
AdaBB: Adaptive Barzilai-Borwein Method

for Convex Optimization

Danqing Zhou∗ Shiqian Ma† Junfeng Yang∗

January 16, 2024

Abstract

In this paper, we propose AdaBB, an adaptive gradient method based on the Barzilai-
Borwein stepsize. The algorithm is line-search-free and parameter-free, and essentially provides
a convergent variant of the Barzilai-Borwein method for general unconstrained convex optimiza-
tion. We analyze the ergodic convergence of the objective function value and the convergence
of the iterates for solving general unconstrained convex optimization. Compared with existing
works along this line of research, our algorithm gives the best lower bounds on the stepsize
and the average of the stepsizes. Moreover, we present an extension of the proposed algorithm
for solving composite optimization where the objective function is the summation of a smooth
function and a nonsmooth function. Our numerical results also demonstrate very promising
potential of the proposed algorithms on some representative examples.

Keywords: Adaptive Gradient Descent; Parameter-Free; Line-Search-Free; Automated Gradient
Descent; Barzilai-Borwein Stepsize; Locally Lipschitz Gradient.
Mathematical Subject Classifications: 90C25

1 Introduction

In this paper, we propose an adaptive Barzilai-Borwein method (AdaBB) for solving unconstrained
convex and smooth optimization problem

min
x∈Rn

f(x), (1)

where f ∶ Rn → R is convex with a locally Lipschitz gradient ∇f . Remarkably, AdaBB is an
automated gradient descent method – it is line-search-free and parameter-free.

Our AdaBB method is closely related to the pioneering work by Malitsky and Mishchenko
[MM20] along the line of automated gradient descent method, as well as its follow-up works
[MM23; Lat+23; LTP23]. Recently, it draws great attention on how to design line-search-free
and parameter-free gradient descent methods (GD) for solving (1):

xk+1 = xk − αk∇f(xk), k = 0,1,2, . . . , (2)

∗Department of Mathematics, Nanjing University, #22 Hankou Road, Nanjing, P. R. China. Research sup-
ported by the National Natural Science Foundation of China (NSFC-12371301) and the Natural Science Founda-
tion for Distinguished Young Scholars of Gansu Province (22JR5RA223). Email: zhoudanqing@smail.nju.edu.cn,
jfyang@nju.edu.cn.

†Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, USA.
Research supported in part by NSF grants DMS-2243650, CCF-2308597, CCF-2311275 and ECCS-2326591, and a
startup fund from Rice University. Email: sqma@rice.edu.

1

where {αk} is a sequence of stepsizes and x0 ∈ Rn is a starting point. See [GSW23; Gri23; LOZ23;
AP23b; AP23a; LL23; DVR23] for a partial list of other works concerning this problem. When f
is convex and has globally Lipschitz gradient with Lipschitz constant L > 0, (2) can take a fixed
stepsize αk = α > 0. It is well known that setting α < 2/L guarantees the convergence and the
O(1/K) convergence rate of GD (2). Drori and Teboulle [DT14] first proposed the performance
estimation problem (PEP) approach to study the complexity of GD when α ∈ (0,1/L]. The resulting
complexity bound improved the classical one by a factor of two and was shown to be tight. In a
recent work, Teboulle and Vaisbourd [TV23] provided an elementary proof to reach this tight bound
for α ∈ (0,1/L] and designed a dynamic stepsize αk ∈ [1/L,2/L) to improve the tight convergence
bound by a constant that converges to two as k →∞.

However, these results are not parameter-free, because they require the Lipschitz constant L.
Moreover, the Lipschitz constant L can be much larger than the one given by the local curvature
information, which will lead to conservative stepsizes and slow convergence in practice.

Since the emergence of applications from large-scale machine learning, it has been an active
research area on how to adaptively choose αk in gradient descent and stochastic gradient descent
(SGD) methods. Moreover, the computation of αk should only be conducted using existing gradient
information and should not involve expensive computation. In this sense, GD/SGD with line
search are not considered adaptive methods. As explained in a recent paper by Malitsky and
Mishchenko [MM23], “(a method is called adaptive), if it automatically adopts a stepsize to (its)
local smoothness without additional expensive computation and the method does not deteriorate
the rate of the original method in the worst case”, and it was pointed out in [MM23] that AdaGrad
[DHS11; MS10] is not adaptive.

In this paper, we focus on GD methods that adaptively compute the stepsizes αk and are
parameter-free. Therefore, this kind of methods are truly automated. The earliest work in this
direction is the Barzilai-Borwein (BB) method [BB88], which adaptively computes stepsize using
two consecutive gradients. There are two BB stepsizes in the literature:

(Long BB) βk =
∥xk − xk−1∥2

⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩
, (3)

(Short BB) λk =
⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩
∥∇f(xk) −∇f(xk−1)∥2

. (4)

The BB method, albeit guaranteed to converge only for some special classes of problems, has been
very influential in nonlinear optimization. The first time that BB was adopted to SGD was due
to Tan et al. [Tan+16], where the authors proposed SGD-BB and SVRG-BB and proved the
convergence of the latter one under the assumption that the objective function is strongly convex.
We will give a more detailed survey of the BB method in the next section. Recently, Malitsky and
Mishchenko have made a significant breakthrough in parameter-free adaptive GD [MM20; MM23].
Specifically, starting with initial point x0 ∈ Rn and initial stepsize α0 > 0, the AdGD algorithm
proposed in [MM20; MM23] first computes x1 = x0 − α0∇f(x0), and then updates the iterates in
the k-th iteration as follows for k = 1,2, . . .,

αk =min{αk−1

√
1 + θk−1,1/(

√
2Lk)} , where Lk =

∥∇f(xk) −∇f(xk−1)∥
∥xk − xk−1∥

,

xk+1 = xk − αk∇f(xk), and update θk via θk = αk/αk−1. (5)

We point out that (5) is proposed in [MM23], and the algorithm proposed in [MM20] replaces the
factor

√
2 with 2 in the updating formula of αk. Here we refer (5) as AdGD because the second term

2

in updating αk allows larger stepsize. This algorithm is guaranteed to converge for solving (1) for
any α0 > 0 and θ0 = 0. Therefore, it is parameter-free. Note that Lk estimates the local curvature
information. Furthermore, in [MM23] a variant of AdGD (we call it AdGD2) is proposed, which
allows larger stepsizes. Starting with initial point x0 and initial stepsize α0, the AdGD2 algorithm
first computes x1 = x0 − α0∇f(x0), and then updates the iterates in the k-th iteration as follows
for k = 1,2, . . .,

αk =min{
√

2
3 + θk−1αk−1,

αk−1
√
[2α2

k−1
L2
k
−1]+
} , where Lk =

∥∇f(xk) −∇f(xk−1)∥
∥xk − xk−1∥

,

xk+1 = xk − αk∇f(xk), and update θk via θk = αk/αk−1. (6)

where [a]+ = max{a,0}. The AdGDs (5)-(6) are extended to adaptive proximal gradient methods
by [Lat+23; MM23; LTP23]. Moreover, Latafat et al. [Lat+23; LTP23] used the BB stepsizes (3)
and (4) to estimate the local curvature information. Starting with initial point x0, initial stepsize
α0 and θ0 ≥ 1, the basic AdaPGM algorithm [Lat+23, Alg 2.1] first computes x1 = x0 − α0∇f(x0),
and then updates the iterates as follows for k = 1,2, . . .,

αk =min

⎧⎪⎪⎨⎪⎪⎩
αk−1

√
1 + θk−1,

αk−1

2
√
[(αk−1/βk)(αk−1/λk − 1)]+

⎫⎪⎪⎬⎪⎪⎭
,

xk+1 = xk − αk∇f(xk), and update θk via θk = αk/αk−1. (7)

It is noted that both long BB (3) and short BB (4) are used to estimate the local curvature
information in (7). Notably, in a more recent work, Latafat et al. [LTP23] introduced a unified
framework, AdaPGMπ,r, that updates αk through the formula

αk =min{
√

1
π + θk−1,

√
1−(r/π)

[(1−2r)+α2
k−1

L2
k
+2αk−1(r−1)/βk]+

}αk−1

for any π > r ≥ 1
2 . This modification gives more flexibility to balance the effects of two terms.

Specifically, when opting for r = 1
2 and π = 1, it aligns with updates of AdaPGM (7) but improves

the second term by a factor of
√
2. This variant also guarantees a larger lower bound for the stepsize

sequence, as we will discuss later.
Our contributions. The main contributions of our paper lie in several folds.

1. We propose a new adaptive algorithm, AdaBB, for solving (1). There are two prominent features
of our AdaBB algorithm: (a) We only use the short BB stepsize (4), and we do not use the long
BB stepsize (3) and Lk in (5). Note that the long BB stepsize βk can be removed from adaPGM
(7) but then Lk needs to be used. (b) Our AdaBB has a very simple and intuitive connection
with the BB method, and essentially provides a convergent variant of the BB method for general
convex optimization.

2. We answer an open question posed by Malitsky and Mishchenko in [MM23] affirmatively. Specif-
ically, Malitsky and Mishchenko posed an open question asking whether there exists an adaptive
method in which the sum of the stepsizes ∑k

i=1 αi is close to k/L with readable proof, where L
denotes the local Lipschitz constant of ∇f . Note that this indicates the average of the stepsizes
is close to 1/L. We prove that the sum of the stepsizes ∑k

i=1 αi in our AdaBB algorithm is lower
bounded by (k−2+

√
2)/L, ∀k ≥ 1, which can be further improved to k/L with a suitably chosen

initial stepsize.

3

3. We prove that the stepsize αk in our AdaBB is always lower bounded by 1/(
√
2L), i.e., αk ≥

1/(
√
2L) for any k ≥ 1. This also improves the existing results in [MM20; MM23; Lat+23;

LTP23]. See the detailed comparison in Table 1.

Notation. Throughout the paper, we assume the optimal solution set X ∗ of (1) is nonempty
and denote its optimal value by f∗. We use x∗ to denote one element in X ∗. Let R+ be positive
real line, and ∣W ∣ be the cardinality of the set W. We use the symbol × to represent the Cartesian
product. We can prove that the sequence {xk} generated by AdaBB is bounded and lies in a ball
B(x∗,R) whose center is x∗ and radius is R, which will be specified later. We assume that f is
L-locally smooth (or ∇f is L-locally Lipschitz) in B(x∗,R), which is defined as

f(x) − f(y) − ⟨∇f(y), x − y⟩ ≥ 1
2L∥∇f(x) −∇f(y)∥

2,∀x, y ∈ B(x∗,R). (8)

According to [Nes04, Theorem 2.1.5], this further implies ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥,∀x, y ∈
B(x∗,R), and

⟨∇f(x) −∇f(y), x − y⟩ ≥ 1
L∥∇f(x) −∇f(y)∥

2,∀x, y ∈ B(x∗,R). (9)

We point out that these inequalities are not equivalent in when the points are restricted to a
bounded convex set. A counterexample can be found in [Dro18]. However, when f is globally
L-smooth in Rn, they become equivalent (see [Nes04, Theorem 2.1.5]).

Organization. The rest of this paper is organized as follows. In Section 2, we present a simple
version of our AdaBB algorithm and discuss its connection with the BB method. In Section 3,
we present the full version of our AdaBB algorithm which allows more flexible choices of stepsizes.
We also analyze the ergodic convergence of the function value error and the convergence of the
iterates. In Section 4, we conduct an in-depth analysis of the stepsizes generated by our AdaBB
algorithm. In particular, we provide lower bounds for both αi and ∑k

i=1 αi. In Section 5, we extend
our AdaBB algorithm to the case where the objective function is locally strongly convex, and to
the composite case where the objective function is the summation of a smooth function and a
nonsmooth function. Numerical experimental results are reported in Section 6 to illustrate the
effectiveness of the proposed algorithms. Finally, we draw some concluding remarks in Section 7.

2 Our AdaBB Algorithm

The main motivation of the BB method [BB88] is to use a diagonal matrix (1
ηk
I) to approximate

the quasi-Newton matrix in the k-th iteration of the quasi-Newton method, where scalar ηk > 0.
In order to satisfy the secant equation, essentially we require 1

ηk
sk = yk, where sk = xk − xk−1 and

yk = ∇f(xk) − ∇f(xk−1). Since sk and yk are both n-dimensional vectors, it is impossible to find
a scalar ηk such that this linear equation holds. Therefore, one has to find ηk that minimizes the
residual, i.e.,

min
ηk
∥sk/ηk − yk∥, or min

ηk
∥sk − ηkyk∥,

which leads to the two formulas given in (3) and (4) (with ηk replaced by βk and λk, respectively).
However, the naive BB method

xk+1 = xk − βk∇f(xk), or xk+1 = xk − λk∇f(xk) (10)

does not always converge. In fact, existing convergence results of (10) have been mainly restricted
to the special case where f is a strongly convex quadratic function. In the original paper by Barzilai

4

and Borwein [BB88], it is proved that the BB method (10) converges R-superlinearly, if f is strongly
convex quadratic and n = 2. When f is strongly convex quadratic with a general dimensionality n,
the BB method (10) is proved to converge globally [Ray93] and at an R-linear rate [DL02]. However,
when f is not strongly convex quadratic function, i.e., when it is a general convex function, there
exist counterexamples showing that the BB method (10) can diverge [BDH19]. To address this
limitation, Rayden [Ray97] incorporated the non-monotone line search technique from [GLL86] to
the BB method (10) and proved its global convergence when f is a general convex function.

Hence, it has been an open question whether there exists a simple variant of the BB method
without line search that globally converges for general convex function. We answer this question
affirmatively by proposing our AdaBB algorithm, which is described in Algorithm 1.

Algorithm 1 Adaptive Barzilai-Borwein Algorithm (AdaBB)

Input: x0 ∈ Rn, α0 > 0, θ0 ≥ 0
1: x1 = x0 − α0∇f(x0)
2: for k = 1,2, . . . , do
3: λk = ⟨∇f(x

k)−∇f(xk−1),xk−xk−1⟩

∥∇f(xk)−∇f(xk−1)∥2

4: if λk ≥ αk−1 then . (Case i)
5: αk =

√
1 + θk−1αk−1, and θk = αk

αk−1

6: else if αk−1/2 < λk < αk−1 then . (Case ii)
7: αk = λk, and θk = 2αk

αk−1
− αk

λk

8: else . (Case iii)
9: αk = λk√

2
, and θk = αk

αk−1

10: end if
11: xk+1 = xk − αk∇f(xk)
12: end for

This is our basic AdaBB algorithm. We will prove its convergence in the next section when
we discuss a more general version of AdaBB. We also note that the per-iteration computational
cost is almost the same as the BB method (10). We now give some intuitive explanation why
AdaBB (Algorithm 1) can overcome the drawbacks of the BB method. Note that BB method may
diverge for general convex function because the stepsize is sometimes too aggressive. In AdaBB,
we carefully design the stepsize so that if we find that the stepsize is too large in some iteration,
then we use a smaller stepsize in the next iteration. This ensures that the risk of taking very large
stepsizes is hedged so that the algorithm will not diverge. At the same time, when the stepsize is
too small in some iteration, then we use a larger stepsize in the next iteration. This ensures that
the stepsize is not always small to ensure a fast convergence. More specifically, the three “if-else”
conditions in Algorithm 1 can be interpreted as follows.

• (Case i), when λk ≥ αk−1, it means that the stepsize αk−1 in the previous iteration is too
small. So we set αk to be larger than αk−1. This ensures that the stepsize is not always too
small. The choice of θk will be clear from the convergence proof.

• (Case ii), when αk−1/2 < λk < αk−1, it means that the BB stepsize is not too large and not
too small. So we just use the BB stepsize λk as the stepsize.

• (Case iii), when λk ≤ αk−1/2, it means that the stepsize αk−1 in the previous iteration is too
large. So we shrink the BB stepsize by

√
2 and use it as the stepsize for the current iteration.

This ensures that the stepsize in the current iteration is not too large when the previous
stepsize is large, to hedge the risk of divergence.

5

3 The General Version of AdaBB and Convergence Analysis

In this section, we first present the general version of AdaBB in Algorithm 2, which offers more
flexibility when choosing stepsize αk. Our basic AdaBB (Algorithm 1) is a special case of the
general version of AdaBB. We then analyze the convergence properties of this algorithm for solving
(1). We note that Algorithm 2 offers more choices for αk in (11) and (12). Choosing (Option II) in

Algorithm 2 The General Version of AdaBB

Input: x0 ∈ Rn, α0 > 0, θ0 ≥ 0
1: x1 = x0 − α0∇f(x0)
2: for k = 1,2, . . . , do
3: λk = ⟨∇f(x

k)−∇f(xk−1),xk−xk−1⟩

∥∇f(xk)−∇f(xk−1)∥2

4: if λk ≥ αk−1 then . (Case i)
5: αk =

√
1 + θk−1αk−1, and θk = αk

αk−1

6: else if αk−1/2 < λk < αk−1 then . (Case ii)
7:

αk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min{
√

λk

2(αk−1−λk)
,

√
(1+θk−1)λk

2λk−αk−1
}αk−1, (Option I),

λk, (Option II),

and θk =
2αk

αk−1
− αk

λk
(11)

8: else . (Case iii)
9:

αk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
αk−1

2(αk−1−λk)
λk, (Option I),

λk√
2
, (Option II),

and θk =
αk

αk−1
(12)

10: end if
11: xk+1 = xk − αk∇f(xk)
12: end for

both (11) and (12) recovers the basic AdaBB (Algorithm 1). Therefore, we only need to analyze
the convergence of Algorithm 2 and we will devote the rest of this section to it. The following
lemma gives some immediate property of αk.

Lemma 3.1. In both (11) and (12), the stepsize αk provided by (Option II) is less than or equal
to that provided by (Option I).

Proof. When αk/2 < λk+1 < αk, we immediately have

√
(1 + θk)λk+1

2λk+1 − αk
αk ≥ αk ≥ λk+1.

Moreover, since v(x) ∶=
√

λk+1x2

2(x−λk+1)
is decreasing for x ∈ (λk+1,2λk+1], we have

v(αk) =
√

λk+1

2(αk − λk+1)
αk ≥ v(2λk+1) > λk+1.

6

This proves that (Option II) is not larger than (Option I) in (11). The proof when λk+1 ≤ αk/2 is
trivial and thus omitted.

We now define some important notation. In particular, we define Mk and Pk for k ≥ 1 as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Mk = 0, Pk =
α2
k

αk−1
, if λk ≥ αk−1,

Mk =
α2
k

λkαk−1
− α2

k

α2
k−1

, Pk =
2α2

k

αk−1
− α2

k

λk
, if αk−1

2 < λk < αk−1,

Mk =
α2
k

λ2
k

− α2
k

αk−1λk
, Pk =

α2
k

αk−1
, if 0 < λk ≤ αk−1

2 .

(13)

For convenience, we also define
P0 = P1 − α0. (14)

The following lemma provides some useful inequalities for Mk and Pk defined in (13) and (14).

Lemma 3.2. For αk generated by Algorithm 2, it holds that Pk = αkθk for all k ≥ 1, and 2Mk+1 ≤ 1
and Pk+1 ≤ Pk + αk for all k ≥ 0.

Proof. First, for any k ≥ 1, we have Pk = αkθk by the definitions of θk in Algorithm 2 and Pk in
(13). To show the remaining results, we consider three cases.

• Case (i): when λk+1 ≥ αk, by recalling Mk+1 = 0, Pk+1 = α2
k+1/αk, and αk+1 =

√
1 + θkαk, the

desired results follow immediately.

• Case (ii): when αk/2 < λk+1 < αk, from Lemma 3.1, we only need to prove the desired results for
(Option I) of αk+1 in (11). In this case, we have

Mk+1 =
α2
k+1

λk+1αk
−
α2
k+1

α2
k

≤
λk+1α

2
k

2(αk − λk+1)
(1

λk+1αk
− 1

α2
k

) = 1

2
,

Pk+1 =
2α2

k+1

αk
−
α2
k+1

λk+1
≤
(1 + θk)λk+1α

2
k

2λk+1 − αk
(2

αk
− 1

λk+1
) = αk + Pk.

• Case (iii): when λk+1 ≤ αk/2, again from Lemma 3.1, we only need to prove the desired results
for (Option I) of αk+1 in (12). In this case, we have

Mk+1 =
α2
k+1

λ2
k+1

−
α2
k+1

αkλk+1
≤

λ2
k+1αk

2(αk − λk+1)
(1

λ2
k+1

− 1

αkλk+1
) = 1

2
,

Pk+1 = α2
k+1/αk =

λ2
k+1

2(αk − λk+1)
< αk < Pk + αk.

Combining these three cases completes the proof.

Remark 3.1. Note that M1 and P1 defined in (13) are determined only by λ1, α1 and α0. Also,
α1 is determined only by λ1, α0 and θ0. Moreover, λ1 is determined only by x0 and x1, while x1 is
determined only by x0 and α0. Therefore, M1 and P1 are both absolute constants determined only
by x0, θ0 and α0. That is, by slightly abusing the notation, we can denote M1 =M1(x0, θ0, α0) and
P1 = P1(x0, θ0, α0).

The following lemma provides some useful properties about ∥xk+1 − xk∥2.

7

Lemma 3.3. Let {xk} be the sequence generated by Algorithm 2, and Mk and Pk be defined in
(13). Then, for any k ≥ 1, we have

∥xk+1 − xk∥2 = I1 ∶= (
α2
k

λk
−

α2
k

αk−1
)⟨∇f(xk)−∇f(xk−1), xk − xk−1⟩ +

α2
k

αk−1
⟨∇f(xk), xk−1−xk⟩, (15)

∥xk+1 − xk∥2 = I2 ∶= αk⟨∇f(xk+1) −∇f(xk), xk+1 − xk⟩ + αk⟨∇f(xk+1), xk − xk+1⟩, (16)

∥xk+1 − xk∥2 ≤ E ∶=Mk∥xk − xk−1∥2 + Pk(f(xk−1) − f(xk)). (17)

Proof. Let k ≥ 1 be arbitrarily fixed. Equation (15) can be proved as follows by using the update
xk+1 = xk − αk∇f(xk) and the identity ∥a∥2 = ∥a − b∥2 − ∥b∥2 + 2⟨a, b⟩:

∥xk+1 − xk∥2

=α2
k∥∇f(x

k)∥2 = α2
k ∥∇f(x

k) −∇f(xk−1)∥2 − α2
k ∥∇f(x

k−1)∥2 + 2α2
k⟨∇f(x

k),∇f(xk−1)⟩

=
α2
k

λk
⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩ − α2

k⟨∇f(x
k−1) −∇f(xk),∇f(xk−1)⟩ + α2

k⟨∇f(x
k),∇f(xk−1)⟩

=
α2
k

λk
⟨∇f(xk)−∇f(xk−1), xk − xk−1⟩ −

α2
k

αk−1
⟨∇f(xk−1)−∇f(xk), xk−1 − xk⟩ +

α2
k

αk−1
⟨∇f(xk), xk−1−xk⟩,

which proves (15) by noting the definition of λk in (4). Equation (16) simply follows from

⟨∇f(xk+1) −∇f(xk), xk+1 − xk⟩ = ⟨∇f(xk+1), xk+1 − xk⟩ + 1

αk
∥xk+1 − xk∥2.

We now prove (17) by analyzing three cases.

• Case (i): when λk ≥ αk−1, we know 1/λk ≤ 1/αk−1. By the convexity of f and monotonicity of
∇f , we have

∥xk+1 − xk∥2 = I1 ≤
α2
k

αk−1
⟨∇f(xk), xk−1−xk⟩ ≤

α2
k

αk−1
(f(xk−1) − f(xk)). (18)

• Case (ii): when αk−1/2 < λk < αk−1, we have 2/αk−1 − 1/λk > 0, and therefore,

∥xk+1 − xk∥2 = I1 = (
2α2

k

αk−1
−
α2
k

λk
)⟨∇f(xk), xk−1−xk⟩

+ (
α2
k

λk
−

α2
k

αk−1
)(⟨∇f(xk)−∇f(xk−1), xk − xk−1⟩ + ⟨∇f(xk), xk−1−xk⟩)

(16)
≤ (

α2
k

λkαk−1
−

α2
k

α2
k−1

)∥xk − xk−1∥2 + (
2α2

k

αk−1
−
α2
k

λk
)(f(xk−1) − f(xk)), (19)

where the inequality follows from the convexity of f and replacing k by k − 1 in (16).

• Case (iii): when λk ≤ αk−1/2, by using the Young’s inequality, we have

(
α2
k

λk
−

α2
k

αk−1
)⟨∇f(xk)−∇f(xk−1), xk − xk−1⟩ = (

α2
k

λ2
k

−
α2
k

αk−1λk
)⟨∇f(x

k)−∇f(xk−1), xk − xk−1⟩2

∥∇f(xk) −∇f(xk−1)∥2

≤ (
α2
k

λ2
k

−
α2
k

αk−1λk
)∥xk − xk−1∥2,

which directly leads to

∥xk+1 − xk∥2 = I1 ≤ (
α2
k

λ2
k

−
α2
k

αk−1λk
)∥xk − xk−1∥2 +

α2
k

αk−1
(f(xk−1) − f(xk)). (20)

8

Indeed, the inequality (20) holds for all λk < αk−1. Combining these three cases proves (17).

Now, we are ready to derive a non-increasing Lyapunov energy. For this purpose, we define

wk ∶= αk + Pk − Pk+1, ∀k ≥ 0.

Lemma 3.4. Define Lyapunov function

Υk ∶= ∥xk − x∗∥2 + 2Mk∥xk − xk−1∥2 + (2αk−1 + 2Pk−1)(f(xk−1) − f∗). (21)

Then for {xk} generated by Algorithm 2, we have

Υk+1 ≤ Φk ∶= Υk − 2wk−1(f(xk−1) − f∗) ≤ Υk, ∀k ≥ 1. (22)

Proof. First, from the convexity of f , we have

∥xk+1 − x∗∥2 = ∥xk − αk∇f(xk) − x∗∥
2

= ∥xk − x∗∥2 − 2αk⟨∇f(xk), xk − x∗⟩ + α2
k∥∇f(x

k)∥2

≤ ∥xk − x∗∥2 − 2αk (f(xk) − f∗) + α2
k ∥∇f(x

k)∥2 .

(23)

From (17), we have

∥xk+1 − xk∥2 = α2
k∥∇f(x

k)∥2 ≤ 2E − ∥xk+1 − xk∥2 = 2E − α2
k ∥∇f(x

k)∥2 . (24)

Summing (23) and (24) yields

∥xk+1 − x∗∥2 + ∥xk+1 − xk∥2 + 2αk (f(xk) − f∗)
≤ ∥xk − x∗∥2 + 2E
≤Υk − (2αk−1 + 2Pk−1)(f(xk−1) − f∗) + 2Pk(f(xk−1) − f(xk)),

(25)

which further implies

Υk+1 ≤ ∥xk+1 − x∗∥2 + ∥xk+1 − xk∥2 + (2αk + 2Pk)(f(xk) − f∗) ≤ Φk, (26)

where the first inequality is due to 2Mk+1 ≤ 1 from Lemma 3.2. This proves the first inequality in
(22). The second inequality in (22) is trivial because wk ≥ 0 from Lemma 3.2.

Lemma 3.4 immediately leads to the boundedness of {xk}.

Corollary 3.1. The sequence {xk} generated by Algorithm 2 is bounded. In particular, for all
k ≥ 0, we have xk ∈ B(x∗,R), where R is defined as:

R2 ∶= ∥x0 − x∗∥2 + α2
0(1 + 2M1)∥∇f(x0)∥2 +max{2P1 − 2α0,0}(f(x0) − f∗). (27)

Note that from Remark 3.1, M1 =M1(x0, θ0, α0) and P1 = P1(x0, θ0, α0) are both absolute constants.

Proof. From (22), we can obtain ∥xk − x∗∥2 ≤ Υk ≤ Φk−1 ≤ Φ1 for all k ≥ 1. From (14), we have
w0 = 0. Therefore,

Φ1 = Υ1 = ∥x1 − x∗∥2 + 2M1∥x1 − x0∥2 + (2α0 + 2P0)(f(x0) − f∗)
(23)
≤ ∥x0 − x∗∥2 + α2

0(1 + 2M1)∥∇f(x0)∥2 + 2(P1 − α0)(f(x0) − f∗) ≤ R2. (28)

Consequently, we have xk ∈ B(x∗,R) for all k ≥ 1. It is trivial to see x0 ∈ B(x∗,R). This completes
the proof.

9

Remark 3.2. From now on, we assume that both (8) and (9) hold with R defined in (27). From
(9), we immediately have the following useful result:

λk ≥ 1/L, ∀k ≥ 1. (29)

The following proposition gives a lower bound on αk and estimates the order of ∑k
i=1 αi.

Proposition 3.1. For {αk} generated by Algorithm 2, we have

(i) If αj ≥ 1√
2L

for some j, then αk ≥ 1√
2L

for any k ≥ j;

(ii) αk ≥ c ∶=min{α0,
1√
2L
} > 0 for all k ≥ 0;

(iii) ∑k
i=1 αi = O(k).

Proof. We first prove part (i) by considering the three cases in the (j +1)-th iteration of Algorithm
2. If (Case i) happens, then we have αj+1 ≥ αj ≥ 1√

2L
. If (Case ii) or (Case iii) happens, then we

have αj+1 ≥
λj+1
√
2
≥ 1√

2L
, where we used (29) for the second inequality. By induction, this completes

the proof of part (i).
We now prove part (ii). Let r ≥ 1 be the smallest integer that satisfies λr < αr−1. When r = 1, we

obtain α1 ≥ λ1√
2
≥ 1√

2L
. Consequently, applying the result from part (i) yields αk ≥ 1√

2L
for all k ≥ 1.

When r > 1, this implies λk ≥ αk−1 for k = 1,2, . . . , r − 1, i.e., (Case i) in Algorithm 2 happens for
the first r − 1 iterations. This leads to α1 ≥ α0, and αk ≥

√
2αk−1 for k = 2, . . . , r − 1. Therefore, we

have αk ≥
√
2
k−1

α0 ≥ α0 for k = 1,2, . . . , r − 1. Moreover, λr < αr−1 also implies that either (Case ii)
or (Case iii) in Algorithm 2 happens for the r-th iteration. In both cases, we have αr ≥ λr√

2
≥ 1√

2L
,

where we used (29) for the second inequality. Now from part (i), we know that αk ≥ 1√
2L

for any

k ≥ r. This completes the proof of part (ii).
Part (iii) follows from part (ii) immediately.

Now we are ready to present the main convergence result of Algorithm 2.

Theorem 3.1 (Ergodic convergence). For sequence {xk} generated by Algorithm 2, define

x̄k = (αk + Pk)xk +∑k−1
i=1 wix

i

Sk
, with Sk = P1 +

k

∑
i=1

αi.

Then we have

f(x̄k) − f∗ ≤
Φ1

2Sk
= O (1

k
) . (30)

Proof. We only need to prove the inequality in (30), because Φ1

2Sk
= O (1k) follows directly from

(28), Remark 3.1 and Proposition 3.1 part (iii). From (22) we have Υi+1 ≤ Υi − 2wi−1(f(xi−1)− f∗).
Summing this inequality over i = 1, . . . , k yields (note w0 = 0)

Υk+1 + 2
k−1

∑
i=1

wi(f(xi) − f∗) ≤ Υ1 = Φ1.

Using (21), we know that

∥xk+1 − x∗∥2 + 2Mk+1∥xk+1 − xk∥2 + (2αk + 2Pk)(f(xk) − f∗) + 2
k−1

∑
i=1

wi(f(xi) − f∗) ≤ Φ1,

10

which further leads to

(αk + Pk)(f(xk) − f∗) +
k−1

∑
i=1

wi(f(xi) − f∗) ≤
Φ1

2
. (31)

Since wi = αi + Pi − Pi+1, we have ∑k−1
i=1 wi = ∑k−1

i=1 αi + P1 − Pk. We thus have

(αk + Pk) +
k−1

∑
i=1

wi = (αk + Pk) +
k−1

∑
i=1

αi + P1 − Pk = P1 +
k

∑
i=1

αi = Sk.

Utilizing the convexity of f , we obtain

f(x̄k) = f ((αk + Pk)xk +∑k−1
i=1 wix

i

Sk
) ≤ αk + Pk

Sk
f(xk) +

k−1

∑
i=1

wi

Sk
f(xi),

which leads to

f(x̄k) − f∗ ≤
αk + Pk

Sk
(f(xk) − f∗) +

k−1

∑
i=1

wi

Sk
(f(xi) − f∗) ≤

Φ1

2Sk
,

where the last inequality follows from (31).

Next, we present a variant of the Opial lemma, which is useful in our convergence analysis.

Lemma 3.5 ([MM20, Lemma 2]). Let {xk} and {ak} be two sequences in Rn and R+, respectively.
Suppose that {xk} is bounded, its cluster points belong to X ⊂ Rn and it also holds that

∥xk+1 − x∥2 + ak+1 ≤ ∥xk − x∥2 + ak, ∀x ∈ X ,

then {xk} converges to some element in X .

Theorem 3.2 (Pointwise convergence). The sequence {xk} generated by Algorithm 2 globally con-
verges to an optimal solution of (1). Moreover, we have the following sublinear convergence rate
of min1≤i≤k ∥∇f(xi)∥2:

min
1≤i≤k

∥∇f(xi)∥2 = O (1
k
) . (32)

Proof. By using (8), we have the following improved analysis for (23):

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2αk⟨∇f(xk), xk − x∗⟩ + α2
k∥∇f(x

k)∥2

≤ ∥xk − x∗∥2 − 2αk (f(xk) − f∗ +
1

2L
∥∇f(xk)∥2) + α2

k ∥∇f(x
k)∥2 ,

(33)

and then (26) can be changed to:

Υk+1+
αk

L
∥∇f(xk)∥2 ≤ ∥xk+1−x∗∥2+∥xk+1−xk∥2+(2αk+2Pk)(f(xk)−f∗)+

αk

L
∥∇f(xk)∥2 ≤ Φk ≤ Υk,

which yields to Φk+1 + αk

L ∥∇f(x
k)∥2 ≤ Φk for all k ≥ 1. Change the index k to i, and sum this

inequality over i = 1, . . . , k, we obtain ∑k
i=1 αk∥∇f(xk)∥2 ≤ Φ1L. Using Proposition 3.1 part (ii), we

have
k

∑
i=1

∥∇f(xk)∥2 ≤ Φ1L

c
. (34)

Therefore, ∇f(xk) k→∞ÐÐÐ→ 0. This proves that all cluster points of {xk} belong to the solution sets of
(1). Now using Φk+1 ≤ Φk and applying Lemma 3.5 by letting X = X ∗ and ak = 2Mk∥xk − xk−1∥2 +
2Pk(f(xk−1) − f∗), we obtain that {xk} converges to an optimal solution of (1).

Moreover, (34) immediately leads to the convergence rate (32).

11

4 Improved Lower Bound for ∑k
i=1αi

Existing analysis of gradient method (2) for convex minimization (1) requires stepsize αk ≤ 1/L
to achieve the O(1/k) convergence rate f(xk) − f∗ = O(1/k). In this kind of analysis, choosing
αk ≤ 1/L guarantees that the function value has a sufficient decrease in each iteration. In practice,
αk = 1/L is usually chosen because it is the largest stepsize in this setting. In the case where
adaptive stepsize is used, a natural question to ask is whether we can guarantee that on average
the stepsize is approximately equal to 1/L. This has been posed as an open question recently
by Malitsky and Mishchenko [MM23]. More precisely, the open question posed in [MM23] asks
whether one can design an adaptive algorithm such that the lower bound for ∑k

i=1 αi is close to
k/L. In this section, we answer this question affirmatively: the stepsizes generated by our AdaBB
algorithm satisfy

k

∑
i=i0+1

αi ≥ (k − i0)/L, where i0 ∈ {0,1,2} depending on the choice of α0. (35)

This further implies ∑k
i=1 αi ≥ k−2+

√
2

L for all k ≥ 1. With a suitably chosen α0, this can be further

improved to ∑k
i=1 αi ≥ k/L.

Our result requires the following choice of θ0:

θ0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ2
1/(2α2

0) − 1, if λ1 ≥
√
2α0,

0, otherwise.
(36)

Note that λ1 is fully determined by α0 and x0. So θ0 can be pre-given to the algorithm. In the rest
of this paper, we assume that θ0 is chosen as in (36). This choice of θ0 immediately leads to the
following lower bound for αi and ∑k

i=1 αi.

Lemma 4.1. For any given x0 ∈ Rn and α0 > 0, the stepsizes generated by our AdaBB (Algorithm
2) satisfy αi ≥ 1√

2L
for all i ≥ 1, and hence ∑k

i=1 αi ≥ k√
2L

for any k ≥ 1.

Proof. We first prove α1 ≥ λ1/
√
2. There are three cases to consider.

(a). If λ1 ≥
√
2α0, then (Case i) in Algorithm 2 happens. From the definition of θ0 in (36), we

have α1 = λ1/
√
2.

(b). If α0 ≤ λ1 <
√
2α0, then (Case i) happens. In this case, we have θ0 = 0, and therefore,

α1 = α0 > λ1/
√
2.

(c). If λ1 < α0, then (Case ii) or (Case iii) happens. In this case, recall Lemma 3.1, we have
α1 ≥ λ1/

√
2.

Combining these three cases proves α1 ≥ λ1/
√
2, which further implies α1 ≥ 1/(

√
2L) due to (29).

It then follows from Proposition 3.1 (i) that αi ≥ 1√
2L

for all i ≥ 1. As a consequence, we obtain

∑k
i=1 αi ≥ k√

2L
for any k ≥ 1.

For the ease of presentation, we partition the index set {1,2,3, . . .} into three categories which
correspond to the three cases in our AdaBB (Algorithm 2):

I1 ∶= {k ≥ 1 ∣ λk ≥ αk−1}, I2 ∶= {k ≥ 1 ∣ αk−1/2 < λk < αk−1} and I3 ∶= {k ≥ 1 ∣ 0 < λk ≤ αk−1/2}. (37)

We first establish a useful lemma.

12

Lemma 4.2. For any given x0 ∈ Rn and α0 > 0, the stepsizes generated by our AdaBB (Algorithm
2) have the following properties.

(a) If i ∈ I2, then αi ≥ 1
L ;

(b) If (i + 1) ∈ I3, then αi ≥ 2
L and αi + αi+1 ≥ 4+

√
2

2L ;

(c) If i ∈ I1 ∪ I2 and (i + 1) ∈ I1, then αi+1 ≥ 1
L ;

(d) If i ∈ I3, then αi−1 + αi + αi+1 ≥ 2+
√
2

L > 3
L .

Proof. (a) Since i ∈ I2, by Lemma 3.1 and (29) we have αi ≥ λi ≥ 1
L .

(b) By definition, (i+1) ∈ I3 implies that αi ≥ 2λi+1 ≥ 2
L . This combining with Lemma 4.1 yields

αi + αi+1 ≥ 1√
2L
+ 2

L =
4+
√
2

2L .

(c) If i ∈ I1, we have αi =
√
1 + θi−1αi−1 ≥ αi−1, which gives θi = αi

αi−1
≥ 1. Since (i + 1) ∈ I1,

we obtain αi+1 =
√
1 + θiαi ≥

√
2αi ≥ 1

L . If i ∈ I2, we have αi ≥ λi ≥ 1
L . Then, (i + 1) ∈ I1 implies

αi+1 =
√
1 + θiαi ≥ αi ≥ 1

L .

(d) Since i ∈ I3, from part (b) we have αi−1 + αi ≥ 4+
√
2

2L . The result follows by noting αi+1 ≥
1√
2L

.

We now define some useful notation. Let 1 ≤ p ≤ q be integers. We define (p, . . . , q) as the
ordered sequence of indices from p to q, and {p, . . . , q} as the set of indices from p to q without
regard to order.

Definition 4.1 (Break index). An index i ≥ 1 is called a break index if i ∈ I1 and (i + 1) ∉ I3. For
j ≥ 1, we let ij be the jth smallest break index within {1,2,3, . . .}.

To carry out a more elaborate analysis, we define i0 ∈ {0,1,2} as follows:

i0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 1 ∈ I2, or (1,2) ∈ I1 × I3, or (1,2) ∈ I3 × I3,

1, if (1,2) ∈ I1 × I1, or (1,2) ∈ I1 × I2, or (1,2) ∈ I3 × I2, or (1,2,3) ∈ I3 × I1 × I3,

2, if (1,2,3) ∈ I3 × I1 × I1, or (1,2,3) ∈ I3 × I1 × I2.

(38)

Note that every index belongs to one of the three categories (37). Moreover, the nine conditions
in (38) cover all possibilities for the first three indices 1, 2, and 3. Our idea to prove the improved
bound (35) is to divide the ordered sequence of indices (i0+1, i0+2, . . . , k) into many shorter pieces,
and for each piece, say, (p, . . . , q), we shall show that ∑q

i=p αi ≥ (q − p + 1)/L. In the rest of this
section, we assume k ≥ 3 is an arbitrarily fixed integer. For fixed k ≥ 3, we assume that there are
(m−1) break indices within {1,2, . . . , k}, which satisfy 1 ≤ i1 < i2 < . . . < im−1 ≤ k. For convenience,
we define

Tj ∶= (ij−1 + 1, ij−1 + 2, . . . , ij) for j = 1,2, . . . ,m − 1, and Tm ∶= (im−1 + 1, im−1 + 2, . . . , k). (39)

That is,
T1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

i0 + 1, . . . , i1,
T2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

i1 + 1, . . . , i2, . . . , . . . ,
Tm−1³¹¹·¹¹µ

im−2 + 1, . . . , im−1,
Tm³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

im−1 + 1, . . . , k .

Note that (p, . . . , q) is an empty set if p > q. Therefore, T1 = ∅ if i0 ≥ i1, and Tm = ∅ if im−1 = k.
Due to the definition of break index, if there is an index p ∈ I1 such that ij−1+1 ≤ p ≤ ij −1 for some

13

j, then (p + 1) ∈ I3 must hold. For i ≥ 1 and j ≥ i + 1, we define the following sets, which contain
ordered and continuous indices.

A ∶= {(i, i + 1, . . . , j) ∣ {i + 1, . . . , j} ⊆ I3}, (40)

Q ∶= {(i, i + 1, . . . , j) ∣ i ∈ I2, {i + 1, . . . , j} ⊆ I2 ∪ I3}, (41)

M ∶= {(i, i + 1, . . . , j) ∣ i ∉ I3, j ∉ I1, and, for any i ≤ ℓ ≤ j − 1, ℓ ∈ I1 ⇒ (ℓ + 1) ∈ I3}. (42)

To establish our improved bound (35), it is sufficient to show that ∑i∈Tj
αi ≥

∣Tj ∣

L for j = 1,2, . . . ,m.
To show this, we first prove the following key lemma.

Lemma 4.3. Let i ≥ 1 and j ≥ i+ 1. If (i, i+ 1, . . . , j) ∈ A∪Q∪M, where A, Q andM are defined
in (40)-(42), then ∑j

ℓ=i αℓ ≥ (j − i + 1)/L.

Proof. There are three cases to consider.

(a). (i, i+ 1, . . . , j) ∈ A. In this case, we have {i+ 1, . . . , j} ⊆ I3. Hence, it follows from Lemma 4.2

(b) that αℓ ≥ 2
L for i ≤ ℓ ≤ j − 1. Thus, we have ∑j

ℓ=i αℓ ≥ 2(j−i)
L + 1√

2L
≥ j−i+1

L as j − i ≥ 1.

(b). (i, i+1, . . . , j) ∈ Q. In this case, we can always divide it into shorter pieces as (i, i+1, . . . , j) =
(p1, . . . , q1 ∣ p2, . . . , q2 ∣ . . . ∣ ps, . . . , qs) for some s ≥ 1, with p1 = i, qs = j, pt+1 = qt + 1 for
t = 1,2, . . . , s − 1, such that for each (pt, . . . , qt), t = 1,2, . . . , s, we have either pt = qt ∈ I2, or
qt ≥ pt + 1, pt ∈ I2 and {pt + 1, . . . , qt} ⊆ I3. In the former case, pt = qt ∈ I2, the corresponding
piece has length one, and by Lemma 4.2 (a), we have αpt ≥ 1/L. In the latter case, we have
(pt, . . . , qt) belongs to A, and therefore ∑qt

ℓ=pt
αℓ ≥ (qt − pt + 1)/L.

(c). (i, i + 1, . . . , j) ∈ M. Similarly, in this case it can always be divided into shorter pieces as
(p1, . . . , q1 ∣ p2, . . . , q2 ∣ . . . ∣ ps′ , . . . , qs′) for some s′ ≥ 1, with p1 = i, qs′ = j, pt+1 = qt + 1 for
t = 1,2, . . . , s′ − 1, such that for each (pt, . . . , qt), t = 1,2, . . . , s′, we have either pt = qt ∈ I2,
or qt ≥ pt + 1, {pt + 1, . . . , qt} ⊆ I3. In the former case, pt = qt ∈ I2, the corresponding piece
has length one, and by Lemma 4.2 (i), we have αpt ≥ 1/L. In the latter case, again we have
(pt, . . . , qt) belongs to A, and the result ∑qt

ℓ=pt
αℓ ≥ (qt − pt + 1)/L follows.

For Cases (b) and (c), the result ∑j
ℓ=i αℓ ≥ j−i+1

L follows immediately since each piece (pt, . . . , qt)
satisfies ∑qt

ℓ=pt
αℓ ≥ (qt − pt + 1)/L.

Equipped with Lemma 4.3, we next show that ∑i∈Tj
αi ≥ ∣Tj ∣/L for 1 ≤ j ≤ m. We first prove

the case 2 ≤ j ≤m − 1, and then prove the cases j =m and j = 1.

Lemma 4.4. For 2 ≤ j ≤m − 1, there holds ∑i∈Tj
αi ≥ ∣Tj ∣/L.

Proof. For 2 ≤ j ≤m−1, we have Tj = (ij−1 + 1, . . . , ij). By the definition of ij , we have ij−1+1 ∈ I1∪I2
and ij ∈ I1. This also implies ij −1 ∉ I1. Moreover, if there exists ℓ ∈ I1 satisfying ij−1 + 1 ≤ ℓ ≤ ij −2,
then there must hold (ℓ + 1) ∈ I3. We need to prove the result for two cases: (a) ∣Tj ⋂ I1∣ = 1, and
(b) ∣Tj ⋂ I1∣ ≥ 2.

(a). In this case, we have ∣Tj ⋂ I1∣ = 1. There are three cases to consider: (a1) ij−1 + 1 ∈ I1; (a2)
ij−1 + 1 ∈ I2 and ij − 1 ∈ I2; (a3) ij−1 + 1 ∈ I2 and ij − 1 ∈ I3.

(a1). If ij−1 + 1 ∈ I1, then ij−1 + 1 = ij and Tj = {ij}. Since ij−1 ∈ I1 and ij ∈ I1, from Lemma
4.2 (c) we have αij ≥ 1

L .

14

(a2). If ij−1 + 1 ∈ I2 and ij − 1 ∈ I2, we partition Tj into two parts: Tj = (ij−1 + 1, . . . , ij − 1 ∣
ij). Since ij ∈ I1, there is no index in (ij−1 + 1, . . . , ij − 1) belonging to I1. Therefore,
(ij−1 + 1, . . . , ij − 1) ∈ Q. Moreover, ij ∈ I1 and ij − 1 ∈ I2 imply that αij ≥ 1

L (see Lemma

4.2 (c)). Using Lemma 4.3, we obtain ∑ij
i=ij−1+1

αi ≥ ∣Tj ∣/L.

(a3). If ij−1 + 1 ∈ I2 and ij − 1 ∈ I3, we partition Tj into two parts: Tj = (ij−1 + 1, . . . , ij − 3 ∣
ij − 2, ij − 1, ij). Again, since ij ∈ I1, there is no index in (ij−1 + 1, . . . , ij − 3) belonging to
I1. Therefore, (ij−1 + 1, . . . , ij − 3), if nonempty, must belong to Q. Moreover, it follows

from Lemma 4.2 (d) that ∑ij
ℓ=ij−2

αℓ ≥ 3
L . Using Lemma 4.3, we obtain ∑ij

i=ij−1+1
αi ≥

∣Tj ∣/L.

(b). In this case, we have ∣Tj ⋂ I1∣ ≥ 2. There are again three cases to consider: (b1) ij − 1 ∈ I2;
(b2) ij − 1 ∈ I3 and ij − 3 ∈ I1; (b3) ij − 1 ∈ I3 and ij − 3 ∉ I1.

(b1). If ij − 1 ∈ I2, then we can partition Tj as Tj = (ij−1 + 1, . . . , ij − 1 ∣ ij). It is easy to see
that (ij−1 + 1, . . . , ij − 1) ∈M. Moreover, according to Lemma 4.2 (c), we have αij ≥ 1

L .

Using Lemma 4.3, we have ∑ij
i=ij−1+1

αi ≥ ∣Tj ∣/L.

(b2). If ij − 1 ∈ I3 and ij − 3 ∈ I1, then we must have ij − 2 ∈ I3, because otherwise ij − 3 is a
break index. Moreover, ij − 4 ∉ I1, because otherwise, ij − 4 is a break index. We then
partition Tj into Tj = (ij−1 + 1, . . . , ij − 4 ∣ ij − 3 ∣ ij − 2, ij − 1, ij). It is easy to see that
(ij−1 + 1, . . . , ij − 4), if nonempty, must belong toM. Moreover, since ij − 2 ∈ I3, we have
by Lemma 4.2 (b) that αij−3 ≥ 2

L , and since ij − 1 ∈ I3, we have αij−2 +αij−1 +αij ≥ 3
L by

Lemma 4.2 (d). Using Lemma 4.3, we have ∑ij
i=ij−1+1

αi ≥ ∣Tj ∣/L.

(b3). If ij − 1 ∈ I3 and ij − 3 ∉ I1, then we partition Tj into Tj = (ij−1 + 1, . . . , ij − 3 ∣ ij − 2, ij − 1, ij).
It is easy to see that (ij−1 + 1, . . . , ij − 3), if nonempty, must belong to M. Since
ij − 1 ∈ I3, we have αij−2 + αij−1 + αij ≥ 3

L by Lemma 4.2 (d). Using Lemma 4.3, we

have ∑ij
i=ij−1+1

αi ≥ ∣Tj ∣/L.

This completes the proof.

Lemma 4.5. For j =m or j = 1, there holds ∑i∈Tj
αi ≥ ∣Tj ∣/L.

Proof. We first consider the case j = m and in this case Tm = (im−1 + 1, . . . , k). If im−1 = k, then
Tm equals to ∅. So we only need to consider the case when im−1 < k. If k ∈ I1, then the proof is
exactly the same as for the case 2 ≤ j ≤ m − 1 in Lemma 4.4. If k ∉ I1, then Tm ∈M as by the
construction of Tm we have im−1 + 1 ∉ I3 and if ℓ ∈ I1 within {im−1 + 1, . . . , k − 1}, we have l + 1 ∈ I3.
In both cases, we have ∑k

ℓ=im−1+1
αℓ ≥ ∣Tm ∣/L.

We now consider the case j = 1 and in this case T1 = (i0 + 1, . . . , i1). There are nine cases to
consider according to the definition of i0 in (38). Among them, in the following four cases, we have
T1 = ∅ and no proof is needed: (1,2,3) ∈ I3×I1×I1 (i0 = i1 = 2), or (1,2,3) ∈ I3×I1×I2 (i0 = i1 = 2),
or (1,2) ∈ I1 × I1 (i0 = i1 = 1), or (1,2) ∈ I1 × I2 (i0 = i1 = 1). It remains to consider the following
five scenarios: (a) 1 ∈ I2; (b) (1,2) ∈ I1 × I3; (c) (1,2) ∈ I3 × I2; (d) (1,2,3) ∈ I3 × I1 × I3; and (e)
(1,2) ∈ I3 × I3.

(a). 1 ∈ I2. In this case, i0 = 0 and T1 = (i0 + 1, . . . , i1) reduces to (1, . . . , i1) with i1 ≥ 2. This case
is the same as the one in Lemma 4.4 because 1 ∉ I3 and i1 ∈ I1.

(b). (1,2) ∈ I1 × I3. In this case, i0 = 0 and T1 = (i0 + 1, . . . , i1) reduces to (1, . . . , i1) with i1 ≥ 3.
This case is again the same as the one in Lemma 4.4 because 1 ∉ I3 and i1 ∈ I1.

15

(c). (1,2) ∈ I3 × I2. In this case, i0 = 1 and T1 = (i0 + 1, . . . , i1) reduces to (2, . . . , i1) with i1 ≥ 3.
This case is again the same as the one in Lemma 4.4 because 2 ∉ I3 and i1 ∈ I1.

(d). (1,2,3) ∈ I3 × I1 × I3. In this case, i0 = 1 and T1 = (i0 + 1, . . . , i1) reduces to (2, . . . , i1) with
i1 ≥ 4. This case is again the same as the one in Lemma 4.4 because 2 ∉ I3 and i1 ∈ I1.

(e). (1,2) ∈ I3 × I3. In this case, i0 = 0 and T1 = (i0 +1, . . . , i1) reduces to (1, . . . , i1) with i1 ≥ 3. In
this case, we partition T1 = (1, . . . , p ∣ p + 1, . . . , i1), where p ≥ 2, {1, . . . , p} ⊆ I3, and (p+1) ∉ I3.
If i1 > p + 1, then (1, . . . , p) belongs to A and (p + 1, . . . , i1) is the same as the one in Lemma
4.4. If (p + 1) = i1 ∈ I1, we then partition T1 = (1, . . . , i1 − 3 ∣ i1 − 2, i1 − 1, i1) and there are
three cases to consider for the first part (1, . . . , i1 − 3):

(e1). It is empty.

(e2). It contains the index 1 only, in which case we have α1 ≥ 2
L due to Lemma 4.2 (b) and

2 ∈ I3.
(e3). It belongs to A.

Moreover, for the second part (i1 − 2, i1 − 1, i1), it follows from Lemma 4.2 (d) that αi1−2 +
αi1−1 +αi1 ≥ 3

L because i1 − 1 ∈ I3. Using Lemma 4.3, we have shown ∑ℓ∈T1
αℓ ≥ ∣T1 ∣/L for all

cases.

This completes the proof.

Combining Lemmas 4.4 and 4.5, we obtain the following theorem immediately.

Theorem 4.1. For any given x0 ∈ Rn and α0 > 0, the stepsizes generated by our AdaBB (Algorithm
2) satisfy ∑k

i=i0+1 αi ≥ k−i0
L for all k ≥ 3, where i0 is defined in (38). This also implies ∑k

i=1 αi ≥
k−2+

√
2

L for all k ≥ 1.

Proof. The implication ∑k
i=1 αi ≥ k−2+

√
2

L can be verified as follows:

(a). If i0 = 0, we have ∑k
i=1 αi ≥ k

L >
k−2+

√
2

L ;

(b). If i0 = 1, we have ∑k
i=1 αi = α1 +∑k

i=2 αi ≥ 1√
2L
+ k−1

L >
k−2+

√
2

L ;

(c). If i0 = 2, we have ∑k
i=1 αi = α1 + α2 +∑k

i=3 αi ≥
√
2

L +
k−2
L =

k−2+
√
2

L ,

which completes the proof.

Remark 4.1. Similar to [MM23, Algorithm 2], if one can ensure α0 ∈ (λ1,2λ1) through a line
search strategy, then it is guaranteed that 1 ∈ I2 and i0 = 0. In this case, our improved bound (35)
becomes ∑k

i=1 αi ≥ k
L for any k ≥ 3. For k = 1, we have ∑k

i=1 αi = α1 ≥ 1
L since 1 ∈ I2. For k = 2, there

are three cases to consider.

(a). If 2 ∈ I1, we have α2 ≥ 1
L follows from Lemma 4.2 (c), hence we get α1 + α2 ≥ 2

L ;

(b). If 2 ∈ I2, we have α2 ≥ 1
L follows from Lemma 4.2 (a), hence we get α1 + α2 ≥ 2

L ;

(c). If 2 ∈ I3, we have α1 + α2 ≥ 4+
√
2

2L ≥ 2
L follows from Lemma 4.2 (b).

Hence, we prove that ∑k
i=1 αi ≥ k

L holds for all k ≥ 1.

16

We now give a detailed comparison of our results on the lower bounds of αk and ∑k
i=1 αi with

the existing results in the literature. The results are summarized in Table 1. From Table 1, we
first note that these results are all free with θ0 which is always pre-defined. The results for AdGD2
require a specially chosen α0, but other algorithms do not have restrictions on α0. Our AdaBB
achieves the best lower bound for αk, i.e., αk ≥ 1√

2L
, ∀k ≥ 1. While AdGD [MM23] and AdaPGMπ,r

also achieve the same lower bound, their results only hold for k ≥ r1, r3, respectively. Lastly, our
AdaBB clearly achieves the best lower bound for ∑k

i=1 αi. Overall, we believe that it is fair to claim
that our AdaBB achieves the best results for the lower bounds of αk and ∑k

i=1 αi.

AdGD AdGD2 AdaPGM AdaPGMπ,r AdaBB

θ0 +∞ 0 1
3 ≥ 1 1 (36)

α0 free? ✓ ✓ ✗ ✓ ✓ ✓

αk ≥ 1
2L

1√
2L

(k ≥ r1) 1√
3L

1
2L (k ≥ r2) 1√

2L
(k ≥ r3) 1√

2L

∑k
i=1 αi ≥ k

2L
k−r1+1√

2L
k√
2L

k−r2+1
2L

k−r3+1√
2L

k−2+
√
2

L

Table 1: Comparision of the lower bounds of αk and ∑k
i=1 αi among AdGD [MM20; MM23], AdGD2

[MM23], AdaPGM [Lat+23], AdaPGMπ,r [LTP23], and AdaBB. We listed two results for AdGD
correponding to different values of θ0. The case θ0 = +∞ is analyzed in [MM20] and the case θ0 = 0 is
analyzed in [MM23]. Here we note that the results of AdGD2 only hold when a special α0 satisfying
α0L1 ∈ [1√

2
,2] is chosen. Other algorithms do not have restrictions on α0. The lower bounds of αk

for AdGD [MM23], AdaPGM and AdaPGMπ,r only hold for k ≥ r1, r2, r3, respectively. Here, r1 is
the smallest integer satisfying Πr1

i=1ϖi ≥ 1√
2Lα0

with ϖn+1 =
√
1 +ϖn and ϖ1 = 1; r2 = ⌊2 log2 1

α0L
⌋+;

r3 = 2⌊log2 1
α0L
⌋+.

5 Extensions

In this section, we extend AdaBB (Algorithm 1) to locally strongly convex problem and composite
convex optimization problems.

5.1 When f is Locally Strongly Convex

In this subsection, we extend our analysis to the case where f is locally strongly convex. Specifically,
in addition to the locally L-smoothness condition (8), we also assume that f is locally µ-strongly
convex in B(x∗,R), i.e.,

f(x) − f(y) − ⟨∇f(y), x − y⟩ ≥ µ
2 ∥x − y∥

2,∀x, y ∈ B(x∗,R), (43)

where R is defined in (27), and we can prove that the sequence {xk} generated by the following
algorithm lies in B(x∗,R). Additionally, it is worth noting that the parameters µ,L and R are
used solely for the purpose of analysis and are not involved in the algorithm. According to [Nes04,
Theorem 2.1.10], (43) implies

⟨∇f(x) −∇f(y), x − y⟩ ≤ ∥∇f(x) −∇f(y)∥2/µ,∀x, y ∈ B(x∗,R). (44)

17

We will present an extension of Algorithm 1 to handle this case and establish a linear convergence
result.

Recall that λk denotes the Short BB stepsize and is given by (4). The new algorithm follows
the same iteration scheme as (2), with the only variation from Algorithm 1 being the update rule
for the stepsize αk. Specifically, for k ≥ 1 we update αk as follows

αk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min{
√
1 + ηθk−1αk−1, λk}, update θk = αk

αk−1
, if λk ≥ αk−1,

λk, update θk = 2αk

αk−1
− 1, if δαk−1

2 < λk < αk−1,

λk√
2
, update θk = αk

αk−1
, if 0 < λk ≤ δαk−1

2 ,

(45)

where η ∈ [0,1) and δ ∈ (1,2) are parameters. In (45), when λk ≥ αk−1, a more cautious stepsize
is used compared to Algorithm 1. Additionally, the region δαk−1/2 < λk < αk−1 is narrower than
(Case ii) in Algorithm 1. As a result, the region 0 < λk ≤ δαk−1/2 in (45) becomes broader than
(Case iii) in Algorithm 1. Similarly to (13), for all k ≥ 1 we define Mk and Pk as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Mk = 0, Pk =
α2
k

αk−1
, if λk ≥ αk−1,

Mk = αk

αk−1
− α2

k

α2
k−1

, Pk =
2α2

k

αk−1
− αk, if δαk−1

2 < λk < αk−1,

Mk = 1
2 −

λk

2αk−1
, Pk =

α2
k

αk−1
, if 0 < λk ≤ δαk−1

2 .

(46)

For convenience, we define P0 as (P1−α0)/η for η ∈ (0,1). Otherwise, P0 = 0. We have the following
lemma.

Lemma 5.1. Let {αk} and {θk} be generated by (45) and Mk and Pk be defined in (46). Then,
we have Mk ≥ 0, Pk ≥ 0 and Pk = αkθk for all k ≥ 1, and 2Mk+1 ≤ 1 and Pk+1 ≤ αk + ηPk for k ≥ 0.

Proof. Recall that δ ∈ (1,2). First, the nonnegativity of Mk and Pk and Pk = αkθk for k ≥ 1 can be
verified straightforwardly by their definitions together with (45). Let k ≥ 0 be fixed. We then show
the remaining claims by considering the following three cases.

(i) λk+1 ≥ αk. In this case, we have Mk+1 = 0 and αk+1 ≤
√
1 + ηθkαk. Hence, it follows that

Pk+1 = α2
k+1/αk ≤ (1 + ηθk)αk = αk + ηPk.

(ii) δαk/2 < λk+1 < αk. In this case, we have αk+1 = λk+1, and it is easy to verify that

Mk+1 =
λk+1

αk
−
λ2
k+1

α2
k

≤ 1

4
and Pk+1 =

2λ2
k+1

αk
− λk+1 ≤ αk ≤ αk + ηPk.

(iii) 0 < λk+1 ≤ δαk/2. In this case, we have αk+1 = λk+1/
√
2, and it is elementary to verify that

Mk+1 =
1

2
− λk+1

2αk
≤ 1

2
and Pk+1 =

λ2
k+1

2αk
≤ δ2αk

8
≤ αk ≤ αk + ηPk.

In all three cases, we have shown that 2Mk+1 ≤ 1 and Pk+1 ≤ αk + ηPk.

Again, we emphasize that αk, θk, Mk and Pk are defined in (45)-(46). With these newly defined
parameters, we still define wk = αk + Pk − Pk+1 for k ≥ 0 as in Lemma 3.4, and E, Υk and Φk as
in (17), (21) and (22), respectively. Next, we present the pointwise convergence of the gradient
method (2) with αk given by (45) and establish bounds on αk and Pk/αk. Note that since f is
locally strongly convex, it has a unique optimal solution.

18

Theorem 5.1 (Pointwise convergence). For any x0 ∈ Rn and α0 > 0, let {xk} be the sequence
generated by (2) with αk given by (45). Then, xk ∈ B(x∗,R) for all k ≥ 0, where R is defined in
(27), and {xk} converges to the unique optimal solution x∗ of (1).

Proof. First, by following the proof of Lemma 3.3, it is elementary to verify that (20), and thus
(17), holds as well for λk < αk−1. Then, by following the proof of Lemma 3.4, it is also easy to
observe that (24) holds as well, with E defined in (17). Combining Lemma 5.1, which confirms that
2Mk+1 ≤ 1 and Pk+1 ≤ αk + ηPk ≤ αk + Pk for all k ≥ 0, with (24), we obtain (22), with Υk and wk

defined in (21) and Lemma 3.4, respectively. Consequently, by following the same lines of proof as
in Corollary 3.1 and Theorem 3.2, we can show that xk ∈ B(x∗,R) for all k ≥ 0, where R is defined
in (27), and {xk} converges to the unique optimal solution of (1). The details are omitted due to
the high similarity.

Proposition 5.1 (Bounds on αk and Pk/αk). Let {αk} be generated by (45) with any α0 > 0.
Then, for k ≥ 1, we have (i) c ≤ αk ≤ 1/µ, where c ∶= min{α0,1/(

√
2L)} > 0, and (ii) Pk/αk ≥ c0 ∶=

min{cµ, δ − 1} > 0.

Proof. Let k ≥ 1 be fixed. (i) First, αk ≥ c =min{α0,1/(
√
2L)} follows from the same analysis as in

Proposition 3.1 (ii). Second, the definition of αk in (45) shows that αk ≤ λk. Further considering
(44), we obtain αk ≤ λk ≤ 1/µ. For part (ii), we split the analysis into two cases: (a) λk ≥ αk−1

or λk ≤ δαk−1/2, and (b) δαk−1/2 < λk < αk−1. For case (a), we have Pk/αk = αk/αk−1 ≥ cµ, where
the inequality follows from c ≤ αk ≤ 1/µ. For case (b), we have Pk =

2α2
k

αk−1
− αk, αk = λk, and hence

Pk/αk ≥ δ − 1. Combining these two cases completes the proof.

Now, we are ready to establish the linear convergence result.

Theorem 5.2 (Linear convergence). For any x0 ∈ Rn and α0 > 0, the sequence {xk} generated by
(2) with αk given by (45) converges linearly to the unique optimal solution x∗ of (1).

Proof. For convenience, we define for k ≥ 0 that

Φk+1 ∶= ∥xk+1 − x∗∥2 + 2(1 + µ
2L)Mk+1∥xk+1 − xk∥2 + 2αk+2Pk

αk+ηPk
Pk+1(f(xk) − f∗). (47)

Recall that f∗ = f(x∗) and ∇f(x∗) = 0. It follows from (43), (8) and (2) that

αk⟨∇f(xk), x∗ − xk⟩
(43)
≤ αk(f∗ − f(xk)) − αkµ

2 ∥x
k − x∗∥2,

αk⟨∇f(xk), x∗ − xk⟩
(8)
≤ αk(f∗ − f(xk)) − αk

2L∥∇f(x
k) −∇f(x∗)∥2

(2)= αk(f∗ − f(xk)) − 1
2αkL
∥xk+1 − xk∥2

≤ αk(f∗ − f(xk)) − µ
2L∥x

k+1 − xk∥2,

where the last “≤” is due to αk ≤ 1/µ. Combining the above two inequalities to obtain

αk⟨∇f(xk), x∗ − xk⟩ ≤ αk(f∗ − f(xk)) − αkµ
4 ∥x

k − x∗∥2 − µ
4L∥x

k+1 − xk∥2. (48)

Plugging (48) into (23), we arrive at

∥xk+1 − x∗∥2 ≤ (1 − αkµ
2)∥x

k − x∗∥2 − 2αk (f(xk) − f∗) − µ
2L∥x

k+1 − xk∥2 + α2
k ∥∇f(x

k)∥2 . (49)

19

By summing (49) and (24), considering the definition of E in (17), and reorganizing terms, we can
easily derive

(1 − αkµ
2)∥x

k − x∗∥2 + 2Mk∥xk − xk−1∥2 + 2Pk(f(xk−1) − f∗)
≥ ∥xk+1 − x∗∥2 + (1 + µ

2L)∥x
k+1 − xk∥2 + (2αk + 2Pk)(f(xk) − f∗) ≥ Φk+1,

(50)

where the second “≥” follows from (47) and Lemma 5.1. Define

c1,k ∶=max{1 − αkµ
2 ,1/(1 + µ

2L),
αk−1+ηPk−1

αk−1+Pk−1
} > 0 and c1 ∶=max{1 − cµ

2 ,1/(1 +
µ
2L),1 −

c0(1−η)
c0+1

},

where c, c0 > 0 are defined in Proposition 5.1. From Proposition 5.1 (i), we have αk ≥ c and thus
1 − αkµ

2 ≤ 1 − cµ
2 < 1. On the other hand, from Proposition 5.1 (ii) we have αk−1/Pk−1 ≤ 1/c0 for

k ≥ 2, and hence
αk−1+ηPk−1

αk−1+Pk−1
= 1 − 1−η

(αk−1/Pk−1)+1
≤ 1 − c0(1−η)

c0+1
< 1.

Therefore, we have shown that c1,k ≤ c1 < 1 for all k ≥ 2. It then follows from (47), (50) and the
definition of c1,k that Φk+1 ≤ c1,kΦk ≤ c1Φk for all k ≥ 2. Again, it follows from the definition of
(47) and c1 < 1 that {xk} converges linearly to the unique optimal solution of (1).

5.2 Composite Convex Optimization Problems

Let g ∶ Rn → R be an extended real-valued closed, proper and convex function, which may be
non-smooth. In this subsection, we extend AdaBB (Algorithm 1) to solve the composite convex
optimization problem

min
x∈Rn

F (x) ∶= f(x) + g(x), (51)

where f ∶ Rn → R is the same as in (1). In particular, f is a locally L-smooth function convex
function satisfying (8) in which the radius R ∶= T and T is defined in (68). We assume that the set
of optimal solutions of (51), also denoted by X ∗, is non-empty and denote the optimal value of F
by F∗. In this section, we consider the proximal gradient method of the form

xk+1 = proxαkg
(xk − αk∇f(xk)), k ≥ 0, (52)

where αk > 0 denotes the stepsize and will be chosen adaptively, and for given α > 0, proxαg(⋅) is
defined by

proxαg(x) = argminy∈Rn g(y) + 1

2α
∥y − x∥2, x ∈ Rn.

An equivalent implicit form of (52) is given by

xk+1 = xk − αk(∇f(xk) + ξk+1) for some ξk+1 ∈ ∂g(xk+1). (53)

Our adaptive proximal BB method (AdaPBB) for solving (51) is presented in Algorithm 3.

Remark 5.1. It is worth noting that in Algorithm 3, if λk < αk−1 (Cases ii and iii), then αk ≥
λk/
√
2 ≥ 1/(

√
2L). Similar discussions in Proposition 3.1 will be formally presented in Proposition

5.2 later.

Before analyzing the convergence of Algorithm 3, we define some useful notation and recall
some important inequalities for the scheme (53). For k ≥ 1, we define Bk and Ek as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Bk ∶= 0, Ek ∶= 1
αk−1

, if λk ≥ αk−1,

Bk ∶= 1, Ek ∶= 0, if αk−1

2 < λk ≤ αk−1,

Bk ∶= (αk−1−λk)
2

λ2
k

, Ek ∶= 0, if 0 < λk ≤ αk−1

2 .

(54)

20

Algorithm 3 Adaptive Proximal BB Method (AdaPBB)

Input: x0 ∈ Rn, α0 > 0, θ0 ≥ 0
1: x1 = proxα0g(x

1 − α0∇f(x0))
2: for k = 1,2, . . . , do
3: λk = ⟨∇f(x

k)−∇f(xk−1), xk−xk−1⟩

∥∇f(xk)−∇f(xk−1)∥2

4: if λk ≥ αk−1 then .(Case i)
5: αk =

√
1 + θk−1αk−1, and θk = αk

αk−1

6: else if αk−1/2 < λk < αk−1 then . (Case ii)
7: αk = αk−1√

2
, and θk = 0

8: else . (Case iii)
9: αk = λk√

2
, and θk = 0

10: end if
11: xk+1 = proxαkg

(xk − αk∇f(xk))
12: end for

For convenience, we also define E0 ∶= (E1α
2
1−α0)/α2

0. The following lemma provides useful inequal-
ities for Bk and Ek defined in (54).

Lemma 5.2. Let {αk} and {θk} be generated by Algorithm 3 and Bk and Ek be defined in (54).
Then, αkEk = θk for k ≥ 1, and 2Bk+1 ≤ α2

k/α
2
k+1 and Ek+1α

2
k+1 ≤ Ekα

2
k + αk for k ≥ 0.

Proof. The fact that αkEk = θk for k ≥ 1 is obvious. Let k ≥ 0 be fixed. To establish the remaining
results, we split the analysis into the following three cases. Case (i): λk+1 ≥ αk. In this case, we have
Bk+1 = 0, Ek+1 = 1/αk, αk+1 =

√
1 + θkαk, and thus Ek+1α

2
k+1 = (1 + θk)αk = Ekα

2
k + αk. Case (ii):

αk/2 < λk+1 < αk. In this case, we have Bk+1 = 1, Ek+1 = 0, αk+1 = αk/
√
2, and thus 2Bk+1 = α2

k/α
2
k+1.

Case (iii): λk+1 ≤ αk/2. In this case, we have Bk+1 = (αk − λk+1)2/λ2
k+1, Ek+1 = 0, αk+1 = λk+1/

√
2,

and thus 2Bk+1 = 2(αk − λk+1)2/λ2
k+1 ≤ 2α

2
k/λ

2
k+1 = α

2
k/α

2
k+1. The proof is completed by combining

the above three cases.

The following results are taken from [MM23]. Note that a refined inequality that improves upon
(55) will be derived in the proof of Theorem 5.4.

Lemma 5.3 ([MM23, Eq. (34) and Lemmas 11-12]). Let {xk} be generated by (53) with arbitrarily
positive stepsizes {αk}. Then, for k ≥ 0, we have

∥xk+1 − x∗∥2 + 2αk(F (xk) − F∗) ≤ ∥xk − x∗∥2 + α2
k∥∇f(x

k) + ξk∥2, (55)

∥∇f(xk) + ξk+1∥2 = ⟨∇f(xk+1) + ξk+1,∇f(xk) + ξk+1⟩ + 1

αk
⟨∇f(xk+1) −∇f(xk), xk+1 − xk⟩, (56)

∥∇f(xk) + ξk+1∥ ≤ ∥∇f(xk) + ξk∥. (57)

Proof. The result (55) follows from [MM23, Eq. (34)], (56) is taken from the proof of [MM23,
Lemma 11], and (57) is given as Lemma 12 in [MM23].

Lemma 5.4 (Analogous to (17)). Let {xk} be generated by Algorithm 3 and Bk and Ek are defined
in (54). Then, for k ≥ 1, we have

∥∇f(xk) + ξk∥2 ≤ Bk∥∇f(xk−1) + ξk−1∥2 +Ek(F (xk−1) − F (xk)). (58)

21

Proof. From the equality ∥a∥2 = ∥a − b∥2 − ∥b∥2 + 2⟨a, b⟩, we obtain

∥∇f(xk) + ξk∥2 = ∥∇f(xk) −∇f(xk−1)∥2 − ∥∇f(xk−1) + ξk∥2 + 2⟨∇f(xk) + ξk,∇f(xk−1) + ξk⟩

= (1
λk
− 1

αk−1
)⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩ + ⟨∇f(xk) + ξk,∇f(xk−1) + ξk⟩, (59)

where the second equality follows from (4) and (53). It follows from (56) and (57) that

⟨∇f(xk) + ξk,∇f(xk−1) + ξk⟩ (56)= ∥∇f(xk−1) + ξk∥2 − 1

αk−1
⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩

(57)
≤ ∥∇f(xk−1) + ξk−1∥2 − 1

αk−1
⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩. (60)

Combining (59) and (60), we obtain

∥∇f(xk) + ξk∥2 ≤ (1
λk
− 2

αk−1
)⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩ + ∥∇f(xk−1) + ξk−1∥2. (61)

We then prove the desired result (58) by analyzing the following three cases.

• Case (i): λk ≥ αk−1. In this case, we have 1/λk−1/αk−1 ≤ 0. Since ∇f(xk−1)+ξk = (xk−1−xk)/αk−1

and ⟨∇f(xk) −∇f(xk−1), xk − xk−1⟩ ≥ 0, we obtain from (59) that

∥∇f(xk) + ξk∥2 ≤ 1
αk−1
⟨∇f(xk) + ξk, xk−1 − xk⟩ ≤ 1

αk−1
(F (xk−1) − F (xk)), (62)

where the second “≤” is due to the convexity of F and ∇f(xk) + ξk ∈ ∂F (xk).

• Case (ii): αk−1/2 < λk < αk−1. In this case, we have 1/λk − 2/αk ≤ 0 and (61) implies

∥∇f(xk) + ξk∥2 ≤ ∥∇f(xk−1) + ξk−1∥2. (63)

• Case (iii): 0 < λk ≤ αk−1/2. Then, (4) and (61) imply

∥∇f(xk) + ξk∥2 ≤ 1

λk
(1
λk
− 2

αk−1
)⟨∇f(x

k) −∇f(xk−1), xk − xk−1⟩2

∥∇f(xk) −∇f(xk−1)∥2
+ ∥∇f(xk−1) + ξk−1∥2

≤ 1

λk
(1
λk
− 2

αk−1
)∥xk − xk−1∥2 + ∥∇f(xk−1) + ξk−1∥2

(53)=
α2
k−1

λk
(1
λk
− 2

αk−1
)∥∇f(xk−1) + ξk∥2 + ∥∇f(xk−1) + ξk−1∥2

(57)
≤ (αk−1 − λk)2

λ2
k

∥∇f(xk−1) + ξk−1∥2. (64)

The desired result (58) follows immediately by combining (62)-(64) with (54).

We are now ready to establish a result that is analogous to (22) for problem (1). For this
purpose, in the rest of this section, we let x∗ ∈ X ∗ be an arbitrarily fixed solution of (51) and define
for k ≥ 1 that
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wk ∶= αk +Ekα
2
k −Ek+1α

2
k+1,

Vk ∶= ∥xk − x∗∥2 + 2Bkα
2
k∥∇f(x

k−1) + gk−1∥2 + 2αk−1(1 +Ek−1αk−1)(F (xk−1) − F∗),

Uk ∶= Vk − 2wk−1(F (xk−1) − F∗).

(65)

It is obvious from Lemma 5.2 that wk ≥ 0 for k ≥ 0. Furthermore, direct calculations show that

Uk = ∥xk − x∗∥2 + 2Bkα
2
k∥∇f(x

k−1) + ξk−1∥2 + 2Ekα
2
k(F (x

k−1) − F∗). (66)

22

Lemma 5.5 (Analogous to Lemma 3.4). Let {xk} be generated by Algorithm 3 and Uk and Vk are
defined in (65). Then, for k ≥ 1, we have Vk+1 ≤ Uk ≤ Vk.

Proof. Let k ≥ 1 be fixed. First, (58) is equivalent to

∥∇f(xk) + ξk∥2 ≤ 2Bk∥∇f(xk−1) + ξk−1∥2 + 2Ek(F (xk−1) − F (xk)) − ∥∇f(xk) + ξk∥2. (67)

By utilizing equation (67) to expand the term ∥∇f(xk) + ξk∥2 on the right-hand-side of equation
(55), and considering the definitions of Uk, Vk, and wk provided in equation (65), we can rearrange
the terms and perform elementary calculations to obtain the following inequality:

Uk ≥ ∥xk+1 − x∗∥2 + α2
k∥∇f(x

k) + ξk∥2 + 2αk(1 +Ekαk)(F (xk) − F∗) ≥ Vk+1,

where the second “≥” follows from Lemma 5.2 and the definition of Vk in (65). Finally, considering
wi ≥ 0 for all i ≥ 0, we obtain Vk+1 ≤ Uk = Vk − 2wk−1(F (xk−1) − F∗) ≤ Vk.

Corollary 5.1 (Analogous to Corollary 3.1). Let {xk} be generated by Algorithm 3. Then, {xk}
is bounded. In particular, xk ∈ B(x∗, T) for all k ≥ 0, where T is defined as:

T 2 ∶= ∥x0 − x∗∥2 + 2α2
0∥∇f(x0) + ξ0∥2 +max{2(E1α

2
1 − α0),0}(F (x0) − F ∗). (68)

Proof. It follows from (66) and Lemma 5.5 that ∥xk − x∗∥2 ≤ Uk ≤ Vk ≤ Uk−1 ≤ ⋯ ≤ U1 for all k ≥ 1.
Setting k = 1 in (66) and (55), and using 2B1α

2
1 ≤ α2

0 from Lemma 5.2, we obtain

U1 = ∥x1 − x∗∥2 + 2B1α
2
1∥∇f(x0) + ξ0∥2 + 2E1α

2
1(F (x0) − F∗)

(55)
≤ ∥x0 − x∗∥2 + 2α2

0∥∇f(x0) + ξ0∥2 + 2(E1α
2
1 − α0)(F (x0) − F∗).

Moreover, analogous to Remark 3.1, we can claim that E1α
2
1 is a constant entirely determined by

x0 and α0. Furthermore, it is trivial to observe that ∥x0−x∗∥ ≤ T . Combining the above arguments,
we conclude that ∥xk − x∗∥ ≤ T for all k ≥ 0.

Proposition 5.2 (The same as Proposition 3.1). For {αk} generated by Algorithm 3, we have (i)
if αj ≥ 1√

2L
for some j, then αk ≥ 1√

2L
for any k ≥ j; (ii) αk ≥ c ∶= min{α0,

1√
2L
} for all k ≥ 0; and

(iii) ∑k
i=1 αi = O(k).

Proof. The proof is highly similar to that of Proposition 3.1 and is thus omitted.

Now, we are ready to derive the ergodic sublinear convergence result of Algorithm 3.

Theorem 5.3 (Analogous to Theorem 3.1). Let {xk} be generated by Algorithm 3. Then, we have

F (x̄k) − F∗ ≤
U1

2Sk
= O (1

k
) ,

where x̄k ∶= (αk(1 +Ekαk)xk +∑k−1
i=1 wix

i)/Sk with Sk ∶= E1α
2
1 +∑k

i=1 αi.

Proof. The proof is similar to that of Theorem 3.1. By telescoping Vi+1 ≤ Vi − 2wi−1(F (xi−1) −F∗)
given in Lemma 5.5 for i = 2, . . . , k, we derive Vk+1 + 2∑k−1

i=1 wi(F (xi) − F∗) ≤ V2 ≤ U1. Taking into
account the definition of Vk in (65), we further derive

αk(1 +Ekαk)(F (xk) − F∗) +∑
k−1

i=1
wi(F (xi) − F∗) ≤ U1

2 . (69)

Again, from (65) we have αk(1 +Ekαk) +∑k−1
i=1 wi = E1α

2
1 +∑k

i=1 αi = Sk ∼ O(k). The desired result
follows from (69), the convexity of F , and Jensen’s inequality.

23

Before establishing the pointwise convergence of Algorithm 3, we derive a useful inequality.

Lemma 5.6. Let {xk} be generated by Algorithm 3. Then, for any k ≥ 1 we have

1

αk
∥xk+1−xk∥2 ≤ 4

√
2αk+1∥∇f(xk+1)−∇f(x∗)∥2+4αk∥∇f(xk)−∇f(x∗)∥2+2(F (xk)−F (xk+1)). (70)

Proof. Let k ≥ 1 and x ∈ Rn be arbitrarily fixed. It follows from (52) that

αk(g(xk+1) − g(x)) ≤ ⟨xk+1 − xk + αk∇f(xk), x − xk+1⟩. (71)

It follows from (71), the convexity of f and F = f + g that

F (xk+1) − F (x) ≤ 1

αk
⟨xk+1 − xk, x − xk+1⟩ + ⟨∇f(xk) −∇f(xk+1), x − xk+1⟩. (72)

Setting x = xk in (72) and using the definition of λk+1 in (4), we derive

1

αk
∥xk+1 − xk∥2 ≤ λk+1∥∇f(xk+1) −∇f(xk)∥2 + F (xk) − F (xk+1). (73)

Furthermore, plugging ⟨∇f(xk)−∇f(xk+1), xk −xk+1⟩ ≤ αk

2 ∥∇f(x
k)−∇f(xk+1)∥2 + 1

2αk
∥xk −xk+1∥2

into (72) with x = xk to obtain

1

αk
∥xk+1 − xk∥2 ≤ αk∥∇f(xk+1) −∇f(xk)∥2 + 2(F (xk) − F (xk+1)). (74)

We split the discussion into two cases. (i) If λk+1 ≥ αk, then (74) implies

1

αk
∥xk+1 − xk∥2 ≤ 2αk∥∇f(xk+1) −∇f(x∗)∥2 + 2αk∥∇f(xk) −∇f(x∗)∥2 + 2(F (xk) − F (xk+1))

≤ 2αk+1∥∇f(xk+1) −∇f(x∗)∥2 + 2αk∥∇f(xk) −∇f(x∗)∥2 + 2(F (xk) − F (xk+1)), (75)

where the first “≤” uses ∥a−b∥2 ≤ 2∥a−c∥2+2∥b−c∥2, and the second is due to αk+1 =
√
1 + θkαk ≥ αk.

(ii) If λk+1 < αk, then αk+1 ≥ 1√
2
λk+1 and (73) implies

1

αk
∥xk+1 − xk∥2 ≤ 2λk+1∥∇f(xk+1) −∇f(x∗)∥2 + 2λk+1∥∇f(xk) −∇f(x∗)∥2 + F (xk) − F (xk+1)

≤ 2
√
2αk+1∥∇f(xk+1) −∇f(x∗)∥2 + 2αk∥∇f(xk) −∇f(x∗)∥2 + F (xk) − F (xk+1). (76)

Apparently the expression on the right-hand side of (76) is nonnegative, allowing us to expand it
further by multiplying by a factor of 2. Moreover, considering (75), we can derive (70) in both
scenarios.

Theorem 5.4 (Analogous to Theorem 3.2). The sequence {xk} generated by Algorithm 3 converges
to an optimal solution of (51).

Proof. First, we derive a refined inequality of (55). Let k ≥ 1 be arbitrarily fixed. By setting x = x∗
in (71), we obtain αk(g(xk+1)−g(x∗)) ≤ ⟨xk+1−xk+αk∇f(xk), x∗−xk+1⟩, which can be equivalently
reformulated as

∥xk+1 − x∗∥2 + 2αk(g(xk+1) − g(x∗)) ≤ ∥xk − x∗∥2 + 2αk⟨∇f(xk), x∗ − xk+1⟩ − ∥xk+1 − xk∥2. (77)

24

By using the inequality in (8) over B(x∗, T) and the convexity of g, we obtain

⟨∇f(xk), x∗ − xk+1⟩ = ⟨∇f(xk), x∗ − xk⟩ + ⟨∇f(xk) + ξk, xk − xk+1⟩ + ⟨ξk, xk+1 − xk⟩

≤ f(x∗) − f(xk) − 1

2L
∥∇f(xk) −∇f(x∗)∥2 + ⟨∇f(xk) + ξk, xk − xk+1⟩ + g(xk+1) − g(xk).

(78)

Combining (78) and (77), using 2αk⟨∇f(xk)+ξk, xk−xk+1⟩−∥xk+1−xk∥2 ≤ α2
k∥∇f(x

k)+ξk∥2, taking
into account F = f + g, and reorganizing terms, we obtain a refined inequality of (55):

∥xk+1 − x∗∥2 + 2αk(F (xk) − F∗) +
αk

L
∥∇f(xk) −∇f(x∗)∥2 ≤ ∥xk − x∗∥2 + α2

k∥∇f(x
k) + ξk∥2. (79)

Then, by using (79) in place of (55) in the proof of Lemma 5.5, we can derive

Vk+1 +
αk

L
∥∇f(xk) −∇f(x∗)∥2 ≤ Uk ≤ Vk, (80)

which holds for all k ≥ 1. Telescoping this inequality leads to
∞

∑
k=1

αk∥∇f(xk) −∇f(x∗)∥2 ≤ V1 < +∞. (81)

Since αk ≥ c > 0 from Proposition 5.2 (ii), (81) implies that lim
k→∞
∇f(xk) = ∇f(x∗). We next split

the proof into three cases, which cover all possibilities:

(a). lim infk→∞ αk = lim supk→∞ αk = +∞, i.e., limk→∞ αk = +∞;

(b). lim supk→∞ αk < +∞, i.e., there exists a constant C > 0, such that αk ≤ C for all k;

(c). lim supk→∞ αk = +∞, yet lim infk→∞ αk < +∞, i.e., there exists an infinite set K such that its
complementary set K ∶= {1,2, . . .}/K is also infinite, limK∋k→∞ αk = +∞ and, for some C > 0,
αk ≤ C for all k ∈K.

First, we assume case (c) holds and show that limK∋k→∞ F (xk) = limK∋k→∞ F (xk) = F∗, and thus
limk→∞ F (xk) = F∗. Recall that {xk} is bounded and ∥∇f(xk+1) − ∇f(xk)∥ → 0 as k → ∞ since
{∇f(xk)} converges. By setting x = x∗ in (72) and then taking the limit “K ∋ k → ∞” on both
sides of (72), we derive 0 ≤ limK∋k→∞ (F (xk+1) − F∗) ≤ 0 and thus limK∋k→∞ F (xk+1) = F∗. On

the other hand, by taking sum over k = 1,2, . . . on both sides of (70), using αk ≤ C for all k ∈ K,
F (xk) ≥ F∗ for all k ≥ 0, and (81), we obtain

1

C
∑
k∈K

∥xk+1 − xk∥2 ≤
∞

∑
k=1

1

αk
∥xk+1 − xk∥2 ≤ 4

√
2V1 + 4V1 + 2(F (x1) − F∗) <∞. (82)

Note that K is infinite. Thus, (82) implies that limK∋k→∞ ∥x
k+1 − xk∥ = 0. Moreover, by applying

Cauchy-Schwartz inequality to (72) with x = x∗, we derive

0 ≤ F (xk+1) − F∗ ≤
1

αk
∥xk+1 − xk∥∥x∗ − xk+1∥ + ∥∇f(xk) −∇f(xk+1)∥∥x∗ − xk+1∥. (83)

Again, {xk} is bounded and αk ≥ c > 0 from Proposition 5.2 (ii). Then, by taking the limit “K ∋ k →
∞” on both sides of (83) and noting limK∋k→∞ ∥x

k+1−xk∥ = 0 and limk→∞ ∥∇f(xk+1)−∇f(xk)∥ = 0,
we obtain limK∋k→∞ F (xk+1) = F (x∗). In summary, we have shown that limk→∞ F (xk+1) = F (x∗)
in case (c), which confirms that all limit points of {xk} belong to X ∗. It follows from (80) that
Uk+1 ≤ Uk, where Uk is defined in (66). Using Lemma 3.5 with ak ∶= 2Bkα

2
k∥∇f(x

k−1) + ξk−1∥2 +
2Ekα

2
k(F (x

k−1)−F∗) and X = X ∗, we derive the convergence of whole sequence {xk} to an element
in X ∗. This completes the proof for case (c). The proofs for cases (a) and (b) are much simpler
and thus are omitted. In summary, we have shown that the sequence {xk} generated by Algorithm
3 converges to an optimal solution of (51).

25

6 Numerical Experiments

In this section, we apply our AdaBB algorithms to two representative problems: logistic regression,
where f is convex and L-smooth, and cubic regularization, where f is convex and locally smooth.
We will first compare the four algorithms implied by Algorithm 2 by choosing different options in
(Case ii) and (Case iii). These are given in Table 2.

AdaBB AdaBB1 AdaBB2 AdaBB3

Case ii Option II Option I Option I Option II

Case iii Option II Option I Option II Option I

Table 2: Four AdaBB Variants.

Moreover, we will also compare the four algorithms in Table 2 with the following algorithms:
GD (2) with α = 1/L, AdGD [MM23, Algorithm 1], and AdaPGM [Lat+23]. This comparison
will help demonstrate the efficiency of our proposed method. For initial points, we set x0 = 0 for
all situations. For adaptive methods: AdGD, AdaPGM and the four AdaBB variants in Table 2,
we choose α0 = 10−10 as recommended in [MM20]. This ensures that x1 will be close to x0, and
provides a reliable estimate of α1. Since λ1 is very likely to be greater than α0, it is more likely
that 1 ∈ I1. Hence, for the four AdaBB variants in Table 2, we set θ0 as defined in (36). In the
numerical experiments, we also set θ1 = 1 ≪ α1

α0
to prevent excessive α2 values due to the small

value of α0 = 10−10.
Our codes were written in Python 3.11.0 and used the framework provided by Malitsky and

Mishchenko [MM20]. All numerical experiments were conducted on a personal computer with an
AMD Ryzen 7 5800H processor, Radeon Graphics, and 16GB memory. Additionally, the experi-
ments utilized the mushrooms, w8a, and covtype datasets from LIBSVM [CL11].

6.1 Logistic Regression

In this subsection, we consider the logistic regression problem

min
x∈Rn

f(x) = − 1

m

m

∑
i=1

(yi log(s(a⊺i x)) + (1 − yi) log(1 − s(a
⊺
i x))) +

γ

2
∥x∥2, (84)

where ai ∈ Rn, yi ∈ {0,1}. Here, s(z) = 1/(1 + exp(−z)) denotes the sigmoid function, m represents
the number of observations, and γ serves as a regularization parameter. For this problem, the
gradient of f is given by ∇f(x) = 1

m ∑
m
i=1 ai(s(a⊺i x) − yi) + γx. This means that f is a L-smooth

function with L = 1
4λmax(A⊺A) + γ, where A = (a⊺1 , . . . , a

⊺
m)⊺ and λmax(A⊺A) denotes the largest

eigenvalue of matrix A⊺A [MM20]. In this experiment, we run all algorithms for a fixed number of
iterations, denoted by MaxIter in Table 3. We use f∗ to denote the lowest objective function value
obtained among all tested algorithms.

Details of the data sets and the parameters are given in Table 3.
We first present the numerical performances for the four AdaBB variants given in Table 2.

Figure 1 shows that AdaBB and AdaBB3 are more efficient than AdaBB1 and AdaBB2. This
indicates that choosing Option II in (Case ii) of Algorithm 2 is more preferable. This further
implies that when the BB stepsize λk is not too large and not too small, then it gives superior
performance by choosing λk as the stepsize. In the rest of this subsection, we only compare AdaBB
and AdaBB3 with other popular optimization algorithms.

26

m n L γ MaxIter

mushrooms 8124 112 2.59 L
m = 3.18 × 10

−5 1000

w8a 49749 300 0.66 L
m = 1.32 × 10

−6 3000

covtype 581012 54 5.04 × 106 L
10m = 8.68 10000

Table 3: Parameters settings for different datasets.

0 200 400 600 800 1000
Iteration

10
12

10
10

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(a) mushrooms dataset, objective

0 500 1000 1500 2000 2500 3000
Iteration

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(b) w8a dataset, objective

0 2000 4000 6000 8000 10000
Iteration

10
5

10
4

10
3

10
2

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(c) covtype dataset, objective

Figure 1: Results for the logistic regression problem via AdaBB, AdaBB1, AdaBB2, AdaBB3
concerning the function value residual.

In Figure 2, we compare AdaBB and AdaBB3 with GD, AdGD and AdaPGM. In subfigures
(a), (b), and (c), we show the function value error, and in subfigures (d), (e) and (f), we show the
norm of the gradient. From these figures we see that AdaBB and AdaBB3 both perform very well
and are usually better than the other three algorithms – AdGD is comparable sometimes.

We also compare AdaBB and AdaBB3 with line-search methods that do not require prior
knowledge of L, including line search for GD (with Armijo) [Arm66], and BB stepsize with line
search [Ray97]. The results are shown in Figure 3. This time the x-axis denotes the number of
matrix-vector multiplications. The results indicate that both AdaBB and AdaBB3 usually perform
better than the two line search methods.

At the end of this subsection, we show the stepsizes generated in the first 100 iterations of
AdGD and AdaBB. The results are shown in Figure 4. From Figure 4 (a), (b) and (c) we see that
the stepsizes produced by both AdGD and AdaBB have a fractal-like nature, and AdaBB usually
produces larger stepsizes comparing with AdGD. Figure 4 (d), (e) and (f) illustrate the pattern of
the stepsizes generated by AdaBB. We see with excessively large αk, it is more likely that the next
stepsize will be very small, i.e., (k+1) ∈ I3. Conversely, when αk is too small, AdaBB automatically
opts for (k + 1) ∈ I1 to enlarge the stepsize, and opting for the BB stepsize λk is rational when the
stepsize is moderate.

6.2 Subproblem of cubic regularized Newton method

The cubic regularized Newton method [NP06] requires solving the following subproblem:

min
x∈Rn

f(x) = g⊺x + 1

2
x⊺Hx + M

6
∥x∥3, (85)

in each iteration, where g ∈ Rn, H ∈ Rn×n, and M > 0 is a given regularization parameter. For this

problem, the gradient of f is given by ∇f(x) = g +Hx + M∥x∥
2 x. Note that there is no value of L

27

0 200 400 600 800 1000
Iteration

10
12

10
10

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(a) mushrooms, objective

0 500 1000 1500 2000 2500 3000
Iteration

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(b) w8a, stepsize

0 2000 4000 6000 8000 10000
Iteration

10
5

10
4

10
3

10
2

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(c) covtype, objective

0 200 400 600 800 1000
Iteration

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(d) mushrooms, gradient norm

0 500 1000 1500 2000 2500 3000
Iteration

10
6

10
5

10
4

10
3

10
2

10
1

10
0

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(e) w8a, gradient norm

0 2000 4000 6000 8000 10000
Iteration

10
0

10
1

10
2

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(f) covtype, gradient norm

Figure 2: Results for the logistic regression problem via GD, AdGD, AdaPGM, and AdaBB con-
cerning the function value residual and gradient norm.

0 200 400 600 800 1000
matrix-vector multiplications

10
12

10
10

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
GD-LS
BB-LS

(a) mushrooms, objective

0 500 1000 1500 2000 2500 3000
matrix-vector multiplications

10
8

10
6

10
4

10
2

10
0

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
GD-LS
BB-LS

(b) w8a, objective

0 2000 4000 6000 8000 10000
matrix-vector multiplications

10
5

10
4

10
3

10
2

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
GD-LS
BB-LS

(c) covtype, objective

Figure 3: Results for the logistic regression problem via line search methods, and AdaBB concerning
the function value residual.

28

0 20 40 60 80 100
Iteration

0

20

40

60

80

100
Le

ng
th

 o
f S

te
ps

iz
es

AdGD
AdaBB
1/L

(a) mushrooms, stepsize

0 20 40 60 80 100
Iteration

0

500

1000

1500

2000

2500

Le
ng

th
 o

f S
te

ps
iz

es

AdGD
AdaBB
1/L

(b) w8a, stepsize

0 20 40 60 80 100
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Le
ng

th
 o

f S
te

ps
iz

es

1e 6

AdGD
AdaBB
1/L

(c) covtype, stepsize

0 20 40 60 80 100
Iteration

0

20

40

60

80

100

Le
ng

th
 o

f S
te

ps
iz

es

AdaBB
I1
I2
I3

(d) mushrooms, pattern

0 20 40 60 80 100
Iteration

0

500

1000

1500

2000

2500

Le
ng

th
 o

f S
te

ps
iz

es

AdaBB
I1
I2
I3

(e) w8a, pattern

0 20 40 60 80 100
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Le
ng

th
 o

f S
te

ps
iz

es

1e 6
AdaBB
I1
I2
I3

(f) covtype, pattern

Figure 4: Stepsizes generated by AdGD and AdaBB.

that can guarantee ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for all x and y in Rn. This implies that f is only
smooth locally. Therefore, it becomes challenging to determine the stepsizes for GD. To solve this
issue, we adopt a trial-and-error approach [MM20] to fine-tune the stepsize for these two methods.
Specifically, we designate the values from an array of 10 numbers evenly spaced on a logarithmic
scale between 10−1 and 10, as potential stepsizes. By computing f(xk) with k =MaxIter/2 for each
of these stepsizes, we select the largest number for which f(xk) is evaluated, i.e., not NaN, to be
our fine-tuned stepsize.

In this experiment, we assume that the problem (85) is the subproblem of the cubic regularized
Newton method for solving the logistic regression problem (84). We thus generate the gradient
g and the Hessian H for logistic regression problem evaluated at 0 for different values of M .
Specifically, we consider M = {10,15} for all three datasets. The dimension n stays the same as in
Table 3. Moreover, the stopping criterion is similar to the one outlined in Subsection 6.1. We run
all algorithms for a given number of iterations. Specifically, MaxIter is set to 30 for mushrooms
and w8a datasets, and to 1000 for the covtype dataset, because the covtype dataset is around 90
times larger than the mushrooms dataset and 30 times larger than the w8a dataset and it requires
more iterations to solve. Note that we here set a limited number of iterations. To avoid AdGD
and AdaPGM requiring several initial iterations to allow for the small α0 = 10−10 to grow to an
appropriate step, we first calculate x1 and L1 defined in (5) for the given α0 and then reset α0 to
1/(
√
2L1).

We first compare the four AdaBB variants in Table 2. The results are shown in Figure 5, which
again confirms that AdaBB and AdaBB3 are usually better than the other two variants, and thus
indicates the effectiveness of opting for Option II in (Case ii).

In Figure 6, we show the comparison of AdaBB and AdaBB3 with GD, AdGD and AdaPGM,
from which we see again that AdaBB and AdaBB3 are usually better than the other three algo-
rithms. Moreover, we also draw the stepsizes generated by AdGD and AdaBB in Figure 7.

29

0 5 10 15 20 25 30
Iteration

10
11

10
8

10
5

10
2

10
1

10
4

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(a) mushrooms, M = 10, objective

0 5 10 15 20 25 30
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(b) w8a, M = 10, objective

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(c) covtype, M = 10, objective

0 5 10 15 20 25 30
Iteration

10
11

10
8

10
5

10
2

10
1

10
4

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(d) mushrooms, M = 15, objective

0 5 10 15 20 25 30
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(e) w8a, M = 15, objective

0 200 400 600 800 1000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB1
AdaBB2
AdaBB3

(f) covtype, M = 15, objective

Figure 5: Results for the cubic regulation problem for AdaBB, AdaBB1, AdaBB2, AdaBB3 con-
cerning the function value residual.

From Figure 7 we obtain similar observations as the ones in the previous subsection.

7 Concluding Remarks

In this paper, we proposed an adaptive BB method for solving unconstrained smooth convex op-
timization. The proposed AdaBB algorithm is line-search-free and parameter-free. It essentially
provides a convergent variant of the BB method for general unconstrained convex optimization.
Comparing other adaptive algorithms along the same line of research, our AdaBB achieves the best
lower bounds on the stepsize and the average of the stepsizes, which also affirmatively answers an
open question posed by Malitsky and Mishchenko [MM23]. Our numerical results show the superior
performance of two versions of AdaBB which takes the BB stepsize directly when it is not too large
and not too small. This confirms the great potential of using BB stepsize in practice, under the
condition that some safeguard procedure ensuring the convergence is taken, just like our AdaBB
algorithm.

References

[AP23a] Jason M. Altschuler and Pablo A. Parrilo. Acceleration by Stepsize Hedging I: Multi-Step
Descent and the Silver Stepsize Schedule. 2023. arXiv: 2309.07879 [math.OC].

[AP23b] Jason M. Altschuler and Pablo A. Parrilo. Acceleration by Stepsize Hedging II: Silver
Stepsize Schedule for Smooth Convex Optimization. 2023. arXiv: 2309.16530 [math.OC].

[Arm66] Larry Armijo. “Minimization of functions having Lipschitz continuous first partial
derivatives”. Pacific J. Math. vol. 16 (1966), pp. 1–3.

30

https://arxiv.org/abs/2309.07879
https://arxiv.org/abs/2309.16530

0 5 10 15 20 25 30
Iteration

10
11

10
8

10
5

10
2

10
1

10
4

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(a) mushrooms, M = 10

0 5 10 15 20 25 30
Iteration

10
12

10
9

10
6

10
3

10
0

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(b) mushrooms, M = 15

0 5 10 15 20 25 30
Iteration

10
15

10
12

10
9

10
6

10
3

10
0

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(c) mushrooms, M = 10

0 5 10 15 20 25 30
Iteration

10
15

10
12

10
9

10
6

10
3

10
0

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(d) mushrooms, M = 15

0 5 10 15 20 25 30
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(e) w8a, M = 10

0 5 10 15 20 25 30
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(f) w8a, M = 15

0 5 10 15 20 25 30
Iteration

10
15

10
12

10
9

10
6

10
3

10
0

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(g) w8a, M = 10

0 5 10 15 20 25 30
Iteration

10
14

10
11

10
8

10
5

10
2

10
1

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(h) w8a, M = 15

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(i) covtype, M = 10

0 200 400 600 800 1000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

f(
x
k
)
−
f
∗

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(j) covtype, M = 15

0 200 400 600 800 1000
Iteration

10
11

10
9

10
7

10
5

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(k) covtype, M = 10

0 200 400 600 800 1000
Iteration

10
12

10
10

10
8

10
6

10
4

‖∇
f(
x
k
)‖

AdaBB
AdaBB3
AdaPGM
AdGD
GD

(l) covtype, M = 15

Figure 6: Results for the cubic regulation problem for GD, AdGD, AdaPGM, and AdaBB concern-
ing the function value residual and gradient norm.

31

5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Le

ng
th

 o
f S

te
ps

iz
es

AdGD
AdaBB

(a) mushrooms, M = 10, stepsize

5 10 15 20 25 30
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ng

th
 o

f S
te

ps
iz

es

AdGD
AdaBB

(b) w8a, M = 10, stepsize

0 20 40 60 80 100
Iteration

0

2

4

6

8

10

12

14

16

Le
ng

th
 o

f S
te

ps
iz

es

AdGD
AdaBB

(c) covtype, M = 10, stepsize

5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Le
ng

th
 o

f S
te

ps
iz

es

AdaBB
I1
I2
I3

(d) mushrooms, M = 10, pattern

5 10 15 20 25 30
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

Le
ng

th
 o

f S
te

ps
iz

es

AdaBB
I1
I2
I3

(e) w8a, M = 10, pattern

0 20 40 60 80 100
Iteration

0

2

4

6

8

10

12

14

16

Le
ng

th
 o

f S
te

ps
iz

es

AdaBB
I1
I2
I3

(f) covtype, M = 10, pattern

Figure 7: Stepsizes generated by AdGD and AdaBB.

[BB88] Jonathan Barzilai and Jonathan M. Borwein. “Two-point step size gradient methods”.
IMA J. Numer. Anal. vol. 8, no. 1 (1988), pp. 141–148.

[BDH19] Oleg Burdakov; Yu-hong Dai, and Na Huang. “Stabilized Barzilai-Borwein method”. J.
Comput. Math. vol. 37, no. 6 (2019), pp. 916–936.

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Ma-
chines”. ACM Trans. Intell. Syst. Technol. vol. 2, no. 3 (2011), p. 27.

[DHS11] John Duchi; Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization”. J. Mach. Learn. Res. vol. 12 (2011), pp. 2121–
2159.

[DL02] Yu-Hong Dai and Li-Zhi Liao. “R-linear convergence of the Barzilai and Borwein gra-
dient method”. IMA J. Numer. Anal. vol. 22, no. 1 (2002), pp. 1–10.

[Dro18] Yoel Drori. On the Properties of Convex Functions over Open Sets. 2018. arXiv: 1812.
02419 [math.OC].

[DT14] Yoel Drori and Marc Teboulle. “Performance of first-order methods for smooth convex
minimization: a novel approach”. Math. Program. vol. 145, no. 1-2 (2014), pp. 451–482.

[DVR23] Shuvomoy Das Gupta; Bart PG Van Parys, and Ernest K Ryu. “Branch-and-bound
performance estimation programming: a unified methodology for constructing optimal
optimization methods”. Math. Program. (2023), pp. 1–73.

[GLL86] L. Grippo; F. Lampariello, and S. Lucidi. “A nonmonotone line search technique for
Newton’s method”. SIAM J. Numer. Anal. vol. 23, no. 4 (1986), pp. 707–716.

[Gri23] Benjamin Grimmer. Provably Faster Gradient Descent via Long Steps. 2023. arXiv:
2307.06324 [math.OC].

32

https://arxiv.org/abs/1812.02419
https://arxiv.org/abs/1812.02419
https://arxiv.org/abs/2307.06324

[GSW23] Benjamin Grimmer; Kevin Shu, and Alex L. Wang. Accelerated Gradient Descent via
Long Steps. 2023. arXiv: 2309.09961 [math.OC].

[Lat+23] Puya Latafat; Andreas Themelis; Lorenzo Stella, and Panagiotis Patrinos. Adaptive
proximal algorithms for convex optimization under local Lipschitz continuity of the gra-
dient. 2023. arXiv: 2301.04431 [math.OC].

[LL23] Tianjiao Li and Guanghui Lan. A simple uniformly optimal method without line search
for convex optimization. 2023. arXiv: 2310.10082 [math.OC].

[LOZ23] Guanghui Lan; Yuyuan Ouyang, and Zhe Zhang. Optimal and parameter-free gradient
minimization methods for convex and nonconvex optimization. 2023. arXiv: 2310.12139
[math.OC].

[LTP23] Puya Latafat; Andreas Themelis, and Panagiotis Patrinos. On the convergence of adap-
tive first order methods: proximal gradient and alternating minimization algorithms.
2023. arXiv: 2311.18431 [math.OC].

[MM20] Yura Malitsky and Konstantin Mishchenko. “Adaptive Gradient Descent without De-
scent”. ICML. 2020.

[MM23] Yura Malitsky and Konstantin Mishchenko. Adaptive Proximal Gradient Method for
Convex Optimization. 2023. arXiv: 2308.02261 [math.OC].

[MS10] H. Brendan McMahan and Matthew J. Streeter. “Adaptive bound optimization for
online convex optimization”. COLT. 2010.

[Nes04] Yurii Nesterov. Introductory lectures on convex optimization. Vol. 87. Applied Optimiza-
tion. A basic course. Kluwer Academic Publishers, Boston, MA, 2004, pp. xviii+236.

[NP06] Yurii Nesterov and B. T. Polyak. “Cubic regularization of Newton method and its global
performance”. Math. Program. vol. 108, no. 1 (2006), pp. 177–205.

[Ray93] Marcos Raydan. “On the Barzilai and Borwein choice of steplength for the gradient
method”. IMA J. Numer. Anal. vol. 13, no. 3 (1993), pp. 321–326.

[Ray97] Marcos Raydan. “The Barzilai and Borwein gradient method for the large scale uncon-
strained minimization problem”. SIAM J. Optim. vol. 7, no. 1 (1997), pp. 26–33.

[Tan+16] Conghui Tan; Shiqian Ma; Yu-Hong Dai, and Yuqiu Qian. “Barzilai-Borwein Step Size
for Stochastic Gradient Descent”. NeurIPS. 2016.

[TV23] Marc Teboulle and Yakov Vaisbourd. “An elementary approach to tight worst case
complexity analysis of gradient based methods”.Math. Program. vol. 201, no. 1-2 (2023),
pp. 63–96.

33

https://arxiv.org/abs/2309.09961
https://arxiv.org/abs/2301.04431
https://arxiv.org/abs/2310.10082
https://arxiv.org/abs/2310.12139
https://arxiv.org/abs/2310.12139
https://arxiv.org/abs/2311.18431
https://arxiv.org/abs/2308.02261

	Introduction
	Our AdaBB Algorithm
	The General Version of AdaBB and Convergence Analysis
	Improved Lower Bound for
	Extensions
	When is Locally Strongly Convex
	Composite Convex Optimization Problems

	Numerical Experiments
	Logistic Regression
	Subproblem of cubic regularized Newton method

	Concluding Remarks

