311
5000 1.92%(0) 5.77%(0) 1.39%(0) 283 502

0.2

500 0.33%(0) 0.89%(0) 0.40%(0) 53 126
1000 1.20%(0) 2.49%(0) 0.93%(0) 83 220
3000 2.57%(0) 7.75%(0) 1.83%(0) 197 610
5000 3.18%(0) 8.78%(0) 1.74%(0) 318 1005

mk-40-30

0.1

500 1.42%(0) 5.29%(0) 1.37%(0) 76 62
1000 2.88%(0) 13.50%(0) 4.71%(0) 66 101
3000 - 22.58%(0) 6.67%(0) 24 301
5000 - 23.01%(0) 8.36%(0) 13 501

0.2

500 2.87%(0) 8.90%(0) 2.19%(0) 77 111
1000 5.22%(0) 24.60%(0) 4.31%(0) 130 205
3000 - 41.08%(0) 8.87%(0) 143 601
5000 - 42.53%(0) 10.71%(0) 83 1001

As can be observed in Table 2, the method Pfinal performs the best among
the pool of compared methods when continuous variables are considered. More
specifically, Pfinal is the best-performing method for 20 out of the 24 considered
instances. For the remaining 4 instances the method Song Big-M performs best.
Thanks to the extremely tight big-M coefficients that are produced with this method,
the time needed to solve Model (4) and the final optimality gaps are always smaller
compared to the Belotti Big-M method.

The results in Table 3 suggest that there is no dominating algorithm when binary
variables are considered. In particular, the method Song Big-M makes it possible
to solve most of the instances that have a large number of scenarios to optimality
when binary variables are considered. Nevertheless, the method Song Big-M does
not produce valid results when the time limit is reached for instance mk-40-30
with |S| ≥ 3000. As explained earlier, due to the large amount of constraints and
scenarios, too much time is consumed for computing the big-M coefficients. For these
same instances the method Pfinal significantly reduces the optimality gap compared
to the Belotti Big-M benchmark. We also observe that, for instance mk-10-10, only
a few iterations are needed to solve the problem to optimality with method Pfinal.
This demonstrates the strength of the partition presented in Section 5.2. In fact,

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 23

Table 3. Computational comparison of a selection of methods for
multi-dimensional knapsack problems with binary variables.

MILPM APM

Song Big-M Belotti Big-M Pfinal

Instance τ |S| Ta Ta Ta Ita |P |a

mk-10-10

0.1

500 11.16s 21.57s 13.30s 2 52
1000 39.13s 56.46s 71.50s 5 112
3000 163.17s 280.47s 120.38s 3 340
5000 800.21s 527.89s 367.81s 5 599

0.2

500 6.51s 13.35s 8.13s 1 101
1000 20.58s 36.88s 16.36s 1 211
3000 154.22s 151.69s 36.81s 1 601
5000 406.18s 461.51s 165.75s 2 1028

mk-20-10

0.1

500 30.28s 51.48s 134.38s 9 69
1000 91.65s 262.26s 333.44s 12 135
3000 635.70s 2538.93s 2726.06s 19 401
5000 1999.27s 2.73%(2) 0.27%(2) 17 680

0.2

500 34.98s 81.76s 250.84s 14 137
1000 107.58s 668.80s 940.53s 18 267
3000 1780.72s 5.18%(0) 0.54%(1) 24 750
5000 2.74%(0) 6.79%(0) 1.34%(0) 19 1094

mk-40-30

0.1

500 351.52s 2503.72s 0.39%(4) 9 74
1000 1295.05s 11.40%(0) 1.76%(0) 7 136
3000 - 41.22%(0) 3.88%(0) 5 315
5000 - 47.21%(0) 5.76%(0) 4 517

0.2

500 400.16s 18.37%(1) 1.60%(0) 9 136
1000 2054.95s 30.80%(0) 4.03%(0) 10 213
3000 - 53.35%(0) 6.14%(0) 10 603
5000 - 59.60%(0) 5.72%(0) 15 1008

the optimal solution of the original CCSP is, in some cases, found directly using the
first partition.

Finally, we draw attention to the fact that when the number of scenarios is
large, Pfinal consistently performs better than other methods for both continuous
and binary variables. This is the strength of the APM. By design, it reduces the
amount of binary variables that are considered and, as a consequence, scales better
with the size of the scenario set.

6.3. Partitioning Strategies. We now study the contribution of the partitioning
strategies introduced in Section 5. We introduce three parameterizations of the
APM that follow the structure of Algorithm 1 but have different strategies for
initializing and refining the partition. We also investigate the benefit of merging.

The first method, denoted by Prandom, is a naive parameterization of the APM.
It is based on restricting Algorithm 1 to refinement operations. Each subset of
the partition to be refined is chosen at random. The dispatch of scenarios to child
subsets is also chosen at random. Nevertheless, the outline of Algorithm 2, i.e., how
many scenarios are selected for refinement and which scenarios are considered for
refinement, is respected. The initial partition of Prandom is obtained by randomly
dispatching the scenarios while keeping their size balanced. The second method,

24 M. ROLAND, A. FOREL, T. VIDAL

denoted by Pinit, is based on the result of Section 5.2 for obtaining an initial partition
but otherwise uses the same implementation as Prandom. The third method, denoted
by Pinfeas, splits the subset that contains the most violated scenario and allocates
scenarios to Rleft and Rright in decreasing order of their violation. That is, the most
violated scenario is allocated to Rleft, the second-most violated to the Rright, and so
on. Further, this last method is allowed to merge subsets.

These methods are run on the same instances as in the previous experiments, but
restricted to τ = 0.2 since they are the most challenging instances according to the
previous experiments. The experiment results are shown in Table 4 and Table 5 for
continuous and binary variables, respectively.

Although the method Prandom is guaranteed to terminate finitely, this method is
less competitive compared to the remaining parameterizations. Still, it is interesting
to note that this naive method yields lower optimality gaps than the Belotti Big-M
benchmark when the number of scenarios is large.

The results show that the initial partition described in Section 5.2 provides
significant improvement in terms of solution time and optimality gap as can be
observed when comparing Pinit and Prandom. However, we do not observe a significant
difference between the results of Pinit and Pinfeas. This is surprising since Pinfeas has
a more elaborate refinement strategy and is allowed to merge. Yet, we observe that
Pinfeas does, in fact, perform very few merge operations as the number of iterations
and the partition size are very close to the ones of Pinit.

However, our final algorithm Pfinal performs significantly more iterations and tends
to have smaller final partitions than all other partitioning algorithms. This suggests
that the refinement strategies that promote merging, introduced in Section 5.3, are
beneficial. A key insight of this experiment is that merging alone is not sufficient
to keep the resulting partitions small: the refinement strategy needs to be aligned
with the merging strategy to keep the considered partitions small.

Table 4. Sensitivity analysis of APM for multi-dimensional knap-
sack problems with continuous variables.

Prandom Pinit Pinfeas Pfinal

Instance |S| Ta Ita |P |a Ta Ita |P |a Ta Ita |P |a Ta Ita |P |a

mk-10-10

500 0.03%(4) 69 169 0.02%(4) 44 144 2003.62s 43 142 1497.49s 59 132
1000 1.97%(0) 43 243 0.84%(0) 35 235 0.69%(0) 41 239 0.33%(0) 89 232
3000 5.24%(0) 23 623 2.14%(0) 17 617 2.15%(0) 18 617 1.01%(0) 203 616
5000 7.70%(0) 39 1039 2.77%(0) 13 1013 2.71%(0) 15 1013 1.67%(0) 313 1011

mk-20-10

500 1.31%(0) 38 138 0.94%(0) 30 130 0.55%(0) 35 132 0.40%(0) 53 126
1000 3.79%(0) 23 223 1.84%(0) 19 219 1.85%(0) 20 219 0.93%(0) 83 220
3000 5.90%(0) 16 616 3.10%(0) 12 612 3.01%(0) 15 613 1.83%(0) 197 610
5000 6.77%(0) 15 1015 3.00%(0) 9 1009 2.88%(0) 12 1009 1.74%(0) 318 1005

mk-40-30

500 4.98%(0) 14 114 4.48%(0) 13 113 3.83%(0) 14 113 2.19%(0) 77 111
1000 10.74%(0) 7 207 7.92%(0) 7 207 8.62%(0) 7 207 4.31%(0) 130 205
3000 20.22%(0) 5 605 14.46%(0) 3 603 14.61%(0) 4 603 8.87%(0) 143 601
5000 27.93%(0) 3 1003 16.57%(0) 3 1003 14.84%(0) 4 1003 10.71%(0) 83 1001

Remark 5. We ran experiments with a variation of Pinfeas without merge operations.
We observed no significant difference in terms of solution time, optimality gap,
number of iterations, and partition size compared to Pinfeas and Pinit. We do not
include these results to keep this section concise.

6.4. Detailed Analysis. To study the behavior of Pfinal and identify the strengths
and weaknesses of this method, we provide a detailed analysis on a single instance: mk-
20-10 with |S| = 1000 scenarios.

ADAPTIVE PARTITIONING FOR CHANCE-CONSTRAINED PROBLEMS 25

Table 5. Sensitivity analysis of APM for multi-dimensional knap-
sack problems with binary variables.

Prandom Pinit Pinfeas Pfinal

Instance |S| Ta Ita |P |a Ta Ita |P |a Ta Ita |P |a Ta Ita |P |a

mk-10-10

500 35.51s 6 110 8.35s 1 101 6.60s 1 101 8.13s 1 101
1000 67.56s 6 220 15.15s 1 211 15.55s 1 211 16.36s 1 211
3000 0.83%(4) 8 626 36.06s 1 601 34.80s 1 601 36.81s 1 601
5000 931.61s 14 1170 189.12s 3 1029 143.19s 2 1028 165.75s 2 1028

mk-20-10

500 466.42s 18 159 325.45s 12 149 264.81s 11 144 250.84s 14 137
1000 0.03%(4) 22 312 1284.55s 14 287 1256.94s 14 280 940.53s 18 267
3000 2.61%(0) 21 683 1.01%(0) 13 751 0.97%(0) 13 732 0.54%(1) 24 750
5000 4.21%(0) 15 1057 1.81%(0) 7 1069 1.84%(0) 9 1091 1.34%(0) 19 1094

mk-40-30

500 2.57%(0) 7 127 2.19%(0) 7 129 1.97%(0) 7 130 1.60%(0) 9 136
1000 5.98%(0) 5 208 4.63%(0) 6 228 4.98%(0) 6 220 4.03%(0) 10 213
3000 21.11%(0) 2 602 10.77%(0) 2 603 9.76%(0) 2 603 6.14%(0) 10 603
5000 23.74%(0) 2 1002 11.47%(0) 2 1002 10.43%(0) 4 1002 5.72%(0) 15 1008

6.4.1. Partition Size. The number of subsets that compose the partition as a function
of the number of iterations is shown in Figure 1. When applying method Pfinal, the
partitions first stay of minimal size for many iterations and then increase steadily
with the iterations. In fact, Figure 1 suggests that Pfinal follows two phases: a first
phase in which many merging operations are performed, and a second phase in
which few or no merging operations are performed. These phases are not hard-coded
but emerge naturally from the design of Pfinal.

In the first phase, merge operations are performed at each iteration, which forces
the partition to stay as small as possible. In this phase, the reduced-size model is
solved very efficiently. Indeed, when the size of the partition is minimal, i.e., it is
equal to ⌊τ |S|⌋ + 1, the chance constraint (5c) reduces to

∑
P∈P zP ≥ 1. Hence,

the optimal solution of the reduced model is given by the point that corresponds
to mins∈S ρs.

The second phase begins when the size of the partition starts growing. During
these remaining iterations, fewer merging operations are carried out. As a result, the
size of the partition increases steadily, and solving the reduced-size model requires
more time in each iteration. Overall, more iterations are carried out when continuous
variables are considered compared to when binary variables are considered in the
first phase of Pfinal, as could already be observed in Tables 2 and 3. Moreover,
we observe that each time a refinement operation is carried out for an instance
with continuous variables, exactly one additional subset is created. In contrast, in
the binary case, the minimal-size refinement tends to create much more than one
additional subset. This can be explained by the fact that, due to the integrality
restrictions on the decision variables, the optimal solutions satisfy more sets XP .
The fact that partitions that necessitate 75% less binary variables can yield optimal
solutions to the original CCSP demonstrates the value of adaptive methods for
CCSPs.

6.4.2. Bound Evolution with Refinement and Merging. In Figures 2 and 3, we
examine how the lower and upper bounds, along with the iteration count, evolve
over time. Figure 2 (a) shows how the method Pfinal achieves a computational
advantage over the other methods when continuous variables are considered: it
quickly finds a tight lower bound. This is explained by the large number of iterations
performed in the first phase of the final APM when the partition size stays minimal.
Figure 2 (a) shows that the first phase lasts around 450 s. Once the second phase

26 M. ROLAND, A. FOREL, T. VIDAL

20 40 60 80

205

210

215

220

Iteration

P
ar

ti
ti

on
si

ze

(a) Continuous

5 10 15

250

300

Iteration

(b) Binary

Prandom Pinfeas Pfinal

Figure 1. Partition size over iterations for mk-20-10 with 1000
scenarios with continuous and binary variables. The methods
Prandom and Pinfeas are indistinguishable in the (a) continuous case.

is reached, the partition size increases, and more time is required to solve each
optimization problem. This can be observed in Figure 2 (b) as the number of
iterations performed over time decreases after 450 s. Figure 3 (a) also highlights
the computational advantage of the method Song Big-M when binary variables are
considered. Thanks to its very tight big-M coefficients, this method quickly produces
a feasible solution and can close the optimality gap in a short amount of time. On
the other hand, Pfinal stays in the first phase for several iterations, resulting in a
longer computation time.

0 1,800 3,600 5,400 7,200
−6,300

−6,200

−6,100

−6,000

−5,900

Time (s)

B
ou

nd
va

lu
e

(a) Bounds

Song Big-M Pfinal

0 1,800 3,600 5,400 7,200
0

20

40

60

80

100

Time (s)

It
er

at
io

ns

(b) Iterations

Figure 2. Convergence plot and number of iterations performed
over time on mk-20-10 with 1000 scenarios and continuous variables.

7. Conclusion

This paper introduces a method for solving chance-constrained problems with
finite support based on iteratively partitioning the scenario set and solving reduced
models. The method provides valid lower bounds on the original stochastic problem
and is guaranteed to recover its optimal solution in a finite number of iterations.
The key idea of the proposed method is to modify the partition by excluding

REFERENCES 27

0 300 600 900 1,200
−6,300

−6,200

−6,100

−6,000

−5,900

Time (s)

B
ou

nd
va

lu
e

(a) Bounds

Song Big-M Pfinal

0 300 600 900 1,200
0

5

10

15

Time (s)

It
er

at
io

ns

(b) Iterations

Figure 3. Convergence plot and number of iterations performed
over time on mk-20-10 with 1000 scenarios and binary variables.
The method Song Big-M closes the gap in 112 seconds

previously found solutions. We use mathematical arguments to find modifications
of the partition that ensure a strict increase of the lower bounds while keeping the
size of the reduced model as small as possible.

The proposed method surpasses state-of-the-art benchmarks on standard in-
stances with continuous variables and performs comparably on instances with binary
variables. Its scalability improves notably when solving instances with a large
number of scenarios and constraints.

Future research avenues include extensions for non-equiprobable scenarios, adapt-
ing the partitioning method for constraint aggregations within subsets, or leveraging
partitions to enhance techniques that exploit the quantile bound. More generally,
new methods to modify partitions might be investigated that do not rely on refining
and merging. Another promising direction is whether bound improvements through
refinement and merging can be performed within a single branch-and-bound tree.
This removes the need to solve a new problem from scratch at each iteration and
makes it possible to reuse computational information from previous iterations. Fi-
nally, a promising direction to improve the understanding of CCSPs is studying the
existence of small completely sufficient partitions.

Acknowledgments

The authors want to thank Youssouf Emine for his help with the highly op-
timized implementation of a benchmark method, as well as Martine Labbé for
her helpful comments on an earlier version of this manuscript. The support of
IVADO, the Canada First Research Excellence Fund (Apogée/CFREF), as well as
the computational infrastructure provided by Compute Canada are also gratefully
acknowledged.

References

[1] A. Abdi and R. Fukasawa. “On the mixing set with a knapsack constraint.” In:
Mathematical Programming 157 (2016), pp. 191–217. doi: 10.1137/s10107-
016-0979-5.

https://doi.org/10.1137/s10107-016-0979-5
https://doi.org/10.1137/s10107-016-0979-5

28 REFERENCES

[2] S. Ahmed, J. Luedtke, Y. Song, and W. Xie. “Nonanticipative duality, re-
laxations, and formulations for chance-constrained stochastic programs.” In:
Mathematical Programming 162 (2017), pp. 51–81. doi: 10.1007/s10107-
016-1029-z.

[3] S. Ahmed and A. Shapiro. “Solving Chance-Constrained Stochastic Programs
via Sampling and Integer Programming.” In: State-of-the-Art Decision-Making
Tools in the Information-Intensive Age. 2014. Chap. Chapter 12, pp. 261–269.
doi: 10.1287/educ.1080.0048.

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith.
“Cython: The best of both worlds.” In: Computing in Science & Engineering
13.2 (2011), pp. 31–39.

[5] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gómez,
and D. Salvagnin. “On handling indicator constraints in mixed integer program-
ming.” In: Computational Optimization and Applications 65 (2016), pp. 545–
566. doi: 10.1007/s10589-016-9847-8.

[6] D. Bertsimas and N. Mundru. “Optimization-based scenario reduction for
data-driven two-stage stochastic optimization.” In: Operations Research (2022).
doi: 10.1287/opre.2022.2265.

[7] D. Bienstock and M. Zuckerberg. “Solving LP relaxations of large-scale prece-
dence constrained problems.” In: International Conference on Integer Pro-
gramming and Combinatorial Optimization. Ed. by F. Eisenbrand and F. B.
Shepherd. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–14. doi:
10.1007/978-3-642-13036-6_1.

[8] D. Cattaruzza, M. Labbé, M. Petris, M. Roland, and M. Schmidt. “Exact
and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization
Problems.” In: INFORMS Journal on Computing (2023). Forthcoming.

[9] A. Charnes, W. W. Cooper, and G. H. Symonds. “Cost horizons and cer-
tainty equivalents: an approach to stochastic programming of heating oil.” In:
Management science 4.3 (1958), pp. 235–263. doi: 10.1287/mnsc.4.3.235.

[10] J. Cho and A. Papavasiliou. “Exact Mixed-Integer Programming Approach
for Chance-Constrained Multi-Area Reserve Sizing.” In: IEEE Transactions
on Power Systems (2023). doi: 10.1109/TPWRS.2023.3279692.

[11] S. Dempe. Foundations of bilevel programming. Springer Science & Business
Media, 2002. doi: https://doi.org/10.1007/b101970.

[12] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. “Scenario reduction in
stochastic programming.” In: Mathematical Programming 95 (2003), pp. 493–
511. doi: 10.1007/s10107-002-0331-0.

[13] F. Errico, G. Desaulniers, M. Gendreau, W. Rei, and L.-M. Rousseau. “The
vehicle routing problem with hard time windows and stochastic service times.”
In: EURO Journal on Transportation and Logistics 7 (2018), pp. 223–251.
doi: 10.1007/s13676-016-0101-4.

[14] D. Espinoza and E. Moreno. “A primal-dual aggregation algorithm for mini-
mizing conditional value-at-risk in linear programs.” In: Computational Opti-
mization and Applications 59.3 (2014), pp. 617–638. doi: 10.1007/s10589-
014-9692-6.

[15] R. L. Graham, D. E. Knuth, O. Patashnik, and S. Liu. “Concrete mathematics:
a foundation for computer science.” In: Computers in Physics 3.5 (1989),
pp. 106–107.

[16] O. Günlük and Y. Pochet. “Mixing mixed-integer inequalities.” In: Mathemat-
ical Programming 90 (2001), pp. 429–457. doi: 10.1007/PL00011430.

https://doi.org/10.1007/s10107-016-1029-z
https://doi.org/10.1007/s10107-016-1029-z
https://doi.org/10.1287/educ.1080.0048
https://doi.org/10.1007/s10589-016-9847-8
https://doi.org/10.1287/opre.2022.2265
https://doi.org/10.1007/978-3-642-13036-6_1
https://doi.org/10.1287/mnsc.4.3.235
https://doi.org/10.1109/TPWRS.2023.3279692
https://doi.org/https://doi.org/10.1007/b101970
https://doi.org/10.1007/s10107-002-0331-0
https://doi.org/10.1007/s13676-016-0101-4
https://doi.org/10.1007/s10589-014-9692-6
https://doi.org/10.1007/s10589-014-9692-6
https://doi.org/10.1007/PL00011430

REFERENCES 29

[17] H. Heitsch and W. Römisch. “Scenario reduction algorithms in stochastic
programming.” In: Computational Optimization and Applications 24 (2003),
pp. 187–206. doi: 10.1023/A:1021805924152.

[18] F. Kılınç-Karzan, S. Küçükyavuz, and D. Lee. “Joint chance-constrained
programs and the intersection of mixing sets through a submodularity lens.” In:
Mathematical Programming 195.1 (2021), pp. 283–326. doi: 10.1007/s10107-
021-01688-1.

[19] S. Küçükyavuz. “On mixing sets arising in chance-constrained programming.”
In: Mathematical Programming 132.1-2 (2012), pp. 31–56. doi: 10.1007/
s10107-010-0385-3.

[20] J. Luedtke. “A branch-and-cut decomposition algorithm for solving chance-
constrained mathematical programs with finite support.” In: Mathematical
Programming 146.1-2 (2014), pp. 219–244. doi: 10.1007/s10107-013-0684-
6.

[21] J. Luedtke and S. Ahmed. “A sample approximation approach for optimization
with probabilistic constraints.” In: SIAM Journal on Optimization 19.2 (2008),
pp. 674–699. doi: 10.1137/070702928.

[22] J. Luedtke, S. Ahmed, and G. L. Nemhauser. “An integer programming
approach for linear programs with probabilistic constraints.” In: Mathematical
Programming 122.2 (2010), pp. 247–272. doi: 10.1007/s10107-008-0247-4.

[23] J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrion. “Scenario reduction
for futures market trading in electricity markets.” In: IEEE Transactions on
Power Systems 24.2 (2009), pp. 878–888. doi: 10.1109/TPWRS.2009.2016072.

[24] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. “Sample average approximation
method for chance constrained programming: theory and applications.” In:
Journal of Optimization Theory and Applications 142.2 (2009), pp. 399–416.
doi: 10.1007/s10957-009-9523-6.

[25] B. S. Pay and Y. Song. “Partition-based decomposition algorithms for two-
stage Stochastic integer programs with continuous recourse.” In: Annals of
Operations Research 284.2 (2020), pp. 583–604. doi: 10.1007/s10479-017-
2689-7.

[26] A. Porras, C. Dominguez, J. M. Morales, and S. Pineda. “Tight and Compact
Sample Average Approximation for Joint Chance-Constrained Problems with
Applications to Optimal Power Flow.” In: INFORMS Journal on Computing
(2023). doi: 10.1287/ijoc.2022.0302.

[27] F. Qiu, S. Ahmed, S. S. Dey, and L. A. Wolsey. “Covering linear programming
with violations.” In: INFORMS Journal on Computing 26.3 (2014), pp. 531–
546. doi: 10.1287/ijoc.2013.0582.

[28] H. Rahimian and B. Pagnoncelli. “Data-driven approximation of contextual
chance-constrained stochastic programs.” In: SIAM Journal on Optimization
33.3 (2023), pp. 2248–2274. doi: 10.1137/22M1528045.

[29] C. Ramirez-Pico, I. Ljubić, and E. Moreno. “Benders Adaptive-Cuts Method
for Two-Stage Stochastic Programs.” In: Transportation Science 57.5 (2023),
pp. 1252–1275. doi: 10.1287/trsc.2022.0073.

[30] C. Ramirez-Pico and E. Moreno. “Generalized adaptive partition-based method
for two-stage stochastic linear programs with fixed recourse.” In: Mathematical
Programming 196.1-2 (2022), pp. 755–774. doi: 10.1007/s10107-020-01609-
8.

[31] N. Rujeerapaiboon, K. Schindler, D. Kuhn, and W. Wiesemann. “Scenario
reduction revisited: Fundamental limits and guarantees.” In: Mathematical
Programming 191.1 (2022), pp. 207–242. doi: 10.1007/s10107-018-1269-1.

https://doi.org/10.1023/A:1021805924152
https://doi.org/10.1007/s10107-021-01688-1
https://doi.org/10.1007/s10107-021-01688-1
https://doi.org/10.1007/s10107-010-0385-3
https://doi.org/10.1007/s10107-010-0385-3
https://doi.org/10.1007/s10107-013-0684-6
https://doi.org/10.1007/s10107-013-0684-6
https://doi.org/10.1137/070702928
https://doi.org/10.1007/s10107-008-0247-4
https://doi.org/10.1109/TPWRS.2009.2016072
https://doi.org/10.1007/s10957-009-9523-6
https://doi.org/10.1007/s10479-017-2689-7
https://doi.org/10.1007/s10479-017-2689-7
https://doi.org/10.1287/ijoc.2022.0302
https://doi.org/10.1287/ijoc.2013.0582
https://doi.org/10.1137/22M1528045
https://doi.org/10.1287/trsc.2022.0073
https://doi.org/10.1007/s10107-020-01609-8
https://doi.org/10.1007/s10107-020-01609-8
https://doi.org/10.1007/s10107-018-1269-1

30 REFERENCES

[32] M. Siddig and Y. Song. “Adaptive partition-based SDDP algorithms for mul-
tistage stochastic linear programming with fixed recourse.” In: Computational
Optimization and Applications 81 (2022), pp. 201–250. doi: 10.1007/s10589-
021-00323-1.

[33] Y. Song and J. Luedtke. “An adaptive partition-based approach for solving
two-stage stochastic programs with fixed recourse.” In: SIAM Journal on
Optimization 25.3 (2015), pp. 1344–1367. doi: 10.1137/140967337.

[34] Y. Song and J. R. Luedtke. “Branch-and-cut approaches for chance-constrained
formulations of reliable network design problems.” In: Mathematical Program-
ming Computation 5.4 (2013), pp. 397–432. doi: 10.1007/s12532-013-0058-
3.

[35] Y. Song, J. R. Luedtke, and S. Küçükyavuz. “Chance-constrained binary
packing problems.” In: INFORMS Journal on Computing 26.4 (2014), pp. 735–
747. doi: 10.1287/ijoc.2014.0595.

[36] M. W. Tanner and L. Ntaimo. “IIS branch-and-cut for joint chance-constrained
stochastic programs and application to optimal vaccine allocation.” In: Eu-
ropean Journal of Operational Research 207.1 (2010), pp. 290–296. doi: 10.
1016/j.ejor.2010.04.019.

[37] W. Xie and S. Ahmed. “On quantile cuts and their closure for chance con-
strained optimization problems.” In: Mathematical Programming 172 (2018),
pp. 621–646. doi: 10.1007/s10107-017-1190-z.

(M. Roland, A. Forel, T. Vidal) André-Aisenstadt Pavillon, 2920 Tour Road, Montreal,
Quebec H3T 1N8, Canada

Email address, M. Roland: mmmroland@gmail.com
Email address, A. Forel: alexandre.forel@polymtl.ca
Email address, T. Vidal: thibaut.vidal@polymtl.ca

https://doi.org/10.1007/s10589-021-00323-1
https://doi.org/10.1007/s10589-021-00323-1
https://doi.org/10.1137/140967337
https://doi.org/10.1007/s12532-013-0058-3
https://doi.org/10.1007/s12532-013-0058-3
https://doi.org/10.1287/ijoc.2014.0595
https://doi.org/10.1016/j.ejor.2010.04.019
https://doi.org/10.1016/j.ejor.2010.04.019
https://doi.org/10.1007/s10107-017-1190-z

	1. Introduction
	1.1. Contributions
	1.2. Related Literature
	1.3. Outline

	2. Adaptive Partitioning Method
	2.1. Partitioned CCSPs
	2.2. Adaptive Partitioning Method
	2.3. Finite Termination

	3. On Constructing Minimal Size Refinements
	3.1. Solution Exclusion by Refinement

	4. On Constructing Minimal Size Mergers
	4.1. Solution Exclusion by Merging
	4.2. Mergers with equal value.

	5. Strong Partitions and Practical Strategies
	5.1. Big-M Tightening
	5.2. Partitions for Tight Lower Bounds
	5.3. Refinements that Promote Merging
	5.4. Subset Selection for Refinement and Merging
	5.5. Recovering Feasible Solutions

	6. Numerical Study
	6.1. Experimental Setting
	6.2. Optimal Solutions and Bounds
	6.3. Partitioning Strategies
	6.4. Detailed Analysis

	7. Conclusion
	Acknowledgments
	References

