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Abstract
We present a family of integer programming formulations for the maximum

cut problem. These formulations encode the incidence vectors of the cuts of a con-
nected graph by employing a subset of the odd-cycle inequalities that relate to a
spanning tree, and they require only the corresponding edge variables to be inte-
gral explicitly. They so describe sufficient restrictions of the classic integer linear
program by Barahona and Mahjoub. In addition, we characterize according formu-
lations comprising facet-defining inequalities only. Trade-offs and comparisons to
prevalent formulations concerning size and relaxation strength are subject to an
experimental study.

1 Introduction

Given an undirected graph G = (V,E), a cut in G is an edge set δ (U) := { {u,v} ∈ E :
u∈U, v∈V \U } induced by some bi-partition of V into U ⊆V and V \U . Considering
edge weights c : E → R, let c(δ (U)) := ∑e∈δ (U) ce for any U ⊆V . Then the Maximum
Cut Problem (MaxCut) is to determine U∗ ⊆ V such that c(δ (U∗)) ≥ c(δ (U)) for
all U ⊆ V . Since the union of maximum cuts for the connected components of an
undirected graph G give a maximum cut for G, we will assume throughout this paper
that G is connected.

MaxCut is a classical combinatorial optimization problem that is N P-hard in
the general case [14], and that receives increasing interest in recent years. Besides
direct applications in e.g. Image Segmentation [10], Frequency Assignment [6] and
VLSI Design [1], a major reason for this interest is its direct correspondence to the
Unconstrained Binary Quadratic Programming problem (UBQP) [2, 9, 11] that has
itself numerous applications in research and economy.

A common approach to solve MaxCut instances to proven optimality is based on
integer linear programming and polyhedral relaxations. Especially for sparse instances,
such exact methods have proven increasingly effective recently [7, 18].
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In this paper, we deduce a family of integer programming formulations for MaxCut
that is based on spanning trees. On the one hand, these formulations constitute proper
restrictions of the classical edge-variable formulation by Barahona and Mahjoub [3].
In particular, it is an immediate consequence of our results that, in order to still en-
code precisely the cuts in G = (V,E), only |V |− 1 of the edge variables in the classic
formulation need an explicit enforcement of integrality and one may confine to an ap-
propriate subset of its only set of non-trivial constraints, called odd-cycle inequalities,
at the same time. We characterize natural approaches to determine such appropriate
inequality subsets based on cycles related to a spanning tree of G, and we discuss the
corresponding trade-offs that arise regarding formulation size and quality. In addition,
we address how to obtain violated odd-cycle inequalities from these cycles by means
of an efficient separation. On the other hand, the presented family of spanning-tree for-
mulations generalizes on the so-called root-triangulated model for MaxCut from [8] as
well as on the further classic formulation with node- and edge-variables that has been
obtained in the light of UBQP transformations [9, 2, 17]. In our computational experi-
ments, we compare the different formulations regarding their size and their strength in
terms of their linear programming (LP) relaxations.

This paper is organized as follows: In Section 2, we briefly summarize fundaments
and related work. The family of spanning-tree formulations for MaxCut is presented in
Section 3 along with a correctness proof and improvements concerning the size and the
strength of the formulations. In Section 4, we report on our computational experiments,
and finally, a conclusion is given in Section 5.

2 Preliminaries and Related Work

As is common especially in (integer) linear programming approaches to MaxCut, we
will identify edge subsets S⊆E with their incidence vectors χS ∈RE where χS

e ∈{0,1}
and χS

e = 1 if and only if e ∈ S. Based on this notion, the cut polytope as defined by
Barahona and Mahjoub in [3] is the convex hull of all the incidence vectors of cuts
in G = (V,E):

PCUT(G) = conv{χ
S | S ⊆ E is a cut in G}

It is well-known that an edge subset S ⊆ E is a cut in G if and only if S intersects
with every cycle in G in an even number (possibly zero) of edges. Exactly this condi-
tion is established (for S := {e ∈ E : xe = 1}) by the constraints (1), called odd-cycle
inequalities, in the seminal binary linear programming formulation by Barahona and
Mahjoub [3] that we refer to as the edge model (E).

maximize ∑
e∈E

cexe (E)

∑
e∈S

xe − ∑
e∈C\S

xe ≤ |S|−1 for all cycles C ⊆ E and all S ⊆C, |S| odd (1)

0 ≤ xe ≤ 1 for all e ∈ E (2)
xe ∈ {0,1} for all e ∈ E
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Given a cycle C ⊆ E, an edge e ∈ E \C that is incident to two nodes of C is called
a chord of C. An odd-cycle inequality defines a facet of PCUT(G) if and only if the
corresponding cycle C is chordless [3]. We also recall from the same reference that,
although we do not explicitly state this in (E), the lower and upper bounds on the
variables (2) are implied by (11) for those edges which are part of a triangle in G.
When removing the integrality restrictions, we obtain

POC := {x ∈ RE : x satisfies (1), (2)}
as the feasible set, giving rise to the LP relaxation max{cTx : x ∈ POC} of (E) which
provides an upper bound on the value of a maximum cut in G.

An alternative and also well-known integer linear programming formulation for
MaxCut [9, 2, 17] is given by the following node-edge model (NE):

maximize ∑
{i, j}∈E

ci jxi j (NE)

xi j + zi + z j ≤ 2 for all {i, j} ∈ E (3)
xi j − zi − z j ≤ 0 for all {i, j} ∈ E (4)

−xi j + zi − z j ≤ 0 for all {i, j} ∈ E (5)
−xi j − zi + z j ≤ 0 for all {i, j} ∈ E (6)

zi ∈ {0,1} for all i ∈V

In (NE), the integrality restrictions are imposed only on the additional node-variables
z ∈ RV which then imply the integrality of x ∈ RE via the constraints (3)–(6). These
inequalities also imply 0 ≤ z ≤ 1 and 0 ≤ x ≤ 1.

The node variables zi, i ∈ V , in (NE) may also be regarded as edge variables in
terms of i and an additional auxiliary node that is connected to all original ones. In [8],
Charfreitag et al. take on this perspective and propose to refine (NE) by choosing an
original node r ∈V to adopt the role of the auxiliary one. Consequently, in the resulting
root-triangulated model (RT), the original edge set is (only) extended to E ′ := E ∪
{{r,v} : v ∈V, {r,v} ̸∈ E}.

maximize ∑
{i, j}∈E

ci jxi j (RT)

xi j + xri + xr j ≤ 2 for all {i, j} ∈ E,r ̸∈ {i, j} (7)
xi j − xri − xr j ≤ 0 for all {i, j} ∈ E,r ̸∈ {i, j} (8)

−xi j + xri − xr j ≤ 0 for all {i, j} ∈ E,r ̸∈ {i, j} (9)
−xi j − xri + xr j ≤ 0 for all {i, j} ∈ E,r ̸∈ {i, j} (10)

xri ∈ {0,1} for all {r, i} ∈ E ′

In (RT), the inequalities (7)–(10), substituting for (3)–(6), now appear as triangle
inequalities (i.e., odd-cycle inequalities for |C|= 3) for each {i, j} ∈ E, r ̸∈ {i, j}, and
the corresponding unique “root-triangle” in E ′. These triangle inequalities again imply
0 ≤ xi j ≤ 1 for all {i, j} ∈ E ′, and their presence combined with the integrality of the
variables xri, for all i ∈ V \ {r}, suffices to establish the integrality of all variables.
Indeed if x̄ri, x̄r j ∈ {0,1} one has x̄i j ∈ {0,1} because the corresponding instances of
(7)–(10) then reduce to x̄i j = 0 (if x̄ri = x̄r j) or x̄i j = 1 (if x̄ri = 1− x̄r j) [16, 8].
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Compared to (E), (NE) and (RT) are extended by at most |V | variables, and they
contain only a small subset of the odd-cycle or, more precisely, triangle inequalities. As
such, their LP relaxations provide only a weak bound on the value of a maximum cut,
but they may serve as a starting point to be successively enriched by further odd-cycle
inequalities, and thus promoted to be as strong as the one of (E) [8]. From a converse
perspective, the strength of POC can principally be retained even solely by triangle
inequalities at the expense of augmenting G with (zero-weight) edges, respectively
variables, to a chordal graph, like e.g. in [16]. This is because then the resulting triangle
inequalities become the only facet-defining, i.e., irredundant, odd-cycle inequalities.

3 A Family of Spanning-Tree Formulations for MaxCut

In this section, we characterize a family of integer programming formulations for Max-
Cut that is based on the selection of a spanning edge subset of the original graph G,
and whose sets of constraints and variables with an explicit integrality requirement are
(usually strict) subsets of those in (E). In contrast to the further models addressed in
Sect. 2, the spanning-tree formulations do not involve any further variables and they do
not restrict to triangle inequalities. Instead, other appropriate subsets of the odd-cycle
inequalities (1) are identified that prove sufficient to restrict the feasible set to the in-
cidence vectors of cuts in G, provided that (only) the variables corresponding to the
spanning edge set are integral. More precisely, they consistently transfer the integrality
of these variables to the others such that effectively all odd-cycle inequalities for G are
satisfied, exactly as this is achieved by the triangle inequalities in (RT) as well.

We will use the following basic terminology with respect to spanning trees and
extend it appropriately during the course of the discussion.

Definition 1. Let T = (V,ET ) be a spanning tree of a connected undirected graph
G = (V,E), i.e., ET ⊆ E, |ET | = |V |− 1, and T is connected. Let e = {i, j} ∈ E \ET ,
and let Te be the unique i- j-path in T . Then, we call Ce = Te ∪{e} ⊆ E an elementary
cycle (w.r.t. T ).

3.1 Basic Spanning-Tree Formulations
Given a graph G = (V,E) and some spanning tree T = (V,ET ) with ET ⊆ E, we obtain
a first family of new edge-variable formulations (ST) by restricting to the odd-cycle
inequalities associated with the elementary cycles Ce, e ∈ E \ET .

maximize ∑
e∈E

cexe (ST)

∑
e∈S

xe − ∑
e∈C f \S

xe ≤ |S|−1 for all elementary cycles C f ⊆ E, f ∈ E \ET ,

and all S ⊆C f , |S| odd (11)
0 ≤ xe ≤ 1 for all e ∈ E

xe ∈ {0,1} for all e ∈ ET

Before we show that (ST) indeed encodes the incidence vectors of cuts in G, we
remark that, in analogy to (E), the lower and upper bounds on the variables in (ST) are
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implied by (11) for those edges which take part in a triangle that serves as one of the
corresponding elementary cycles C f ⊆ E, f ∈ E \ET .

Theorem 1. Let x̄ ∈ RE be a solution to (an instance of) (ST) associated with G =
(V,E). Then x̄ is integral and the incidence vector of a cut in G.

Proof. Concerning integrality, since x̄e ∈ {0,1} is enforced explicitly in (ST) for all
e ∈ ET , it suffices to show that x̄e ∈ {0,1} for all e ∈ E \ET . For any such edge e ∈
E \ET , consider the corresponding elementary cycle Ce which consists of |Ce|−1 edges
from ET and e. The odd-cycle inequalities for Ce are satisfied by x̄. Each of them can be
written as ∑ f∈S(1−x f )+∑ f∈Ce\S x f ≥ 1 for all S⊆Ce, |S| odd. Let O := { f ∈Ce\{e} :
x̄ f = 1} and let k := |O|. If k is odd, consider that ∑ f∈O(1− x̄ f ) +∑ f∈Ce\O x̄ f ≥ 1
reduces to x̄e ≥ 1. If k is even, consider that ∑ f∈O∪e(1− x̄ f ) +∑ f∈Ce\(O∪e) x̄ f ≥ 1
reduces to (1− x̄e)≥ 1 ⇔−x̄e ≥ 0 ⇔ x̄e ≤ 0. Since 0 ≤ x̄e ≤ 1 is enforced explicitly in
(ST), we have x̄e = 1 in the first, and x̄e = 0 in the second case. Thus, x̄e is integral for
all e ∈ E \ET . Moreover, since the edge set Ce \ {e} ⊆ ET corresponds to the unique
simple path between the two endpoints of each e = {i, j} in T , the previous arguments
show that x̄e = 1 (x̄e = 0) if, when traversing this simple path, the partitions of the nodes
change an odd (even) number of times. i.e., if i and j belong to different (the same)
partition(s). Thus, the contradiction-free partitioning of V (T ) given by the restriction
of x̄ to the components for ET

1 is consistently imposed on the components for E \ET
by (11). In other words, x̄ is the incidence vector of a cut.

Each choice of the spanning edge set ET ⊆E for (ST) gives rise to a concrete integer
program which leads to different variables with an explicit integrality requirement, and
to different elementary cycles whose lengths influence the size of the formulation as
well as the upper bound on the value of a maximum cut provided by its LP relaxation2.
Thereby, the number of odd-cycle inequalities associated with each of the |E|−|V |+1
elementary cycles C f in (11) is the respective sum of

(|C f |
k

)
over all k ≤ |C f |, k odd, and

thus strongly increases with their length. Moreover, from a general perspective, the
quality of the upper bound is expected to be weak (irrespective of the choice of ET ),
as is also visible from the experiments in Sect. 4. In particular, the selection (11) of
odd-cycle inequalities is not necessarily facet-defining since the associated cycles need
not be chordless. This can in turn be used to reduce the size of the formulation and to
strengthen its LP relaxation at the same time, as is exposed in the following.

3.2 Improved Spanning-Tree Formulations
We discuss two strategies to improve over (ST) by focusing on facet-defining odd-
cycle inequalities deduced from a given spanning tree T = (V,ET ) of G = (V,E). A
first idea could be to replace (11) by all the chordless cycles that are composed from

1Indeed, one may choose an arbitrary root r ∈V , assign it to any of the two partitions, and then determine
the partition of every v ∈V \{r} based on the x̄e for the edges e on the unique r-v-path in T .

2Analogously, (RT) defines a family of integer programs as well, with varying edges and associated
variables to be added and different triangle inequality sets based on the choice of the root node r ∈ V .
However, the corresponding number of triangle inequalities is always 4 ·(|E|−d(r)) where d(r) is the degree
of r in G.
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the edges of Ce and its (possibly empty set of) chords. Indeed, the corresponding set Ce
of chordless cycles is of relevance and thus formalized in the first part of Definition 2
below. However, the corresponding properties may apply to a single chordless cycle
for more than one e ∈ E \ET . In particular, each chord f ∈ E of an elementary cycle
Ce, e ∈ E \ET , gives rise to an elementary cycle C f (with C f ∩ET ⊊Ce∩ET ) itself, and
some chords of Ce may also be chords of C f (this is illustrated in Fig. 1). As opposed
to that, the particular chordless cycles in Ce that involve e, formalized as the set C e

e in
the subsequent Definition 2 uniquely relate to the elementary cycles Ce, e ∈ E \ET .

Definition 2. Let Ce ⊆ E be the unique elementary cycle of G = (V,E) w.r.t. the span-
ning tree T = (V,ET ) and e ∈ E \ET . Moreover, let De ⊆ E \Ce be the set of chords of
Ce. Then the set of chordless cycles associated with Ce is the set Ce := {F ⊆Ce ∪De :
F chordless cycle, F ∩Ce ̸= /0}. Further, the subset of these cycles containing e is re-
ferred to as C e

e := {F ⊆Ce ∪De : F chordless cycle, e ∈ F ∩Ce}.

The sets C e
e facilitate to generate chordless cycles and associated odd-cycle in-

equalities only once during a step-wise consideration of elementary cycles. Even more,
it turns out that they are sufficient to replace the inequalities (11) of (ST).

The first ingredient to see this is that the odd-cycle inequalities for Ce are satisfied
by x ∈ RE as soon as x satisfies the odd-cycle inequalities corresponding to a set of
(chordless) cycles whose union contains Ce [3, 16, 13]. We formalize such cycle sets
in the present context as follows.

Definition 3. Let Ce be the set of chordless cycles associated with the unique elemen-
tary cycle Ce ⊆ E of G = (V,E) w.r.t. the spanning tree T = (V,ET ) and e ∈ E \ET .
Then a subset C ∗

e ⊆ Ce such that Ce ⊆
⋃

C∈C ∗
e

C is called a chordless composition of
Ce. Moreover, if C ∗

e is a chordless composition of Ce but C ∗
e \C is not for any C ∈ C ∗

e ,
then C ∗

e is called irreducible.

While it is clear from Definition 3 that Ce is by itself a chordless composition
of Ce, it is instructive to observe that one can obtain a (typically smaller) chordless
composition of Ce by unifying (and thus restricting to) the sets C f

f where either f = e
or f ∈ De according to Definition 2. This is due to the aforementioned fact that each
chord of Ce defines an elementary cycle - which also needs to be covered by a chordless
decomposition - itself. That is, after generating the chordless cycles in C e

e , we can rely
on the sets C f

f , f ∈ De, to gradually and jointly obtain a chordless composition for Ce,
as is exemplified in Fig. 1.

The first improved formulation, referred to as (STcl), is then naturally obtained
from (ST) by replacing the odd-cycle inequalities (11) for the elementary cycles Ce,
e ∈ E \ET , with those for the cycles contained in the sets C e

e .

maximize ∑
e∈E

cexe (STcl)

∑
e∈S

xe − ∑
e∈C\S

xe ≤ |S|−1 for all C ∈ C f
f , f ∈ E \ET ,

and all S ⊆C, |S| odd (12)
0 ≤ xe ≤ 1 for all e ∈ E

xe ∈ {0,1} for all e ∈ ET
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Figure 1: An elementary cycle Ce (left) with Ce ∩ET solid, e dash-dotted, and chords
De dashed, three of which are labeled ( f , g, and h). Several chordless cycles, labeled
1-8 and building Ce as of Definition 2, could be extracted from their union. In turn, any
composition (union) of these chordless cycles covering all edges of Ce, like e.g. 1-4-5,
is referred to as a chordless composition of Ce according to Definition 3. To obtain
one for Ce, it suffices to consider the union of (even each time a single element of) the
chordless cycle sets C d

d according to Definition 2 where either d = e or d ∈ De. For
example, for Ce itself one may choose from C e

e either the cycle 5 or 8. When choosing
cycle 5, one may then rely on a chordless cycle from C f

f (either 3 or 4), and then
on either cycle 1 (from C g

g ) or 2 (from C h
h ), respectively, to jointly obtain a complete

composition for Ce.

(STcl) replaces each Ce by possibly multiple chordless cycles C e
e which are then

however shorter (at most two chordless cycles of length |Ce|−1 involving e are possi-
ble, each of which could be substituted for by at most two such cycles of length |Ce|−2,
and so on). Due to their binomial nature, (STcl) has thus (typically strictly) less inequal-
ities than (ST) while its LP relaxation provides a (strictly) better upper bound on the
value of a maximum cut in G, as is also demonstrated in Sect. 4.

In practice, given an elementary cycle Ce, e ∈ E \ET , the set C e
e can be derived e.g.

by recursive split operations based on the chords of Ce as described in [13] combined
with backtracking. Since only cycles containing e are of interest, one may thereby
neglect any chord of Ce that is also a chord of a shorter elementary cycle, and truncate
the search using the node numbering described below.

At the expense of a weakening of the LP relaxation compared to (STcl) but still im-
proving over (ST), a further reduction in size is possible, since a chordless composition
C ∗

e of each Ce, e ∈ E \ET , is already obtained by taking only one element (chordless
cycle) from each set C f

f where either f = e or f ∈ De. This way, one is guaranteed to
obtain a minimum total number of chordless cycles (by the necessity to have one per
Ce, e ∈ E \ET ) while these cycles may still, and possibly inevitably, induce a chord-
less composition for (larger) elementary cycles that is not irreducible in the sense of
Definition 3.

Consequently, we obtain another sufficient formulation that we refer to as (STco
cl )

by replacing the odd-cycle inequalities (11) for the elementary cycles Ce, e ∈ E \ET in
(ST), by the odd-cycle inequalities for exactly one cycle C ∈ C e

e .
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maximize ∑
e∈E

cexe (STco
cl )

∑
e∈S

xe − ∑
e∈C\S

xe ≤ |S|−1 for one C ∈ C f
f , f ∈ E \ET ,

and all S ⊆C, |S| odd (13)
0 ≤ xe ≤ 1 for all e ∈ E

xe ∈ {0,1} for all e ∈ ET

In order to determine the desired chordless cycles for each elementary cycle effi-
ciently, no backtracking is required anymore and one may proceed as follows: For each
e = {i, j} ∈ E \ET , consider the unique i- j-path Te in T that builds Ce with e. Enumer-
ate the nodes of Te increasingly, starting at i. Then construct a path Re ⊆ Te∪De, where
De are the chords of Ce, as follows. Initialize v ∈ V (Te) with i. Determine w ∈ V (Te)
among the nodes Te ∪De-adjacent to v such that w has the maximum index w.r.t. to the
created numbering. Add the respective edge to Re, and continue with replacing v by w
unless w = j. Finally, create the chordless cycle C = Re ∪ e ∈ C e

e .

3.3 Separation of Odd-Cycle Inequalities for a Given Cycle

Given x ∈RE , 0 ≤ x ≤ 1, the general separation problem for the odd-cycle inequalities
asks for either an odd-cycle inequality that is violated by x, or for a proof that none
exists. Barahona and Mahjoub [3] showed that it can be solved in polynomial time.
Decades later, the algorithm has been refined to produce only facet-defining inequali-
ties in terms of an a posteriori extraction described in [12] and [13]. Further ideas on
such an extraction have been described in [18].

Besides that, the special separation problem associated with a given cycle C ⊆ E is
not well addressed by the general separation approach, but of interest (in the present
context and beyond, e.g., for spin-glass problems [15]) as well. Here, one may exploit
that at most one of the odd-cycle inequalities associated with C can be violated at a
time [19, 8]. Based on this, given x ∈ RE , 0 ≤ x ≤ 1, the separation problem w.r.t. C
can be solved in linear time as follows:

1. If ∑e∈C:xe>
1
2
(1− xe)+∑e∈C:xe≤ 1

2
xe ≥ 1, there is no odd-cycle inequality for C

violated by x. STOP

2. (Otherwise:) If
{

e ∈C : xe >
1
2

}
is odd, return the violated inequality. STOP

3. Otherwise, switch the role of e∗ = argmine∈C
∣∣ 1

2 − xe
∣∣. If violated, return the

inequality obtained, otherwise no odd-cycle inequality for C is violated by x.

Thereby, the condition in the first statement is a necessary one for the cycle C to
admit a violated odd-cycle inequality. If

{
e ∈C : xe >

1
2

}
is odd, it is also sufficient.

Otherwise, the increase of the left-hand side when switching the role of any edge e ∈C
is precisely 2

∣∣ 1
2 − x̄e

∣∣. Thus, selecting for this purpose (any) edge that minimizes this
increase gives another necessary and sufficient condition [19].

In particular, one may employ this procedure to obtain a cutting plane algorithm
for (ST), (STcl), and (STco

cl ) after pre-computing the corresponding cycles defining (11),
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(12), and (13), respectively. Moreover, in case of (ST), and (STco
cl ), at most |E|−|V |+1

calls to the separation procedure are necessary per iteration.

4 Computational Experiments

The family of spanning-tree-based MaxCut formulations presented in Sect. 3 naturally
relates to the - in terms of odd-cycle inequalities - complete edge-based integer program
(E), and the model (RT) that potentially introduces additional variables but restricts to
triangle inequalities. None of these formulations suits for the solution of a broader
class of (sparse) MaxCut instances “per se”, but requires a sophisticated branch-and-
cut approach involving at least the dynamic separation of odd-cycle inequalities and
further ingredients like e.g. in [7, 8, 18].

A particularly interesting question in this respect as well as in the focus and context
of this paper is how the qualities of the linear programming relaxations of (ST), (STcl),
and (STco

cl ) relate to each other and to those of (E) and (RT). That is, we strive to
quantify the impact of the respective odd-cycle inequality selection in terms of the
obtained upper bounds on the value of a maximum cut, and to relate this quality to the
actual size of the respective linear program.

To carry out such an experiment, a reasonable choice needs to be made for the
several degrees of freedom provided by the different formulations. To this end, we
adopt the rule from [8] to choose a node of maximum degree as the root node for
(RT), and we sort the edges non-increasingly w.r.t. their absolute weight in order to
iteratively select them if suitable to build a spanning tree for (ST), (STcl) or (STco

cl ).
Finally, for (STco

cl ), we compute the chordless compositions exactly by means of the
procedure described in Sect. 3.2.

For these representants of each formulation family, the experiments are carried out
with the following established instances from the Biq Mac Library [5]:

• g05 60, 80, 100: Graphs with 60, 80, or 100 nodes, unit edge weights.
• pm1d 80, 100, pm1s 100: Graphs with 80 or 100 nodes, ±1 edge weights.
• pw01 100, pw05 100, pw09 100: Graphs with 100 nodes, and integer edge

weights from [1,10].
• be200.8: Graphs corresponding to the transformation of UBQP instances with

n = 200 generated by Billionnet and Elloumi [4] where the entries of the original
cost matrices are integer from [−100,100] for the diagonal entries and [−50,50]
for off-diagonal entries, and their non-zero density is about 0.8.

Each set consists of ten instances. Their selection is based on combining differ-
ent sizes, densities, and edge weight ranges, among graphs with known and varying
maximum chordless cycle length, denoted as max |Ccl| in Table 1. We remark that the
latter is only an upper bound on the maximal chordless cycle length observed when
constructing (STcl) or (STco

cl ). The first three sets comprise native MaxCut instances
generated as Erdös-Renyi-Gilbert random graphs [5]. We only include one set of na-
tive UBQP instances since their transformation to MaxCut (involving a node adjacent
to all others via edges of relatively high absolute weight) leads to the situation that
many of the edges forming the spanning trees of (RT), and (ST), (STcl), or (STco

cl ),
coincide.
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max Bound Ratio to LP Rel. of (E) Constraint-to-Edge Ratios |E′ |
|E|

Group |V | Dsty |Ccl| (ST) (STcl) (STco
cl ) (RT) +W (ST) (STcl) (STco

cl ) (RT) (RT)
g05 60 0.50 11 1.45 1.27 1.31 1.46 1.50 22.63 7.44 4.85 3.81 1.02
g05 60 0.50 11 1.46 1.31 1.34 1.47 1.50 78.18 11.33 5.12 3.83 1.02
g05 60 0.50 11 1.46 1.37 1.39 1.47 1.50 234.22 13.76 5.52 3.84 1.03
g05 80 0.50 12 1.47 1.32 1.34 1.47 1.50 44.44 10.14 4.79 3.87 1.02
g05 80 0.50 12 1.47 1.35 1.37 1.48 1.50 86.51 12.07 5.11 3.87 1.02
g05 80 0.50 12 1.47 1.37 1.39 1.48 1.50 221.88 14.94 5.32 3.88 1.02
g05 100 0.50 13 1.47 1.36 1.38 1.48 1.50 32.48 9.28 4.96 3.90 1.01
g05 100 0.50 13 1.47 1.37 1.39 1.48 1.50 105.67 11.85 5.33 3.90 1.01
g05 100 0.50 13 1.47 1.39 1.40 1.48 1.50 506.03 17.46 5.62 3.90 1.02
pm1d 80 0.99 4 2.80 1.85 2.52 2.80 2.87 13.93 8.82 3.90 3.90 1.00
pm1d 80 0.99 4 2.94 1.94 2.66 2.93 3.01 23.36 10.13 3.90 3.90 1.00
pm1d 80 0.99 4 3.14 2.10 2.87 3.14 3.23 65.73 12.37 3.90 3.90 1.00
pm1d 100 0.99 4 2.79 1.89 2.51 2.79 2.85 26.00 10.98 3.92 3.92 1.00
pm1d 100 0.99 4 2.91 1.98 2.62 2.91 2.97 46.12 12.79 3.92 3.92 1.00
pm1d 100 0.99 4 3.02 2.09 2.71 3.01 3.08 107.03 14.53 3.92 3.92 1.00
pm1s 100 0.10 37 1.76 1.43 1.50 1.83 1.90 541.63 54.87 30.88 3.81 1.15
pm1s 100 0.10 38.8 1.81 1.51 1.57 1.88 1.95 1167.65 69.04 46.06 3.85 1.16
pm1s 100 0.10 40 1.88 1.58 1.64 1.98 2.05 2179.39 103.19 65.23 3.88 1.17
pw01 100 0.10 37 1.25 1.11 1.14 1.28 1.32 3063.08 57.96 22.12 3.81 1.15
pw01 100 0.10 38.8 1.25 1.12 1.15 1.29 1.32 14764.12 113.81 41.99 3.85 1.16
pw01 100 0.10 40 1.26 1.13 1.16 1.30 1.33 289171.06 670.26 168.09 3.88 1.17
pw05 100 0.50 12 1.46 1.21 1.27 1.48 1.50 496.27 19.81 4.91 3.90 1.01
pw05 100 0.50 12.9 1.46 1.25 1.28 1.48 1.50 3288.65 26.12 5.15 3.90 1.02
pw05 100 0.50 13 1.46 1.28 1.30 1.48 1.50 21141.55 36.76 5.61 3.90 1.02
pw09 100 0.90 6 1.47 1.27 1.32 1.48 1.50 395.50 18.79 3.92 3.91 1.00
pw09 100 0.90 6 1.47 1.29 1.34 1.48 1.50 1499.83 22.14 3.94 3.91 1.00
pw09 100 0.90 6 1.47 1.32 1.35 1.49 1.50 6832.52 25.62 3.96 3.92 1.00
be200.8 201 0.79 9 2.56 2.28 2.42 2.56 2.93 4.67 4.49 3.95 3.95 1.00
be200.8 201 0.79 9 2.61 2.34 2.47 2.61 3.00 5.04 4.69 3.95 3.95 1.00
be200.8 201 0.79 9 2.64 2.37 2.51 2.64 3.06 5.53 4.93 3.96 3.95 1.00

Table 1: Model Size and LP Relaxation Comparison: For each instance set, the rows
show minimum, mean, and maximum values, respectively in this order, rounded to two
decimal digits. The density (column “Dsty”) shown is defined as |E|/

(|V |
2

)
. The upper

bounds provided by the LP relaxations of (ST), (STcl), (STco
cl ), and (RT), as well as

the sum of positive edge weights (+W), are shown as a factor in terms of the bound
provided by POC. The number of constraints of each of the formulations is displayed
as a factor of the number of edges of the instances (Constraint-to-Edge Ratios).

The results in Table 1 demonstrate well the trade-offs arising between the (cho-
sen representants) of the different formulation families. The formulation (RT) and the
largest formulation (ST), which however typically comprises a large fraction of odd-
cycle inequalities that are not facet-defining, provide the weakest LP relaxations, with
an upper bound often only slightly below the sum of positive edge weights. Con-
structing instead all facet-defining odd-cycle inequalities involving the non-tree edge
closing an elementary cycle lets (STcl) admit the strongest LP relaxation while its size
is considerably reduced over (ST) but often still rather large, especially for the sparse
instance sets. The quality gap of the relaxation of (STcl) compared to the one of (E),
i.e., POC, can still be significant. Finally, STco

cl provides an effective reduction to only
one chordless cycle per non-tree edge. Its number of odd-cycle inequalities typically
only slightly exceeds the one of (RT) for the dense instances while providing a signifi-
cantly better upper bound. At the same time, STco

cl can still become quite large (pm1s,
pw01) and lose strength (pm1d) compared to (STcl). Fortunately, for all the other in-
stances, the size of STco

cl as well as the loss in terms of the upper bound compared to
(STcl) is moderate.
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5 Conclusion

We have presented families of spanning-tree formulations for the Maximum Cut Prob-
lem that encode incidence vectors of cuts via a subset of the odd-cycle inequalities as-
sociated with a connected graph G= (V,E), and that require only |V |−1 edge variables
to be integral explicitly. Further, two variants have been described which are reduced
in size and consist of facet-defining inequalities only. In an experimental study, it has
been shown that for rather dense problem instances, one may obtain a formulation that
moderately exceeds the size of a common integer program comprising only triangle
inequalities while providing a stronger linear programming relaxation. For sparse in-
stances, respectively for graphs with long chordless cycles, even the reduced spanning-
tree formulations can become quite large. Generally, the experimental results show
an interesting trade-off in terms of size and relaxation quality which motivates further
research regarding the relevance of certain subsets of the odd-cycle inequalities. More-
over, they demonstrate the importance of selecting facet-defining inequalities which
lead to a significantly better and more compact relaxation at the same time.
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[2] Francisco Barahona, Michael Jünger, and Gerhard Reinelt. Experiments in
quadratic 0–1 programming. Mathematical Programming, 44(1):127–137, May
1989.

[3] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical
Programming, 36(2):157–173, 1986.

[4] Alain Billionnet and Sourour Elloumi. Using a mixed integer quadratic pro-
gramming solver for the unconstrained quadratic 0-1 problem. Math. Program.,
109(1):55–68, 2007.

[5] Biq Mac Library – Binary quadratic and Max cut Library. https://biqmac.

aau.at/biqmaclib.html, 2009.
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