
Optimal counterfactual explanations for

k-Nearest Neighbors using Mathematical

Optimization and Constraint Programming

Claudio Contardo1, Ricardo Fukasawa2*, Louis-Martin Rousseau3, and
Thibaut Vidal3

1 Department of Mechanical, Industrial and Aerospace Engineering, Concordia
University

2 Department of Combinatorics and Optimization, University of Waterloo
3 Mathematics and Industrial Engineering, Polytechnique Montreal

* Corresponding author

Abstract. Within the topic of explainable AI, counterfactual explana-
tions to classi�ers have received signi�cant recent attention. We study
counterfactual explanations that try to explain why a data point re-
ceived an undesirable classi�cation by providing the closest data point
that would have received a desirable one. Within the context of one the
simplest and most popular classi�cation models �k-nearest neighbors
(k-NN)� the solution to such optimal counterfactual explanation is still
very challenging computationally. In this work, we present techniques
that signi�cantly improve the computational times to �nd such optimal
counterfactual explanations for k-NN.

1 Introduction

k-Nearest Neighbors (k-NN) stands as one of the most popular and simplest
machine learning (ML) classi�cation models. In k-NN, we are given a set of n
data points or observations (given as points in Rd). Each such observation has an
associated label, taken from a set L. Finally, we are also given an integer k ≥ 1.
A new unseen data point x ∈ Rd is classi�ed by looking at which label appears
more frequently among the labels of its k closest observations.

In this paper, we study the problem of providing counterfactual explanations
for k-NN. Counterfactual explanations in ML play a key role in the interpretabil-
ity of the models. They provide answers to the following fundamental question:
�What is the smallest change that should be applied to a sample point x to
shift its label from an undesirable classi�cation to a desirable one?�. Counter-
factual explanations have been proposed for a variety of ML models, such as
tree ensembles [7] and linear classi�ers [11], among others. Recent surveys on
counterfactual explanations can be found in [2,5].

Despite its algorithmic simplicity, the only counterfactual explanatory model
for k-NN has been proposed in [4] via a mixed-integer program (MIP), but as
mentioned in that paper, �Explanations of nearest-neighbor predictors can be
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obtained in short times for small sample sizes, but do not scale as well to large
sample sizes�. We are interested in applying techniques from mathematical op-
timization and constraint programming to develop more e�cient counterfactual
models and algorithms for k-NN. The contributions of our article can therefore
be summarized as follows:

1. We introduce a �ltering mechanism aimed at reducing the dimension of these
models without compromising their correctness.

2. We introduce two relaxation bounds and an incremental solution approach,
which exploits them, to accelerate the resolution of the models.

3. We assess the relative performances of the proposed models and methods.

The remainder of this article is organized as follows. Section 2 presents the
basic problem de�nition and formulation. Section 3 focuses on the �rst dimen-
sionality reduction technique called �ltering. Section 4 presents the other dimen-
sionality reduction techniques (partition and sampling). Computational results
are presented in Section 5 and �nal discussions in Section 6.

2 Problem de�nition

We start by formally de�ning the k-nearest neighbors (k-NN) problem. In k-NN,
we are given a set {(xi, y(xi)) : i = 1, . . . , n} of labeled data, where O = {xi :
i = 1, . . . , n} ⊆ Rd is the set of data points or observations, and y(xi) ∈ L,
where L = {0, 1} is the set of possible labels. We assume, WLOG, that 0 is
an undesirable label and 1 is a desirable one. We are also given a dissimilarity
measure dist(x,w) ≥ 0 that establishes the dissimilarity between two points
x,w ∈ Rd. Throughout this work, we assume dist(x, y) to be ||x − y||1. Two
observations with a dissimilarity close to zero are therefore interpreted as being
similar. Finally, we are also given an integer k ≥ 1.

The way the k-NN classi�er works for a new, unseen data point x /∈ O is
as follows. Let N(k, x) be the set of k closest points in O to x according to the
dissimilarity measure dist, i.e., |N(k, x)| = k and dist(u, x) ≤ dist(v, x),∀u ∈
N(k, x), v ∈ O\N(k, x). LetNt(k, x) = {ξ ∈ N(k, x) : y(ξ) = t} for t ∈ L. The k-
NN classi�er returns the majority class inN(k, x), i.e., c(x) = argmax{|Nt(k, x)| :
t ∈ L}. We will assume that ties are not possible, for instance by assuming that
k is odd. The k-NN may be ill-de�ned if two or more points have the same dis-
similarity, in which case there may be multiple sets N(k, x). We will assume an
optimistic de�nition: In case of ties, we will assume that N(k, x) corresponds to
the subset with the minimum number of observations labeled as 0.

We now proceed to de�ne the counterfactual k-NN problem (cnt-k-NN). In
addition to the input of k-NN, the cnt-k-NN problem receives as input a point
x0 such that c(x0) = 0. In the cnt-k-NN we wish to �nd the point x ∈ Rd such
that c(x) = 1 and minimizing dist(x, x0). We de�ne some notation (that will
be used later) to make the dependence on x1, . . . , xn explicit. Let Nv := {i ∈
{1, . . . , n} : y(xi) = v} for v = 0, 1. The following formulation is given in [4]:
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cnt(N0, N1) =



min δ0 (1a)

s.t. δ0 = dist(x, x0) (1b)

δi = dist(x, xi),∀i ∈ N0 ∪N1 (1c)

λi = 1 ⇒ δi ≤ ∆, ∀i ∈ N0 ∪N1 (1d)

λi = 0 ⇒ δi ≥ ∆, ∀i ∈ N0 ∪N1 (1e)∑
i∈N0∪N1

λi = k (1f)∑
i∈N0

λi ≤ ⌊k/2⌋ (1g)

λ ∈ {0, 1}N0∪N1 ;x ∈ Rd; δ ∈ R{0}∪N0∪N1

+ ;∆ ∈ R+ (1h)

We denote by X(N0, N1) the set of x for which there exist δ,∆, λ for which
(x, δ,∆, λ) is feasible for (1).

Note that while formulation (1) is not a MIP directly, it can be input into a
MIP solver by replacing constraint (1d) with δi ≤ ∆+M(1−λi) and constraint
(1e) with δi ≥ ∆ − Mλi. Moreover, since Gurobi [6] accepts constraints like
y = |x| and reformulates them automatically in a MIP, the norm constraints can
also be passed to it.

Note that, in [4], constraint (1e) was written as δi ≥ ∆ −Mλi + ϵ for some
ϵ > 0. However, such formulation will lead to an infeasible model for instance
when n > k and x1 = . . . = xn, with y(x1) = . . . = y(xn) = 1, even though any
x is feasible in that case. We also note that x is feasible for (1) if and only if
c(x) = 1 according to an optimistic k-NN classi�er.

In addition, (1) can be solved using a constraint programming (CP) solver
directly. Note, however, that CP solvers assume that all variables are required
to be integer, so we scale the variables x to assume that it only assumes integer
variables. Such scaling and integrality may cause some possible solutions to (1)
to be lost.

The main challenge in solving problem (1) is that n may be very large, be-
coming too big to solve using either MIP or CP. In addition, for MIP, constraints
(1d) and (1e) are �Big-M� type constraints, which are not a very good structure
to have in MIP.

In what follows we present techniques that were applied to try and reduce
the size of the problem.

3 Filtering

The idea for reducing the size of (1) relies on a basic observation that, if one
of the points xi is �too far� from x0, then it will not be one of the k nearest
neighbors of a point that is �close� to x0.

Formally, we assume that we have already found a feasible solution x̄ ∈
X(N0, N1). Any solution we are interested must be closer to x0 than x̄ and so,
the following lemma allows us to eliminate points xi from (1) which are too far.
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Lemma 1. Suppose that x̄ ∈ X(N0, N1) and let d̄ := ||x̄−x0||. Assume that we

can compute µ̄ ≥ 0 such that, for every x such that ||x− x0|| ≤ d̄, there exist k
points xi1 , . . . , xik such that ||x− xil || ≤ µ̄, for all l = 1, . . . , k.

Then if xi is such that ||xi − x0|| > d̄+ µ̄, xi cannot be one of the k nearest

neighbors of x, for any such that ||x− x0|| ≤ d̄.

Proof. The Lemma follows from a simple application of triangle inequality, since
||x0−xi|| ≤ ||x−x0||+||xi−x|| ⇒ ||xi−x|| ≥ ||xi−x0||−||x−x0|| > d̄+µ̄−d̄ = µ̄

Therefore, xi1 , . . . , xik are closer to x than xi ⊓⊔

We call this operation of removing points xi based on Lemma 1 �ltering.
We propose two basic �ltering methods to compute µ̄. Filter 1 is based on

�nding the k nearest neighbors of x̄. Suppose that the k nearest neighbors of x̄
are all within a distance ε ≥ 0 of it. Then, for any point such that ||x−x0|| ≤ d̄,
we get that ||x−xil || ≤ ||x−x0||+ ||xil − x̄||+ ||x̄−x0|| ≤ d̄+ d̄+ ε. So we may
apply Lemma 1 with µ̄ = 2d̄+ ε.

Filter 2 is based on spending some more computational e�ort to �nd µ̄, to
derive a second bound that can also be used to further reduce the size of (1).
What we will do is that, for each i, we solve the following problem

µi = max ||x− xi||
s.t. ||x− x0|| ≤ d̄

(2)

Now, we can pick µ̄ to be the k-th smallest µi value, and then can apply
Lemma 1 with that value for µ̄. Note that (2) is still a MIP, but it is a relatively
simple one that a modern MIP solver like Gurobi can be expected to solve in a
not so large computational time.

4 Partition and sampling relaxations

While the �ltering procedures in Section 3 may help in reducing the number n
of points, more often than not, n will still be relatively large. In this section, we
propose two relaxations of cnt(N0, N1) to further reduce the size of problem (1).

4.1 Sampling-based relaxation for dealing with N0

The �rst observation is that, if we remove some of the points in N0, we get a
relaxation of cnt(N0, N1). This is formalized in the following lemma.

Theorem 1. For any U0 ⊆ N0 such that |U0+N1| ≥ k, X(U0, N1) ⊇ X(N0, N1),
or in other words, cnt(U0, N1) is a relaxation of cnt(N0, N1).

Proof. Let us consider the case when N0 \ U0 = {l}.
Suppose that x ∈ X(N0, N1) and let δ,∆, λ be the values for which (x, δ,∆, λ)

is feasible for cnt(N0, N1).
If l is not one of the k nearest neighbors of x in cnt(N0, N1) then λl = 0, and

so x ∈ X(U0, N1) follows by picking the corresponding components of (x, δ,∆, λ)
that exist in cnt(U0, N1).
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If l is one of the k nearest neighbors of x in cnt(N0, N1), then λl = 1.
Let xt be the (k + 1)-th nearest neighbor of x in cnt(N0, N1). We can then
set λ′ = λ − el + et, and note that λ′ satis�es constraints (1f) and (1g), since∑
i∈N0∪N1

λi =
∑

i∈N0∪N1

λ′
i and

∑
i∈N0

λ′
i ≤

∑
i∈N0

λi.

We can, therefore, obtain that x is feasible for cnt−k−NN(U0, N1).

For the more general case, when |N0 \ U0| ≥ 2, let l ∈ N0 \ U0. We have
shown that X(U0, N1) ⊇ X(U0∪{l}, N1) and, by induction on |N0 \U0|, X(U0∪
{l}, N1) ⊇ X(N0, N1), so the result follows. ⊓⊔

Theorem 1 allows us to remove a huge number of the points in N0 and only
be left with a very small number of samples from the set N0. For this reason,
we call this relaxation the sampling relaxation. Unfortunately, we cannot do the
same for points in N1, which can still leave us with a problem of relatively large
size to solve.

4.2 Partition-based relaxation for dealing with N1

To cope with a large number of points in N1, we propose a partitioning-based
approach. The main idea is that we will partition N1 into di�erent sets and then
each set will be treated in a uni�ed way.

To formalize the approach, we �rst start by noting that (1) can be modi�ed
so that (1f) becomes

∑
i∈N0∪N1

λi ≥ k (we call this new constraint (1f)' and the

resulting problem (1)').

Lemma 2. The optimal value of (1) and (1)' are equal.

Proof. It is easy to see that (1)' is a relaxation of (1).

Now let (x′, δ′, ∆′, λ′) be optimal for (1)'

Let I := {i ∈ 1, . . . , n : λ′
i = 1} = {i1, . . . , il} for some l ≥ k. Assume WLOG

that dist(xij , x0) ≤ dist(xij+1 , x0) for all j = 1, . . . , l − 1.

Note that dist(xik , x0) ≤ dist(xij , x0) ≤ ∆′ for all j ≥ k. Then, we can set
∆̄ = dist(xik , x0), λ̄ij = 0 for all j > k and λ̄ij = 1, for all j ≤ k.

Then (x′, δ′, ∆̄, λ̄) is a solution to (1) of the same cost. ⊓⊔

Now let us consider S = {S1, . . . , Sp} a partition of N0 ∪N1, such that, for
all t = 1, . . . , p, we have:

(P.1) St ̸= ∅;
(P.2) Either St ⊆ N0 (in which case c(St) = 0) or St ⊆ N1 (in which case

c(St) = 1);

(P.3) If c(St) = 0 then |St| = 1.

We can now formulate the partition-based relaxation of cnt(N0, N1) as:
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rel-cnt(S, N0, N1) =



min δ0 (3a)

s.t. δ0 = dist(x, x0) (3b)

δi = dist(x, xi),∀i ∈ N0 ∪N1 (3c)

µt = mini∈St δi,∀t = 1, . . . , p (3d)

λt = 1 ⇒ µt ≤ ∆, ∀t = 1, . . . , p (3e)

λt = 0 ⇒ µt ≥ ∆,∀t = 1, . . . , p (3f)
p∑

t=1
|St|λt ≥ k (3g)∑

t=1,...,p:c(St)=0

λt ≤ ⌊k/2⌋ (3h)

λ ∈ {0, 1}p;x ∈ Rd; δ ∈ R{0}∪N0∪N1

+ ;∆ ∈ R+ (3i)

Let X ′(S, N0, N1) be the set of x such that there exist (δ,∆, µ, λ) such that
(x, δ,∆, µ, λ) is feasible for rel-cnt(S, N0, N1).

Formulation rel-cnt(S, N0, N1) considers that either we pick all of the set St

or none of it to be part of our nearest neighbor set. Moreover, we consider the
distance to the set to be the smallest distance to any point in the set.

Before proving that this also leads to a relaxation, a few points to note
are as follows. Even though the number of δ and x variables has not changed,
the number of binary variables can be signi�cantly smaller than the number of
binary variables in cnt(N0, N1). Therefore, it is reasonable to expect that solving
rel-cnt(S, N0, N1) may become signi�cantly cheaper to solve computationally.

In addition, (3) can be input directly into a CP solver. However, while con-
straint (3d) and (3f) can be easily linearized, constraint (3e) cannot, so writing
a MIP to solve (3) is not straightforward and will likely require the addition of
extra binary variables, which will defeat the purpose of considering the partition
in the �rst place. The following theorem shows that such partition leads to a
relaxation of the problem.

Theorem 2. Suppose S = (S1, . . . , Sp) is a partition of N0 ∪ N1 satisfying

(P.1), (P.2) and (P.3). Also, suppose p ≥ 2 and c(Sp−1) = c(Sp) = 1.
Let S ′ = (S1, . . . , Sp−1∪Sp). Then S ′ also satis�es (P.1), (P.2) and (P.3).

Moreover X ′(S, N0, N1) ⊆ X ′(S ′, N0, N1), that is, rel-cnt(S ′, N0, N1) is a relax-

ation of rel-cnt(S, N0, N1).

Proof. Properties (P.1), (P.2) and (P.3) for S ′ can be easily veri�ed.
Let (x̄, δ̄, ∆̄, µ̄, λ̄) be feasible for rel-cnt(S, N0, N1).

Set λ̂t = λ̄t, µ̂t = µ̄t, for all t = 1, . . . , p− 2. And set λ̂p−1 = max{λ̄p−1, λ̄p},
µ̂p = min{µ̄p−1, µ̄p}.

It is clear that (3h) is satis�ed, since λ̂t = λ̄t for all t : c(S
t) = 0.

Now let's look at (3g). Notice that

p−2∑
t=1

|St|λ̂t + (|Sp−1|+ |Sp|)λ̂p−1 ≥
p∑

t=1

|St|λ̄t ≥ k
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Now constraints (3f) and (3e) are immediately satis�ed if t < p − 1, since
those sets did not change.

If λ̂p−1 = 1, then assume WLOG that λ̄p = 1. Therefore, ∆̄ ≥ µ̄p ≥ µ̂p, so
(3e) is satis�ed.

If λ̂p−1 = 0, then λ̄p−1 = λ̄p = 0. Therefore, ∆̄ ≤ µ̄p−1 and ∆̄ ≤ µ̄p, so
∆̄ ≤ µ̂p−1. So constraint (3f) is also satis�ed.

Thus, (x̄, δ̄, ∆̄, µ̂, λ̂) is feasible for rel-cnt(S ′, N0, N1), i.e. x̄ ∈ X ′(S ′, N0, N1)
⊓⊔

Convex hull relaxation for MIPs As was mentioned in Section 4, formulating
problem (3) as a MIP will require the addition of extra binary variables, which is
not desirable. Therefore, we propose a further relaxation that can be modeled as
a MIP, based on relaxing constraint (3e) to consider the distance to the convex
hull of points in St, instead of the minimum distance to the points in St.

This can be achieved by deleting constraint (3e) and replacing it with the
following constraints (and adding the corresponding decision variables:

d∑
j=1

|ytj − xj | ≤ ∆+M(1− λt),∀t = 1, . . . , p, i ∈ St (4)

yt =
∑
i∈St

θtix
i,∀t = 1, . . . , p (5)

∑
i∈St

θti = 1,∀t = 1, . . . , p (6)

yt ∈ Rd, θti ∈ [0, 1],∀t = 1, . . . , p, i ∈ St (7)

Since the distance to the convex hull of St is always at most the minimum
distance to the points in St (as St ⊆ conv(St)), the fact that we remain with
a relaxation follows trivially. The ensuing relaxation can now be modeled as a
MIP, with the expense of adding extra continuous variables and contraints only,
which is preferrable to adding extra binary variables.

4.3 An iterative algorithm

We can put theorems 1 and 2 together and pick some B ⊆ N0 and a partition
S = (S1, . . . , Sp) of B ∪N1, and it follows that rel-cnt(S, B,N1) is a relaxation
of cnt(N0, N1). If the solution x̄ to rel-cnt(S, B,N1) is in X(N0, N1), then x̄ is
optimal for cnt(N0, N1). We now proceed to try to �nd how to modify S and/or
B if that is not the case. We will use the notation S(i) to denote the element of
the partition S that contains i.

We start by showing the following property on x̄.

Lemma 3. Let B ⊆ N0 and S = (S1, . . . , Sp) be a partition of B∪N1 satisfying

(P.1), (P.2) and (P.3). Let (x̄, δ̄, ∆̄, µ̄, λ̄) be optimal for rel-cnt(S, B,N1). If
x̄ /∈ X(N0, N1) then there exists t ∈ {1, . . . , p} such that λ̄t = 1 and |St| > 1.
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Proof. Suppose that for every t ∈ {1, . . . , p} for which λ̄t = 1 we have |St| = 1.

De�ne λ̂ ∈ {0, 1}n as follows: λ̂i = 1, if S(i) = St and λ̄t = 1, and 0 otherwise.

Note that λ̂ will immediately satisfy (1f) and (1g).

Now from (3e), it follows that ∆̄ ≥ δ̄i for all i : λ̂i = 1.
Moreover, for all t such that λ̄t = 0, we get that ∆̄ ≤ µ̄t ≤ δ̄i for all i ∈ St.
Therefore constraints (1d) and (1e) are also satis�ed.

Therefore (x̄, δ̄, ∆̄, λ̂) is feasible for cnt(N0, N1) and thus x̄ ∈ X(N0, N1) ⊓⊔

With this, now we can determine how to proceed if x̄ /∈ X(N0, N1).

Theorem 3. Let B ⊆ N0 and S = (S1, . . . , Sp) be a partition of B∪N1 satisfy-

ing (P.1), (P.2) and (P.3). Let (x̄, δ̄, ∆̄, µ̄, λ̄) be optimal for rel-cnt(S, B,N1),
such that x̄ /∈ X(N0, N1). Let xi1 , . . . , xik be the k nearest neighbors of x̄ in

O. Then either there exists l ∈ {1, . . . , k} such that il ∈ N0 \ B or there exists

l ∈ {1, . . . , k} such that |S(il)| > 1.

Proof. We prove the contrapositive. Suppose that for all l ∈ {1, . . . , k} either
il ∈ B or |S(il)| = 1. But note that, property (P.3) implies that il ∈ B ⇒
|S(il)| = 1, so in fact, we may write that for all l ∈ {1, . . . , l}, |S(il)| = 1.

We may also assume (by proceeding as in the proof of Lemma 2) that there
are exactly k values for which λ̄t = 1.

But these values of t for which λ̄t = 1 represent the sets St that are closest
to x̄, where the distance from x̄ to St is represented by µ̄t.

But since each one of the sets S(il) is a distinct set in S, the sets S(i1), . . . , S(ip)
are the k closest to x̄, so λ̄i1 = . . . = λ̄ip = 1. But this contradicts Lemma 3 ⊓⊔

These results lead to algorithm 1 which is an iterative algorithm for solv-
ing cnt(N0, N1). We note that the following corollary is also immediate from
Theorems 1 and 2:

Corollary 1. Let z̄q be the bound obtained when line 6 of Algorithm 1 is executed

for the q-th time. Then z̄q+1 ≥ z̄q.

We end this section by commenting that the partition-based relaxation and
its re�nement in Algorithm 1 shares similarities with dynamic discretization [13]
approaches, where discretization points are clustered and clusters are subse-
quently re�ned. In addition, partition-based approaches to stochastic programs [10,12]
also share a similar philosophy.

5 Computational experiments

To test the several di�erent approaches, we performed computational experi-
ments in several datasets from the literature. We present the results in this
section. All implementations were made in Python 3.8, using Gurobi 8.1.1 [6]
as a MIP solver and CP-SAT from OR-Tools [9] as a constraint programming
solver. All experiments were run in single-thread mode in a machine with Intel
Xeon Gold 6142 CPU 2.60GHz processors, and 264GB of RAM.
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Algorithm 1: Algorithm to solve (3)

1 Set S = {N1}
2 B ← ∅
3 LB ← 0
4 UB ←∞
5 while UB − LB > ϵ do
6 Let x̄, λ̄ be optimal for rel-cnt(S, B,N1), with value z̄
7 LB ← max{LB, z̄}
8 if x̄ is feasible for cnt(N0, N1) then
9 UB ← z̄

10 else

11 Let xi1 , . . . , xik be the k nearest neighbors of x̄ in O.
12 for l = 1, . . . , k do

13 if y(xil) = 1 and |S(il)| > 1 then

14 S ← S \ {S(il)} ∪ {{il}, {S(il) \ {il}}
15 if y(xil) = 0 and il /∈ B then

16 B ← B ∪ {il}
17 S ← S ∪ {{il}}

5.1 Instances

We took the 9 base instances that were used in the paper [7] consisting on
a variety of data sets from di�erent sources and applications. Each of these
base instances may have several thousands of data points, so we generated
our instances based on picking (at random) a subset of n points for n being
the minimum between the number of data points and a parameter TCAP ∈
{500, 1000, . . . , 4000}. The selection of the points was made via a direct call to
the train_test_split function in the sk-learn package [8]. In addition, we
tested each instance by picking di�erent values of k ∈ {5, 15, 25, 35}.

We also note that each instance contains speci�cation of possible actionability
constraints that were already implemented in [4]. These restrict some features
to being �xed (e.g. gender at birth cannot be changed), or restricted to being
increasing only (e.g. age), and other types of restrictrions. These are implemented
as explicit bound constraints on the x variables and are taken as part of the input
as well.

5.2 Evaluation

To evaluate each possible approach, we use performance pro�les [3], which are
distribution functions of a performance metric (time). A performance pro�le is
computed as follows. Given a set of methods M , and a set of instances I, we
compute, for each m ∈ M , i ∈ I, the desired metric tim. We then compute
the best performance for each instance τi := minm∈M tim, and then for each
m ∈ M , i ∈ I, we compute the ratio rim = tim

τi . Such ratio represents how many
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times worse than the best a method performed in an instance. With this, the
performance pro�le consists of a set of lines (one for each m ∈ M) where a point
(x, y) in a line represent that in y percent of the instances, the ratio rim was at
most x. It can be seen as a cumulative graph of the rim values.

These types of graphs help identify benchmark trends by normalizing �easy�
and �hard� instances in similar ways. They give immediate ways to identify better
approaches that are more informative than averages. An easy way to read such
graphs is to see which lines are on top. Upper and to the left means better. We
considered a time limit of 3600s for all approaches and, for the performance
pro�les, we considered tim = ∞ if tim ≥ 3600, with ∞

∞ := ∞.

5.3 E�ect of �ltering

We test our �lters by taking as an initial feasible solution x̄ = xi for each data
point in the input for which c(xi) = 1. Three di�erent �ltering settings were
tested: No �lter (f0), Filter type 1 (f1) and Filter type 2 (f2).

The methods tested are: CP and MIP which just solve problem (1) directly
using CP/MIP solvers; CP-part and MIP-part which solve problem (3) using
Algorithm 1. Note that MIP-part uses also the convex hull relaxation from Sec-
tion 4.2. Approaches MIP-part and CP-part were used by initializing B to have
the data points xi with y(xi) = 0 among the 2k nearest neighbors of x0, and
initializing S to having one set for each of 2k nearest neighbors of x0, plus one
set containing all remaining elements in N1.
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Fig. 1: Results of di�erent �lters

Figure 1 shows the results for both the baseline approaches (CP and MIP), as
well as for the approaches based on Algorithm 1. It is clear from these �gures
that the idea of �ltering helps signi�cantly, with F1 being the best setting for
CP, and F2 the best for MIP, MIP-part, CP-part.

It is also clear that CP-based approaches signi�cantly outperform MIP-based
ones. This may be due to the fact that LP-relaxations for the MIP-based for-
mulations are bad (lower bounds at the root are often 0.0, which is the trivial
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lower bound for minimizing distance), typically giving little information about
what the integer solution should look like.

5.4 Overall results

In this section, we compare the best �lter settings of each approach against each
other. In addition, we leave the setting MIP-f0 in the experiments, since this is
the baseline MIP formulation that was proposed in [4], so it represents the best
in the literature so far.

An additional approach was tested, with the rationale that using a single
partition St for all elements in N1 may not be too good, since it may treat data
points that are very far from each other in a uniform manner. With that in mind,
we also tested the -km variation, which initializes S with clusters computed using
the k-means algorithm implemented in [8].
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Fig. 2: Overall comparison of approaches

Figure 2 shows that both Algorithm 1 and �ltering made a signi�cant dif-
ference in improving solution times for the problem. In addition, it is clear that
for MIP-based approaches, the best option is to just use �ltering and give the
resulting problem to a MIP solver directly. Once more, we suspect that while
the initial LP relaxation is bad, the further relaxation that needed to be made in
Section 4.2 weakens it even more, while making the solution to each subproblem
not fast enough.
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The average (shifted geometric average with a shift of 1s) solution time de-
creased from 780s in the baseline MIP-f0 to 451s in CP-part-f2 (for the pur-
poses of average computation, a solution time of 3600s were considered for all
runs which did not terminate within the time limit). We use shifted geometric
mean since it reduces in�uence of outliers that are �too big� or �too small�. See [1]
for more discussions on the topic.

6 Conclusion

In this work, we proposed several techniques to speed up the computation of
counterfactual explanations for k-NN. The overall combined e�ect of these tech-
niques was an average reduction of 42% in running time.

While performing more re�ned techniques to reduce the dimension may lead
to additional time savings, other possible research directions are designing better
dual bounds for MIP formulations. In addition, a more integrated approach,
where solution to previous MIPs/CPs can be utilized to speed up computation
of similar, but more re�ned MIPs/CPs is a promising area of improvement.
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