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Abstract

In this paper, we consider a recently introduced packing problem in which a given set of weighted
items with colors has to be packed into a set of identical bins, while respecting capacity constraints
and minimizing the total number of times that colors appear in the bins. We review exact methods
from the literature and present a fast lower bounding procedure that, in some cases, can also provide
an optimal solution. We theoretically study the worst-case performance of the lower bound and
computationally test our solution method on a large benchmark of instances from the literature:
quite surprisingly, all of them are optimally solved by our procedure in a few seconds, including
those for which the optimal solution value was still unknown. Thus, we introduce additional harder
instances, which are used to evaluate the performance of a constructive heuristic method and of a
tabu search algorithm. Results on the new instances show that the tabu search produces considerable
improvements over the heuristic solution, with a limited computational effort.

Keywords: packing, lower bounds, tabu search, computational experiments

1. Introduction

In the Bin Packing Problem (BPP) we are given a set of items, each having a positive weight, and
an unlimited number of identical bins, each having a positive capacity. The problem asks to pack all
the items into the minimum number of bins so that the total weight of the items packed in each bin
does not exceed the capacity. This problem is known to be strongly NP-hard and has applications
in different areas, including e.g., logistics, cutting and packing, and telecommunications.

In this paper, we consider a packing problem that is strictly related to the BPP. We are given
a limited set B of bins, containing exactly B identical bins, each with capacity W , and a set I
containing I items. Besides the weight wi, each item i ∈ I is characterized by a color ci ∈ C,
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where C = {1, 2, . . . , C} is a given set of colors which induces a partition of the item set into
subsets I1, I2, . . . , Ic. As is common in bin packing problems, we make the natural assumption
that both the bin capacity and the items weights are positive integers. The problem requires to
pack all items into the available bins without exceeding their capacity while minimizing the color
fragmentation of the solution. More precisely, the color fragmentation for a color is given by the
number of different bins that contain at least one item of that color, and the objective is to minimize
the overall value of this figure. The resulting problem, denoted as the Bin Packing Problem with
Minimum Color Fragmentation (BPPMCF), has been introduced in the literature in Bergman et al.
(2019). Recently, the BPPMCF has been addressed by the same authors (Mehrani et al. 2022),
where possible applications in surgical scheduling and group event seating were considered. In the
latter paper, several mathematical formulations and solution algorithms were proposed, and strong
NP–hardness of the problem was reported for the case B ≥ 3. We observe that, in this case, even
finding a feasible solution for a BPPMCF instance is a strongly NP–complete problem, as it reduces
to solving the BPP instance induced by ignoring colors.

For the sake of completeness, we now review the descriptive mathematical model introduced in
Bergman et al. (2019) and Mehrani et al. (2022). The formulation involves binary variables xbi

representing the assignment of item i to bin b and binary variables ybc that indicate whether bin b

includes some items of color c or not (i ∈ I, b ∈ B, c ∈ C). The formulation is thus as follows

min
∑
b∈B

∑
c∈C

ybc (1)

s.t.
∑
b∈B

xbi = 1 i ∈ I (2)∑
i∈I

wi xbi ≤ W b ∈ B (3)∑
i∈Ic

wi xbi ≤ Wybc b ∈ B, c ∈ C (4)

xbi ∈ {0, 1} b ∈ B, i ∈ I (5)

ybc ∈ {0, 1} b ∈ B, c ∈ C. (6)

This model is then strengthened by adding the following inequalities

xbi ≤ ybc b ∈ B, c ∈ C, i ∈ Ic (7)∑
b∈B

ybc ≥ Lc c ∈ C, (8)

where Lc denotes any lower bound on the fragmentation of each color c, i.e., on the number of bins
that contain at least one item in set Ic. In Mehrani et al. (2022), Lc is set to the value of the
well-known lower bound L2 for the BPP instance induced by item set Ic (see, Martello and Toth
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1990).

Formulation (1)–(8) is denoted as IP1 in Mehrani et al. (2022), where also a similar model is
proposed that exploits the characteristic of most real instances to include many identical items
(i.e., with the same weight and same color). This more effective model is referred to as IP2, and
is one of the methods that will be computationally considered in our experiments (see Section 4).
In addition, we will consider two further exact approaches that turned out to be very effective in
Mehrani et al. (2022), denoted as RM2-GIFF and EM, respectively. The former is a decision diagram
combined with a general integer flow formulation, whereas the latter is based on a set-partitioning
formulation of the problem and can be interpreted as a Dantzig-Wolfe reformulation of model IP2.

Some different variants of the bin packing problem in which items are associated with colors have
been proposed in the literature; however, in these problems, colors typically induce constraints on
the feasibility of a solution. For example, in the co-printing problem, items have multiple colors
but no weight and bin capacity limits the total number of different colors for its items. This
problem, which finds applications in beverage package printing, has been considered in Peeters and
Degraeve (2004) and in Kochetov and Kondakov (2017). General incompatibility between items of
different colors is addressed in the bin packing problem with conflicts (see, Gendreau et al. 2004,
Fernandes Muritiba et al. 2010).

The rest of the paper is organized as follows. In Section 2 we consider bounding procedures that
are based on the solution of a BPP problem. We introduce both a lower bound, for which we
analyze the worst-case performance, and two alternative heuristic algorithms. Section 3 presents
a metaheuristic scheme that is based on the tabu search paradigm. In Section 4 the proposed
algorithms are computationally evaluated and compared with state-of-the-art methods on a large
benchmark of instances from the literature. In addition, a new set of challenging instances is
introduced, allowing for a more accurate analysis of the performance of the methods. Finally,
Section 5 draws some conclusions and indicates future research directions.

Throughout the paper, we will make use of the following example for describing solution methods.

Example 1. Let us consider the following BPPMCF instance with B = 4, W = 6, C = 3, I = 10,
items I = {i1, i2, . . . , i10} with weights equal to {4, 3, 1, 3, 2, 2, 1, 3, 2, 1}. Item colors are equal to
{1, 1, 1, 2, 2, 2, 2, 3, 3, 3}, i.e., I1 = {i1, i2, i3}, I2 = {i4, i5, i6, i7} and I3 = {i8, i9, i10}. This instance,
together with a corresponding optimal solution, is shown in Figure 1, where color 1 is light gray,
color 2 is medium gray, and color 3 is dark gray. This solution uses all 4 bins. The items with
color 1 are spread over two bins, as are the items with color 2, whereas the items with color 3 are all
in the same bin. Therefore, the overall color fragmentation of this solution is equal to 2+2+1 = 5.

2. BPP-based bounding procedures

In this section, we consider lower and upper bounds that can be computed by solving BPP in-
stances. We point out that, even though the BPP is strongly NP-hard, several approaches have
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Figure 1: Example of a BPPMCF instance and a corresponding optimal solution.

been proposed in the literature for solving BPP instances effectively. The first effective proposals
were combinatorial lower bounding procedures and branch-and-bound algorithms described in Mar-
tello and Toth (1990) and pseudo-polynomial arcflow formulations by Valério de Carvalho (1999).
These methods are reviewed in the survey of Delorme et al. (2016). More recent methods include
enhancements of arcflow formulations, allowing effective solution by means of state-of-the-art ILP
solvers (see Delorme and Iori 2020), and tailored branch-and-price algorithms (see Pessoa et al.
2020; Wei et al. 2020).

Section 2.1 briefly reports the arcflow formulation that is used in our algorithms; Section 2.2 reviews
a simple lower bound introduced in Mehrani et al. (2022) and analyzes its worst-case performance; fi-
nally, Section 2.3 describes two heuristic algorithms for computing a feasible solution for a BPPMCF
instance. Note that, even though our algorithms use the arcflow formulation to solve the BPP, they
could also use any black-box procedure that returns an optimal solution for a given BPP instance.

2.1. The arcflow formulation

Introduced by Valério de Carvalho (1999) and based on the earlier works of Shapiro (1968) and
Wolsey (1977), the standard arcflow formulation considers a directed multigraph G = (V,A) where
vertex set V = {0, 1, . . . ,W} includes a vertex for each capacity value, and where arc set A includes
for each item i ∈ I, W −wi + 1 arcs associated with packing that item, namely all arcs originating
from a vertex d ∈ {0, 1, . . . ,W−wi} and terminating in vertex e = d+wi. For notational convenience,
each arc is identified by a triplet (d, e, i). We point out that the resulting graph has pseudo-
polynomial size, which can be hard to manage in practice. For this reason, procedures for avoiding
to construct redundant vertices and arcs have been proposed in Valério de Carvalho (1999). In brief,
items are sorted according to non-increasing weight, and for a given item i only the arcs (v, v+wi, i)

with v ≤ W − wi are considered for which v is either 0 or the head of another arc associated with
a previously considered item. Further improvements based on effective reduction strategies and
efficient procedures for the definition of the graph have been extensively studied in recent years (see
Brandão and Pedroso 2016; Côté and Iori 2018).

The formulation uses, for each arc (d, e, i) ∈ A, a binary decision variable fdei taking value 1 if the
arc is selected in the solution, and value 0 otherwise. In other words, a variable fdei = 1 indicates
that item i ∈ I is packed in a bin from position d to position e, though not defining the actual bin
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in which the item is packed. The resulting arcflow model for the BPP is as follows

min
∑

(0,e,i)∈A

f0ei (9)

s.t.
∑

(v,e,i)∈A

fvei ≤
∑

(d,v,i)∈A

fdvi v ∈ V \ {0,W} (10)

∑
(d,e,i)∈A

fdei = 1 i ∈ I (11)

fdei ∈ {0, 1} (d, e, i) ∈ A. (12)

The objective function (9) minimizes the amount of flow leaving node 0, i.e., the number of bins
used. Constraints (10) ensure that, for every node v ∈ V \ {0,W}, the amount of flow leaving v

cannot exceed the amount of flow entering v. Finally, constraints (11) impose that, for each item i,
exactly one arc associated with that item is selected, i.e., the item is packed.

In order to retrieve a possible packing of items into bins, one can use a flow decomposition algorithm
(see chapter 3.5 in Ahuja et al. 1993) on the solution provided by model (9)-(12).

Example 1. (resumed) Let us consider the BPP instance induced by item set I2 with weights
{3, 2, 2, 1} and W = 6. This instance is depicted in the left part of Figure 2. The graph G obtained
after applying the reduction procedures suggested by Valério de Carvalho (1999) is depicted in the
center of Figure 2. Here, arcs in bold denote an optimal solution of model (9)-(12), requiring two
bins. A flow decomposition algorithm results in the first item packed alone in the first bin and the
other three items packed together in the second bin. A graphical representation of the corresponding
solution is shown in the right part of Figure 2.

Figure 2: The BPP instance induced by item set I2, its arcflow graph, and solution.

0 1 2 3 4 5 6

2.2. Lower bounds

For every color c ∈ C, let Pc be the BPP instance induced by item set Ic and bin capacity W . Also,
let Lc be any lower bound on the optimal solution value of this instance. Then, it is straightforward
that L =

∑
c∈C Lc is a valid lower bound for the BPPMCF. Formally, this relaxation can be derived

from model (1)–(6) by (i) relaxing constraints (3); (ii) observing that the resulting problem can be
decomposed into C independent subproblems P1,P2, . . . ,PC ; and (iii) computing a lower bound for
each such subproblem. In the following we will denote by L∗ the lower bound obtained by computing
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the optimal solution value L∗
c for each instance Pc, i.e., by solving a series of strongly NP-hard

subproblems. Conversely, the procedure used in Mehrani et al. (2022) is based on computing, for
each color c, lower bound L2 for the associated BPP instance, and hence the corresponding lower
bound L can be computed in polynomial time.

Given an instance I of a minimization problem P , and a lower bounding procedure L, let L(I)

and z(I) be the values of the lower bound and of the optimal solution, respectively. The absolute
worst-case performance ratio of L is defined as

r(L) = inf
I∈P

{
L(I)

z(I)

}
.

Although each subproblem is solved to optimality when computing lower bound L∗, the next theorem
shows that the worst-case performance of lower bound L∗ is arbitrarily bad for the BPPMCF.

Theorem 1. The absolute worst-case performance ratio for lower bound L∗ is arbitrarily close to
zero.

Proof. Consider a family of instances having B bins of capacity W = 1, C colors and B · C items,
where there are B items of weight 1

2c + ε for each color c ∈ C, with ε a small positive constant. For
convenience we temporarily depart here from the assumption that all input data is integer, but one
can easily obtain integer input by scaling the bin capacity and all item weights by an appropriate
constant.

First, we show that every feasible solution must have exactly one item of each color in each bin,
meaning that z(I) = B · C. Indeed, the number of items of each color is equal to the number of
bins and no two items of color 1 fit together. Moreover, after packing the items of color 1, no two
items of color 2 fit together, the residual space being 1

2 − ϵ. Similarly, after packing the items of
color 1 and 2, no two items of color 3 fit together, and so on.

For every c ∈ C, we have that L∗
c =

⌈
B

2c−1

⌉
, as we can pack at most 2c − 1 items of weight 1

2c + ε

per bin (for small enough ε). Therefore we have

L∗ =

C∑
c=1

L∗
c =

C∑
c=1

⌈ B

2c − 1

⌉
≤

C∑
c=1

( B

2c − 1
+ 1

)
≤

C∑
c=1

(1
2

)c−1
B + C ≤ 2B + C.

Hence, if we set C = B, we get

L∗(I)

z(I)
≤ 2B + C

B · C
=

3B

B2
= 3/B → 0

as B → ∞.

Despite the negative result in terms of absolute worst-case performance, our computational experi-
ments (see Section 4) show that, for all instances introduced in the literature, lower bound L∗ is very
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effective: indeed, it yields a very tight approximation of the optimal solution value while requiring
a very short computing time.

2.3. Upper bounds
2.3.1. BPP-LB
Our first heuristic algorithm is based on lower bound L∗ introduced in Section 2.2. The procedure
operates as follows:

1. First, the problem is decomposed into C subproblems P1,P2, . . . ,PC , which are solved by
means of an exact algorithm for the BPP. For each color c, let L∗

c denote the optimal solution
value for subproblem c. Then, we replace item set Ic by L∗

c “super-items”, one for each bin in
the subproblem solution, where the weight of each super-item is set to be equal to the overall
weight of the items in the corresponding bin.

2. Then, a BPP instance, say P∗ is defined by all the L∗(=
∑C

c=1 L
∗
c) super-items produced in

the previous step by all subproblems.

3. Finally, we solve the new BPP instance P∗ to optimality, and let B∗ denote the optimal
solution value.

Proposition 1. If B∗ ≤ B, the solution returned by BPP-LB is optimal.

Proof. Clearly if B∗ ≤ B, the solution returned by the algorithm is feasible for the original BPPMCF
instance. In addition, the total color fragmentation of this solution is equal to L∗, which proves
optimality.

Note that the same argument applies if, in step 3 of the algorithm, we stop as soon as a BPP
solution to instance P∗ is found that uses at most B bins.

In case B∗ > B, the method does not produce any feasible solution. To reduce the likelihood of this
outcome, we slightly modify step 1 of the algorithm as follows. For each subproblem Pc, instead of
computing any optimal BPP solution (requiring L∗

c bins), we look for an optimal solution such that
the content of a given (say, the first) bin is minimized. The resulting problem is denoted as the
BPP with loss concentration. Solving a sequence of C BPP with loss concentration subproblems
produces a BPP instance P∗∗ in which many super-items have a small weight compared with the
bin capacity, thus increasing the likelihood of packing them together with other super-items into a
bin.

The BPP with loss concentration can easily be solved by guessing the amount ∆ of free space in
the first bin, adding a dummy item with weight ∆ to item set Ic, and using any existing BPP
approach as a black box. As an initial guess, one can use an upper bound, setting ∆ = min

{
W −

mini∈Ic{wi},W · L∗
c −

∑
i∈Ic wi

}
. Any BPP solution that uses L∗

c bins for the resulting instance is
optimal in terms of loss fragmentation. If no such solution exists, the guess is wrong and one can
try with a smaller value for ∆, iterating the method until a BPP solution using L∗

c bins is found.
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Observe that one can limit the search to ∆ values such that W −∆ is a combination of item weights.
Preliminary experiments showed that using binary search when searching the optimal ∆ value did
not yield computational improvements.

From the implementation perspective, ad hoc strategies aimed at reducing the computation time
required to solve the BPP with loss concentration can be devised when using the arcflow formulation.
To this aim, for a given guess ∆, it is enough to add to the arc set of graph G a dummy arc
(W − ∆,W, 0) corresponding to a fictitious item with index 0 and weight ∆. Note that, in this
case, only non-isolated nodes are candidates for being the tail of the dummy arc at any iteration,
allowing for an efficient identification of the next ∆ value.

Example 1. (resumed) Consider the previously introduced BPPMCF instance, as depicted in the
left part of Figure 3. Solving the BPP subproblems P1, P2 and P3 gives the new BPP instance P∗

consisting of the 5 super-items presented top-left in the right part of Figure 3. Note that there is
no solution to instance P∗ that uses at most B = 4 bins, so BPP-LB just returns the lower bound
L∗ = 5.
Instead, if we solve the BPP with loss concentration for each of the subproblems P1,P2 and P3, we
obtain a BPP instance P∗∗ consisting of 5 different super-items presented bottom-left in the right
part of Figure 3. This latter instance admits a solution with B = 4 bins, as presented bottom-right
in the right part of Figure 3, i.e., a feasible BPPMCF solution of value 5, hence an optimal solution
according to Proposition 1.

Figure 3: BPP-LB applied to Example 1, without (top) and with (bottom) loss concentration.

Note that solving the BPP with loss concentration could work counterproductively. Indeed, it is
easy to come up with instances for which solutions to the BPP subproblems that do not maximize
loss concentration result in an instance P∗ admitting a packing into B bins, while the instance P∗∗

does not.
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2.3.2. BPP-UB
Our second heuristic, denoted as BPP-UB, is a two-stage approach based on the solution of a BPP
instance.

• In the first phase, we “delete” all item colors and obtain a BPP instance P0. The algorithm
terminates if it can prove that the instance does not admit a solution using B bins or less, as
this implies infeasibility of the original BPPMCF instance.

• Otherwise, we compute a BPP solution using at most B bins. Then, we execute a second
phase in which this solution is used to produce a feasible BPPMCF solution minimizing color
fragmentation by recoloring the items, possibly recombining the content of some bins.

We now detail the second phase of the algorithm, which is based on a representation of the BPP
solution provided by the arcflow formulation. Let G̃ = (Ṽ, Ã) be a multigraph having the same
structure as the one described in Section 2.1 but containing only the arcs selected in the solution.
Note that graph G̃ can also be retrieved from a BPP solution consisting of a bin-item allocation:
for each bin b, one should simply consider the set Ib of items packed in the bin and add to Ã the
set of arcs induced by these items. More in detail, we let the initial node be u = 0 and consider
items in Ib one at a time: when evaluating item i, we add to Ã an arc (u, v) where v = u+wi, and
set u = v. When all items in Ib have been considered, we set u = 0 and then perform the same
operations for the next bin, until all bins have been considered.

Given graph G̃, we define a BPPMCF solution by a flow decomposition algorithm which simul-
taneously selects an arc and assigns it the most suitable (colored) item of the BPPMCF instance.
Every partition (and item assignment) of the arcs in Ã into at most B paths starting from node
0 and ending in a node for which the in-degree is strictly larger than the out-degree corresponds
to a feasible BPPMCF solution. We construct a set of arc-disjoint paths, one at a time, as follows.
Initially, all items are available. Each path starts from node 0 with a randomly selected arc of
length, say, u. To determine the associated item, we randomly select one item of the BPPMCF
instance that is still available and has weight u. We then consider all arcs leaving u, which identify
a set of candidate items to be selected. A candidate item whose color is already present in the path,
if any, is selected (random choice if more than one). If there are no candidate items, we terminate
the current path if the in-degree of u is strictly larger than its out-degree. Otherwise, a random
available item of another color is selected. When an arc is added to the path and an item is assigned
to it, we update u accordingly, remove the arc from Ã, mark the associated item as unavailable,
and iterate.

As graph G̃ may include an exponential number of paths whose arcs can be assigned to items in
different ways, and random choices are taken, one can apply the algorithm several times and return
the best solution found. In our implementation, we construct G̃ only once and apply the second
phase Θ times, where Θ is an input parameter.

Example 1. (resumed) Consider the previously introduced BPPMCF instance depicted top-left in

9



Figure 4 and let Θ = 3. By disregarding colors, we obtain the BPP instance P0 presented top-center
in the figure, for which an optimal solution is depicted top-right. This solution uses B = 4 bins,
implying that the original BPPMCF instance is feasible. Transforming this solution into its arcflow
representation, we obtain the multigraph G̃ presented bottom-left in the figure. By applying the
second stage Θ = 3 times, we may obtain the three solutions presented bottom-right, whose objective
values are 8, 6 and 7, respectively. Eventually, algorithm BPP-UB returns the second solution.

Figure 4: BPP-UB applied to Example 1 for Θ = 3.

1×
3×

3×
3×

0 1 2 3 4 5 6

, ,

(∗)

3. A tabu search algorithm

Algorithm BPP-UB is very fast in practice and can be used as the starting point for a metaheuristic
approach. This class of algorithms embed local search and escape local optima by means of different
strategies. In tabu search algorithms (see, Glover and Laguna (1997)), one always moves to the
best solution in the neighborhood of the current solution, possibly accepting worsening moves. To
prevent cycling, a tabu list is used that stores some features of recently visited solutions and forbids,
for some iterations, the algorithm to return to solutions with these features again. We developed a
tabu search algorithm for the BPPMCF, denoted as TS, in which each solution is represented as a
partition of the items into bins and a neighborhood is defined by means of the following moves:

• Single transfer: We move an item i from bin b to another bin b̄.

• Super transfer: We move all items of the same color c from a bin b to another bin b̄, provided
at least two items of color c are packed in bin b.

• Single swap: We swap an item i with an item ī > i that is packed in a different bin. We do
not consider swaps between identical items.

• Super swap: We swap all items of the same color c from a bin b with all items of the same
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color c̄ from another bin b̄ > b. We do not allow for swaps involving complete bins or less
than 3 items.

While transfer moves involve one color at a time, swap moves may involve two different colors.
Thus, moves of the former (resp. latter) type can potentially increase or decrease the solution
value by 1 (resp. 2) unit(s). Our tabu search algorithm performs a number of iterations defining
a (current) solution at each iteration. Whenever the current solution includes an empty bin, a
random super transfer is executed. Otherwise, all moves that can be derived from the current
solution are evaluated and the move leading to the best solution in terms of color fragmentation is
selected. Under the tabu search paradigm, when the current solution is a local optimum, a possibly
worsening solution is selected to allow the algorithm to continue the search without getting stuck.
Ties are broken by considering a secondary goal based on color concentration, a figure defined for
each color and bin which measures the total weight of the items of that color in that bin. Intuitively,
when most of the weight of a color is concentrated in a bin (i.e., when a bin allocates a large fraction
of the overall weight of items of that color) and only a small weight of that color is packed into
another bin, it will be easier later on to fully get rid of that color in the latter bin. More precisely,
given a color c and a bin b, let l(c, b) denote the total weight of items of color c in bin b. Now
assume that a move involving bins b and b̄ is executed and let l′(·, ·) be the counterpart of l(·, ·) in
the resulting solution. Then, we can compute the relative variation of color concentration for color
c with respect to bins b and b̄ as

δ(c) =
|l′(c, b)− l′(c, b̄)| − |l(c, b)− l(c, b̄)|

W
. (13)

Subsequently, moves involving a single color, say c, are ranked according to non-increasing values
of δ(c), whereas moves involving two colors, c and c̄, are ranked according to δ(c) + δ(c̄).

To prevent cycling, we make use of a tabu rule forbidding an item to re-enter a bin that it had
left in the previous τ iterations, where τ is the tabu tenure. Items identical to item i (i.e., having
the same c and w) also cannot be moved to bin b. In case of a super swap or super transfer, we
randomly select only one of the items affected by the move and store it in the tabu list. Aspiration
criteria allow to perform a tabu move if it leads to a solution improving the incumbent.

The algorithm includes a diversification scheme in which loss concentration replaces color concen-
tration. Loss concentration is based on the observation that when one bin has a large residual
capacity (loss space), then more moves involving that bin are likely to yield a feasible packing, thus
increasing the probability to decrease the solution value later in the algorithm. Loss concentration
can be computed according to equation (13) by replacing the weight of color c with the empty space
in the bin. In our algorithm, we execute diversification after a certain number, say ND, of iterations
with no updating of the incumbent. Color concentration is restored as soon as a new incumbent is
found or after ND iterations of diversification.

Finally, the algorithm includes a reset option that can be used when all non-tabu moves are worsen-
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ing. In this case, we erase the tabu list and apply diversification. The reset option is available only
once, and is restored each time the incumbent solution is updated.

The algorithm terminates after NT iterations with no improvements (where NT is an input para-
meter), if the value of the incumbent solution equals lower bound L∗, or if all moves are tabu.

Example 1. (resumed) Consider the previously introduced BPPMCF instance and the first solution
found by BPP-UB presented in Figure 4, and assume that this solution is used as a starting point for
TS. In Figure 5, we depict how algorithm TS improves this initial solution to an (optimal) solution
in 4 iterations, reducing color fragmentation from 8 to 5. In the first iteration, we perform a super
swap of the light gray item from bin 2 with the two medium gray items from bin 4, thus reducing color
fragmentation by 1 unit. In the second iteration, we perform a single swap of the light gray item of
weight 1 from bin 1 with the dark gray item from bin 4. This does not change color fragmentation,
but it does improve the secondary score by 1/3. In the third iteration, we perform a single swap of
the dark gray item from bin 1 with the medium gray item from bin 3, reducing color fragmentation
by 1 unit. Note that this move was chosen rather than the single transfer of the dark gray item from
bin 2 to bin 1. While both moves reduce color fragmentation by 1 unit, the selected one improves the
secondary score by 2/3 whereas the latter improves the secondary score by only 1/3. Finally, in the
fourth iteration we execute a single transfer of the dark gray item from bin 2 to bin 3, which further
reduces color fragmentation by 1, thus yielding a solution with value 5.

Figure 5: TS applied to Example 1.

4. Computational experiments

In this section, we computationally evaluate the performance of the proposed methods on different
benchmarks of instances.

The algorithms of the previous sections were implemented in C++ and can be downloaded from
https://github.com/MathijsBarkel/BPPMCF. All experiments were run on an Intel(R) Core(TM)
i7-6900K, 3.20GHz with 64GB of memory and performed in single thread with a time limit equal
to 1800 seconds. ILP models were solved by means of Gurobi 10.0.1 in its default setting. The
only exception arises for flow formulations, where the continuous relaxation at the root node of the
branch-and-bound tree was solved by means of the barrier algorithm. This is consistent with the
observation in Brandão and Pedroso (2016) that “the use of interior-point methods at the root node
considerably improves the time for solving the linear relaxation, compared to using the simplex
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algorithm”. This behavior was confirmed in other experiments (see Delorme and Iori 2020) and in
preliminary tests on our algorithms.

4.1. Instances from the literature
We first consider the four data sets (D1, D2, D3 and D4) that were proposed by Mehrani et al.
(2022)1. In Table 1 we summarize the main features of each data set, namely, the number of
instances inst and averages of the following features: number of bins B, number of colors C, number
of items I, and bin capacity W . Finally, column %B gives the average percentage of the number of
available bins that are needed for packing all items in I.

Table 1: Average instance features per data set.

inst B C I W %B

D1 120 85.0 54.6 236.2 10 85.5
D2 50 215.9 3.0 434.0 150 80.7
D3 60 12.5 6.0 177.1 100 88.3
D4 180 75.0 5.0 364.7 450 97.4

The table shows that this benchmark includes instances with very different characteristics. Instances
in class D1 are characterized by a very large number of colors, whereas instances in class D3 require
to pack many items per bin (this figure being roughly expressed by I/B). Finally, we observe that
instances in class D2 have a large number of available bins that are not strictly necessary for a
feasible packing, whereas almost all bins are required for a feasible solution in the instances in class
D4.

In Table 2 we present the results of BPP-LB. In our implementation we solve BPP subproblems by
means of the Gurobi MIP solver applied to the arcflow model, enhanced as discussed in Delorme and
Iori (2020), where possible. For comparison purposes, we also present the results of the methods IP2,
RM2-GIFF and EM proposed by Mehrani et al. (2022). We used the codes available at the authors’
Github page https://github.com/saharnazmehrani/BPPMCF-IJOC, and run them on our machine.
For each algorithm, we give the number of instances solved to proven optimality (opt), the number
of instances for which a feasible solution was found (feas), and the average computing time over all
instances (t). For algorithm BPP-LB we do not distinguish between feasible and optimal solutions,
as whenever the algorithm computes a feasible solution it also proves its optimality. The best values
of opt in each line are marked in bold.

Although BPP-LB has no guarantee of returning a feasible solution with value matching the lower
bound L∗, even in case such a solution exists, we observe that this is the case for all instances in

1These instances were taken from https://github.com/saharnazmehrani/BPPMCF-IJOC. However, there are 20
instances for which Mehrani et al. (2022) did present results, but not the instances themselves. It concerns instance
sets “10-100-2” and “15-100-2” of data set 3. We did not consider these instances.
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Table 2: Results of exact methods from the literature and BPP-LB on the original instances.

IP2 RM2-GIFF EM BPP-LB

inst opt feas t opt feas t opt feas t opt/feas t

D1 120 120 120 2.8 120 120 0.4 77 109 865.7 120 0.2
D2 50 6 50 1591.6 50 50 10.8 37 41 801.5 50 1.0
D3 60 60 60 0.0 60 60 169.6 36 50 757.0 60 0.2
D4 180 95 180 1065.5 53 120 1545.9 155 176 276.0 180 7.7

All 410 281 410 662.7 283 350 704.9 305 376 583.1 410 3.6

this benchmark set. The computational effort required by BPP-LB is extremely limited, the average
computing time being equal to 3.6 seconds on average, thereby significantly outperforming the exact
methods proposed by Mehrani et al. (2022). The largest computing times appear for instances of
data set D4, that are characterized by large bin capacity and are therefore more time-consuming
for solution approaches based on a flow formulation. Finally, despite IP2 being able to compute a
feasible solution for each instance, there are still 6 instances (all from data set D4) that none of the
three methods by Mehrani et al. (2022) solves to proven optimality. Actually, these instances as
well are solved by BPP-LB.

As BPP-LB already solves all instances of these data sets within a few seconds, we need more
challenging instances for evaluating the performances of our more sophisticated algorithms. A new
benchmark of hard instances will be introduced in the next section.

4.2. New harder instances
The previous section shows that the instances from the literature are easy as the number of bins that
is actually required for packing all items is relatively small compared with the number of available
bins, i.e., there is room to avoid color fragmentation. Therefore, in order to obtain harder instances,
we modify each one of the original instances by setting B equal to the minimum number of required
bins to pack all items. The resulting data sets are denoted by D1∗, D2∗, D3∗ and D4∗. These new
instances are relevant also from a practical point of view, as they can arise in applications where
the goal is to minimize color fragmentation subject to the constraint that the number of bins is
minimized.

In addition, we introduce a further data set D5∗, consisting of 80 instances obtained by adding
colors to the “triplet” instances proposed by Falkenauer (1996) for the BPP. These instances have
the property that any optimal packing requires 3 items per bin for which the weights sum up
to exactly W . Starting from an optimal solution to an original triplet instance for the BPP, we
construct a corresponding BPPMCF instance with C = 3, where we assign to each items of a triplet
a different color, and we set the number of available bins to I/3. These instances can be downloaded
from https://github.com/MathijsBarkel/BPPMCF.

In order to evaluate the hardness of the new benchmark with exact methods from the literature,
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we tested the same algorithms considered in Table 2, namely methods IP2, RM2-GIFF and EM, and
BPP-LB. Results are reported in Table 3, and confirm that these new instances are more challenging
than their original counterparts. On these instances, RM2-GIFF is the best exact method, though it
is able to compute a feasible solution in 335 cases only out of 490 and a provably optimal solution
in only around 60% of the instances (293 out of 490). Also the performance of BPP-LB is less
satisfactory than for the original instances: this method is now able to solve only 188 cases, i.e.,
38.4% of the instances (45.9% when ignoring D5∗, compared to 100% on the original instances).
Nevertheless, BPP-LB is the most effective method for class D4∗, for which it finds 105 feasible and
optimal solutions out of 180 instances; this is coherent with the observation that the instances in
this data set are not so different with respect to their original counterparts in terms of number of
available bins. At the same time, bad performance on instances of data set D5∗ may be expected
by construction of those instances, where grouping items by colors does not preserve triplets and
is very unlikely to result in a feasible solution. To evaluate the quality of lower bound L∗ returned
by BPP-LB, we computed its average performance ratio L∗/z, where z denotes the optimal solution
value. This was possible only for instances in data sets D1∗, D3∗ and D5∗, that are all solved to
optimality by at least one solution method. The resulting values are 0.92, 0.98 and 0.59, confirming
that instances in class D5∗ are by far the most challenging ones for this solution approach. In
addition, we point out that, for 5 instances in data set D2∗ and 75 instances in data set D4∗, the
optimal solution value is still unknown. Finally, there are 45 instances, all from data set D4∗, for
which no method is able to even compute a feasible solution. Summarizing, the results clearly
show the computational hardness of the instances of the new benchmark, motivating the need for
alternative approaches, at least for deriving a feasible solution.

Table 3: Results of exact methods from the literature and BPP-LB on the new instances.

IP2 RM2-GIFF EM BPP-LB

inst opt feas t opt feas t opt feas t opt&feas t

D1∗ 120 0 120 1800.0 120 120 0.9 0 29 1800.0 0 0.2
D2∗ 50 1 5 1769.5 45 50 397.3 14 26 1432.2 36 1.0
D3∗ 60 60 60 38.4 39 59 802.7 2 8 1740.0 47 0.2
D4∗ 180 0 8 1800.0 9 26 1766.1 23 85 1588.0 105 7.6
D5∗ 80 0 1 1800.0 80 80 25.1 19 32 1518.1 0 10.7

All 490 61 194 1581.2 293 335 791.9 58 180 1631.2 188 4.7

In Table 4 we present summarized results of the performance of the heuristic methods BPP-UB and
TS on all five new data sets. In the former algorithm, BPP subproblems are solved by means of the
standard arcflow formulation, and the second stage (flow decomposition) is executed Θ = 100 times.
As to the latter algorithm, preliminary experiments suggested to set the tabu tenure τ = 50, the
maximum number of non-improving iterations before diversification ND = 40, and the maximum
number of non-improving iterations before termination NT = 5000. A detailed discussion on the
sensitivity of the algorithm with respect to these parameters is given in Section 4.3.
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Both algorithms are always able to compute a feasible solution, which is why we do not explicitly
report the number of feasible solutions. For a heuristic solution with value U , we compute the
optimality gap with respect to a lower bound (say) L as 100U−L

L . The table reports, for each
method, the average value of the percentage gap with respect to the best known lower bound (either
L∗ or the best lower bound returned by any of the exact methods, column gapbest), the number of
instances for which the solution value matches the best known lower bound (column optbest), and
the average computing time (column t). In addition, we report into brackets the number of optimal
solutions that would be found in case the algorithms were executed right after BPP-LB.

Table 4: Results of heuristic methods on the new instances.

BPP-UB TS

inst gapbest optbest t gapbest optbest t

D1∗ 120 40.8 0 (0) 0.0 0.5 85 (85) 64.1
D2∗ 50 38.9 0 (36) 0.3 1.3 21 (37) 14.0
D3∗ 60 93.2 0 (47) 0.1 0.1 59 (60) 0.5
D4∗ 180 123.9 0 (105) 11.2 5.6 98 (105) 17.4
D5∗ 80 15.2 8 (8) 0.9 13.7 8 (8) 3.5

All 490 73.4 8 (196) 4.3 4.6 271 (295) 24.2

Even though BPP-UB always finds a feasible solution for a given instance (if one exists), the results
show that these solutions are typically weak, as shown by the associated percentage gap of 73.4%
with respect to the best known lower bound. In addition, BPP-UB never finds a solution matching the
best known LB for the instances in data sets D1∗, D2∗, D3∗ and D4∗, and only 8 optimal solutions
are found for those in data set D5∗. On the other hand, algorithm TS finds considerably better
solutions, whose associated percentage gap is reduced to 4.6%. For more than 55% of the instances,
a solution is found whose value matches the best known lower bound, showing the effectiveness of
the tabu search approach in improving over the solution provided by BPP-UB.

By combining TS with BPP-LB, one would compute an optimal solution for a large number of
instances (more than 60% of the entire benchmark), the most notable exception being data set D5∗.
For these instances, even though the initial solution is quite good, it is rarely improved by TS; this
happens because in these instances all feasible solutions have a very strong structure which limits
the possibility of swap moves and makes transfer moves inapplicable.

Finally, we observe that, for all data sets, the average computing time of TS is typically less than a
minute, and is below 30 seconds on the entire benchmark.

4.3. TS parameters

We now discuss the sensitivity of algorithm TS with respect to its main parameters τ , ND and NT .
To this aim, we show the performance of the algorithm while modifying one of the parameters at a
time with respect to the default values (equal to 50, 40 and 5000, respectively). In our analysis, we
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always report the average percentage gap (gapbest), the number of optimal solutions (optbest) (both
figures being computed with respect to the best known lower bound for a given instance), and the
average computing time (t).

In Table 5 we examine the results obtained with different values of the tabu tenure, namely τ =

25, 50, 75.

Table 5: Sensitivity of TS with respect to the tabu tenure τ .

τ = 25 τ = 50 τ = 75

inst gapbest optbest t gapbest optbest t gapbest optbest t

D1∗ 120 0.6 78 68.0 0.5 85 64.1 0.6 71 63.6
D2∗ 50 2.2 14 13.4 1.3 21 14.0 1.0 25 13.4
D3∗ 60 0.0 60 0.5 0.1 59 0.5 0.0 60 0.5
D4∗ 180 3.8 98 19.8 5.6 98 17.4 7.4 99 16.7
D5∗ 80 13.6 8 4.1 13.7 8 3.5 13.7 8 2.2

All 490 4.0 258 26.0 4.6 271 24.2 5.2 263 23.5

These results show that τ = 50 results in the largest number of optimal solutions, and a smaller
average gap than τ = 75. However, τ = 25 results in a smaller average gap than τ = 50, especially
on D4∗, meaning that there is a trade-off between the number of optimal solutions and the average
gap.

In Table 6 we compare TS for different values of the number of non-improving iterations before
diversification, namely ND = 20, 40, 60. In addition, in the final columns we present the results of
TS without the diversification feature.

Table 6: Sensitivity of TS with respect to the diversification parameter ND.

ND = 20 ND = 40 ND = 60 No diversification
inst gapbest optbest t gapbest optbest t gapbest optbest t gapbest optbest t

D1∗ 120 0.5 79 66.3 0.5 85 64.1 0.5 77 63.1 0.6 79 66.6
D2∗ 50 1.4 22 15.1 1.3 21 14.0 1.7 18 13.4 2.9 15 11.1
D3∗ 60 0.0 60 0.5 0.1 59 0.5 0.0 60 0.5 0.2 58 0.5
D4∗ 180 5.7 98 17.5 5.6 98 17.4 5.8 99 17.1 4.7 93 18.8
D5∗ 80 13.7 8 3.5 13.7 8 3.5 13.7 8 3.5 13.6 8 3.5

All 490 4.6 267 24.8 4.6 271 24.2 4.7 262 23.7 4.4 253 25.0

This table indicates that ND = 40 results in a larger number of optimal solutions and a lower
average gap than ND = 20 and ND = 60. Moreover, using diversification with ND = 40 is clearly
better than not using any diversification, resulting in significantly more optimal solutions while only
having a slightly larger average gap.
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Finally, Table 7 gives the results of TS for different values of the number of non-improving iterations
before termination, namely NT = 2500, 5000, 7500.

Table 7: Sensitivity of TS with respect to the termination parameter NT .

NT = 2500 NT = 5000 NT = 7500

inst gapbest optbest t gapbest optbest t gapbest optbest t

D1∗ 120 0.6 73 37.4 0.5 85 64.1 0.4 88 88.6
D2∗ 50 1.7 19 8.6 1.3 21 14.0 1.3 21 18.0
D3∗ 60 0.1 59 0.3 0.1 59 0.5 0.0 60 0.7
D4∗ 180 6.5 97 14.6 5.6 98 17.4 5.5 98 19.6
D5∗ 80 13.7 8 2.2 13.7 8 3.5 13.7 8 4.8

All 490 4.9 256 15.8 4.6 271 24.2 4.5 275 31.6

As expected, the results show that increasing NT results in a smaller average gap and in a larger
number of optimal solutions, but also in a larger average computing time. Note that the improve-
ment from NT = 2500 to NT = 5000 is more relevant than the improvement from NT = 5000 to
NT = 7500.

5. Conclusions

Given a set of items with a weight and a color and a finite set of identical bins, we considered the
problem of packing all items in the available bins while minimizing the total number of times that
colors appear in the bins. The close relation of this problem with the well-known bin packing problem
inspired the design of fast lower and upper bounding procedures. We analyzed the performances
of these methods both from a theoretical and from a computational perspective. Experiments on
a large set of instances from the literature have been carried out to evaluate the performance of
these methods, showing that they are able to solve to proven optimality all instances in a very
short time. We thus introduced a set of more challenging instances and developed a metaheuristic
algorithm based on the tabu search paradigm to solve them. This second set of experiments showed
that the algorithm has good performance, considerably improving, within a limited computational
effort, an initial solution provided by the fast bounding procedure. Nevertheless, some of the new
instances remain unsolved, which we hope would stimulate further research on exact methods for
the problem.
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