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Abstract

Dynamic robust optimization deals with sequential, multi-stage decisions in the face of
uncertain, worst-case scenarios. To manage its complexity and the curse of dimensionality,
decision rules simplify the search for an optimal policy. This paper explores a middle ground
between two common decision rules: simple but imprecise constant policies, and accurate
but less scalable affine policies. We introduce a method that achieves linear convergence
to the performance of optimal affine policies by iteratively enriching the information basis
with new components. This leads to near-optimal affine policies with a compact information
basis. Additionally, we offer an efficient way to build this basis, with time complexity similar
to random generation. This advancement unlocks potential benefits in applications such as
approximating large-scale dynamic robust optimization problems or constructing nonlinear
decision rules with a small number of parameters. Our proposed approach is also amenable to
parallel computations on GPUs/TPUs.

Keywords: robust optimization, affine policy, linear decision rule, information basis

1 Introduction

Dynamic robust optimization focuses on addressing multi-stage problems under uncertainty where
decisions and uncertainty parameters are sequentially revealed over time. Many decision problems,
such as inventory management and manufacturing planning, exhibit such sequential adaptive
decision-making nature, which can be generally described as follows,(

min
y1∈Y1

max
ξ1∈Ξ1(η1)

min
y2∈Y2(h2)

max
ξ2∈Ξ2(η2)

· · · min
yτ∈Yτ (hτ )

max
ξτ∈Ξτ (ητ )

)
f(ξ, y). (1)

With τ as the final stage, ηt := (ξi)i<t and ht := (ξi, yi)i<t are the uncertainty revealing history
and the joint decision-uncertainty history, respectively. In this setting, decisions will not influence
uncertainty, while uncertainty realizations may affect future solution spaces.

This class of problems is generally intractable due to its multi-stage interactions, space de-
pendencies, and the curse of dimensionality [4, 5]. Consequently, a widely adopted and studied
approach to tackle this challenge is a general approximation scheme based on policy space parame-
terization [23]. Consider the following reformulation equivalent to (1),

min
y(·)∈YΞ

max
ξ∈Ξ

f(ξ, y), (2)

where Ξ is the joint uncertainty set and YΞ :=
∏
ξ∈Ξ Yξ contains all the history-dependent feasible

policies with Yξ as the joint decision space for a fixed ξ. Clearly, solving (1) is equivalent to
searching for an optimal policy within the policy space YΞ. Indeed, the optimal solution of (1)
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can be considered as a specific policy obtained by observing the sequential worst-case uncertainty
realizations. From the perspective of (2), policy families (also known as the decision rules) can be
introduced to establish various types of trade-offs between tractability and optimality. A policy
family is defined as a function θ : P × Ξ → Y that parameterizes a subset of YΞ using some
Euclidean space P . Among various policy families, the constant and affine policy families specified
below have gained popularity in various problem settings [1, 2, 6, 8, 9, 10, 14, 15, 16, 19, 20].

Constant: θ̇(p0, ξ) = p0, p0 ∈ Ṗ (3a)

Affine: θ̄(P̄ , ξ) = p0 + P ⊺ξ, P̄ = (p0, P ) ∈ P̄ = Ṗ × P (3b)

The former is often efficient to solve, yet its optimality condition is quite restrictive [22]. As a
result, it rarely achieves good approximation performance. On the other hand, the latter has
proven to achieve optimal or near-optimal policies in many problem settings [7, 11]. However,
it suffers from scalability issues when τ is reasonably large or when the decisions are associated
with complex structures like networks [13]. For instance, in a multi-location newsvendor problem
[20] with n inventory nodes and k (uncertain) demand nodes, we have kτ uncertain parameters
and nτ decision variables. Thus, the dimension of P is of order O(nkτ2). If we model a resilient
network design problem with n nodes, O(n2) edges, and supply / transportation risks on nodes
and edges, the number of adjustable decisions is O(n2τ), the number of uncertain parameters is
O(n2τ), and the dimension of P is of order O(n4τ2). Therefore, evenly though polynomial in the
input dimensions, these problems quickly become intractable in practice. In the authors’ experience
working with supply chain companies, the task of designing resilient supply chain networks is an
important but open problem, because real network design problems often involve at least 103 to
104 nodes.

The apparent gap between these two policy families has recently motivated two research
branches to identify some “sweet spot” policy families in between: (i) entry-wise sparsity that
focuses on policies with a small number of nonzeros in P (either naturally due to the problem setup
and time dependency, or imposed by a user to reduce computational burden); (ii) information
basis that searches for a small set of matrices in P to span a policy subspace. To date, considerable
attention has been dedicated to (i), yielding intriguing findings [4, 8, 11, 18]. In contrast, much less
effort has been made to study the information basis. By our knowledge, we are among the first to
explicitly discuss the design of (sparse) information basis, even though the concept of information
basis was already discussed when affine decision rules are first applied to robust optimization
problems [5].

While the study of entry-wise sparsity brings mostly computational benefits, the search for
efficient information basis represents an orthogonal focus on reducing computational complexity
and identifying the “principal components” of the policy space with respect to the problem data
(cost and constraint coefficients, parameter uncertainty coefficients). This paper incorporates
ex-ante entry-wise sparsity and ex-post information basis sparsity to examine general problem
instances characterized by linear objectives, linear constraints, and polyhedral uncertainty sets.
The key findings are summarized as follows:

With proper construction, a compact-sized basis can yield a near-optimal affine policy. With proper
implementation, the complexity of constructing such a basis is equivalent to random generation.

We will give rigorous statements about how “compact” this basis can be. For now, we want to
mention that the first part of the findings leads to an algorithm that has low iteration count, since a
basis with a small number of components only requires a small number of steps to be generated.
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The second half of the findings show that we can also construct this algorithm to have a low
computational cost within each iteration. Thus, these two findings together enable us to design an
iterative solution algorithm that has low overall time complexity.

Given the close relationship between entry-wise sparsity and information basis, we will review
these topics and their connections to policy sparsity in the following subsections.

1.1 Sparsity in Affine Policy Family

Applying affine policy family in the dynamic robust optimization (2) often results in a massive
formulation even for moderate-sized problems [13]. The study of sparsity in affine policy family
has been brought up to address this issue. The main idea is to significantly reduce the dimension of
P while still preserving an adequate or even optimal affine policy performance. This leads to two
highly related yet different approaches.

1.1.1 Entry-wise Sparsity

A constant policy is a special type of affine policy where all entries in P are set to zero. This
perspective naturally leads to the concept of entry-wise sparsity where only a small portion of the
parameters in matrix P in (3b) can be nonzero. Indeed, varying the number of nonzero entries in P
exhibits a transition between constant and affine policies.

In specific problems, the design of entry-wise sparse policies can often be justified by the
problem’s inherent uncertainty dependency. For instance, in Problem (1), any valid matrix P must
be history-dependent. Hence, for the nontrivial case τ > 1, the transpose matrix P ⊺ is a block-
lower-triangular matrix (e.g., the following structure when τ = 5 where white area is all zeros).
This shape can be considered as an information filter added on top of the parameter space P . In this

t1 t2 t3 t4 t5

Figure 1: A Time-Dependent Information Filter

case, the optimal affine policy is guaranteed to be sparse in this block-lower-triangular shape. More
intricate sparsity filters can be derived for specific problem structures with a certain optimality
guarantee. El Housni and Goyal [11] showed that sparse affine policies can achieve an O( logn

log logn)-
approximation in two-stage robust optimization problems with budgeted uncertainty sets. Recently,
Lu and Sturt [18] proved that, for the class of multi-stage robust production-inventory problems,
there exist optimal affine policies that are entry-wise sparse.

In general, sparse-and-optimal policies rarely exist or are difficult to prove for many practical
problems. Even in these cases, many decision-makers would still prefer sparse policies if the
trade-off on the optimality side is tolerable. This enables the design of various information filters
based on the analysis of historical data, or the experience and knowledge of domain experts. For
instance, the various filters in Figure 2 suggest different types of uncertainty dependencies.

Filters (a) and (b) both have column-wise sparsity, where the former indicates that only the
uncertainty parameters in a few decision stages are important for the policy design, and the latter
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Figure 2: Various Information Filters

implies only certain uncertainty features in each decision stage are crucial. In contrast, filters (c) and
(d) focus on limiting the adjustable decisions, where the former only allows the decisions in certain
stages to be adjustable, and the latter limits the adjustability to a few number of decision variables
in each stage. Finally, filter (e) suggests a Markovian-like dependency, i.e., the future decisions only
depend on the current uncertainty realization regardless of the past. All these information filters
can be further combined by intersection. For instance, the time-dependent filter plus filter (d) will
produce a time-dependent policy family with sparse adjustable decisions.

1.1.2 Information Basis Sparsity

The entry-wise sparsity, in fact, serves two purposes at once. On the one hand, the design of the
information filters incorporates prior knowledge, which often makes the resulting policy user-
friendly: it has simple interpretations due to the sparse dependencies, and the solutions can be
easily implemented when only a few decisions are adjustable. On the other hand, these information
filters also reduce the dimension of the parameter space P , improving the efficiency of searching
the optimal policy within the filtered policy space.

For the second purpose, however, the entry-wise sparsity can be further generalized. Take any
set of linearly independent matrices {Ti}i∈[d] ⊆ P , we can use it to span the subspace

T := span{Ti}i∈[d] =

∑
i∈[d]

piTi | pi ∈ R

 ,

where the set {Ti} is called the information basis. We say that an information basis is sparse if
d ≪ dimP . Clearly, every information filter (entry-wise sparsity) is associated with a specific
information basis. Let Eij be the matrix with one at the (i, j)th entry and zeros otherwise. Then,
all such matrices {Eij} form the standard basis for P in (3b). Thus, every entry-wise sparse policy
family chooses some subset of {Eij} to span its policy space.

Compared to the entry-wise sparsity, the extra liberty in designing the basis matrices Ti’s enables
the possibility to obtain a near-optimal affine policy with a much fewer number of parameters. For
instance, when d = 1, any basis matrix T1 yields the following policy family.

θT1(p0, p1, ξ) = p0 + p1T1ξ,

where p1 is a scalar parameter. With just one more degree of freedom than the constant policy
family, this new policy family may contain a much better policy with a proper design of T1.

The concept of information basis was first introduced in the seminal book [5]. However, to the
authors’ best knowledge, this topic has yet to be explored further. One possibility is that there are
no obvious universal rules for constructing the information basis properly.

4



1.2 Contributions

In this paper, we focus on designing an algorithm that integrates ex-ante entry-wise sparsity and
ex-post information basis sparsity to produce a near-optimal affine policy. We restrain our scope to
dynamic robust optimization problems with linear structures, where both the objective function
and constraints are linear, and the uncertainty set is a polyhedron. Our contributions are as follows:

• We use pre-defined information filters to incorporate prior structural knowledge and reduce
the affine policy space to the filtered space. Then, we identify a natural transition between
the constant and filtered policy spaces using information bases.

• We design a procedure to construct an information basis iteratively (Part 1). We prove that
this construction is optimal for random instances and show that it converges exponentially to
the optimal affine policy. That is, a compact-sized basis can produce a near-optimal affine
policy. This leads to an intermediate algorithm with low iteration count (but not necessarily
low overall efficiency due to potentially high computational cost per iteration).

• By incorporating a key component, stochastic coordinate descent (SCD) [17], we improve the
efficiency per iteration and therefore the overall efficiency (Part 2). Specifically, the runtime
complexity of the overall method is equivalent to randomly generating an information basis,
and its most time-consuming operations can be further accelerated by graphical processing
units (GPUs) or tensor processing units (TPUs).

The rest of the paper is organized as follows: Section 2 introduces the preliminaries, including
the notation set, problem setting, and a standard reformulation method. Section 3 presents our Part
1 algorithm for constructing an information basis. Section 4 justifies our construction and proves the
convergence of policy performance. Section 5 describes Part 2 of the algorithm and an efficient and
scalable implementation. Section 6 presents experiments to test the proposed algorithms. Finally,
in Section 7, we conclude the paper with further discussions.

2 Preliminaries

2.1 Notation

Given a matrix A, we use A† for the Moore-Penrose inverse of A, and vec(A) is the vectorization of
A by vertically stacking the columns of A. The reverse operation vec−1

k (v) for some vector v ∈ V
and k ∈ Z+ evenly cuts the vector v into k segments and horizontally stack them into a matrix,
which is well-defined only if the size of v is divisible by k.

A 3-tensor T of shape l ×m× n can be considered a three-dimensional array. We use T:jk, Ti:k,
and Tij to denote the row (mode-1), column (mode-2), and tube (mode-3) fibers, and use Ti, T:j ,
and T::k to represent the horizontal, lateral, and frontal slices. We use T(2) to denote the mode-2
matrixization defined as the transpose of the horizontal stacking of lateral slices, or equivalently,
the matrix each column of which is vec(Ti),

T(2) = [T:1, . . . , T:m]
⊺ = [vec(Ti)]i∈[l].

For any p ∈ Rl, we define T (p) :=
∑

i∈[l] piTi as the linear combination of the horizontal slices of T
with coefficients from p. Given two matrices A and B, A⊗B denotes the Kronecker product.

For a subspace U of some inner product space V , we use U⊥ to denote the corresponding
orthogonal complement. We also use ∥ · ∥ to denote the 2-norm for a vector and the Frobenius norm
for a matrix.
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2.2 Problem Setting

Under the linear setting, Formulation (2) can be specified as follows with input parameters
(a,A, c, C,Ξ),

Π := min
y(·)∈YΞ

max
ξ∈Ξ

⟨c, ξ⟩+ ⟨a, y(ξ)⟩ (5a)

s.t. Cξ −Ay(ξ) ≤ 0, ∀ξ ∈ Ξ. (5b)

Given Euclidean spaces X := Rn and Y := Rm, Ξ := {ξ ∈ X | Bξ ≤ b} ⊆ X is a polyhedral
uncertainty set with B ∈ Rs×n, and YΞ is the set containing all the history-dependent feasible
policies that can be recursively defined as

YΞ :=
∏
ξ∈Ξ
Yξ with Yξ :=

{
y = (yi)i∈[τ ] | yi ∈ Y(hi)

}
.

That is, Yξ contains all multi-stage decisions where the decision at each state yi is feasible to its
history hi = (ξj , yj)j<i, and every element y(·) ∈

∏
ξ∈Ξ Yξ is a dependent function that produces a

feasible multi-stage decision for every input ξ ∈ Ξ. Matrices C ∈ Rk×n and A ∈ Rk×m describe the
dependency between decisions variables and uncertainty parameters, which also characterizes the
feasible policy space. For simplicity, we define the notation for augmented matrices as C̄ := [c⊺;C]
and Ā := [a⊺;−A] where the semicolon represents the row-wise stacking. Throughout the paper,
we assume that Π is feasible and bounded for both the decision-maker and the nature (uncertainty).

Given any policy family θ : P × Ξ→ YΞ, the problem (5) can be approximated by the following
parameterized policy problem.

Πθ : min
p∈P

max
ξ∈Ξ

⟨c, ξ⟩+ ⟨a, θ(p, ξ)⟩ (6a)

s.t. Cξ −Aθ(p, ξ) ≤ 0, ∀ξ ∈ Ξ. (6b)

In particular, replacing θ with the constant and affine policy families θ̇ and θ̄ defined in (3) gives
the corresponding constant and affine policy approximations.

As discussed before, this paper focuses on studying the information basis of the affine policy
family. This amounts to addressing the following four research inquiries: (i) How to incorporate
both information filters and information basis to design a transition between θ̇ and the filtered
space? (ii) How to construct an effective information basis? (iii) What is the tradeoff between the
basis size and policy performance? (iv) How can such a basis be efficiently constructed? We will
address the first question in the following subsection.

2.3 Information Filters and Information Bases

In this subsection, we will introduce a class of policy families using information filters and informa-
tion bases. We will show that these families form a natural transition between the constant and the
filtered policy families. We start with the following definition.

Definition 1 (Information Filter). Let Ṗ and P be the same as in (3b), an information filter F is a
0-1 matrix in P that acts as a projection map sending certain entries of P ∈ P to zeros. We define
F := F (P) the filtered information space, and use F̄ to denote the augmented space Ṗ × F .
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Note that F̄ is a subspace of the parameter space P̄ of the affine policy family. The follow-
ing proposition further confirms the intuition that every filtered information space F̄ labels an
isomorphic copy within the policy space under mild conditions.

Proposition 1. Suppose Ξ is full-dimensional, then the affine policy family θ̄ : P̄ → YΞ is an injective
linear map. In particular, for every filtered information space F̄ , we have F̄ ∼= θ̄(F̄).

Proof. It is obvious that θ̄ is a linear map. For injectivity, we show that θ̄(P̄ ) = 0 implies P̄ = 0. By
definition, θ̄(P̄ ) = 0 means p0 + P ⊺ξ = 0 for all ξ ∈ Ξ. Since Ξ is full-dimensional, there is some
interior point ξ ∈ Ξ along with a scalar ϵ > 0 such that ξ + ϵei ∈ Ξ for every standard basis element
ei. We then have

0 = p0 + P ⊺(ξ + ϵei) = p0 + P ⊺ξ + ϵP ⊺ei = 0 + ϵP ⊺ei,

which implies P is zero. Thus, we also have p0 = 0. The second statement is a trivial consequence.

This observation allows us to focus on the filtered information space F̄ as any maneuver
performed on it will be equivalently transported to the filtered policy subspace θ̄(F̄). For a given
filtered information space F̄ , the following definition provides a natural transition between the
constant and filtered policy families.

Definition 2 (Information Basis and the Induced Policy Family). Given a filtered information
space F , let T be a 3-tensor where all the horizontal slices Ti’s are from F , then the corresponding
information basis induced (IBI) policy family with respect to T is defined as

θT (p̄, ξ) = p0 + T (p)ξ, (7)

where p̄ = (p0, p) ∈ P̄T = Ṗ × PT is the corresponding policy parameters and T : PT → F is an
injective linear transformation we call the information basis. Each horizontal slice Ti of T is named
the ith basis matrix. When the number of basis matrices d≪ dimF , we call θT a sparse information
basis induced (SIBI) policy family.

By this definition, every information basis T can be considered as a particular way to embed
the parameter space PT (with a compatible dimension) into the filtered space F with {Ti}i∈[d] as
the basis. It can be considered as a d-dimensional linear slice of F . According to Proposition 1, this
also induces a linear slice in the policy space.

2.4 IBI Bidual Reformulation

The central question regarding the IBI policy family in (7) is how to design the information basis T .
For certain types of problems, this design could be motivated by the specific problem structure. In
this paper, however, we aim to automate the construction of T , which is enabled by the following
reformulation of (6) under a given IBI policy family θT .

Definition 3. The IBI bidual formulation of the policy problem ΠθT is defined as,

∆θT : max
ξ∈Ξ,u≥0,V

⟨C̄, V̄ ⟩ (8a)

s.t. BV ⊺ ≤ bu⊺, (8b)
A⊺u = a, p0 (8c)
⟨Ā⊺V̄ , Tj⟩ = 0, ∀j ∈ [d], p (8d)

where V̄ := [ξ⊺;V ] is an augmented matrix, and p0, p are the dual variables of the corresponding
constraints. We also define U := {u ≥ 0 | A⊺u = a} and call it the dual polyhedron.
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This is obtained by performing the classic bidualization technique [3] for robust optimization
on ΠθT . First, each constraint in (6b) can be rewritten as

max
ξ∈Ξ
{Cξ −Aθ(p, ξ)} ≤ 0,

the left side of which is a maximization problem that can be dualized. Then, we swap the order of
minimization and maximization in the objective function, invoking the minimax theorem. Finally,
we dualize the inner minimization problem for a fixed ξ ∈ Ξ. Since the strong duality holds
throughout the entire process under the feasibility and boundedness assumptions, we have the
following proposition.

Proposition 2. For every IBI policy family θT , we have z(∆θT ) = z(ΠθT ).

From this bidual formulation, we obtain a new interpretation regarding the effects of the 3-
tensor T . Notice that we have ⟨Ā⊺V̄ , Tj⟩ = ⟨V̄ , ĀTj⟩. Hence, each basis matrix Tj is to restrain the
feasible space of V̄ to be within the hyperspace equipped with the normal vector ĀTj (consider
this matrix as a vector in the vector space of matrices). When T = 0, the optimal dual variables
p0 recover the optimal constant policy; when the basis matrices Tj ’s span the entire filtered space
F , matrix V̄ has to lie inside the orthogonal complement of Ā(F), and the corresponding dual
variables p0 and p will retrieve the optimal affine policy in θ̄(F). A transition between these two
extreme cases naturally occurs when we keep adding constraints in (8d) with linearly independent
basis matrices Tj ’s. Moreover, each properly selected basis matrix will reduce the dimension of the
feasible space of V̄ by at least one.

In the next section, we will utilize this new interpretation of T to design an algorithm to
construct the information basis T iteratively.

3 Part 1 Algorithm: Designing Information Basis

According to the bidual formulation (8), adding linearly independent basis matrices Tj ’s in sequence
will eventually recover the optimal filtered policy after dimF iterations. The question is how to
construct Tj to make this convergence efficient. In this section, we introduce our main algorithm
and demonstrate its performance. To ease the notation, we denote

Ū = {(1, u) | u ∈ U} and V = {V̄ | BV̄ ⊺ ≤ bū⊺ for some ū ∈ Ū}

so that (8) can be rewritten as

max
V̄

⟨C̄, V̄ ⟩ (9a)

s.t. V̄ ∈ V, (9b)
⟨ĀTj , V̄ ⟩ = 0, ∀j ∈ [d]. (9c)

As mentioned before, Constraint (9c) serves as a transition between the constant and filtered policy
family. This indicates a potential dynamic procedure to construct the information basis on-the-fly.
Specifically, we dissect (9) into a sequence of problems defined below.

Definition 4. The iterative IBI bidual problem is defined as follows,

ϕ(V̄ ) := ⟨C̄, V̄ ⟩ (10a)
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V̄ ⋆
j := arg max

V̄ ∈V∩Sj

ϕ(V̄ ) (10b)

S0 := R(k+1)×n (10c)
Sj := Sj−1 ∩

{
V̄ | ⟨Āh(V̄ ⋆

j−1), V̄ ⟩ = 0
}
, ∀j ∈ [dimF ] (10d)

h (·) := vec−1
n

(
E(2)

(
(In ⊗ Ā)E(2)

)†
vec(·)

)
(10e)

E := any 3-tensor with horizontal slices forming a basis of F , (10f)

where E(2) is the mode-2 matrixrization of E and each basis matrix Tj is designed as h(V̄ ⋆
j−1).

This can be considered as a constraint generation procedure where the equality added in
each iteration j is determined by h(·) and the previous optimal solution V̄ ⋆

j−1. The corresponding
pseudocode can be found in Algorithm 1. By this design, our algorithm solves (10b) iteratively
and obtains the corresponding V̄ ⋆

j , then update Sj+1 using (10d) for the next iteration. After
the algorithm terminates, h(V̄ ⋆

j )’s form the information basis T , and the optimal IBI policy can
be recovered from the dual variables p by

∑
j∈[d] pjh(V̄

⋆
j ) with the optimal objective value z⋆d .

Moreover, for every d′ < d, we also obtained an information basis with the associated policy and
objective value.

Algorithm 1: IBI Bidual Algorithm.
Data: Problem data (a,A, c, C,Ξ); iteration limit d
Initialization: j ← 0;
while j ≤ d do

z⋆j ← maxV̄ ∈V∩Sj
ϕ(V̄ );

V̄ ⋆
j ← argmaxV̄ ∈V∩Sj

ϕ(V̄ );
Sj+1 ← Sj with a new constraint ⟨Āh(V̄ ⋆

j ), V̄ ⟩ = 0;
j ← j + 1;

return {z⋆j }j∈[d], information basis {h(V̄ ⋆
j )}j∈[d], dual variables p of constraints in Sd ;

The core design of this algorithm is the assignment of Tj ’s using the function h(·) as it determines
several aspects simultaneously: (i) the information basis matrices; (ii) how to extend the parameter
space to include more affine policies; (iii) the objective value convergence rate in each iteration; (iv)
the corresponding optimal policy within the slice. We will analyze and justify our design in the
next section.

Figure 3 illustrates the convergence and runtime performance of Algorithm 1 using the experi-
ment results from 50 randomly generated instances. The detailed experiment environment and
instance generation can be found in Section 6. In the two sub-figures, the blue curves represent the
iterative objective values and execution times obtained by Algorithm 1, while the orange curves
are the objective and time counterparts obtained using randomly generated information basis.
Specifically, we first arbitrarily select a number of dim ĀF matrices from F and project them into
ĀF to form a basis, then evaluate its performance at each iteration j by using only the first j
matrices to create constraints in (9c). We normalized both axes to the range of [0, 1]. That is, 1 in
x-axis represents the maximum iteration number dim ĀF for each instance; 0 and 1 in the y-axis of
Figure 3a represent the objective values of the optimal affine and constant policy, respectively; 0
and 1 in the y-axis of Figure 3b denote the starting time and the normalized runtime of solving for
the optimal affine policy (exclude the formulation setup time). The blue and orange regions in both
sub-figures are the corresponding 95% confidence intervals.

9



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Methods
IBI
Random

(a) Objective Values vs Iterations

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Methods
IBI
Random

(b) Runtimes vs Iterations

Figure 3: Convergence and runtime performances of algorithms based on IBI and randomly generated
information basis. x-axis in both sub-figures represents normalized iterations; 0 and 1 in y-axis of 3a are the
normalized objective values from optimal affine and constant policies, respectively; y-axis of 3b represents
normalized runtimes (exclude the formulation setup time) with 1 as the runtime of solving for the optimal
affine policy. The blue and orange regions are the corresponding 95% confidence intervals.

In terms of convergence, Figure 3a shows that both algorithms eventually converge to the opti-
mal affine policy’s performance within dim ĀF steps. However, the IBI algorithm converges much
faster than the random counterpart. This also implies the information basis selected by Algorithm 1
has a better quality than the randomly generated ones. Regarding the runtime performance shown
in Figure 3b, it is expected that the runtime for random generation is independent of the iterations
and has a small variation, and it is much faster than solving for an optimal affine policy. In contrast,
the IBI algorithm started relatively efficiently, yet followed by a steep increase in runtime. In each
iteration, this algorithm solves a version of (9) with the number of constraints in (9c) increases from
zero to dim ĀF . Hence, it is somewhat surprising to see that its runtime soon surpasses solving
the affine IBI formulation (the red dashed line). This behavior is likely attributed to the solver’s
re-optimization mechanism. It lacks any presolve steps and employs the previous solution, which
becomes infeasible after adding a new constraint, as a warm-start.

In the next section, we will delve into an analysis of the convergence performance of the IBI
algorithm, as depicted in Figure 3a. Following this, Section 5 will concentrate on improving the
algorithm’s runtime performance. The objective is to attain runtime complexity comparable to
random generation, while preserving a similar level of convergence rate in objective values.

4 Algorithm Analysis

In this section, we analyze the design of T and h(·) in detail and provide the corresponding
convergence analysis. In particular, we will prove the following: (i) the design of h(·) is optimal for
random instances, (ii) Algorithm 1 converges exponentially to the optimal affine policy under mild
assumptions, and (iii) this convergence rate can be further improved by adding a regularizer term
in the objective function of (9). Though this paper only considers problems with linear structures,
most analyses in this section can be easily adapted to problems of the form (9) with a convex V and
a convex objective function.

We start with the observation that in both (9a) and (9c), matrix Ā serves as some transformer for
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Tj . Specifically, suppose we have a full-size information basis of F (i.e., (9) produces the optimal
filtered policy), Constraint (9c) says V̄ belongs to (ĀF)⊥. Hence, to converge to the optimal affine
policy rapidly, we need to guide the solution V̄ to enter (ĀF)⊥ as early as possible. Thus, the
part of V̄ ⋆

j that is outside (ĀF)⊥ impedes its convergence. This motivates a design to remove the
undesired part of V̄ ⋆

j using the following projection operation.

Definition 5 (Matrix Projection). Given a subspace Q of the matrix space P , let E be a 3-tensor
where the horizontal slices Ei’s span Q. Then, the projection operator projQ is defined as

projQ(D) = vec−1
n

(
E(2)E

†
(2) vec(D)

)
,

where n is the number of columns in each matrix Ei and E(2) is the mode-2 matrixization of E.

The design of h(·) in (10e) is essentially based on the above definition according to the next
proposition.

Proposition 3. By the design in (10e), we have Āh(·) = projĀF (·).

Proof. By direct computation, we have

Āh(D) = Ā vec−1
n

(
E(2)

(
(In ⊗ Ā)E(2)

)†
vec(D)

)
= vec−1

n

(
(In ⊗ Ā)E(2)

(
(In ⊗ Ā)E(2)

)†
vec(D)

)
= projQ(D),

where Q is spanned by

vec−1
n ((In ⊗ Ā) vec(Ei)) = vec−1

n (vec(ĀEi)) = ĀEi.

Since Ei’s span F , we have Q = ĀF .

Intuitively, this design of h(·) eliminates the unwanted part of the current optimal solution
V̄ ⋆
j . According to this proposition, we also have the following optimality guarantee for the main

algorithm.

Theorem 1. In Algorithm 1, an optimal filtered policy can be computed for at most dim ĀF iterations.
Moreover, suppose we obtain V̄ ⋆

j ∈
(
ĀF

)⊥ at some iteration j < dim ĀF , the corresponding IBI policy is
also an optimal filtered policy.

Proof. By the design of h(·), the generated information basis matrices h(V̄ ⋆
j )’s blong to ĀF and

are mutually orthogonal. Thus, for at most dim ĀF iterations, Constraint (9c) will be equivalent
to V̄ ∈ (ĀF)⊥, which proves the first claim. For the second statement, since each iteration is a
relaxation of finding the optimal affine policy in the filtered space, V̄ ⋆

j corresponds to an upper
bound of z(∆θT ). On the other hand, V̄ ⋆

j ∈ (ĀF)⊥ implies it is feasible to ∆θT , i.e., it provides a
lower bound. Together, they imply that V̄ ⋆

j is optimal to ∆θT . Hence, the corresponding IBI policy
is also an optimal affine policy in the filtered policy space.

In the rest of the section, we will focus on proving two things. First, this design of h(·) is
optimal for random instances. Second, the iterative objective values of Algorithm 1 converges
exponentially to the optimal filtered policy. All these analyses are enabled by the reformulation
method introduced in the next subsection.
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4.1 Quotient Reformulation

According to the above discussion, we aim to find a solution V̄ ⋆ inside or near (ĀF)⊥. Moreover,
for the purpose of analyzing the design of h(·), we are indifferent to the elements in (ĀF)⊥, since
once V̄ is inside (ĀF)⊥, the maximization will take care of finding the optimal filtered policy. This
intuition motivates us to define a quotient space of V and reformulate (9) as follows.

Definition 6 (Quotient of V & Iterative Quotient Bidual). We define the quotient space of V as
X := projĀF (V). For each X ∈ X , the preimage over X is

VX := {V̄ ∈ V | projĀF (V̄ ) = X}.

We also define a new function ψ over X as follows,

ψ(X) := max
V̄ ∈VX

⟨C̄, V̄ ⟩, (11)

Then, we call
max

X∈X∩Sj

ψ(X), ∀j ∈ [d] (12)

the iterative quotient bidual formulation, where Sj is the same as defined in (10).

By this definition, we clearly have

z(Πθ̇) = z(∆θ̇) = max
X∈X

ψ(X)

z(Πθ̄F ) = z(∆θ̄F
) = ψ(0),

where θ̄F is the filtered affine policy family. Moreover, adding Constraint (9c) in each iteration is
equivalent to reducing the dimension of X by the intersection operation X ∩ Sj . Thus, we trivially
have the following result.

Lemma 1. For all iteration j, the following identity holds,

max
V̄ ∈V∩Sj

ϕ(V̄ ) = max
X∈X∩Sj

ψ(X).

This reformulation divides out the nonessential part (ĀF)⊥ (along with its translations) and
has several good properties for further analysis.

Proposition 4. Function ψ has the following properties:

• ψ is a concave function over X ;

• ψ is Lipschitz.

Proof. For the first, note that every V̄ ∈ V can be decomposed into projĀF (V) +proj(ĀF)⊥(V). Thus,
ψ defined in (11) can be considered as a supremum projection of a concave function. For the second,
it is clear that ψ is continuous and defined over a compact set, thanks to the boundedness and
feasibility assumptions of the original problem.

Corollary 1. For any c ∈ R, the upper level set Xc := {X ∈ X | ψ(X) ≥ c} is convex. Moreover, in each
iteration j of the iterative quotient bidual (12), the optimizer X⋆

j belongs to the level set Xψ(0).
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Proof. The first statement is a direct implication of Proposition 4. For the second, we have Xc ⊆ Xc′
whenever c ≥ c′ by definition. Since ψ(0) is the value corresponding to the optimal affine policy,
we clearly have ψ(X⋆

j ) ≥ ψ(0) for all j, which implies X⋆
j ∈ Xψ(0).

According to these results, we use the following assumptions throughout this section to simplify
our analysis.

Assumption 1. Without loss of generality, we assume the following for the domain X and objective
function ψ.

(a). X is a polytope within the unit n-ball Bn centered as 0.

(b). ψ is a piece-wise concave function over X with ψ(X ) ⊆ [0, 1].

(c). 0 is a boundary point of X .

(d). All the boundary points of X have the same value, i.e., ψ(∂X ) = {ψ(0)}.

These assumptions do not restrict the application scope of our analysis since the boundedness
and feasibility assumptions ensure that the original polytope and input parameters can be scaled
so that the X and ψ fit into the assumptions (a) and (b). For (c) and (d), note that the optimal
affine policy is obtained at X = 0 with the optimal value ψ(0). Moreover, by Corollary 1, the
objective value obtained at each iteration is strictly greater than ψ(0) before an optimal affine policy
is obtained. Thus, for convergence analysis purposes, we can safely discard the redundant part
X \Xψ(0) of X , which results in a convex set with 0 on the boundary and having ψ(0) as the unique
value for all boundary points. We will conduct our analysis using the quotient reformulation under
these assumptions. For notation convenience, we will also use lowercase x instead of X to denote
an element in X hereafter.

4.2 Design of h(·) is Optimal

In this section, we show that the design of h(·) in (10e) is optimal in a random setting. This
randomness may occur from two sources. First, since we develop a method for general dynamic
robust optimization problems that fall into (5), the potential problem structure to solve is random.
Second, in each iteration j of solving the iterative IBI bidual, the feasible solution space V ∩ Sj
is a lower-dimensional slice in V ∩ Sj−1. Hence, the new problem at iteration j is the objective ϕ
restricted to this new slice. It is unlikely to access the structural information of these slices and
the corresponding restricted functions that are created on-the-fly. Thus, we can only assume they
are random polytopes and concave functions. We define the family of potential polyhedrons and
functions as follows.

Definition 7. The class of bounded polytopes is defined as

Xn = {X ⊆ Bn | X is a polytope and has 0 as a boundary point}.

For every X ∈ Xn, the class of bounded piece-wise concave functions over X is

Gn
X = {ψ : X → [0, 1] | ψ is a piece-wise concave function such that ψ(∂X ) = {ψ(0)}},

where ∂X is the boundary of X under the Euclidean topology. When the dimension is obvious, we
drop the superscript n in both sets.
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Because elements in both sets X and GX can be represented by matrices that form compact sets
in the corresponding space, they are Borel sets that can be assigned with probability measures (e.g.,
uniform probability measures). With a slight abuse of notation, we also take X and GX to represent
the corresponding probability spaces. We use hyperspace to refer to a subspace having one less
dimension than X . Under these definitions, we have the following observations. Lemma 2 can be
directly verified from the definitions, so we omit the proof.

Lemma 2. For every X ∈ Xn, ψ ∈ Gn
X , and some hyperspace S such that dimX ∩ S = m < n, we have

X ∩ S ∈ Xm and ϕ|X∩S ∈ Gm
X ,

where ϕ|X∩S is function ϕ restricted to the set X ∩ S.

Define MX (0) := {a | ⟨a, x′⟩ ≥ 0 ∀x′ ∈ X}, i.e., MX (0) is the reversed (multiply by −1) normal
cone of X at the origin, and let Sa for some a ∈ MX (0) be the hyperspace with normal vector a,
then we have,

Lemma 3. For every X ∈ X, ψ ∈ GX , and a ∈MX (0), we have

max
x∈X∩Sa

ψ(x) = ψ(0).

Proof. Since X is a polytope (thus convex set) that contains 0 as a boundary point, MX (0) is not
empty. Then, the corresponding Sa intersects X only on the boundary ∂X by design. Moreover,
since ψ(∂X ) = {ψ(0)} by definition, we have the desired result.

Hence, any vector a ∈MX (0) can be considered as an ideal element for the information basis
since setting Āh(V̄ ⋆

j−1) := a in the jth iteration in (10) will obtain the optimal filtered policy
immediately in the next iteration. However, for a fixed X ∈ X, the reversed normal cone MX (0)
might contains multiple directions. We use the following definition to restrict to a unique choice.

Definition 8 (Plummet Vector & Plummet Hyperspace). Given X ∈ X, ψ ∈ GX , and some
x⋆ ∈ argmaxx∈X ψ. For any vector a, let

Sa = {x | ⟨a, x⟩ = 0}

be the hyperspace with normal vector a. Then, any vector a that satisfies

max
a∈MX (0):∥a∥=1

⟨x⋆, a⟩
∥x⋆∥

(13)

is called the plummet vector with respect to (X , ψ, x⋆), and the corresponding hyperspace Sa is called
the plummet hyperspace with respect to (X , ψ, x⋆).

Intuitively, among all the vectors inMX (0), the plummet vector a is the one that has the smallest
angle to the incumbent solution x⋆. Indeed, the following proposition shows that for any given
(X , ψ, x⋆) with ψ(x⋆) > ψ(0), the plummet vector and plummet hyperspace are both unique.

Proposition 5. For any X ∈ X, ψ ∈ GX , and x⋆ ∈ argmaxx∈X ψ(x) such that ψ(x⋆) > ψ(0), there
exists a unique plummet vector and a unique plummet hyperspace.
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Proof. The existence has been shown in Lemma 3. For uniqueness, suppose a = x⋆/∥x⋆∥ ∈MX (0),
then the claim is trivially true. Otherwise, suppose there are two distinct plummet vectors a1
and a2. By the definition of plummet vector and ψ(x⋆) > ψ(0), we have two vectors satisfy
⟨a1, x⋆⟩ = ⟨a2, x⋆⟩ > 0. Clearly, the vector â = (a1+a2)/∥a1+a2∥ belongs to MX (0) by the property
of convex cones. We show that â has a strictly larger value in (13). Note that a1 ̸= a2 implies
∥a1 + a2∥ < ∥a1∥+ ∥a2∥ = 2. Thus, we have

⟨x⋆, â⟩
∥x⋆∥

=
⟨x⋆, a1 + a2⟩
∥x⋆∥∥a1 + a2∥

>
⟨x⋆, a1⟩
∥x⋆∥

=
⟨x⋆, a2⟩
∥x⋆∥

,

where the strictly greater is by the choice a1 and a2. This contradicts the optimality of a1 and a2.

Proposition 5 provides a unique ideal selection of hyperspace to optimally decrease the objective
value of ψ given a tuple (X , ψ, x⋆). The following theorem states that given x⋆ as the observed
optimal solution, the “average” plummet vector is simply x⋆, which requires an assumption based
on the following definition.

Definition 9 (Isometry-Invariant Measure). The probability measure µ assigned on X and prob-
ability measures µX equipped on each GX are say to be isometry-invariant if for every isometry
ϕ ∈ L(Bn), X ∈ X, and ψ ∈ GX , we have

µ(X ) = µ(ϕ(X ))
µX (ψ) = µϕ(X )(ψ ◦ ϕ−1).

Intuitively speaking, an isometry-invariant measure implies that the probabilities are the same
for problem structures (the polyhedron X and the concave function ψ over X ) that are equivalent
under rotations and reflections.

Theorem 2. Given isometry-invariant measure spaces X and {GX }X∈X and an optimal solution x⋆ ̸= 0 ∈
Bn, define x⋆-conditional probability spaces as

X⋆ := {X ∈ X | x⋆ ∈ X},
G⋆

X := {ψ ∈ GX | x⋆ ∈ argmaxψ}, ∀X ∈ X⋆,

with the induced conditional probability measures. Let aX ,ψ be the plummet vector with respect to X ∈ X⋆,
ψ ∈ G⋆

X , and x⋆. We have

E[aX ,ψ | x⋆] :=
∫
X

∫
ψ
aX ,ψ dG⋆

XdX⋆ = λx⋆

for some λ > 0.

Proof. To prove this, given x⋆, we define the following linear operator ϕ⋆ on Bn (reflection over
span(x⋆)) as

ϕ⋆(x) := 2 · projx⋆(x)− x = 2
⟨x⋆, x⟩
∥x⋆∥2

x⋆ − x =

(
2

∥x⋆∥2
x⋆(x⋆)⊺ − I

)
x.

The following claim lists some properties of this linear operator.
Claim 1. ϕ⋆ has the following properties:

1. ϕ⋆ is an isometry, i.e., ∥ϕ⋆(x)∥ = ∥x∥;
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2. ϕ⋆ has the fixed point set as span(x⋆);

3. ϕ⋆ is idempotent, i.e., ϕ2⋆ = I ;

4. the induced operator Φ⋆ : X⋆ → X⋆ defined as

Φ⋆(X ) := {ϕ⋆(x) | x ∈ X}

is an automorphism on the measure space X⋆;

5. the induced operator Ψ⋆ : G
⋆
X → G⋆

Φ⋆(X ) defined as

Ψ⋆(ψ) := ψ ◦ ϕ−1
⋆ = ψ ◦ ϕ⋆

is an isomorphism between the two measure spaces;

6. aΦ⋆(X ),Ψ⋆(ψ) = ϕ⋆(aX ,ψ), and the mapping

aX ,ψ 7→ aΦ⋆(X ),Ψ⋆(ψ)

is bijective on the set of all possible plummet vectors.

Proof. Property 1 can be verified directly. For 2, every fixed point satisfies ϕ⋆(x) = x, which reduces
to proj⋆(x) = x, which implies span(x⋆) is the fixed point set. Property 3 is true by the property of
reflection.

For 4, since the measure assigned on X⋆ is isometry-invariant, we only need to show that Φ⋆ is a
bijection on X⋆. First, we show that Φ⋆ is closed on X⋆, i.e., Φ⋆(X ) ∈ X⋆ for all X ∈ X⋆. By Property
1, Φ⋆(X ) ⊆ Bn. By Property 2, x⋆ ∈ Φ⋆(X ). Moreover, Φ⋆(X ) is a polytope as ϕ⋆ is a linear operator.
Finally, 0 ∈ span(x⋆) is also a fixed point, thus is inside Φ⋆(X ). These imply Φ⋆(X ) ∈ X⋆. Then, the
bijection is inherited from the bijection of ϕ⋆.

For 5, again, because the measure assigned on both G⋆
X and G⋆

Φ⋆(X ) are isometry-invariant, we
only need to show Ψ⋆ is a bijection. First, Ψ⋆(ψ) is a piece-wise concave function on Φ⋆(X ) since ϕ⋆
is a linear bijection. Moreover, Ψ⋆(ψ) has values within [0, 1] and satisfies Ψ⋆(ψ)(∂(ϕ(X ))) = {0}
directly by definition. To prove Ψ⋆(ψ) ∈ G⋆

Φ⋆(X ), we left to show the following,

x⋆ ∈ argmax
x∈X

Ψ⋆(ψ)(ϕ⋆(x)).

By definition, we have Ψ⋆(ψ)(ϕ⋆(x)) = ψ ◦ ϕ−1
⋆ ◦ ϕ⋆(x) = ψ(x), which proves the above claim

trivially. Finally, the bijection of Ψ⋆ is due to the fact that Ψ2
⋆(ψ) = ψ, i.e., it has a two-sided inverse.

For the last property, by definition,

aΦ⋆(X ),Ψ⋆(ψ) ∈ arg max
a∈MΦ⋆(X ):∥a∥=1

⟨x⋆, a⟩
∥x⋆∥

.

By the property of ϕ⋆, we have ϕ⋆(aX ,ψ) ∈ Φ⋆(X ). In addition, Property 1 implies ϕ⋆(aX ,ψ) is of
norm one. Suppose ϕ⋆(aX ,ψ) is not a maximizer, then using ϕ⋆ to transport the maximizer back to
the case with space X and function ψ will induce a contradiction. Moreover, by Proposition (5), the
maximizer of the above formulation is unique, which proves aΦ⋆(X ),Ψ⋆(ψ) = ϕ⋆(aX ,ψ). Finally, the
bijection is inherited from Properties 4–5.
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Using these properties, we prove the main theorem as follows,

E[aX ,ψ | x⋆] =
∫
X

∫
ψ
aX ,ψ dG⋆

XdX⋆ (14a)

=

∫
X

∫
ψ
aΦ⋆(X ),Ψ⋆(ψ) dG

⋆
XdX⋆ (14b)

=

∫
X

∫
ψ
ϕ⋆(aX ,ψ) dG

⋆
XdX⋆ (14c)

=
1

2

∫
X

∫
ψ
aX ,ψ + ϕ⋆(aX ,ψ) dG

⋆
XdX⋆ (14d)

=
1

2

∫
X

∫
ψ
2λX ,ψx

⋆ dG⋆
XdX⋆ (14e)

= x⋆
∫
X

∫
ψ
λX ,ψ dG⋆

XdX⋆ (14f)

= λx⋆. (14g)

The second identity is due to Property 6 along with Φ⋆ and Ψ⋆ are isomorphisms on the measures,
which means the measures of any open neighborhood of X and ψ are equivalently carried over to
Φ⋆(X ) and Ψ⋆(ψ); the third is due to Property 6; the fourth is averaging the right-hand side of (14a)
and (14c); the fifth is by definition of ϕ⋆ with λX ,ψ = ⟨x⋆, aX ,ψ⟩/∥x⋆∥2. By definition 8, λX ,ψ ∈ (0, 1],
which implies 0 < λ <∞.

This theorem says that, suppose the polytope X and the piece-wise concave function ψ over it is
randomly chosen, and the corresponding probabilities are invariant under rotations and reflections
on X . Then, for the given optimal solution x⋆, the “average” plummet hyperspace is simply Sx⋆ .
In particular, in our algorithm, after observing optimal solution V̄ ⋆

j−1 at the j − 1 iteration, the
corresponding x⋆ ∈ X is projĀF (V̄

⋆
j−1). Thus, the design of h(·) in (10e) is “averagely” optimal.

4.3 Convergence Rate

In this subsection, we study the convergence rate of the introduced iterative method. We will show
that, under mild assumptions, the expected convergence rate is at least linear, i.e., the objective
value approaching the value of optimal affine policy exponentially.

Since we study the convergence, the exact value of ψ is nonessential for analysis. For simplicity,
we further assume the following in the rest of this section.

Assumption 2. Without loss of generality, we have the following assumptions: (a) ψ(0) = 0; (b)
maxx∈X ψ(x) > 0.

Conventionally, the convergence rate of an iterative method is defined as

ρ = lim
t→∞

|zt+1 − z⋆|
|zt − z⋆|

,

where z⋆ is the value of convergence, and the rate ρ is said to be linear and superlinear if ρ ∈ (0, 1)
and ρ = 0, respectively. This definition does not suit our situation for two reasons: (i) we cannot
exactly compute or effectively bound z⋆t (there may have instances where our method converges in
one step or never improves until the last iteration), thus we can only study the convergence rate in
an “average” sense; (ii) our method is guaranteed to converge to the optimal value ψ(0) = 0 within
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finite steps, thus the above rate ρ becomes 0 at certain iteration t and will be undefined thereafter.
Hence, we define the following.

Definition 10 (Iterative Convergence Rate). Given X ∈ X and ψ ∈ GX with x⋆ ∈ argmaxx∈X ψ(x)
and z⋆0 := maxx∈X ψ(x) as the corresponding optimal solution and objective value. Let z⋆1 be the
deterministic optimal value obtained in the next iteration under Algorithm 1. Then, the iterative
convergence rate relative to X and ψ at is defined as

ρ(X , ψ) :=

{
z⋆1/z

⋆
0 , if z⋆0 > 0,

0, otherwise.

The associated expected iterative convergence rate is

E[ρ] :=
∫
X

∫
ψ
ρ(X , ψ) dGXdX.

We say this rate is (iteratively) linear if E[ρ] < 1.

By this definition, when the expected iterative convergence rate is linear, the objective value of
the main algorithm decreases exponentially in an “average” sense. To prove this convergence rate
for the main algorithm, we need the following definitions.

Definition 11 (Support of A Measure Space). Given a probability space (X,A, µ), the support is
defined as

supp(X) = {x ∈ X | µ(Vx) > 0 for every open x-neighborhood Vx}.
We say the measure space is fully supported if supp(X) = X.

Definition 12 (Optimal Cone). Given X ∈ X and ψ ∈ GX , let X ⋆ := argmaxx∈X ψ(x), the optimal
cone is defined as CX ,ψ := cone(X ⋆). We say the optimal cone is acute-angled if for every v1, v2 ∈
CX ,ψ we have ⟨v1, v2⟩ > 0.

Theorem 3. E[ρ] < 1 if there exists some X ∈ Int(supp(X)) and some ψ ∈ Int(supp(GX )) such that CX ,ψ
is acute-angled, where Int(·) denotes the interior of the input set.

Proof. By definition, all optimal solutions are contained in X ⋆. Thus, the hyperspace must be
Sx⋆ for some x⋆ ∈ X ⋆, and CX ,ψ being acute-angled implies any two elements x⋆1, x

⋆
2 ∈ X ⋆ satisfy

⟨x⋆1, x⋆2⟩ > 0. On the other hand, every element x ∈ X ∩ Sx⋆ satisfies ⟨x⋆, x⟩ = 0 by our design of
h(·). This implies Sx⋆ ∩ X ⋆ = ∅. Thus, z⋆1 < z⋆0 . Moreover, since X and ψ are from the interior of
the supports, there are sufficiently small open neighborhoods X and ψ, denoted by VX and Vψ,
such that CX ′,ψ′ is still acute-angled for every X ′ ∈ VX and ψ′ ∈ Vψ, which again leads to the same
result z⋆1 < z⋆0 . Then, we have

E[ρ] = E[ρ(X ′, ψ′) | X ′ ∈ VX , ψ′ ∈ Vψ]µ(VX , Vψ)
+ E[ρ(X ′, ψ′) | X ′ ∈ X \ VX , ψ′ ∈ GX \ Vψ](1− µ(VX , Vψ)).

Since X and ψ are from the supports, we have µ(VX , Vψ) > 0 and the corresponding conditional
expectation strictly less than one by the previous argument. Hence, we have E[ρ(X ′, ψ′) | X ′ ∈
VX , ψ

′ ∈ Vψ] < 1, which proves the claim.

This theorem says that as long as there exists a pair (X , ψ) in the interior of the support such
that the optimal solution space X ⋆ is not too “wide”, then the expected iterative convergence rate
is strictly less than one. This result applies to all the iterations of the main algorithm. In particular,
we have the following corollary.
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Corollary 2. E[ρ] < 1 if one of the following conditions is satisfied,

1. There exists some X ∈ supp(X) and ψ ∈ supp(GX ) such that |X ⋆| = 1.

2. X and GX ’s are fully supported.

3. X and GX ’s are uniform probability measures.

Proof. For 1, when |X ⋆| = 1 along with the assumption that x⋆ ̸= 0, we trivially have CX ,ψ as
acute-angled. For 2, we can easily construct a X and ψ that satisfies Condition 1. The last condition
is a special case of Condition 2.

4.4 An Improved Convergence Rate

Though Theorem 3 and Corollary 2 show that the iterative objective values of the main algorithm
are expected to decrease exponentially, these results are not particularly strong because (i) they
depend on the underlying probability measures, which are unlikely to characterize, (ii) E[ρ] < 1
does not exclude the possibility that multiple iterations end up without reducing the objective
value at all. The following variant of the main algorithm mitigates these by adding a L2 regularizer
into the objective function. We will show that this small change will lead to a linear convergence
rate regardless of the underlying probability measures.

Definition 13 (Regularized Iterative IBI Bidual). The regularized iterative IBI Bidual is defined as

ϕ̂(V̄ ) := ⟨C̄, V̄ ⟩ − δ

2
∥Āh(V̄ )∥2,

with (10b) — (10d),

where δ > 0 is a sufficiently small number and ∥ · ∥ is the L2 norm.

According to [12], for any feasible and bounded linear program minx∈X ⟨c, x⟩, there always
exists some δ > 0 such that the optimal solution of the regularized problem minx∈jX {⟨c, x⟩+δϕ(x)}
is also optimal to the original linear program. Hence, with a sufficiently small δ, the regularized
algorithm above still returns an optimal solution for the unregularized version in each iteration.
Moreover, by the design of h(·), the regularizer term ∥Āh(V̄ )∥2 is equivalent to

vec(V̄ )⊺
(
(In ⊗ Ā)E(2)

) (
(In ⊗ Ā)E(2)

)†
vec(V̄ ),

which makes the problem a semidefinite program. Then, the following theorem provides the main
convergence result of this variant.

Theorem 4. In the regularized main algorithm, for every X ∈ X and ψ ∈ GX , the quotient counterpart of ϕ̂
is ψ̂(x) := ψ(x)− (δ/2)∥x∥2. In particular, the set argmaxx∈X ψ̂(x) is a singleton {x⋆}. Suppose x⋆ ̸= 0,
we have

ρ(X , ψ̂) ≤ 1− 1
2L

δ∥x⋆∥ − 1
,

where L is the Lipschitz constant of ψ over X .

Proof. In the definition of ϕ̂(V̄ ), Āh(·) is the projection operator to define the quotient reformulation.
Hence, we have ϕ̂(V̄ ) = ψ̂(x). Note that ψ̂(x) is a δ-strongly concave function over a compact
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domain X . Thus, the maximizer is unique. Because ψ̂ is δ-strongly concave and continuous, and x⋆

is a maximizer, we have

ψ̂(x⋆)− ψ̂(x) ≥ δ

2
∥x⋆ − x∥2, ∀x ∈ X .

In the next iteration of the IBI algorithm, we will have the new domain X ′ := X ∩ Sx⋆ with the new
problem maxx∈X ′ ψ̂(x), which again leads to a unique maximizer, say x′. Since x′ ∈ Sx⋆ , we have

∥x⋆ − x′∥ ≥ ∥x⋆∥

by the construction of Sx⋆ . This gives,

z⋆0 − z⋆1 = ψ̂(x⋆)− ψ̂(x′) ≥ δ

2
∥x⋆∥2,

which is equivalent to

ρ(X , ψ̂) = z⋆1/z
⋆
0 ≤ 1− δ∥x⋆∥2

2z⋆0
= 1− 1

2z⋆0
δ∥x⋆∥2

.

Finally, we have z⋆0 = ψ(x⋆)− (δ/2)∥x⋆∥2 and

ϕ(x⋆)

∥x⋆∥
=
|ϕ(x⋆)− ϕ(0)|
∥x⋆ − 0∥

≤ L,

which concludes the proof.

Remark 1. This theorem demonstrates that by adding an L2 regularizer with a sufficiently small δ,
we can ensure an iteratively linear convergence rate regardless of the potential shapes of X and
ψ and their probability measures. Moreover, when the violation ∥x⋆∥ is large, the upper bound
becomes tighter. Of course, δ must satisfy δ ≤ L/∥x⋆∥ throughout the process so that the bound is
valid (i.e., non-negative).

5 Part 2: An Accelerated IBI with Scalable Implementation

The convergence performance of Algorithm 1 proved in Section 4 and illustrated in Figure 3a
demonstrate the potential to obtain a near-optimal affine policy with a compact-sized information
basis. However, Algorithm 1 requires solving for the exact solution V̄ ⋆

j iteratively using linear
programming. This often tends to be expensive after a certain number of iterations as shown in
Figure 3b.

In this section, we will introduce a scalable implementation to construct an information basis
that combines the perks of the two methods: it has a convergence performance close to the IBI
algorithm and, similar to the random generation method, its iterative runtime is efficient and
is independent of the iterations. To achieve this, we notice that the two main computational
bottlenecks in Algorithm 1 are the optimization step for getting V̄ ⋆

j and the subsequent projection
operator projĀF (·). We will address the efficiency issue for both steps. The resulting convergence
and runtime performances are illustrated in Figure 4 for the same set of instances.
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5.1 An Improved Projection Operator

Algorithm 1 needs to perform the projection operator Āh(·) defined in (10e) in each iteration, where
the corresponding projection matrix is n(k+1) by n(k+1). Thus, the time complexity for projection
is O(n2k2). According to the following proposition, with some initialization steps, this can be
reduced to O(k dim ĀF).

Proposition 6. Let F be a given information filter with nonzero entries indexed by S = {(i, j) | Fij ̸= 0},
we define

J = {j | (i, j) ∈ S for some i}, Ij = {i | (i, j) ∈ S}, Âj = OrthoSet(Ā:Ij ),

where OrthoSet returns a matrix whose columns form an orthonormal basis of the range of the input matrix.
Then, we have

projĀF (D) =
[
Âj(Âj)⊺D:j

]
j∈[n]

where the corresponding time complexity for projection is O(k dim ĀF).

Proof. By definition, the jth column of the projected matrix Āh(D) is obtained by multiplying
vec(D) with the submatrix consisting of the jth k + 1 rows from the following matrix

(In ⊗ Ā)E(2)

(
(In ⊗ Ā)E(2)

)†
.

Moreover, each column vector in E(2) is either a zero vector or equal to vec(Eij) for some (i, j) ∈ S
(Eij is a matrix with one at the (i, j)th entry and zero otherwise). Then, a direct computation shows
that [

projĀF (D)
]
:j
= Ā:Ij (Ā:Ij )

†D:j = Âj(Âj)⊺D:j .

For the time complexity, we further have

Âj(Âj)⊺D:j =
∑
i∈I′j

⟨Âj:i, D:j⟩Âj:i

where I ′j is the column index set of Âj . Note the time complexity for computing each summand is
O(k), and the terms to be summed are equal to dim ĀF , which gives the claimed time complexity.

This implementation for the projection operator is much more efficient than the original defini-
tion and can benefit all basis generation algorithms that use the projection operator Āh(·).

5.2 Penalty Variant with SCD

To improve the efficiency of getting V̄ ⋆
j , we note that Algorithm 1 always returns an optimal affine

policy as long as a sufficient number of independent basis matrices are generated for (9c). Thus, we
have no feasibility nor optimality requirements on V̄ in each iteration. All we need is a solution V̄
to indicate an approximated direction of V̄ ⋆

j so that the analysis in Section 4 is still credible.
This allows us to approximate the constrained problem maxV̄ ∈V∩Sj

ϕ(V̄ ) using the penalty
method formulated as follows,

min
u≥0

− ⟨C̄, V̄ ⟩+ λ

∥∥(BV̄ ⊺ − bū⊺)+
∥∥2 + ∥∥Ā⊺ū

∥∥2 + ∑
j′<j

⟨Āh(V̄ ∗
j′), V̄ ⟩2

+
1

4λ

(
∥u∥2 + ∥V̄ ∥2

)
(16)
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Figure 4: Convergence and runtime performances of the three algorithms.

where λ > 0 is the penalty parameter, ū is the augmented vector (1, u), function (·)+ denotes the
nonnegativity projection max(·, 0), matrices V̄ ∗

j′ ’s are the solutions obtained in previous iterations
using the same penalty method, and the last term is a regularizer.

In each iteration j, we solve this penalty variant using the SCD algorithm with a fixed number
of steps to obtain a normalized approximated optimal solution V̄ ∗

j , then add one more term to
the summation in (16) and proceed to the next iteration. The details of the SCD algorithm and its
accuracy and convergence in LP approximation have been extensively studied in [21].

In our implementation, the complexity of obtaining a solution V̄ ∗
j has the same order as random

generation. Randomly producing a basis matrix V̄ is of order O(nk) as there are n(k + 1) entries
in V̄ . On the other hand, since we fix the number of gradient steps, the complexity is dominated
by a single gradient update step of the SCD algorithm. Furthermore, because only one entry of
the solution will be updated in each step, it is easy to check that the number of affected gradient
entries in (16) is below O(nk) for every possible entry in u and V̄ . Therefore, the time complexity
is dominated by the solution initialization step with order O(nk). Due to its computational
significance, we record this result in the following proposition.

Proposition 7. The time complexity of obtaining an approximated solution of (16) using the SCD algorithm
is O(nk), which is equivalent to random generation.

5.3 Performance and Scalability

Figure 4 illustrates this penalty variant’s convergence and runtime performances. It still exhibits
an exponentially decreasing trend in the objective value convergence, while the corresponding
runtime performance is almost on par with the random generation and has a small variation. This
also supports our complexity analysis derived in the previous subsection.

Finally, the scalability of this penalty variant stems primarily from its most computationally
demanding steps: the projection operation and the gradient updates. Both of these processes are
implemented through matrix-vector multiplication operations. Hence, by leveraging GPU and
TPU acceleration, this method is quite scalable to handle large-sized input instances.
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6 Experiment

In this section, we will provide details for previous computational results, conduct further ex-
periments to study the effects of adding the regularizer and demonstrate the performance of the
proposed method under different information filters.

We conducted all experiments on a computer equipped with a 12th Gen Intel(R) Core(TM)
i5-12600 3.30 GHz processor and 16GB of RAM and running Ubuntu 20.04. All the main algorithms
were implemented in Python 3.10.10 and solved by the commercial optimizer Gurobi 10.0.1. To
optimize the SGD subroutine used for solving the penalty variant, we converted the corresponding
Python codes into C language using the package Cython 0.29.35.

6.1 Test Instances

We generate 50 instances with 5 decision stages, each of which has 6 decision variables and 6
uncertain parameters. The number of constraints describing each stage’s uncertainty set ranges
from {3, 4, . . . , 11}. For each instance, we design input parameters B and b so that the uncertainty
set Ξ is a multi-stage budget set. We also randomly generate the rest of the input parameters
(A, a,C, c) and reject the instance if the objective value is non-positive or the problem is infeasible or
unbounded. This produces LP formulations for the affine bidual (9) with 1, 800 to 4, 400 variables
and 3, 500 to 7, 600 constraints. We choose problems of this size because, for every algorithm, we
need to solve each of these formulations with dim ĀF iterations to obtain the iterative performances
such as in Figure 4, and the value dim ĀF of our instances ranges from 270 to 2, 600.

The iteration count and runtime required to generate the complete information basis differ
across various algorithms and instances. The IBI algorithm operates within a range of 410 to 1, 281
iterations, with corresponding runtimes from 13.39 to 703.38 seconds. In contrast, the penalty
variant requires 825 to 2, 414 iterations, with runtimes between 0.16 and 0.50 seconds, while the
random counterpart operates within 953 to 2, 469 iterations, with runtimes ranging from 0.04 to 0.14
seconds. This illustrates the efficiency of both the penalty variant and random counterpart, as their
time complexity for generating the entire information basis is of order O(nk dim ĀF) according to
Proposition 7. We note that the current experiment does not utilize any GPU speedup for solving
these instances.

To facilitate a meaningful comparison among different instances and algorithms, we normalized
the number of iterations, objective values, and runtimes to a [0, 1] scale. Specifically, zero and one
in iterations correspond to the initial and final iterations (i.e., dim ĀF), zero and one in objective
values represent the optimal values obtained by affine and constant policies, respectively, and zero
and one in runtime signify the start time and the time taken to solve the affine bidual formulation
using Gurobi with default settings.

6.2 Convergence and Runtime Comparison

Figure 4 compares the three algorithms in the paper: the IBI algorithm (Algorithm 1), the penalty
variant with the SCD algorithm, and the random counterpart. Figure 4a shows the iterative conver-
gence of the three algorithms, while Figure 4b compares their basis generation runtime. Note that
Algorithm 1 requires solving the associated optimization problem (9) in each iteration to generate a
new basis matrix. Thus, it can also evaluate the corresponding objective value simultaneously. For
the other two counterparts, the basis generation subroutine can be executed first, and then their
objective convergence performance can be evaluated subsequently. From Figure 4, the benefits
of such implementation are clear: the basis generation part becomes much more efficient, and its

23



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Methods
IBI
IBI-REG

(a) Objective Values vs Iterations

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Methods
IBI
IBI-REG

(b) Runtimes vs Iterations

Figure 5: Convergence and runtime comparison between Algorithm 1 with and without the regularizer.

runtime is uncorrelated to the number of constraints in (9c). For convergence, sacrificing some
accuracy, it is expected that the penalty counterpart has a less impressive performance compared to
Algorithm 1, but it still retains the momentum of a rapid decrease in the objective value.

6.3 Effects of Regularizer

Theorem 4 derived a much tighter convergence bound than Theorem 3 by adding a regularizer to
Formulation (9). This conclusion is also supported by the experiment results shown in Figure 5.

The orange and blue lines represent the average convergence and runtime performances of
Algorithm 1 with and without the regularizer, respectively. Clearly, adding the regularizer has a
significant impact on the convergence rate. On average, with around 10% of the number of basis
matrices, the corresponding optimal IBI policy can close more than 90% of the gap between the
optimal constant and affine policies, whereas a similar performance requires around 20% of the
number of basis matrices if without the regularizer. Moreover, the convergence variation is also
much smaller in the case with the regularizer.

In terms of runtime, both algorithms are quite inefficient, and the one with regularizer is
slightly slower. This is unsurprising as Formulation (9) with a regularizer needs to be solved as a
semidefinite program.

6.4 Markovian Information Filter

By design, the proposed algorithm in Section 3 and the corresponding analysis in Section 4 are valid
for every given information filter F . In this subsection, we demonstrate this using the Markovian
filter (see (e) in Figure 2).

Figure 6 shows the convergence and runtime performances for Algorithm 1 and the penalty
variant under the Markovian filter, which are denoted by IBI-MKV and Penalty-MKV, respectively.
We still use the standard IBI algorithm as the baseline algorithm for comparison. In Figure 6a, the
values 0 and 1 in the y-axis still represent the normalized objective values obtained by the optimal
affine and constant policies, respectively. This comparison result shows that the Markovian filter
is not optimal for most instances since they did not converge to the value of the optimal affine
policy even after a sufficient number of iterations. We can also observe that both IBI-MKV and
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Figure 6: Convergence and runtime performance comparison under the Markovian information filter.

Penalty-MKV algorithms have the same convergence trend. But, on average, IBI-MKV converges
faster than Penalty-MKV.

In terms of runtime, IBI-MKV has a considerable improvement in efficiency compared to
IBI thanks to the sparse Markovian filter, which significantly reduces the number of parameters.
However, its runtime still increases with the number of iterations and has quite a large variation. In
comparison, the runtime performance of Penalty-MKV is consistent with our previous conclusion:
it is fast, independent of the iterations, and has a low variance.

Finally, in Figure 6c, we remove the IBI algorithm and re-normalized the objective values where
0 now represents the value of the optimal affine policy under the Markovian filter. From this figure,
it becomes clear that both algorithms converge to the same value eventually, i.e., the value of the
optimal affine policy in the filtered space. Similar to the unfiltered case, both algorithms exhibit an
exponential decrease in the objective values, yet IBI-MKV converges faster in general. This indeed
shows that the proposed method and analysis are compatible with various predefined information
filters. Moreover, the penalty variant with the SCD implementation still performs well to efficiently
generate an effective information basis.
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7 Conclusion

This paper focused on finding a sweet spot between the fast-but-imprecise constant policies and the
accurate-yet-unscalable affine policies for dynamic robust optimization. We adopted the concept
of information filters to incorporate prior knowledge and requirements about the policy space
to reduce the problem size, then developed the IBI algorithm to construct a small-and-effective
information basis for approximating the optimal policy in the filtered policy space.

The key finding is that, for general dynamic robust optimization problems, a near-optimal
affine policy can be achieved with a compact information basis, and such a basis can be efficiently
constructed with a proper implementation. Specifically, we proved that our proposed method
returns the best information basis matrix in each iteration and can exponentially converge to the
value of the optimal affine policy. We also developed a penalty counterpart with the SCD algorithm
so that the basis generation efficiency is on par with random generation.

These results unlock many potential applications for information bases. For instance, large-sized
multistage robust optimization can be approximated by efficiently generating a small number of
basis matrices. Or, we can construct nonlinear decision rules using these basis matrices in order to
obtain a better policy performance with a small number of parameters.

For future directions, it would be important to further enhance the penalty variant’s convergence
performance while preserving its computational efficiency. Additionally, it is also interesting to
explore the generalization of our analysis to nonlinear settings.
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