
Active Set-based Inexact Proximal Bundle Algorithm
for Stochastic Quadratic Programming

Niloofar Fadavi∗1 and Harsha Gangammanavar†1

1Department of Operations Research and Engineering Management,
Southern Methodist University, Dallas TX

Abstract

In this paper, we examine two-stage stochastic quadratic programming prob-
lems, where the objective function of the first and second stages are quadratic
functions, and the constraints are linear. The uncertainty is associated with
the second-stage right-hand side and variable bounds. In large-scale settings,
when the number of scenarios necessary to represent the underlying stochas-
tic process is exuberantly large, standard decomposition-based methods that
require the exact solutions are computationally prohibitive. To deal with this
issue, we develop two inexact proximal bundle algorithms that rely on efficient
reutilization of solution information. The first algorithm utilizes a collection
of previously encountered second-stage dual solutions to construct inexact mi-
norants for the expectation-valued objective function. On the other hand, a
partition-based inexact proximal bundle algorithm utilizes the optimal active
sets obtained in earlier iterations and a primal-dual active set method in con-
structing the inexact minorant. For both these variants, we establish their
asymptotic convergence to optimal solutions. Using a carefully developed
computer implementation, we demonstrate the practical behavior of these
algorithms through numerical experiments conducted on power systems plan-
ning and operations problems. The results indicate that the partition-based
algorithm consistently identifies solutions that are comparable in quality to
those obtained from exact algorithms while significantly reducing the compu-
tational time.

History: First submission: Jan 2024; Current version February 2, 2024.
∗nfadavi@smu.edu
†harsha@smu.edu

1



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

1 Introduction

In this paper, we study the two-stage stochastic quadratic programming (2-SQP) problem
that is stated as follows:

min f(x) :=
1

2
x>Px+ c>x+ E[h(x, ω̃)] (1a)

subject to x ∈ X = {x : Ax = b, `x ≤ x ≤ ux}.

Here, h(·) is the optimal value of the following second-stage quadratic programming (QP)
problem:

h(x, ω) := min
1

2
y>Qy + d>y (1b)

subject to Dy = ξ(ω)− C(ω)x, y(ω) ≤ y ≤ ȳ(ω), y ∈ Rn2 .

In the two-stage setting, the first-stage decision x ∈ Rn1 is determined before the realiza-
tion of uncertainty that is represented by the random vector ω̃. The first-stage objective
is to minimize the sum of a quadratic function of x and the expected second-stage value
function. The expectation is computed with respect to the probability space (Ω,F ,P) as-
sociated with random vector ω̃. Here, Ω is the set of sample space, F is the sigma-algebra,
and P is the probability measure defined on F . In the second stage, a QP problem is
solved for a given first-stage decision x and a realization ω of the random vector ω̃. The
second-stage value function is often referred to as the recourse function. Note that the
first-stage decision x affects only the right-hand side of the second-stage problem. In
general, any of the second-stage parameters can be affected by ω̃; however, we restrict
our attention to problems where only the right-hand side element (i.e., ξ and C) and
variable bounds (y and ȳ) depend on ω̃.

When the support of Ω is finite, a two-stage stochastic programming (2-SP) prob-
lem can be reformulated as a deterministic extensive scenario problem and solved using
off-the-shelf solvers. However, when the number of scenarios is large, such an endeavor
is computationally prohibitive. Most algorithmic advances in stochastic programming
(SP), particularly from a computational point of view, are targeted at two-stage stochas-
tic linear programming (2-SLP) problems where the constraints and objective functions
associated with the first-stage and the second-stage optimization problems are linear.
These advances exploit the decomposability of 2-SLP problems and can be classified into
two primary groups: stage decomposition, exemplified by the L-shaped method [29], and
scenario decomposition [25].

Similar stage and scenario decomposition approaches can be adopted for 2-SQP prob-
lems. For instance, [24] tackles a 2-SQP problem by dualizing the problem, approximating
the dual by a sequence of lower dimensional QP subproblems, and establishing that the
optimal solutions sequence converges. In [3], a Newton-type method is proposed for
2-SQP. In [21], the authors extend the Newton-type method to exploit the decomposabil-
ity of 2-SQP, particularly in computing the Newton directions. While these approaches
address problems with finite support, [2] introduces an inexact Newton method and
combines it with stochastic decomposition to address 2-SQP problems with continuous
support. For the same class of problems, [20] establish the sublinear convergence rate of
stochastic decomposition.

2



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

To address the computational difficulty of cutting-plane methods, the inclusion of a
quadratic regularization term is suggested. The resulting algorithm is often referred to
as the proximal bundle algorithm. Introduced for deterministic convex programs by [18],
the proximal bundle algorithm was adopted for SP problems in [26]. Inexact variants of
the proximal bundle algorithm for deterministic convex programs have been studied in [7]
and [17]. In SP, the inexact variants have been studied in [23], albeit only for 2-SLP. The
regularized stochastic decomposition in [13] can also be viewed as an inexact proximal
bundle algorithm, where the inexactness is due to its inherent stochastic design. While
the original algorithm is for 2-SLP, recently, [20] extended it to 2-SQP.

Our algorithm designs rely on efficiently solving QP problems that differ only along
a few model parameters. Active-set methods, along with interior-point methods, are the
main methods to solve the QP problem with equality and inequality constraints. The
active set methods reduce the size of the problem by identifying and excluding constraints
that are not active in the current iteration. Various forms of active-set methods are
presented in the literature based on the convexity properties of QP [10], including primal,
dual, and primal-dual active-set (PDAS) methods. Primal and dual active-set methods
preserve the feasibility of the primal and dual problems, respectively [22]. Regarding
PDAS, [15] introduces a method where each iteration involves a partition of variable
indices into an active set and an inactive set. The process results in a distinctive solution
through a reduced KKT system. The partition is iteratively adjusted until the obtained
solution satisfies both primal and dual feasibility conditions. This algorithm is presented
for bound-constrained QP problems, and it is shown to cycle on more general convex
QP problems. The algorithm outlined in [15] is the foundation for the methodologies
presented in the following two works. In [6], an auxiliary index set is introduced alongside
the active-set estimate. This auxiliary set is designated to contain the indices of variables
for which bounds need to be explicitly enforced in a given iteration. This approach is
globally convergent for strictly convex QP problems. In [5], convergence of the PDAS
method is presented under certain assumptions on the structure of the QP problems even
when the reduced KKT system is solved inexactly.

1.1 Contributions

In light of the current literature on decomposition methods for 2-SQP, this paper makes
three main contributions. A good understanding of the sensitivity analysis and solution
properties of the QP problems is essential to develop effective decomposition strategies.
In this regard, we first analyze the solution properties of QP problems with specific
right-hand sides. We establish that for small perturbations of the right-hand side within
a polyhedron, the optimal partition of the variables into active and inactive sets does
not change. Furthermore, we show that the partition that yields a feasible dual solution,
which is necessary to construct the approximation in bundle algorithms, remains the same
for perturbations within a larger polyhedron. We adopt a PDAS method that, starting
with an arbitrary partition, recovers a feasible dual solution in a computationally efficient
manner.

Secondly, we present two variants of inexact proximal bundle algorithms that rely
on efficiently reutilizing solution information gathered in earlier iterations to deal with

3



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

second-stage subproblems. The first method, referred to as a dual-based method, col-
lects the dual solutions associated with second-stage problems in a set and generates the
suboptimal solution based on this set. On the other hand, the second method called the
partition-based method, involves collecting the optimal partitions obtained from previous
iterations in a set, and it uses the PDAS method over that set to generate a suboptimal
solution. We establish asymptotic convergence of both the inexact methods. We also
demonstrate that, when compared to the exact proximal bundle algorithm, the inexact
variants generate solutions of comparable quality and significantly reduce computational
time.

In addition to algorithm design and convergence analyses, a supplementary contri-
bution of this work is the general-purpose implementation of the variants of proximal
bundle algorithms in the C programming language. Our implementation leverages the
problem features and dedicated data structures to manage memory assignments effi-
ciently. This carefully designed implementation minimizes computational overhead by
storing and reusing frequently accessed information (dual solutions, partitions, etc.) and
allows us to reduce the overall computational workload.

1.2 Organization

We organize the paper as follows. In Section 2, we analyze the solution properties of QP
problems and relate them to the notion of variable partitions. We also adopt a PDAS
method to recover solutions in a computationally efficient manner. In Section 3, we
introduce the inexact proximal bundle algorithms and present their asymptotic analyses.
We present the results from the numerical experiments in Section 4. Finally, in Section 5
we discuss the conclusions drawn from our study and propose potential areas for future
research. Proofs for most of the results are included in Appendix A.

2 Solution Properties of QP Problems

Our aim is to develop decomposition-based solution algorithms for 2-SQP and to do so;
we first analyze QP problems in this section. We then apply this analysis in §3 to present
the solution methods for 2-SQP. For the purposes of our discussion, we consider the
following QP problem:

min gP (y;x, ω) :=
1

2
y>Qy + d>y (2)

subject to Dy = ρ, y ≤ y ≤ ȳ.

The objective function gP (y;x, ω) is a linear-quadratic function that is convex if Q is
a positive semidefinite matrix. We denote the set of variable and constraint indices
as N := {1, . . . , n2} and M := {1, . . . ,m2}, respectively. It is worth noting that the QP
problem presented above resembles the second-stage problem in (1b). For ease of notation,
we assume that C and y are independent of ω, although the subsequent outcomes remain
applicable even if they are dependent. The problem (2) is obtained by substituting the

4



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

right-hand side of the equality constraints with ρ = ξ(ω) − Cx and the upper bounds
with ȳ = ȳ(ω).

An important property of (2) is that the feasible region of the dual problem is inde-
pendent of the right-hand side parameters. The dual of QP problem is given by:

max gD(π;x, ω) = −1

2
u>Qu+ ρTλ+ yTν − ȳTµ (3)

subject to DTλ+ ν − µ−Qu = d, ν, µ ≥ 0.

The above dual is the type II form of QP dual given in [8]. According to [8], if y∗ is
the optimal solution of (2), there exists an optimal solution for (3) such that u∗ = y∗.
Therefore, we use u = y in the remainder of this paper when referring to the dual
problem. Let λ denote the dual variables (Lagrange multiplier) associated with the
equality constraints, and µ and ν are dual variables associated with upper and lower
bounds, respectively. We collectively denote the dual solution vector π := (y, λ, ν, µ).

2.1 Solution Recovery using Decomposed KKT System

In addition to the aforementioned property, analyzing the effect of the QP problem’s
parameters on the first-order KKT optimality conditions reveals additional useful prop-
erties. For the QP in (2), at optimality, the primal variable y and the dual variables
(λ, µ, ν) satisfy KKT conditions that are given as:

Qy + d+ µ− ν −DTλ = 0, (4a)
Dy = ρ, , y ≤ y ≤ ȳ, (4b)
0 ≤ µ ⊥ (ȳ − y) ≥ 0, (4c)
0 ≤ ν ⊥ (y − y) ≥ 0. (4d)

A primal solution y to (2) has elements either at their lower-bound (yi = y
i
), upper-

bound (yi = ȳi), or in the interior of the interval (y
i
< yi < ȳi). To distinguish these

elements, we associate with a primal solution mutually exclusive and exhaustive subsets of
indices denoted by L, U, and I that correspond to elements at lower-bound, upper-bound,
and interior (inactive), respectively. That is

L := {i | yi = y
i
, i ∈ N}; U := {i | yi = ȳi, i ∈ N}; I := {i | y

i
< yi < ȳi, i ∈ N}.

We refer to set A = L ∪ U as the active set and I as the inactive set. Since the mutually
exclusive and exhaustive sets represent the partition of the index set N, we refer to the
tuple P = (L,U, I) as a partition. Specifically, we will refer to the partition associated
with a solution that satisfies the KKT conditions in (4) as the optimal partition. In
this paper, we use two index sets as subscripts to specify a sub-matrix of a matrix. For
example, QMB indicates a sub-matrix of Q formed by rows and columns indexed by M
and B, respectively.

The concept of partition is a useful tool in analyzing the KKT system. For a given
partition P , the primal variable y, the dual variables (λ, ν, µ), and the problem parameters

5



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

(Q,D, d) can be decomposed. Using the decomposed elements, (4a) and (4b) can be
combined and written as the following system of equations:

QLL QLU QLI DT
ML

QUL QUU QUI DT
MU

QIL QIU QII DT
MI

DML DMU DMI 0



yL

yU

yI

λ

+


µL

µU

µI

0

−

νL

νU

νI

0

+


dL

dU

dI

−ρ

 = 0. (5)

From the definitions of sets L and U, and complementary slackness in (4), we have:

yL = y
L
; yU = ȳU; µL = νU = µI = νI = 0. (6)

Substituting the above in (5), we obtain the reduced KKT system:
QLL

QUL

QIL

DML

 yL +


QLU

QUU

QIU

DMU

 ȳU +


QLI DT

ML

QUI DT
MU

QII DT
MI

DMI 0


[
yI

λ

]
+


−νL
µU

0I

0M

+


dL

dU

dI

−ρ

 = 0. (7)

The following result captures the behavior of the solutions of the above KKT system.

Proposition 2.1. Let P = (L,U, I) be the optimal partition of (2) for a given right-hand
side and upper bound (ρ, ȳ). Then,

(a) there exists a polyhedron S1, such that the partition P can be used to construct a
solution (y, λ, µ, ν) that is feasible to the dual problem in (3) associated with any
other right-hand side and upper bound (ρ′, ȳ′) ∈ S1.

(b) Furthermore, there exists a polyhedron S2 ⊆ S1 such that P remains an optimal
partition for (2) associated with every right-hand side and upper bound (ρ′, ȳ′) ∈ S2.

We would like to emphasize that the property identified in Proposition 2.1 plays a
crucial role in the design of our algorithm. However, it is worth noting that we do not aim
to explicitly construct the polyhedra S1 and S2 in our algorithm. Instead, we generate
matrices:

M =

[
QII −DT

MI

DMI 0

]−1

; W = −
[
QII −DT

MI

DMI 0

]−1 [
QIU 0IM

DMU −I

]
, (8)

and

T = −
[
QLU 0LM

−QUU 0UM

]
+

[
QLI DT

ML

−QUI −DT
MU

]
W, (9)

for every partition that the algorithm discovers; see Appendix A regarding the construc-
tion of the above matrices. These matrices can be utilized to compute dual feasible
solutions for any perturbed problem with right-hand side and upper bound (ρ′, ȳ′) ∈ S1,
by means of an affine transformation of the perturbation and the solution of the original
problem. The details of these computations are presented in the proof of Proposition 2.1,
and are summarized in the following corollary.

6



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Corollary 2.2. Let P and (y, λ, ν, µ) be the optimal partition and optimal solution of
problem (2) with right-hand side and upper bound (ρ, ȳ), respectively. Then, for any
(ρ′, ȳ′) ∈ S1, a feasible dual solution is derived from partition P as:

y′I
λ′

ν ′L
µ′U

 =


yI
λ
νL
µU

+

[
W
T

] [
∆ȳU
∆ρ

]
, (10)

and y′U = ȳU + ∆ȳU; y′L = y
L
; µ′L = 0; ν ′U = 0; µ′I = 0; ν ′I = 0.

If we solve problem (2) to optimality for a particular right-hand side (ρ, ȳ), then we
have access to the corresponding optimal partition P . The above results indicate that
this partition can be used to recover a solution for a perturbed program with right-hand
side (ρ′, ȳ′). If the solution satisfies (4c) and (4d), then we have a feasible dual solution. If
the solution further satisfies bound constraints, then P serves as an optimal partition for
the perturbed program. However, if either (4c) or (4d) is not met for the given right-hand
side values (ρ′, ȳ′), which is equivalent to (ρ′, ȳ′) /∈ S1, we recover a feasible dual solution
by employing the PDAS method. We elaborate on the details in the subsequent section.

2.2 Solution Recovery using PDAS Method

The PDAS method is a versatile algorithm used in various optimization problems, partic-
ularly those with inequality constraints. The PDAS methods provide an efficient approach
to identifying optimal partitions for deterministic optimization problems [5, 6, 16, 22]. In
these methods, the index sets are updated based on information available at the current
solution. For our purpose, it suffices to identify a feasible dual solution as opposed to
an optimal solution. Therefore, for a partition that yields an infeasible dual solution, we
employ the PDAS method to recover a partition that yields a feasible dual solution. To
achieve this, we develop four different versions of the PDAS method suggested in [15].
We begin by explaining how PDAS is employed according to [15], followed by a discussion
of the four algorithmic variations considered in our investigation.

Algorithm 1 presents the PDAS method to find a feasible dual solution for a given
right-hand side values (ρ′, ȳ′). This algorithm utilizes the initial partition P 0 = (L0,U0, I0),
and obtains its associated solution π0 from equation (10). We proceed if this solution
does not satisfy the dual feasibility condition for the second-stage problem. Sets V 0

P

and V 0
D are determined based on the initial solution π0, signifying the primal and dual

variables that do not currently satisfy bound constraints and non-negativity constraints,
respectively. Additionally, we initialize the iteration counter as m = 0.

At the beginning of iteration m, we first update the iteration counter m = m+ 1 and
select a set V ′D ⊆ V m−1

D and a subset V ′P ⊆ V m−1
P . This selection is based on one of the

four strategies we discuss later. Next, observe that variables within the subset V ′P violate
either their upper or lower bounds. We partition V ′P into two distinct subsets: V ′P L that
encompasses variables that are smaller than their lower bounds and V ′P U that comprises
variables that exceed their upper bounds. Similarly, observe that variables within the
subset V ′D are either active at their lower or upper bound. We divide this subset into two

7



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Algorithm 1 PDAS
1: Input: P 0 = (L0,U0, I0).
2: Initialization: Compute π0 using P 0; Identify V 0

P and V 0
D; Set m← 0.

3: while V m
D 6= ∅ do

4: m← m+ 1.
5: Select subsets V ′D ⊆ V m−1

D and V ′P ⊆ V m−1
P from an elemental selection approach.

6: Identify subsets V ′P L and V ′P U from V ′P and subsets V ′DL and V ′DU from V ′D.
7: Perform the activation and inactivation phases to obtain the updated index sets as

shown in (11a).
8: With the updated partition Pm = (Lm,Um, Im), solve the reduced KKT system to

obtain πm and V m
P and V m

D .
9: end while

10: Return: Pm and πm.

separate subsets: V ′DL that consists of variables that are active at their lower bound and
V ′DU that encompasses variables that are active at their upper bounds.

Following that, to modify the partition, we go through two phases, referred to as
activation and inactivation phases. In the activation phase, we activate the elements
in V ′P L at their lower bounds and the elements in V ′P U at their upper bounds. In the
inactivation phase, we deactivate the variables associated with infeasible dual solutions.
We achieve this by moving the elements of V ′D from Um−1 or Lm−1 to the set Im to obtain
the updated index sets. We capture these updates in the following:

Um ← (Um−1 \ V ′DU) ∪ V ′P U , (11a)
Lm ← (Lm−1 \ V ′DL) ∪ V ′P L, (11b)
Im ← (Im−1 \ V ′P ) ∪ V ′D (11c)

Finally, based on the modified partition Pm = (Lm,Um, Im), we solve the reduced KKT
system (7) for (ρ′, ȳ′) to achieve a new solution πm. We also identify new sets of primal
and dual infeasible variables, V m

P and V m
D , respectively. If the new solution is dual feasible,

that is, V m
D 6= ∅, then the method terminates. Otherwise, we repeat the above steps.

In the context of the PDAS method, finite convergence is not generally guaranteed.
Typically, Previous works, e.g., [5] and [15], each impose restrictive assumptions on QP
problems to ensure convergence. The paper [15] addresses this by examining problems
constrained exclusively by the lower and upper bounds on decision variables. Likewise,
the study [5] investigates scenarios where variables are exclusively bounded from above.
In this context, they impose rigorous conditions concerning the reduced Hessian in terms
of the upper-bounded variables. These conditions must hold for every potential partition
to ensure convergence. Additionally, [6] discusses selection approaches that involve defin-
ing an auxiliary set and solving a QP problem in each iteration to ensure convergence.
These studies collectively underscore the PDAS method’s reliance on particular problem
structures and assumptions for assured finite convergence. Based on the insight we build
from these studies, we introduce four approaches for selecting the subsets V ′P and V ′D:

• Single-Swap: Randomly choose an element vP ∈ V m−1
P and an element vD ∈ V m−1

D .
Set V ′P ← {vP} and V ′D ← {vD}.

8



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

• Aggressive-Dual: Randomly select one element vP from V m−1
P , resulting in V ′P ←

{vP}, and set V ′D ← V m−1
D .

• Aggressive-Primal: Randomly pick one element vD from V m−1
D , leading to V ′D =

{vD}, and set V ′P ← V m−1
P .

• Aggressive-Primal-Dual: Set V ′P ← V m−1
P and V ′D ← V m−1

D .

These approaches effectively showcase a range of options, spanning from aggressive to
conservative. In Section 4, we undertake a comprehensive comparison of these four ap-
proaches to assess their performance in identifying a feasible dual solution. Our evaluation
is based on criteria such as the frequency of encountered cycles, runtime efficiency, and
the quality of the obtained solution.

3 Inexact Proximal Bundle Algorithms for 2-SQP

In this section, we incorporate the PDAS method in decomposition-based proximal bundle
algorithms for solving the 2-SQP problem in (1). For these algorithms, we make the
following assumptions regarding (1).

(A1) The first-stage feasible region X is convex and compact.

(A2) The matrices P and Q are positive semidefinite and positive definite, respectively.
Additionally, the matrix D is full rank.

(A3) The 2-SQP satisfies relatively complete recourse, and the recourse value is bounded
from below by L > −∞.

(A4) The randomness affects right-hand side elements or variable bounds, and the sup-
port Ω is a finite set.

These assumptions are commonly made in SP literature. Assumption (A2) implies that
the 2-SQP is a convex program. Furthermore, it indicates that the second stage is strictly
convex and has a unique solution. Assumption (A3) ensures that for all x ∈ X and ω ∈ Ω,
the second-stage problem (1b) is feasible and its dual feasible region is bounded. Finally,
assumption (A4) allows us to write the expectation in (1a) as a finite sum. When a finite
sample, say Ω̂, either generated using computer simulations or from historical data, is
used to approximate Ω, the problem reduces to a sample average approximation problem.
The algorithms presented in this section apply to such problems as well. Two-stage
problems with a deterministic recourse matrix D are said to have fixed recourse, and
with appropriate pre-processing, we can ensure that the problem has a full-rank recourse
matrix. The exact proximal bundle algorithms are well-studied both for deterministic and
stochastic programs. In the case of 2-SP problems, the exact proximal bundle algorithm
is commonly referred to as the regularized L-shaped method. The inexact variants we
present here share the overall structure of the proximal bundle algorithms and differ only
in how we generate the affine functions that constitute the bundle. We refer the reader
to [1] or [27] for a detailed exposition of the proximal bundle algorithm applied to 2-SP

9



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Algorithm 2 Proximal-bundle algorithm for 2-SQP
1: Input: 2-SQP problem parameters, γ ∈ (0, 1), and σ ∈ (0, 1).
2: Initialization: k ← 0, J0 = {(L, 0)}, f 0(x) = 1

2
x>Px+ c>x+ L, and w0 ∈ X .

3: while the stopping rule is not satisfied do
4: k ← k + 1
5: Candidate update: identify a candidate solution:

xk ∈ arg min{fk−1
σ (x) := fk−1(x) +

σ

2
‖x− wk−1‖

∣∣ x ∈ X}. (12)

6: Minorant generation: generate a minorant (αk, βk) using an exact or inexact bundle
procedure.

7: Bundle update: update the bundle:

Jk = Jk−1 ∪ (αk, βk).

8: Approximation update: Obtain an updated approximation:

fk(x) =
1

2
x>Px+ c>x+ max

(αj ,βj)∈Jk
(αj + βj

>
x). (13)

9: if fk(xk)− fk(wk−1) ≤ γ(fk−1(xk)− fk−1(wk−1)) then
10: Incumbent update: wk ← xk,
11: else
12: wk ← wk−1.
13: end if
14: end while
15: Return: The optimal solution x∗ ← wk.

problems. Here, we briefly overview the algorithm and discuss some essential elements.
The steps are presented in Algorithm 2.

The bundle algorithms utilize a set of affine functions to approximate the expected
recourse function, resulting in a piecewise affine convex lower envelope for the expectation-
valued objective function in (1a). An algorithm iteration, indexed by k, begins by iden-
tifying a candidate solution xk, which we obtain by solving a proximal (or regularized)
master problem (see Line 5). We construct a minorant at the candidate solution using
either the exact or inexact procedure (introduced later in this section). We denote by
(αk, βk) the coefficients of the minorant that we construct in the current iteration. We
add this minorant to the existing bundle to obtain the updated bundle (see Line 7). Using
the updated bundle, we update the approximation of the first-stage objective function,
which we subsequently use to update the incumbent solution in Line 9. This completes
the iteration.

A few observations about the proximal bundle algorithm are in order. The construc-
tion of the minorants utilizes the dual solutions of the second-stage program. Let πk(ω)
be the optimal dual solution obtained by solving the second-stage program (1b) with

10



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

input (xk, ω). Due to weak duality, we have:

h(x, ω) ≥ − 1

2
(yk)>Qyk + (ξ(ω)− Cx)>λk + y>νk − ȳ>µk

= −1

2
(yk)>Qyk + ξ(ω)>λk + y>νk − ȳ>µk︸ ︷︷ ︸

:=αk(ω)

+
(
− (λk)>C

)︸ ︷︷ ︸
:=βk(ω)

x, ∀x ∈ X . (14)

The statement above holds with strict equality when x = xk as a consequence of strong
duality. In this case, we achieve an exact or supporting hyperplane for h(x, ω). However,
when we use only a feasible solution, the inequality (14) still applies, but the resulting
affine function may not be supporting even at x = xk. Consequently, we obtain an inexact
(lower-bounding) approximation.

Typically, when the bundle algorithms are applied for 2-SP, we solve all second-stage
problems to optimality to compute the coefficients of the minorants as outlined in Al-
gorithm 3. We refer to this procedure for generating minorants as the exact procedure.
Consequently, we obtain exact/supporting hyperplanes to individual recourse functions

Algorithm 3 Exact procedure for generating minorants

1: Input: Candidate solution xk and the sample set Ω.
2: for ω ∈ Ω do
3: Solve the second-stage program and obtain the optimal solution πk.
4: Calculate coefficients (αk(ω), βk(ω)) from (14).
5: end for
6: Aggregate the coefficients of the affine function as:

αk =
∑
ω∈Ω

p(ω)αk(ω), βk =
∑
ω∈Ω

p(ω)βk(ω). (15)

7: return (αk, βk).

h(x, ω) and the resulting minorant satisfies αk + (βk)>xk = E[h(xk, ω̃)], for every k ≥ 1.
Moreover, the approximation satisfies fk(xk) = f(xk) and fk(x) ≤ f(x) for all x ∈ X
and k ≥ 1 (see (1a) and (13)). Over the iterations, the approximations are monotonically
increasing, that is, fk−1(x) ≤ fk(x) ≤ fk+1(x) ≤ . . . ≤ f(x) for all x ∈ X . These prop-
erties play a vital role in showing the algorithm’s convergence when we adopt the exact
procedure for generating the minorants (see, for example, chapter 3 in [27]).

Secondly, the proximal bundle algorithm maintains two sequences of solutions: a
candidate sequence {xk} and an incumbent sequence {wk} ⊆ {xk}. The criterion used to
identify the incumbent solutions plays a critical role in the convergence and computational
performance of the algorithm. Notice that when we use the exact procedure, we can
access the function value f(x) at the candidate solution and the incumbent solution.
This is because at the candidate solution we have fk(xk) = f(xk). Since the incumbent
sequence is a subsequence of candidate solutions, we must have a j < k such that wk−1 =
xj. Since we retain all the previously generated minorants in the bundle Jk, we have
fk(wk−1) = f j(xj) = f(xj). Consequently, the criterion we use to assess whether the
current candidate solution can be accepted as an incumbent solution (in Line 9) reduces

11



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

to the descent condition: f(xk)− f(wk−1) ≤ γ(fk−1(xk)− f(wk−1)). The reader may be
familiar with this descent criterion as it is more common for the proximal bundle algorithm
(see, for example, [19] and [26]). However, it is not possible to assess such a criterion
when only inexact function values are available. Therefore, we assess a criterion using
only the inexact function value fk computed at the current candidate and incumbent
solutions. A similar criterion was previously employed in the stochastic decomposition
algorithm where coefficients of the minorants are stochastic in nature; see [13].

Thirdly, how we manage the minorant bundle is also vital in determining the behavior
of the algorithms. Notice that we add a new minorant to the bundle in every iteration
(Step 7 of Algorithm 2). While we retain all previously generated minorants in the
bundle, it is possible to remove minorants generated in earlier iterations based on whether
they contribute to the function approximation at the solutions where the assessment is
being made (specifically, candidate and incumbent solution). We assess this contribution
by examining the optimal dual solutions, denoted by ζj, corresponding to an element
j ∈ Jk−1 obtained after solving (12). A bundle, given by Jk = {j | ζj > 0} ∪ (αk, βk) ∪
{α̂, β̂} serves this purpose. Here, (α̂, β̂) denotes the minorant generated at the incumbent
solution, which was generated in an earlier iteration, that is, (α̂, β̂) = (αj, βj) for some
j < k. When we employ a bundle comprising only the active minorants, convergence
analysis of the algorithms adds additional considerations. Since we focus on studying
the consequence of introducing inexactness in minorant generation, we maintain a full
bundle.

The advantages of employing the exact procedure come at the significant computa-
tional cost of solving second-stage programs for all observations in Ω. This is particularly
the case when dealing with large-scale problems in the second stage or when we have an
exorbitantly large number of possible scenarios. To alleviate this bottleneck, we introduce
two inexact procedures for constructing the approximations used in the bundle algorithm.
In these inexact procedures, we solve subproblems only for a subset of observations and
use an appropriate approximate solution for the remaining observations. This results in
inexactness both in the function value and subgradient. Moreover, in our algorithms, the
level of inexactness is unknown but bounded and vanishes as the algorithm progresses.

3.1 Dual-based Inexact Procedure

Due to assumption (A4), the set of feasible dual solutions is not affected by either the
first-stage decision variable or the observation, see (3). We utilize this fundamental
characteristic of the 2-SQP problems in the first inexact procedure for generating the
minorants. We describe this procedure in Algorithm 4.

In the dual-based procedure, we maintain a collection of previously encountered dual
solutions. At the beginning of iteration k, we denote this collection by Πk−1. To generate
a new minorant at candidate solution xk, we select a subset Ωk of observations and solve
the subproblems corresponding to only observations ω ∈ Ωk, i.e., with input (xk, ω) in
(1b). We append the optimal dual solutions obtained by solving these subproblems to the
set Πk−1, thus obtaining an updated set Πk. For the remaining observations ω ∈ Ω \ Ωk,

12



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Algorithm 4 Dual-based inexact procedure for generating minorant

1: Input: Candidate solution xk, sample set Ω, collection of dual solutions Πk−1.
2: Randomly generate a subset Ωk ⊂ Ω.
3: for ω ∈ Ωk do
4: Solve (1b) for (xk, ω) and obtain the optimal dual solution π(ω).
5: Calculate (αk(ω), βk(ω)) from (14).
6: end for
7: Update the collection: Πk = Πk−1 ∪ {π(ω)|ω ∈ Ωk}
8: for ω ∈ Ω�Ωk do
9: Using the argmax step in (16), identify an approximate dual solution.

10: Calculate (αk(ω), βk(ω)) from (14).
11: end for
12: Calculate the affine function coefficients from (15).
13: Return: (αk, βk) and Πk.

we obtain a suboptimal dual solution by utilizing an “argmax” step:

π(ω) ∈ arg max
{1

2
y>Qy + (ξ(ω)− Cxk)>λ+ yTν − ȳ(ω)>µ |π ∈ Πk

}
. (16)

This step seeks to identify a solution from the set Πk that yields the best objective
function value for the dual of the second-stage problem. Next, by utilizing the dual
solutions, whether optimal or approximate, we compute the coefficients of the lower
bounding minorant using the calculations shown in (14). When the dual-based inexact
procedure is embedded in the proximal bundle algorithm in Algorithm 2, we initialize the
collection Π0 = ∅ and maintain the collection through the course of the algorithm. We
refer the algorithm as dual-based proximal bundle algorithm.

The idea of reutilizing previously encountered solutions has been effectively utilized
in SP. The earliest work that we are aware of is [30] for 2-SLP, where the author proposes
bunching observations that lead to the same optimal basis of the second-stage linear
programs and using these bunches to speed up the computations of minorant generation
in the L-shaped method. Using a similar design principle, [31] proposes an inexact variant
of the L-shaped method, and subsequently, [23] proposes an inexact proximal bundle
method for 2-SLP. Reutilizing optimal dual solutions for 2-SLP with right-hand side
uncertainty and the optimal dual basis for 2-SLP with random cost coefficients drives
the computational efficiency of the stochastic decomposition algorithm; see [13] and [11],
respectively.

3.2 Partition-based Inexact Procedure

While the dual-based inexact procedure reduces the computational effort required to
solve the second-stage problems, it inadvertently leads to an escalation in the size of the
dual set Πk through successive iterations. This increase in size consequently renders the
argmax step computationally burdensome, as it necessitates the examination of every
element within the set Πk during each iteration k. To avoid this drawback, we utilize the
result of Proposition 2.1 to design an inexact procedure to generate the minorant for the
proximal bundle algorithm. We summarize this procedure in Algorithm 5.

13



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Algorithm 5 Partition-based inexact procedure for generating minorant

1: Input: Candidate solution xk, sample set Ω, collection of partitions Pk−1.
2: Initialization: Πk ← ∅.
3: Randomly generate a subset Ωk ⊂ Ω
4: for ω ∈ Ωk do
5: Solve (1b) for (xk, ω) and obtain the optimal partition P (ω).
6: Calculate (α(ω), β(ω)) from (14).
7: end for
8: Update the collection: Pk ← Pk−1 ∪ {P (ω)|ω ∈ Ωk}.
9: for ω ∈ Ω�Ωk do

10: Apply Algorithm 1 for all p ∈ Pk and gather all dual feasible solutions in a set
defined as Πk = Π(x, ω,Pk).

11: Use the argmax step in (16) to obtain the approximated solution.
12: Calculate (α(ω), β(ω)) from (14).
13: end for
14: Calculate affine function coefficients from (15).
15: Return: (αk, βk) and Pk.

In each iteration, we solve second-stage problems for a subset of observations, as
in Algorithm 4. However, instead of storing the dual solution, we store their optimal
partitions. The input collection of partitions Pk−1 is updated using partitions obtained
by solving subproblems corresponding to ω ∈ Ωk. For the remaining observations, we
use the PDAS method described in Algorithm 1 to construct a feasible dual solution for
all partitions p ∈ Pk. We then invoke the argmax step in (16) to identify the best dual
solution. Since there are finitely many partitions, the arg max step can be carried out
computationally efficiently. We compute the lower bounding function coefficients using
the calculations shown in (14). When the partition-based inexact procedure is embedded
in the proximal bundle algorithm in Algorithm 2, we initialize the collection P0 = ∅ and
consistently update this collection throughout the algorithm’s execution. This algorithm
is denoted as the partition-based proximal bundle algorithm. We close this section with
the following remarks.

Remark 3.1. This remark addresses the process adopted to select the subset Ωk ⊆ Ω. Let
Jω ⊆ {k = 0, 1, . . .} be the iterations, when ω ∈ Ωk. The criterion for selecting Ωk must
satisfy |Jω| = ∞. This criterion is equivalent to saying that for any K > 0, there exists
a j > K such that j ∈ Jω. This requirement is satisfied, for instance, in a deterministic
process such as the one adopted in the exact procedure where Ωk = Ω. Another example
is when observations are selected cyclically: ωm ∈ Ωk for k = n|Ω| + m,n > 0,m =
1, . . . , |Ω|. The requirement is also satisfied when randomization is adopted. For instance,
when every observation is selected with fixed nonzero probability p, independently in each
iteration. The requirement is satisfied due to the Borel-Cantelli lemma [9].

Remark 3.2. Like the proximal bundle algorithm, the level-decomposition method [19]
provides an alternate approach to handle the challenges associated with the classical
cutting-plane algorithm. Both these methods rely on an outer approximation of the
first-stage objective function and principally differ in how a new candidate solution is
identified. Our approaches for generating the piecewise affine functions for the outer
approximations also apply to level-decomposition methods.

14



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

3.3 Asymptotic Convergence

In this section, we present the asymptotic convergence results for both variants of the
inexact proximal bundle algorithm. Recall that {xk} and {wk} denote the sequence of
candidate and incumbent solutions generated by the algorithm. The first result estab-
lishes the behavior of the first-stage function approximation along a converging sequence
of solutions.

Lemma 3.1. Let K index an infinite subsequence of candidate solutions {xk}∞k=1 such
that {xk}K → x̂. Then have {fk(xk)}K → f(x̂).

The analysis that leads to the above result is distinct when the procedure for gen-
erating the minorants differs. To establish the result in the case when we employ the
dual-based procedure, we exploit the fact that the collection of feasible solutions exhibits
the following property: Πk ⊆ Πk+1 ⊆ . . . ⊆ Π. This involves leveraging the continuity of
the optimal value of (1) with respect to x. On the other hand, for the partition-based
method, we rely on Pk ⊆ Pk+1 ⊆ . . . ⊆ P and the selection of the best solution ob-
tained from applying PDAS through the argmax step. We establish the result based on
Proposition 2.1, where we demonstrated that optimal partition does not change when the
solution xk, and consequently, the right-hand side ρ = ξ(ω)−Cxk is within a polyhedron.
The proof also establishes uniform convergence of the sequence {fk}.

For the next results, the criterion used to update the incumbent solutions plays a
vital role. We denote by N ⊆ {0, 1, . . .} the iterations at which we update the incumbent
(referred to as the serious steps in the literature related to proximal bundle methods).
We recognize a few quantities that appear frequently in our analysis. We denote by θk
the optimal value of the first-stage approximate problem (12), i.e.,

θk := fk−1(xk) +
σ

2
‖xk − wk−1‖2.

We capture the perceived improvement at the candidate solution, relative to the current
incumbent solution, by the term δk := fk−1(wk−1) − fk−1(xk). Since wk−1 is a feasible
solution to the master problem, it follows that θk is bounded above by fk−1(wk−1), and
in turn, by f(wk−1). Optimality of xk implies that

δk ≥ σ

2
||xj − wk−1|| ≥ 0. (17)

The next result establishes the asymptotic behavior of the sequence {δk}.

Lemma 3.2. There exists a subsequence K∗ ⊆ N such that {δk}K∗ → 0.

To prove the above result, we examine the case where the incumbent solution is
updated a finite number of times, resulting in the entire sequence of δk converging to
zero. We present this proof in Appendix A and focus on the second case, where the
incumbent solution is updated infinitely.

Proof. From optimality we have for all kn ∈ N :

0 ≤ γδkn ≤ fkn−1(wkn−1)− fkn−1(wkn) = fkn−1(wkn−1)− fkn−1(wkn).

15



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

The second inequality follows from γ ∈ (0, 1) and the equality follows by noting that
wkn−1 = wkn−1 . The average improvement over M such iterations satisfies:

γ

M

M∑
m=1

δkm ≤ 1

M
(fk1−1(wk0)− fkM−1(wkM )︸ ︷︷ ︸

(a)

)

+
1

M

M∑
m=1

(fk(m+1)−1(wkm)− fkm−1(wkm))︸ ︷︷ ︸
(b)

Under assumptions (A1) and (A3), part (a) converges to zero as M →∞. The term (b)
also tends to zero, almost certainly, due to the uniform convergence of the sequence fk.
Hence, we deduce:

0 ≤ lim
km∈N

inf δkm ≤ lim
M→∞

1

M

M∑
m=1

δkm = 0.

This leads to the conclusion that there exists a sequence, denoted as K ⊆ N, for which
{δk}K → 0.

While the above result establishes the existence of a subsequence, one can identify
such a subsequence computationally. Notice from the above proof that we can construct
an index set K∗ using iterations km where δkm ≤ 1

M

∑M
m=1 δ

km . We can establish that
such an index set is an infinite set (as required in the proof), and every accumulation
point of {δk}K∗ is zero. In the following theorem, we use Lemma 3.1 and Lemma 3.2 to
prove the convergence of {wk} to the optimal solution of (1).

Theorem 3.3. Let {wk}∞k=1 denote the sequence of incumbent solutions. There exists a
subsequence {wk}K for which every accumulation point is optimal to (1).

Employing exact procedures to generate minorants has several advantages. From
a computational point of view, it offers a direct means to verify the optimality of a
given iterate. In the exact bundle method, we track f(wk−1) − θk and terminate when
this difference falls below a desired threshold. Both the quantities used to verify the
termination criterion are readily available within the algorithm. We refer the reader to
[27] for details. When inexact procedures are employed in proximal bundle methods to
generate minorants, note that (17) and Lemma 3.2 ensure that there exists a subsequence
of iterations, indexed by K such that fk−1(wk−1)−θk → 0 over K. Although fk−1(wk−1)−
θk is a suitable termination metric, stopping the algorithm when this quantity is lower
than a threshold may be premature. While a thorough investigation of termination
criteria is outside the scope of this paper, we identify a couple of criteria that can be
employed when the partition-based inexact cut-generating procedure is used. Firstly, we
should expect the collection of partitions to stabilize. Secondly, the partitions identified
for any observation, either by solving the subproblem or through the argmax procedure,
must remain consistently the same. Designing termination criteria for when the dual-
based procedure is employed is more challenging. Nevertheless, in our computational
experiments, we run the algorithms for a minimum number of iterations and terminate
when the function values at successive candidate solutions differ by, at most, a certain
threshold.

16



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

3.4 Implementational Details

In this section, we explore the specific procedures involved in implementing the partition-
based method. A comprehensive understanding of the implementation details is essential,
as it plays a pivotal role in influencing the overall performance of the algorithm, partic-
ularly in result storage and executing efficient calculations. Initially, let’s delve into the
manner in which we structure and store information for use in iterations so that we don’t
have to retrieve it each time a new iteration occurs. First, for a given observation ω
indexed as i in Ω, we decompose the random right-hand sides ξ(ω) and ȳ(ω) into two
parts. The first part is the mean of the random variables that are stored in double vectors
bBar and yBar, and the deviation from the mean stored as sparse vectors in omega-b[i]
and omega-ybar[i]. Thus, we have:

ξ(ω) = bBar + omega_b[i]
ȳ(ω) = yBar + omega_ybar[i].

This decomposition enables us to capitalize on the computational efficiency facilitated by
sparsity. It allows us to identify and streamline calculations that are consistent across all
observations, distinguishing them from those that vary. We exploit the property obtained
in equation (10), and for a partition p, we calculate and denote matrix [W ;T ] as [Wp;
Tp]. Here, we utilize the solution derived from the mean-value problem as an initial
reference for the algorithm. Employing this reference allows us to circumvent redundant
calculations throughout the algorithm’s execution. We commence the computation as
follows to establish a reference solution associated with that specific partition:

Lambda[p] = [Wp;Tp]*Xmean. (18)

To minimize unnecessary memory usage, it’s important to highlight that, for the initial-
ization of the lambda structure, we allocate memory for a pointer to double vectors for
the maximum number of potential partitions that could be discovered. Whenever we
discover a new partition, we assign memory to one of its elements based on the size of the
first-stage decision variable. The computation in equation (18) is performed singularly
upon discovering a new partition. Next, we elucidate the procedure for computing solu-
tions for the second-stage problem for a given candidate solution xk and an observation
ω. This involves carrying out the subsequent calculations to obtain the second part of
the solution for the recently identified partition p across all observations ω:

Delta[p][i] = [WP;TP]*omega_b[i]. (19)

Calculations in (19) take advantage of the sparsity of omega_b[i] in the multiplication.
To efficiently assign memory, we initialize the Delta variable, which is a pointer to pointers
to pointers of doubles. We allocate memory for the maximum potential partitions, but
we do not assign memory for the interior pointers until a new observation is discovered.
Thirdly, the other component of the solution depends on xk. This part is obtained and
stored at the beginning of each iteration as follows:

DeltaX[p] = [WP;TP]*C*(x_k-Xmean). (20)

Thus, for xk and ω, to obtain the solution of the second-stage problem associated with
partition p, we have:

sol = Lambda[p] + Delta[p][i] - DeltaX[p]. (21)

17



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Thus, sol is decomposed into three parts: the first part is independent of ω and xk, the
second part is independent of xk, and the third part is independent of ω. To compute
the cut coefficients α and β in equation (14), we once again streamline the calculations
using the same strategy employed for calculating the solution. Since alpha and beta are
functions of sol, replacing these three parts in (14) yields a decomposed version of α as
well. Here, the first part, which is independent of ω and xk is calculated as follows:

Sigma_alpha[p] = -1/2*Lambda[p]_y*Q*Lambda[p]_y +
bBar*Lambda[p]_lambda + ylBar*Lambda[p]_nu - yuBar*Lambda[p]_mu

Now, let’s explore how to compute the variable part of α. The second part is independent
of xk and is calculated and stored once for every observation. This section is computed
as follows:

Delta_alpha[p][i] = -1/2*[2.Lambda[p]_y*Q*Delta[p][i]_y +
Delta[p][i]_y*Q*Delta[p][i]_y] + bBar*Delta[p][i]_lambda +
omega_b[i]*Lambda[p]_lambda + omega_b[i]*Delta[p][i]_lambda +
ylBar*Delta[p][i]_nu - (yBar*Delta[p][i]_mu +
omega_ybar[i]*Lambda[p]_mu + omega_ybar[i]*Delta[p][i]_mu)

Finally, the subsequent section represents the third part of α that needs to be computed
in each iteration for all observations:

AlphaX[p][i] = -1/2*[2*Lambda[p]_y*Q*DeltaX[p]_y +
2*Delta[p][i]_y*Q*DeltaX[p][i]_y + DeltaX[p]_y*Q*DeltaX[p]_y] +
bBar*DeltaX[p]_lambda + omega-b[i]*DeltaX[p]_lambda +
ylBar*DeltaX[p]_nu - (omega_ybar[i]*DeltaX[p]_mu + yBar* DeltaX[p]_mu),

Same procedure is conducted for the calculation slop β as well:

sigma-beta[p] = Lambda[p]_lambda*C.

In addition, the second and third parts that are varying are calculated as follows:

Delta_beta[p] = Delta[p][i]_lambda*C.

BethaX[p] = DeltaX[p]_lambda*C.

4 Numerical Results

In this section, we present the results from the numerical experiments conducted on both
the exact and inexact variants of the proximal bundle algorithm presented in this paper.
We design our experiments to demonstrate the performance of the inexact compared
to the exact proximal bundle algorithm. For the inexact algorithms, we explore their
behavior when different fractions of subproblems are solved in every iteration. We also

18



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

investigate the performance of these algorithms under different variances of the under-
lying uncertainty. Before we report the results from these experiments, we share the
experimental setup.

We conducted these experiments on instances of two problems encountered in power
system planning and operations. The first problem, referred to as PGP2, is adapted from
its original form and is based on data obtained from [14]. PGP2 is a two-stage stochastic
problem that optimizes power generation capacity increments through reserve facility
installation. The goal is to minimize the total costs, including both installation and
expected operating costs. This problem involves six variables and two constraints in
the first stage and 23 variables and seven constraints in the second-stage problem. The
second problem is a modified IEEE-30 test system [4], a standard test system widely
employed in power systems analysis. While the first problem is a power systems planning
problem, SODA30 concerns an operations problem known as economic dispatch. Economic
dispatch refers to optimizing power generation and distribution in a power system to meet
demand efficiently. The system features 30 buses, 41 lines, six generators, and 21 loads.
The renewable generator supply is considered random in our experiments. We refer to
this problem as SODA30, and it has a first stage involving 72 and 98 constraints, while
the second stage comprises 80 constraints and 132 variables.

For the computational experiments, we utilized a system with Ubuntu 22.04.3 LTS
operating system equipped with an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz, featur-
ing a quad-core architecture with a maximum clock speed of 3.9 GHz and supported by
7.5 GB of RAM. All three algorithms were implemented using C programming language.
The optimization procedures were carried out using the Gurobi Optimizer (version 9.5),
and the linear algebra routines were performed using LAPACK (Linear Algebra PACK-
age). Our implementation serves as a general-purpose solver for 2-SQP as it accepts
input in SMPS file format [12]. Furthermore, we developed custom data structures that
take advantage of the sparsity of the problems. The instances of the two problems used
in our experiments and the algorithm source codes are available at the authors’ GitHub
repository (https://github.com/SMU-SODA/stochasticQP).

We conduct 30 replications of all our experiments, each with randomly and indepen-
dently generated instances of the above-mentioned problems. In presenting the results
of the experiments, we report the metrics averaged over the 30 replications. We also
report the standard deviations of the obtained metrics that are provided in parentheses
adjacent to the corresponding results. The results for the partition-based inexact bundle
algorithm utilize the aggressive-dual approach for selecting subsets in PDAS. We present
a comparison with other approaches in section 4.4.

4.1 Efficiency comparison of exact and inexact algorithms

The first experiment elucidates the comparative performance of the exact and inexact
proximal bundle algorithms in different metrics. The results are presented in Table 1.
The table shows the number of observations in the problem instance (N = |Ω|), the total
number of iterations before the stopping condition is satisfied (Iterations), the objective
function value associated with the last incumbent solution (Obj. value), the total com-
putational time (Time), which is reported in seconds, and the relative difference between

19

https://github.com/SMU-SODA/stochasticQP


Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

the objective function value reported by the exact and inexact algorithms (∆). The opti-
mal value derived from the exact algorithm closely approximates the true optimal value.
Notice that as the value of N increases, the estimated objective function value tends to
rise while the associated standard deviation tends to decrease. This behavior is consis-
tent with the sample average approximation theory (see [28]). Although this pattern is
evident in the results for PGP2, it appears somewhat more irregular in the case of SODA30.
In this experiment, we solved only 10% of subproblems when inexact procedures were
employed. For both problems, the inexact methods achieve objective function values
that are comparable to those obtained when the exact method is used. This is evident
from the values of ∆ in the table, which are less than 0.0145 and 0.0076 for PGP2 and
SODA30, respectively.

We noticed that, with comparable objective function values, the partition-based inex-
act bundle algorithm outperforms the exact algorithm in terms of the total computational
time. For instance, when considering N = 500, the exact algorithm requires 11.20 sec-
onds for the PGP2 instance and 37.71 seconds for the SODA30 instance. In contrast, the
partition-based algorithm solves these instances in 5.53 seconds for PGP2and 10.36 sec-
onds for SODA30. Since the number of iterations is comparable in the two algorithms,
this observation is attributed to the per-iteration computational effort in solving sub-
problems for all observations when compared to using the PDAS method and argmax
step. We emphasize the role of the carefully designed data structures and subroutines
used in implementing the PDAS method and argmax step in achieving this computational
performance improvement.

The dual-based inexact bundle algorithm exhibits the best performance in terms of
the total computational time in PGP2. In SODA30, while it has the best performance when
N ≤ 200, the dual-based algorithm shows the poorest performance when N exceeds 200
(see Figure 1a). This decline in performance is attributed to the substantial expenses
associated with the resource-intensive argmax step in the dual-based algorithm, which
necessitates an exhaustive search across all acquired dual solutions. To substantiate this
point, we assessed the sizes of the sets Π and P in the largest instances of PGP2 and
SODA30 (with 600 and 1000 observations, respectively). For the dual-based algorithm,
the sizes were 2665 and 4075 for PGP2 and SODA30, respectively. In contrast, for the
partition-based algorithm, the sizes were 270 and 28. This disparity elucidates why
the performance of the dual-based algorithm is significantly poorer for SODA30. As the
problem size grows, we expect the set Π to enlarge as observed when transitioning from
PGP2 to SODA30; thereby increasing the computational cost of the argmax step. However,
it is still possible for the set P to remain within a reasonable size. While it is impossible to
predict the number of partitions one may encounter, based on our empirical observation,
we expect the partition-based algorithm to outperform the dual-based algorithm in large-
scale settings.

Figure 1b illustrates the progress of the partition-based algorithm (number of itera-
tions along the horizontal axis) in terms of discovering new partitions. The vertical axis
shows the cumulative number of partitions discovered. The figure illustrates the progress
in two instances of SODA30 with 500 and 1000 observations, respectively. In the case of
500 observations, the total number of iterations amounted to 41. Notably, the latest iter-
ation wherein a new partition emerged from solving second-stage problems was iteration
25, resulting in a total of 24 identified partitions. In the case of 1000 observations, the

20



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Table 1: Numerical results for PGP2 and SODA30.

Algorithm N Iterations Obj. value Time(s) ∆
PGP2

Exact 100 43.16 (2.19) 556.97 (10.18) 1.84 (0.21) -
200 43.90 (3.43) 558.98 (8.20) 4.22 (0.42) -
300 43.86 (3.00) 559.04 (5.43) 6.79 (0.55) -
400 44.9 (3.12) 560.64 (5.12) 9.31 (0.76) -
500 44.66 (3.31) 560.44 (4.53) 11.20 (0.80) -
600 43.70 (2.96) 561.20 (3.74) 13.21 (1.02) -

Dual-based 100 50.33 (7.51) 555.97 (10.37) 0.33 (0.06) 0.0018
200 47.23 (7.08) 558.64 (8.16) 0.78 (0.19) 0.0006
300 45.63 (4.15) 558.64 (5.38) 1.41 (0.19) 0.0008
400 45.80 (3.95) 560.36 (5.21) 2.33 (0.30) 0.0005
500 44.40 (4.03) 560.14 (4.55) 3.33 (0.53) 0.0005
600 44.2 (3.73) 560.95 (3.81) 4.73 (0.73) 0.0006

Partition-based 100 50.20 (7.90) 548.86 (25.12) 0.74 (0.15) 0.0145
200 47.16 (5.29) 558.32 (8.57) 1.46 (0.21) 0.0014
300 44.93 (3.35) 558.48 (4.88) 2.45 (0.96) 0.0010
400 47.76 (5.06) 560.42 (5.28) 4.70 (0.80) 0.0005
500 45.20 (4.09) 560.32 (4.47) 5.53 (1.00) 0.0003
600 45.86 (4.40) 561.01 (3.71) 7.77 (1.21) 0.0005

SODA30
Exact 100 42.53 (2.72) -264521 (141) 7.37 (0.51) -

200 43.40 (2.85) -264529 (79) 15.46 (1.18) -
300 43.30 (2.64) -264504 (89) 24.87 (1.75) -
400 43.86 (2.66) -264490 (73) 32.48 (2.13) -
500 42.56 (2.60) -264487 (71) 37.71 (2.56) -
1000 43.20 (2.24) -264492 (49) 75.11 (4.30) -

Dual-based 100 40.20 (0.48) -264819 (1718) 1.97 (0.25) 0.0048
200 40.30 (0.79) -264937 (1337) 5.53 (0.41) 0.0041
300 40.73 (2.27) -265016 (1686) 10.21 (1.22) 0.0043
400 40.43 (1.04) -265430 (1814) 16.42 (0.99) 0.0051
500 40.73 (1.25) -264775 (1297) 24.92 (1.90) 0.0036
1000 40.40 (0.85) -265202 (3332) 106.51 (6.83) 0.0076

Partition-based 100 44.43 (3.23) -264520 (141) 3.83 (1.04) < 10e-4
200 44.06 (3.62) -264530 (78) 5.96 (2.31) < 10e-4
300 43.06 (3.23) -264505 (90) 6.83 (0.84) < 10e-4
400 43.30 (2.43) -264491 (73) 8.85 (1.30) < 10e-4
500 43.26 (2.55) -264487 (70) 10.36 (0.71) < 10e-4
1000 42.9 (2.78) -264493 (49) 14.87 (1.50) < 10e-4

last new partition was discovered in iteration 20, and the algorithm ran for 43 iterations.
Recall that the convergence analysis of the partition-based algorithm relies on encoun-
tering the same partition after a finite number of iterations for any observation. In other
words, we expect that all relevant partitions are discovered after a certain number of
iterations. The figure provides empirical evidence of this fact.

21



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

(a) Comparison of Computational Time (b) Partition Discovery Pattern

Figure 1: Comparison of Efficiency of Proximal Bundle methods

Figure 2: Impact of Sampling Fraction on Partition-based Method (Instances of SODA30)

4.2 Impact of Sampling Fraction on Partition-based

As previously discussed in Remark 3.1, the asymptotic performance of the algorithm is
achieved under different subset selection criteria. Since the per iteration computational
cost of inexact algorithms is proportional to the number of subproblems solved (size of
|Ωk|), our next experiment assesses the impact of the selection strategy. We report the
results only for the partition-based algorithm. One criterion that fulfills the necessary
conditions for the selection is to sample each observation with a constant nonzero prob-
ability, denoted as p, in every iteration. We examined the impact of different p values on
a crucial performance metric, the computational time before termination. These results
are presented in Figure 2 for instances of SODA30 with different numbers of observations.
The figure shows the computational time (vertical axis) for different values of p between
0.01 and 1 along the horizontal axis. Notice that p = 1 corresponds to the exact method.

The figure demonstrates that with increasing p values, the computational time de-
creases, reaching a minimum value at either p = 0.05 or p = 0.10 for all instances.
However, once p values exceed this point, the computational time increases. The higher
computational cost for very small p values is attributed to weaker minorants that prolong
the algorithm’s termination. Similarly, for large p values, the increased computational
cost is because of the need to solve a larger number of second-stage QP problems. Nev-
ertheless, these results demonstrate that we can obtain high-quality solutions even by
solving a small fraction of subproblems.

22



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

4.3 Effect of Variance on the Number of Discovered Partitions

In this experiment, we investigate how the variance of random variables (right-hand sides)
influences the performance of the partition-based algorithm. Specifically, we monitor the
number of identified partitions. We report the results for the SODA30 instance with 1000
observations in Table 2. We vary the variance of two random variables, both with mean
one, between 0.01 to 4. We applied the partition-based algorithm with a sample fraction
of 0.1 to solve these problem instances.

The table shows the total computational time and the number of discovered partitions
for different variance values. The results show that as the variability on the right-hand
side amplifies, it leads to heightened variability in the second-stage subproblems. Con-
sequently, in line with expectations, there is an escalation in the number of partitions
identified. This increases the computational effort in PDAS and argmax step which is
aggregated in the computational time mentioned in the table.

4.4 Comparison of different versions of implementation of PDAS

In our last experiment, we compare the different subset selection approaches within
PDAS, namely Single-Swap, Aggressive-Dual, Aggressive-Primal, and Aggressive-Primal-
Dual. For this experiment, we use a deterministic instance of SODA30 (a QP problem with
linear constraints). Beginning with the same random partition as input, we run the PDAS
method until it discovers an optimal solution. Additionally, we note the results when the
first feasible dual solution is discovered. These results are reported in Table 3. In this
table, we report the range of relative gaps (it is a range across 30 replications) between
the optimal objective function value and the objective function at the solutions reported
from PDAS. We observed cycles with all four subset selection approaches while looking
for the optimal solution. In the PDAS method, a cycle occurs if we encounter the same
partition as one obtained in a previous iteration. We document the number of instances
where the algorithm encounters cycles (# Cycles). The average computational time and
the range of relative gaps are computed only for instances where we did not encounter
cycles.

Analysis of results reported in Table 3 reveals that the runtimes of the four algorithms
are closely comparable. The Single-Swap approach provides the best objective function
values for all instances where we did not encounter cycles, with the smallest relative
gap of 0.04. This indicates the possibility of achieving a high-quality objective function
value from the Single-Swap approach compared to the other approaches. Single-Swap
also exhibits the lowest occurrence of cycles when searching for the optimal solution. It
is noteworthy that the Aggressive-Dual approach consistently avoids encountering cycles

Table 2: Effect of Variance on Discovered Partitions

Variance 0.01 0.10 0.50 1.00 1.50 2.00 2.50 3.00 4.00
# Partitions 3.19 7.83 8.34 8.30 8.99 8.18 11.47 11.06 11.73
Time(s) 7.5 15.4 24.7 25.2 26.9 28.0 30.7 31.7 33.6

23



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Table 3: Numerical results for PDAS

Approach
Dual feasibility Optimality

Time(s) Gap # Cycles Time(s) Gap # Cycles
Single-Swap 5.77× 10−6 [0.04,294.27] 3 4.90× 10−6 0.00 10
Aggressive-Dual 6.00× 10−6 [145.29,295.86] 0 5.08× 10−6 0.00 17
Aggressive-Primal 6.27× 10−6 [246.73 ,295.86] 12 - - 30
Aggressive-Primal-Dual 5.95× 10−6 [26.76,295.86] 8 - - 30

while searching for a feasible dual solution. This observation aligns with our expecta-
tions, as the Aggressive-Dual approach, in its pursuit of feasible duality, strives to push
the solution into the dual feasible space without considering primal feasibility. This ap-
proach also showed better performance with respect to the number of times it faced cycles
while searching for optimal solutions. Both Single-Swap and Aggressive-Dual approaches
resulted in a 0.00 optimality gap in all instances they could solve. In contrast, we encoun-
tered cycles when solved to optimality in all instances with both Aggressive-Primal and
Aggressive-Primal-Dual. We must guarantee that the PDAS method provides a feasible
dual solution when employed in the partition-based proximal bundle algorithm. The re-
sults from this experiment provide empirical justification for using the Aggressive-Dual
approach in implementing the PDAS method within the partition-based proximal bundle
algorithm.

5 Conclusions

In this paper, we initiated our exploration by examining the impact of varying the right-
hand side on the optimal partition of a QP problem. To compute the solution of the
associated QP problem for a given partition, we introduced a linear system derived from
the reduced KKT system. Subsequently, we presented four distinct implementations of
the PDAS method, specifically tailored for projecting an infeasible dual solution of the
QP problem into the feasible region. We proposed two variations of the inexact proxi-
mal bundle algorithm — namely, dual-based and partition-based, customized for 2-SQP
problems. A key feature of these algorithms is their capability to guarantee global con-
vergence while accommodating imprecision in solving second-stage problems during the
cut-generation process within the proximal bundle algorithm. The numerical experiments
that compare the inexact algorithms with the exact proximal bundle algorithm demon-
strate that the partition-based algorithm surpasses the exact algorithm in terms of total
computational time while delivering a similar quality solution. The dual-based algorithm
exhibits less favorable performance, particularly when the sample size increases. Devel-
opment of reliable stopping rules, convergence-rate analysis, and extensions to multistage
SQP are fruitful future directions that we intend to pursue.

24



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

A Omitted Proofs

Proof of Proposition 2.1. In the proof of this proposition, we will refer to the problem
(2) with right-hand side and upper bound (ρ, ȳ) as the original problem and the one
with right-hand side and upper bound (ρ′, ȳ′) as the perturbed problem. We define
∆ρ = ρ′ − ρ and ∆ȳ = ȳ′ − ȳ. Consider the problem with the right-hand side and upper
bound (ρ + ∆ρ, ȳ + ∆ȳ). By using the partition (L,U, I), we can construct a feasible
solution for this perturbed problem. Specifically, the primal variables that belong to the
active set can be obtained directly from the definition of the active set, while the values
of the dual variables corresponding to inactive primal variables can be determined via
complementarity slackness. That is, y′U = ȳU + ∆ȳU; y

′

L = y
L
; µ

′

L = 0; ν
′

U = 0; µ
′

I = 0

and ν ′I = 0. Using these, the system of equations (7) for the perturbed problem can be
decomposed into a reduced KKT system as:[

QII DT
MI

DMI 0

] [
y′I
λ′

]
= −

[
QIL

DML

]
y
L
−
[
QIU

DMU

]
ȳ′U −

[
dI
−ρ′
]
, (22)

[
ν ′L
µ′U

]
=

[
QLL

−QUL

]
y
L

+

[
QLU

−QUU

]
ȳ′U +

[
QLI DT

ML

−QUI −DT
MU

] [
y′I
λ′

]
+

[
dL
−dU

]
. (23)

Note that the first system of equations can be used to solve for y′I and λ′. Using this
solution, we can solve the second system of equations for ν ′L and µ′U. Studying the two
systems of equations separately allows us to isolate the effect of changes to the right-hand
side and upper-bound elements on the two sets of variables. The equation (22) can be
simplified using the matrices M and W given in (8). This results in an expression that
represents the primal and dual solutions of the perturbed problem as a function of the
corresponding values for the original problem and the perturbations ∆ρ and ∆ȳ. As a
result, after performing the necessary calculations, we obtain the following equation:[

y
′

I

λ
′

]
= M

(
−
[
QIL

DML

]
y
L
−
[
QIU

DMU

]
ȳU −

[
dI
−ρ

])
︸ ︷︷ ︸

=[yI,λ]>

+W

[
∆ȳU
∆ρ

]
︸ ︷︷ ︸
:=[∆yI,∆λ]

. (24)

Substituting the expressions we obtained for y′I and λ
′ in (23), we obtain an analogous

expression for the dual variables associated with the bounds of the perturbed problem in
terms of their counterparts in the original problem and the perturbation. Thus, we have:[

ν ′L
µ′U

]
= −

[
−QLL −QLU

QUL QUU

] [
y
L

ȳU

]
−
[
−QLI −DT

ML

QUI DT
MU

] [
yI
λ

]
−
[
−dL
dU

]
︸ ︷︷ ︸

=[νL,µU]>

+ T

[
∆ȳU
∆ρ

]
︸ ︷︷ ︸

:=[−∆νL,∆µU]>

,

where T is given in (9). Therefore, the solution to the perturbed problem can be decom-
posed into a solution of the original problem and a displacement term. The solutions of
the perturbed problem are dual feasible if[

νL
µU

]
+ T

[
∆ȳU
∆ρ

]
≥ 0. (25)

25



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Notice that since νL and µU are optimal for the original problem, (25) is trivially satisfied
for [∆ȳ,∆ρ]> = 0. Using the above observation, we can construct a polyhedron S1 as
S1 = {(ρ′, ȳ′) | [∆ρ,∆ȳ]> satisfies (25)}. This completes the proof of the first part. If
(ρ′, ȳ′) ∈ S1 yield (∆ρ,∆ȳ) that further satisfy the primal feasibility condition

y
I
≤ yI +WI(U+M)

[
∆ȳU
∆ρ

]
≤ ȳI + ∆ȳI, (26)

then the resulting solution for the perturbed problem satisfies first-order optimality con-
ditions. Notice that the conditions in (26) are affine in (∆ρ,∆ȳ). Therefore, for the
elements of the polyhedron S2 = {(ρ′, ȳ′) | [∆ρ,∆ȳ]> satisfies (25) and (26)}, the current
partition (L.U, I) remains optimal. This completes the proof.

Proof of Lemma 3.1. Consider the function fk(x), composed of two distinct parts. The
first part is a polynomial function given by 1

2
x>Px+ c>x. Due to the inherent continuity

of polynomial functions, it follows that 1
2
(xk)>Pxk + c>xk → 1

2
x̂>Px̂ + c>x̂, whenever

the sequence {xk} → x̂. We next establish the convergence of the second part of fk(x),
i.e., maxj∈Jk(αj + (βj)

>
xk) → E[h(x̂, ω̃)]. In this regard, from Proposition 2.21 of [28],

note that the h(x, ω) is a continuous function. Now, let us define Jω as the sequence of
iterations when the subproblem associated with ω is solved exactly. We consider the rest
of the proof for the dual-based and partition-based inexact bundle algorithms distinctly.

Dual-based algorithm: In the dual-based algorithm, we have Πk ⊆ Πk+1 ⊆ . . . ⊆ Π,
and the argmax step utilizes this collection of dual solutions. Therefore, if we define
hk(x, ω) = max

{
1
2
y>Qy + (ξ(ω) − Cx)>λ + yTν − ȳ(ω)>µ |π ∈ Πk

}
, we observe the

following relationship for all ω ∈ Ω:

hk(x, ω) ≤ hk+1(x, ω) ≤ . . . ≤ h(x, ω). (27)

Since X is compact, the monotonic sequence of continuous functions above converges
uniformly. Following the continuity of h and convergence of {xk}K, we have for every
ε > 0 there exists K <∞, such that for j ∈ Jω ∩ K and j > K, we have:

|h(x̂, ω)− hj(xj, ω)| = |h(x̂, ω)− h(xj, ω)| < ε

3
. (28)

The equality is because we solved the subproblem exactly. Since hj is a continuous
function, there exists K ′ <∞ such that:

|hj(xj, ω)− hj(xk, ω)| < ε

3
,

for all k, j ∈ K and k, j > K ′. From uniform convergence of {hk},there exists K ′′ < ∞
such that:

|hj(xk, ω)− hk(xk, ω)| < ε

3
, (29)

for every k, j > K ′′. Thus, for j ∈ Jω and k ∈ K such that k > j > max(K,K ′, K ′′), we
have

|h(x̂, ω)− hk(xk, ω)| ≤ |h(x̂, ω)− hj(xj, ω)|
+ |hj(xj, ω)− hj(xk, ω)|+ |hj(xk, ω)− hk(xk, ω)| < ε.

26



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

The sampling procedure guarantees the existence of a jω that satisfies the above re-

quirement for all ω ∈ Ω. Therefore,
∣∣∣∣∑ω∈Ω p(ω)(h(x̂, ω) −

(
αk(ω) + βk(ω)xk

) ∣∣∣∣ ≤ ε, for

k > maxω∈Ω{jω}. We have used hk(xk, ω) = αk(ω) + βk(ω)xk in the above. The result is
thus established.

Partition-based algorithm: Here, we define hk(x, ω) = max
{

1
2
y>Qy + (ξ(ω) − Cx)>λ +

yTν − ȳ(ω)>µ |π ∈ Π(x, ω,Pk)
}
. We observe that a similar relationship as (27) holds

in the partition-based method since Pk ⊆ Pk+1 ⊆ . . . ⊆ P and the argmax procedure
uses the collection of partitions. For every ε > 0, let us define parameter K as (28).As
a consequence of Proposition 2.1; there exists a ball with radius δ(ω) centered at x̂ such
that the optimal partition is the same for x ∈ {χ| ||χ − x̂|| ≤ δ(ω)} for every ω ∈ Ω.
Finally, since xk converges to x̂, there exists a K ′ such that whenever k > K ′, we have
||xk − x̂|| < δ(ω) for all ω ∈ Ω. The sampling procedure ensures that we have a jω ∈ Jω
and jω > max(K,K ′). Therefore, we have

|h(x̂, ω)− h(xk, ω)| = |h(x̂, ω)− hk(xk, ω)| ≤ ε. (30)

for all k > jω. The rest of the proof follows as in the case for the dual-based method.

Proof of Lemma 3.2. We study two possible cases depending on whether N is finite or
infinite. Here, we present the proof under the case When N is finite, there exists a
K < ∞ such that for all k > K, we have fk(xk) > fk(w̄) + γ(fk−1(xk)− fk−1(w̄)), and
wk−1 = w̄. Since fk(w̄) ≥ fk−1(w̄)

fk(xk) > fk−1(xk) + (1− γ)[fk−1(w̄)− fk−1(xk)].

Let gk ∈ ∂fk(xk). From the subgradient inequality and above inequality, we have:

fk(x) ≥ fk(xk) + 〈gk, x− xk〉 ≥ fk−1(xk) + (1− γ)δk + 〈gk, x− xk〉. (31a)

Since xk is the minimizer of (12), we have 0 ∈ ∂fk−1(xk) + σ(xk − w̄). Again, from
subgradient inequality, we have:

fk(x) ≥ fk−1(x) ≥ fk−1(xk) + σ〈(w̄ − xk), (x− xk)〉. (31b)

Thus, from (31a) and (31b), we have:

fk(x) ≥ max{fk−1(xk) + (1− γ)δk + 〈gk, x− xk〉, fk−1(xk) + σ〈(w̄ − xk), (x− xk)〉}
= fk−1(xk) + σ〈w̄ − xk, x− xk〉+ max{(1− γ)δk + 〈gk − σ(w̄ − xk), x− xk〉, 0}.

⇒ fk(x) +
σ

2
||x− w̄||2 ≥ fk−1(xk) +

σ

2
||(xk − w̄)− (xk − x)||2+

σ〈w̄ − xk, x− xk〉+ max{(1− γ)δk + 〈gk − σ(w̄ − xk), x− xk〉, 0}

= fk−1(xk) +
σ

2
||xk − w̄||2 +

σ

2
||xk − x||2+

max{(1− γ)δk + 〈gk − σ(w̄ − xk), x− xk〉, 0}.

Specifically by setting x = xk+1, we have

θk+1 − θk ≥ σ

2
||xk − xk+1||2 + max{(1− γ)δk + 〈gk − σ(w̄ − xk), xk+1 − xk〉, 0}.

27



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

Therefore, the sequence {θk} is nondecreasing and bounded above by f(w̄). Therefore,
we must have θk+1 − θk → 0. More generally, noting that ‖gk‖ ≤ C and defining
∆x = ||x− xk||, we have

θk+1 − θk ≥ min
∆x

{
σ(∆x)2

2
+ max{(1− γ)δk − 2C∆x, 0}︸ ︷︷ ︸

:=H(∆x)

}

≥

{
σ(1−γ)2(δk)2

8C2 if (1− γ)δk ≤ 4C2

σ
(1−γ)δk

2
otherwise,

≥ 0.

The last inequality follows because δk ≥ 0. Since θk+1−θk → 0, we conclude that δk → 0
when N is finite.

Proof. Proof of Theorem 3.3. From Lemma 3.2, we have a sequence K such that
{δk}K → 0. Thus, assumption (A1) and 0 ≤ σ

2
||wk − wk−1|| ≤ δk ensure the existence

of an accumulation point w̄ ∈ X . From Lemma 3.1, we have limk∈K f
k−1(wk) = f(w̄).

Combining the two, we have

lim
k∈K

θk = lim
k∈K

fk−1(wk) +
σ

2
||wk − wk−1|| = f(w̄).

Now, if w̄ is not optimal. Let fσ(w) denote the Moreau–Yosida regularization of f given

by fσ(w) := minx∈X

{
f(x) + σ

2
‖x − w‖2

}
. By Lemma 8 of [27], we have fσ(wk−1) <

f(wk−1). Since fk−1(x) ≤ f(x) for all x ∈ X , we have θk ≤ fσ(wk−1). So, we have
f(w̄) = limk∈K θ

k < limk→∞ f(wk−1) = f(w̄), which leads to a contradiction.

References

[1] J. R. Birge and F. Louveaux, Introduction to stochastic programming, Springer
Science & Business Media, 2011.

[2] J. R. Birge, L. Qi, and X. Chen, A stochastic Newton method for stochastic
quadratic programs with recourse, Citeseer, 1994.

[3] X. Chen, L. Qi, and R. S. Womersley, Newton’s method for quadratic stochastic
programs with recourse, Journal of Computational and Applied Mathematics, 60
(1995), pp. 29–46.

[4] R. Christie, Power systems test case archive. 1999, 2015.

[5] F. E. Curtis and Z. Han, Globally convergent primal-dual active-set methods with
inexact subproblem solves, SIAM Journal on Optimization, 26 (2016), pp. 2261–2283.

[6] F. E. Curtis, Z. Han, and D. P. Robinson, A globally convergent primal-dual
active-set framework for large-scale convex quadratic optimization, Computational
Optimization and Applications, 60 (2015), pp. 311–341.

28



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

[7] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal, Convex proximal
bundle methods in depth: a unified analysis for inexact oracles, Mathematical Pro-
gramming, 148 (2014), pp. 241–277.

[8] W. S. Dorn, Duality in quadratic programming, Quarterly of applied mathematics,
18 (1960), pp. 155–162.

[9] I. Florescu and C. A. Tudor, Handbook of probability, John Wiley & Sons,
2013.

[10] A. Forsgren, P. E. Gill, and E. Wong, Primal and dual active-set methods for
convex quadratic programming, Mathematical programming, 159 (2016), pp. 469–
508.

[11] H. Gangammanavar, Y. Liu, and S. Sen, Stochastic decomposition for two-
stage stochastic linear programs with random cost coefficients, INFORMS Journal
on Computing, 33 (2021), pp. 51–71.

[12] H. I. Gassmann, The SMPS format for stochastic linear programs, in Applications
of stochastic programming, SIAM, 2005, pp. 9–19.

[13] J. L. Higle and S. Sen, Finite master programs in regularized stochastic decom-
position, Mathematical Programming, 67 (1994), pp. 143–168.

[14] J. L. Higle and S. Sen, Stochastic decomposition: a statistical method for large
scale stochastic linear programming, Springer Science & Business Media, 1996.

[15] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy
as a semismooth newton method, SIAM Journal on Optimization, 13 (2002), pp. 865–
888.

[16] K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal
control problems with bilateral constraints, SIAM Journal on Control and Optimiza-
tion, 43 (2004), pp. 357–376.

[17] K. C. Kiwiel, A proximal bundle method with approximate subgradient lineariza-
tions, SIAM Journal on optimization, 16 (2006), pp. 1007–1023.

[18] C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. Report Re-
search Report RR-78-4, International Institute of Applied Systems Analysis, 1978.

[19] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle
methods, Mathematical programming, 69 (1995), pp. 111–147.

[20] J. Liu and S. Sen, Asymptotic results of stochastic decomposition for two-
stage stochastic quadratic programming, SIAM Journal on Optimization, 30 (2020),
pp. 823–852.

[21] S. Mehrotra and M. G. Ozevin, Decomposition based interior point methods for
two-stage stochastic convex quadratic programs with recourse, Operations Research,
57 (2009), pp. 964–974.

29



Fadavi and Gangammanavar Inexact Proximal Bundle Algorithms for 2-SQP

[22] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business
Media, 2006.

[23] W. Oliveira, C. Sagastizábal, and S. Scheimberg, Inexact bundle methods
for two-stage stochastic programming, SIAM Journal on Optimization, 21 (2011),
pp. 517–544.

[24] R. T. Rockafellar and R.-B. Wets, A lagrangian finite generation technique
for solving linear-quadratic problems in stochastic programming, in Stochastic Pro-
gramming 84 Part II, Springer, 1986, pp. 63–93.

[25] R. T. Rockafellar and R.-J. Wets, Scenarios and policy aggregation in opti-
mization under uncertainty, Mathematics of operations research, 16 (1991), pp. 119–
147.

[26] A. Ruszczyński, A regularized decomposition method for minimizing a sum of poly-
hedral functions, Mathematical Programming, 35 (1986), pp. 309–333.

[27] A. Ruszczyński and A. Shapiro, Stochastic programming models, Handbooks in
operations research and management science, 10 (2003), pp. 1–64.

[28] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic pro-
gramming: modeling and theory, SIAM, 2021.

[29] R. R.-J. Wets, Programming under uncertainty: the equivalent convex program,
SIAM Journal on Applied Mathematics, 14 (1966), pp. 89–105.

[30] R. R.-J. Wets, Large scale linear programming techniques in stochastic program-
ming, Springer, Berlin, 1988, ch. 3.

[31] G. Zakeri, A. B. Philpott, and D. M. Ryan, Inexact cuts in benders decom-
position, SIAM Journal on Optimization, 10 (2000), pp. 643–657.

30


	Introduction
	Contributions
	Organization

	Solution Properties of QP Problems
	Solution Recovery using Decomposed KKT System
	Solution Recovery using PDAS Method

	Inexact Proximal Bundle Algorithms for 2-SQP
	Dual-based Inexact Procedure
	Partition-based Inexact Procedure
	Asymptotic Convergence
	Implementational Details

	Numerical Results
	Efficiency comparison of exact and inexact algorithms
	Impact of Sampling Fraction on Partition-based
	Effect of Variance on the Number of Discovered Partitions
	Comparison of different versions of implementation of PDAS

	Conclusions
	Omitted Proofs

