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ABsTrRACT. We prove that the Douglas-Rachford splitting method converges,
almost surely, to local minimizers of semialgebraic weakly convex optimization
problems, under the assumption of the strict saddle property. The approach
consists of two steps: first, we prove a manifold identification result, and local
smoothness of the involved iteration operator. Then, we proceed to show
that strict saddle points are unstable fixed points of such operator, and thus
the dynamics escape critical points of negative curvature. In this manner,
Douglas-Ranchford splitting joins the family of simple algorithms that avoid
saddle points, such as some first-order and proximal-type methods, including
a close relative, the forward-backward splitting method.
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1. INTRODUCTION AND MOTIVATION

This work considers the following composite optimization problem
(1) min ¢(z) = f(z) + g(2),
rzeR4

where f,g : RY — R U {400} are two functions, not necessarily convex. Prob-
lems with this type of structure appear in several applications in statistics, signal
processing, and machine learning [Pen+16; PB+14; Boy+11].

One of the most common algorithms to solve problem (1) is the proximal point
algorithm [Mar70; Roc76], see Section 3.2. In this context, applying this method
amounts to compute a backward step to the sum f + g, in general an untractable
operation. Splitting methods decompose the problem into simpler subproblems,
circumventing the aforementioned difficulty. For problem (1), it means two sepa-
rate subproblems are solved, one for each component function. Depending on the
properties of the functions, the subproblems can be of proximal /backward type or
of gradient/forward type.
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We focus on the splitting method known as Douglas-Rachford (DR). Starting
from 2° € R? and given )\ € (0,2), one iteration of the relaxed DR splitting method
reads

a¥ = prox, (2"
(2) y* = prox, (22 — 2F)
L= 2k A(@k —yb),

where prox denotes the proximal operator of a function, defined in (5) below.

In the convex case, the classical DR splitting method in (2) is known to converge
to minimizers of (1). More specifically, for A = 1, and f and g proper lsc convex
functions, such that (1) has a nonempty solution set, and under a regularity as-
sumption, the sequence {z*} converges to some z, and {z*} converges to some Z
that solves (1), such that = prox, ;(Z) [Eck89, Theorem 3.15, Proposition 3.40].
In this setting, the convergence analysis fits into the framework of splitting methods
for the sum of two maximal monotone operators [LM79], since the subdifferentials
df and dg are both maximal monotone. These results can be extended to finding
a zero of the sum of two maximal monotone operators, see, for instance, [BC11,
Theorem 25.6].

Customary arguments rely on the fact that the sequence {z*} in (2) is Fé-
jer monotone with respect to the set of fixed points of the operator (2prox,, —
I)(2prox., ;—1), since {2*} conforms a Krasnosel’skii-Mann iteration scheme [BC11,
Theorem 5.14]. Hence, for any fixed point Z of (2prox., — I')(2prox, ; — I), the se-
quence {||z* —Z||} is a nonincreasing sequence. As a result, the DR splitting method
may not define a descent method in the usual sense, that is, it does not necessarily
provide descent for the objective function ¢.

For nonconvex problems, the subdifferentials of the involved functions are not
necessarily maximal monotone, and thus the same line of reasoning cannot be em-
ployed. Instead, in [PSB14; TP20], a merit function is utilized to guide the con-
vergence analysis. The advantage of this perspective is that such merit function
is nonincreasing throughout the path defined by {z*}, and thus the DR splitting
method can be viewed as a method of descent for the merit function, even in non-
convex settings.

Depending on the assumptions for (1), the cluster points of the generated se-
quences may not solve the problem in the usual sense. In general, the expected
behavior is that the sequences cluster at critical points. For convex problems, the
limit of the sequence {z*} converges to a minimizer, since any critical point of a
convex function is a global minimizer. It goes without saying that the condition
Vp(z) =0 or 0 € dp(z) for nonconvex problems is no longer sufficient for global
minimizers. Recent works have shown that more can be said under appropriate and
rather generic assumptions. In the nonconvex smooth case, first-order methods for
minimization of C? functions avoid critical points with negative curvature when
randomly initialized [Lee+16; PP16]. For classical proximal splitting methods, this
is also analyzed in the smooth case in [LY19].

In several modern applications, nonsmoothness rarely appears in an unstruc-
tured manner. This is further confirmed with the fact that numerical experiments
show different types of methods in nonconvex optimization find critical points with
function values not too far from a global minimum. This behavior suggests that
classical methods are able to exploit the structure of the problem to produce critical
points of good quality.
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For nonsmooth nonconvex functions, as long as the problem satisfies the strict
saddle property (cf. Section 5.4), some proximal-type methods provably converge
to local minimizers almost surely [DD22], namely, the proximal point, the forward-
backward (FB) splitting (see (10)) and the prox-linear methods. The key part of the
analysis is to interpret these algorithms as a fixed-point iteration of a well-behaved
operator, in such a way that fixed points of such operator are critical points of the
associated problem. Moreover, strict saddle points corresponds to unstable fixed
points of the operator, and thus a corollary of the Center-Stable manifold theorem
yields the desired conclusion. In this work, we use the same type of arguments to
address the same issue for the DR splitting method.

This paper is organized as follows. Section 2 starts defining the variational anal-
ysis concepts we use in relation to weak convexity, and the setting for smoothness
of nonconvex value functions. We continue in Section 3 with proximal-type split-
ting methods, and define the respective envelopes inspired by their proximal point
counterpart, the Moreau envelope. We study convergence properties of the FB and
DR methods in Section 4 for nonconvex optimization problems. In particular, we
establish that the corresponding generated sequences cluster in critical points of
the original problem. The question of how to guarantee avoidance of saddle points,
in particular for the DR splitting method, is addressed in Section 5, by resorting
to the line of reasoning of [DD22].

2. BACKGROUND MATERIAL

A function h : R? — RU{+oo0} is called proper when its domain is nonempty, that
is, dom(h) := {x € R%: h(x) < +o0} # 0, and h is said to be lower semicontinuous
(Isc) at & whenever h(Z) < liminf, ,z h(z), and Isc (on R?) if it is Isc at every Z.
We say that the function A is level-bounded if it has bounded level sets, that is, if
for any o € R, the set {z € R?: h(x) < a} is bounded.

A function h is locally Lipschitz continuous, if for all Z € dom(h), there exists
a neighborhood U of Z, and a constant L = L(U) > 0, such that for all z,y € U,
|h(z) — h(y)| < L||z — y||. By extension, we say h is (globally) Lipschitz continuous
if the last estimate holds for any x,y € R?, with a uniform constant L > 0 over the
whole space.

Given a map T : R? — R%, we say T is a lipeomorphism if T itself is globally
Lipschitz continuous, and its inverse 7! exists and is globally Lipschitz continuous
as well. A point Z is a fixed point of the operator T if z = T'(z). If T is a C'-
smooth map around some fixed point zZ, we say Z is an unstable fixed point of T is
the Jacobian VT'(Z) of T' at z has at least one eigenvalue with magnitude strictly
greater than one.

For nonconvex problems, the notion of global minimizer may be too strong. We
say Z is a local minimizer of h if there exists a neighborhood U of Z, such that for
all z € U, h(z) < h(z). Frequently used algorithms in nonconvex optimization can
guarantee (sub)sequential convergence of the generated iterates to critical points,
an even weaker notion. In order to define critical points, we need to first introduce
the notion of subdifferential.

2.1. Subdifferentials and weak convexity. For a proper Isc function h : R? —
RU{+o0}, the Fréchet subdifferential and the limiting subdifferential can be defined
as in [RWO09, Definition 8.3|. For a locally Lipschitz function h : R — R U {+o00}
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at z, the Clarke subdifferential of h at T is defined as

oh(z) = co{ lim Vh(z*) : 2% — z,and Vh(z") exists} ,

k—+oo

where €0 denotes the closed convex hull. Due to Rademacher’s theorem, Oh is
well-defined.

We say € R? is a critical point of h if 0 € Oh(z), and h = h(z) is the
corresponding critical value. For problems in composite form (1), Z is a critical
point if 0 € 9f(Z) + dg(Z). Observe that, in particular, any local minimizer is a
critical point, but the converse does not necessarily hold.

When h is convex, all these three notions of subdifferential coincide with the
subdifferential of convex analysis:

Oh(z) = {s € RY: h(x) > h(z) + (s,x — &) for all x}.

However, in general, different types of subdifferential at any  may not agree.
For a bening form of nonconvexity (using the parlance adopted in [Wri20]), it is
possible to prove that the above nonconvex subdifferential notions coincide. This
is the case of the family of weakly convex functions. We say a function h : R? —
RU{+o0} is p—weakly convex, for p > 0, if h+ £|| - || is a convex function. In this
case, all the three nonconvex subdifferentials above are equal [Cla90, Proposition
2.1.5(d)], [Kru03, Proposition 1.40], and also coincide with the notion of proximal
subdifferential [RW09, Definition 8.45]. This relationship provides an alternative
characterization of weak convexity: h is p—weakly convex, if and only if, for any
x,z € dom(h), whenever s € Oh(z),

h(z) + g”:z: 22> h(2) + (s, — 2).

2.2. Smoothness of value functions. Under some regularity assumptions on
problem (1), the problems in (11) and (17) and the respective iterations maps are
sufficiently smooth locally, thus enabling the use of arguments and techniques of
smooth optimization. First, we formulate a problem defining a value function in an
abstract manner, and study differentiability properties in that framework. Based
on [DD22|, we construct the setting of smooth minimization on manifolds, suited
for parametric merit functions such as the ones in (11) and (17).

We say that a set M C R? is a C?—smooth manifold around € M [DD22,
Definition 2.2|, if there exist an open neighborhood U of z, and a C? function G
defined on RY, such that VG(z) has full rank, and M NU = {z € R? : G(x) = 0}.
Intuitively, such M can be locally described around Z as the solution of smooth
equations with linearly independent gradients at Z. The system of equations G = 0
is called the local defining equations for M around Z, and Ty (Z) = ker(VG(Z))
denotes the tangent space to M at .

Consider a C? map ¢ : R? x R — R, and a C?—smooth manifold M around
with defining equations G = 0. For any = € R, define the value function

(3) ®(z) = inf{p(z,y) : y € M},
and the Lagrangian associated with the constraint y € M:
(4) L(z,y,\) = ¢(z,y) + (G(y),A),

for a multiplier vector \. Given 7, if § denotes a minimizer of ¢(z,-) over M, then
there exists A such that V,£(Z,7,A) = 0. When ¢ is sufficiently smooth, the value
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function ® and the solution map inherit some differentiability properties, as the
following result shows. This statement summarizes [DD22, Theorem 2.3 & Lemma
2.4], that we later use in Section

Proposition 1 (Local smoothness of solution maps and envelopes). Consider a
proper lsc function ¢ : R4 x R4 — R U {+oc}, and a point = € RY. Suppose
that for all x in a neighborhood of T, ¢(x,-) is an a—strongly convex function, for
some a > 0, such that its (unique) minimizer y(z) defines a continuous function
y:R* — Re. Then, for all x near Z,

(1) y(x) is a strong global minimizer of ¢(x,-).
(2) There exists a neighborhood V' of T, such that for all m > ¢(Z,y(Z)), the
following set is bounded:

J{geRrR?: ¢(z,9) <m}.

zeV

If, in addition, ¢ is a C? function, and M is a C*—smooth manifold around § =
y(Z) with local defining equations G = 0, the following hold for the value function
and Lagrangian defined in (3)-(1), respectively, and the (partial) Hessian matrices:

HII :vix£(77g75‘)7 H:I:y :viyﬁ(ia?%;‘)a Hyy = v§y£(77g75‘)
(3) The function y is locally C* around %, such that

Vy(z)h = argmin{2(H,yu, h) + (Hy,u, u)}
u€TA(F)

(4) The function ® is C? around z, such that V®(z) = V,¢(Z,9), and

(V20(8)h, h) = (Huwhyh) + min {2(Hayu, h) + (Hyyu, )}
w€TrMm (7)

We end this section by introducing the concept of active manifold, related to
the identification results in Section , and the saddle point avoidance property
analyzed in Section

Let h : R = RU {400} be a proper lIsc p—weakly convex function, z € R¢ a
critical point of h, and a set M > Z. The set M is called an active C?>—smooth
manifold around Z [DD22, Definition 2.6], if there exists a neighborhood U of Z,
such that the following two properties hold.

(1) Smoothness: M NU is a C?—smooth manifold around Z, such that h is a
C? function on M NU.
(2) Sharpness: inf{||s|| : s € Oh(x), x € U\ M} > 0.

The sharpness condition essentially states that normal to the manifold, the func-
tion cannot be flat, that is, the norm of subgradients at points outside M are
bounded away from 0.

3. PROXIMAL MAPS AND ENVELOPES FOR PROX-TYPE METHODS

We next define the cornerstone of the DR method, the proximal operator. We
also define a merit function tailored for the DR method, resembling the so-called
Moreau envelope.
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3.1. Proximal operator and Moreau envelope. Given a point z € R? and
a proper function h : R — R U {+oc0}, the proximal opetator of h at z with
prox-parameter v > 0 is defined as

1
(5) prox.;(z) = arg min {h(a:) + —|lz— z||2} .
z€R4 2’7
The optimal value of this minimization problem defines the Moreau envelope e h(z)
of h at z with prox-parameter v > 0:

(6) e h(z) = inf {h(m) + %Hx _ z||2} .

z€ERC

Both expressions in (5) and (6) are well-defined whenever h is u—prox-bounded,
that is, when h+ (2u) 7! - ||? is bounded from below. Examples of functions in the
prox-bounded family are convex and weakly convex functions.

When h is p—weakly convex, the Moreau envelope and the proximal map have
remarkable continuity properties. More specifically, for any v € (0, p_l)7 ProX. is
Lipschitz continuous with constant p/(p — ) [RW09, Proposition 12.19], and e,
is differentiable with gradient given by

(7) Veyn(z) = %(z - proxwh(z)),

in such a way that Ve., is Lipschitz continuous with constant max{p(1—py)~1, v}
[HLO, Corollary 3.4]. In this fashion, e, can be seen as a continuously differen-
tiable smoothing of h. In the convex case, the Moreau envelope is also known as
the Moreau-Yosida regularization [HL13, Ch. XI, Example 3.4.4].

3.2. Proximal point algorithm. The proximal operator defines the fixed-point
iteration known as proximal point algorithm (PPA). For a p—weakly convex func-
tion h : RY — RU {+oc}, consider the problem

8 min h(x).

( ) z€R4 ( )

For v € (0, p~ 1), a sequence {z*} is generated by the PPA if

PR proxyh(zk).

When h is convex with a nonempty set of minimizers, for any v > 0, {z*} converges
to a solution to (8) [Roc76, Theorem 1]. When h is p—weakly convex and v €
(0,p71), {z*} subsequentially converges to a critical point of h, that is, all cluster
points of {z¥} are critical points of h [HLO, Proposition 5.1]. Due to this last result,
the authors of this last article use smoothness of the Moreau envelope to reinterpret
the PPA. In view of (7), the proximal point iteration scheme can be reformulated
as

(9) K =2k Ve (%),

Thus, the PPA applied to h corresponds to the gradient descent method for the
Moreau envelope e, with fixed stepsize . In this way, classical convergence results
can be retrieved through this point of view, see [HL96, Ch. XV, Sec. 4.2] and
[Drul7] for more details. When h is convex, one notable property of the Moreau
envelope e, h is that it preserves the minimizers (if any) of h and the fixed-points
of prox,,, [HL96, Ch. XV, Theorem 4.1.7]:

T minimizes h <= 7 minimizes e.;, <= prox,,(T) =Z.
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Furthermore, in this case, inf h = inf e,;. This last property also holds when b is
p—weakly convex and v € (0,p~!). In order to guarantee that the cluster points
of the generated sequence are local minimizers of problem (8), we need further
assumptions, as discussed in Section

3.3. Proximal splitting methods. For composite problems in the form of (1),
splitting methods of proximal type exploit the special structure of the objective
function by performing separate gradient or proximal steps, one for each component.
In this work, we will discuss two of these methods: the FB splitting method, also
known as proximal-gradient method, and the DR splitting method. Naturally, these
methods inherit some of the properties discussed for the proximal point algorithm.
We first start discussing the FB method.

3.3.1. Forward-backward splitting method. . The FB method is a simple and direct
extension of the PPA. Assuming that f is differentiable, first a gradient step is
performed for f, and then a proximal step is made for g. More precisely, let
f:R% = R bea C! function with L;—Lipschitz continuous gradient, and g : R —
R U {+oc} is a proper lsc p—weakly convex function. For v € (0,p71), a sequence
{z*} is generated by the FB method if

(10) PLaRE prox. (zF =V f(2H).

Observe that the iterates defined in (10) can be equivalently computed by solving

. 1
nt, {FGH) 4 (V0G0 =5+ gl + ol — 12
yER 2y

The value function associated with this optimization problem defines the forward-
backward envelope (FBE) [TSP18|:

1y @) = nf {f<z> + (V)Y 2) + o) + %ny - z|2} .

The FBE plays an analogous role for the FB method, as the Moreau envelope
for the PPA: the solution map z — proxvg(z — 9V f(2)) is an adaptation of the
proximal map (5), while the FBE is for the Moreau envelope (6), both tailored to
the composite optimization problem (1) and the FB method.

As introduced in [PB13], when f : R? — R is a twice continuously differentiable
function with L;—Lipschitz continuous gradient, and g : R — R U {+oc0} is a
proper lsc convex function, then <p5B is continuously differentiable with explicit
gradient given by [STP17, Theorem 2.6]

(12)  VeEB() =97 (1= 992(2)) (2 = prox,, (= =V (2) ).
FB
5
rem 4.4]. Note that similar to the Moreau envelope, QDEB is a real-valued smoothing
of ¢, although it may fail to be convex.

Under weaker assumptions, namely when g : R? — R U {+oo} is only proper

If v € (0, LJTI)7 then arg min ¢~ = argmin ¢ and inf QDSB = inf ¢ [TSP18, Theo-

Isc p—prox-bounded, then @,I;B is locally Lipschitz, and the relationship between

minimizers and minimal values of cpSB and ¢ holds for v € (0, min{L;l, u}) [TSP18,
Theorem 4.4]. In the latter case, although we may not be able to reformulate (10)
as a gradient-like step using (12) as in (9) for the PPA, there still holds a sufficient
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descent property that is the keystone to prove convergence results of the FB method
in the nonconvex setting [TSP18, Proposition 4.3]:

(13) PR 4 IR k| < FB (R

Similar to the case of the PPA, without further regularity assumptions, conver-
gence guarantees solely involve critical points of ¢. The theory of avoidance of
saddle points for the FB method is discussed in [DD22] and Section

Much of the properties of the FB method and the FBE also hold true for the
DR method, as we next discuss.

3.3.2. Douglas-Rachford splitting method. The DR method in (2) consists of two
consecutive proximal steps, one for each function separately, and then a coordination-
correction step. The sequences {z*} and {y*} represent copies of the same variable
in problem (1), and the third step in (2) is a fixed-point iteration. In this way, we
define the following iteration maps for the DR method. Given z € R%, define

(14) R, (z) = prox,,,(2prox, (z) — 2),

and

(15) Sy(2) = z+ A(R,(2) — prox. (2)).

Hence, the DR scheme in (2) can be rewritten as the following fixed point iteration:
(16) AL =8 (M.

Observe that y = R,(z) defined in (14) is the solution of the following problem,
defining the Douglas-Rachford envelope (DRE) at z:

(17) @PR(2) = nf, {f(:c(z)) +(Vf(2(2),y — x(2)) + g(y) + %Ily - x(Z)IIQ} :
where (z) = prox,;(z). For z = z*, problem (17) is equivalent to the problem
solved when evaluating the second step in (17). Like the FBE, the DRE is an
extension of the Moreau envelope adjusted to problem (21) and the DR method,
and the maps R, and S, extend the proximal operator.

In principle, @?R may not be well-defined in the general case. As shown in
[TP20, Remark 3.1 & Proposition 3.2|, if f is continuously differentiable with
Ly—Lipschitz gradient, g : R? — R U {+o0} is proper and lsc, such that (1) has a
nonempty set of minimizers, for any vy € (0, LJ?I), both f and g are prox-bounded,

and w?R is real-valued and locally Lipschitz continuous. Due to Rademacher’s
theorem, the DRE is almost everywhere differentiable, like the FBE. When, in ad-
dition, f is convex twice continuously differentiable and g proper lsc convex, the
<p7DR is differentiable, with a gradient given by a closed-formula (cf. (29)). Under
weaker assumptions, just as for the FBE, we may not have the interpretation of
DR as a gradient-like step, but we still have a sufficient decrease estimate that ul-
timately yields subsequential convergence of the iterates in the nonconvex setting.
For any v € (0,(2 — A)(2Ls)~!), then for some constant ¢ > 0 depending on \,~y
and Ly, it holds [TP20, Themorem 4.1]:

C
(18) PR 4 Sl — %12 < PR (R,

(I+9Ly)
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Furthermore, regarding boundedness of level sets, in view of [TP20, Theorem
3.4(iii)], ¢ is level-bounded if and only if (p?R is level-bounded. It can be proven

similarly that the same holds for wEB. This property is useful in Proposition
to prove that the sequences generated by the FB and DR splitting methods are
bounded.

Note that both FBE and DRE can be cast, under appropriate assumptions, in
the form of problem (3). Before going in depth into smoothness of these envelopes
and its consequences, in the next section we first review how the FBE and the DRE
are used to analyze convergence of the respective splitting methods in nonconvex
optimization.

4. CONVERGENCE OF SPLITTING METHODS IN NONCONVEX OPTIMIZATION

As mentioned above, most commonly used methods for nonconvex optimization
can guarantee theoretical subsequential convergence to critical points, under appro-
priate assumptions. This corresponds to the first step in the convergence analysis
of such method. In this work, we recall in Section 4.1, the conditions for which the
FB and the DR methods generate sequences whose cluster points are critical points
of problem (1). Then, in Section 4.2, we comment on standard assumptions in the
literature that guarantee global convergence of such sequences to a unique limit. In
particular, we discuss two conditions: a subdifferential-based error-bound and the
Kurdyka-Lojasiewicz (KL) inequality.

4.1. Subsequential convergence. We already stated that for weakly convex func-
tions, the PPA generates a sequence that subsequentially converges to critical points
of the problem at hand, for a sufficiently small prox-parameter. We next analyze the
FB and DR splitting methods along the same lines. First, we state the assumptions
for which we study subsequential convergence.

Assumption 1. Suppose f : R? — R is a continuously differentiable function with
L y— Lipschitz continuous gradient, and g : R? — RU{+o0} is a proper lsc p—weakly
convez function. Moreover, suppose ¢ = f + g has a nonempty set of minimizers,
and is level-bounded.

Note that under Assumption 1, any critical point T of ¢ is characterized by
0 € Vf(z) + 0g(z) [RW09, Exercise 8.8]. This is equivalent to the existence of
5 € 9g(Z) such that 5§ = =V f(Z).

The next result states that the FB and the DR methods subsequentially converge
to critical points of problem (1). In [TP20, Theorem 4.3], the authors analyze the
DR method, and the case of the FB is analogous. In the appendix, a summary of
the proof can be found for completeness.

Proposition 2 (Subsequential convegrence to critical points). Let f : R — R and
g: R4 = RU{+oc0} comply to Assumption 1. Then,
o If {z*} is generated by the FB method (10) and v € (O,min{ijl,p_l}),
then all cluster points of {z*} are critical points for problem (1).
o If {(x*,y*,2%)} is generated by the DR method (2) and v € (0, min{(2 —
A)(2Lg)Y, p71Y), then for all cluster points z of {2*}, Z = prox.;(Z) is a
cluster point of both {x*} and {y*}, and is a critical point for problem (1).
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Remark 1. The authors in [TP20, Theorem 4.3] prove the results of Proposi-
tion 2 for the DR splitting method when g is proz-bounded, a more general case. In
the statement above, we assume that g is weakly convex, because this is the stand-

ing assumption in the following saddle point avoidance results (see Section 5, cf.
[DD22]).

4.2. Global convergence in nonconvex case. Once subsequential convergence
to critical points is established, the next question is under what assumptions the
method globally converges to a unique limit point. Here, we present two closely
related approaches. The first one, examined in [Ate23], needs a subdifferential-
based error bound for ¢, an estimate for the distance from a point to the set of
critical points, and a condition on critical values for close enough critical points.

Assumption 2. Suppose that ¢ satisfies the following conditions.

(1) Error bound: for any @ > inf ¢, there exist £, > 0, such that whenever
p(x) < @, and s € dp(xz) N B(0,9) for some § > 0, it holds
dist(x, (9)~(0)) < 4]s].
(2) Proper separation of isocost surfaces: there exist € > 0, such that whenever
z,5 € (09)71(0), Iz — gll <€, then o(z) = ¢(y).

Classical settings where Assumption 2 holds include strongly convex problems,
the sum of a linear operator and the composition of a strongly convex function with
Lipschitz continuous gradient with a linear operator, and the Fenchel conjugate of
a strongly convex differentiable function with Lipschitz continuous gradient [LT93,
Theorem 2.1].

The second approach corresponds to assuming the Kt inequality holds [ABS13]
around critical points:

Assumption 3. Assume that ¢ satisfies the KL inequality with exponent 6 € [0,1)
at T, that is, there exist constants c,e,n > 0, such that for all x € B(0,e)N[f(Z) <

f<f@)+mnl, ,
dist(0,0 () > e(f(x) — 1(x))".
Define T'(s) = 1f051_9, so that the K¥. inequality with exponent 6 can be refor-
mulated as

dist ((LB(F o gp)(m)) > 1.
From this estimate, we can interpret that the K¥. inequality states that ¢ is sharp
up to a reparametrization via I'.

One standard condition for Assumption 3 to hold is that f and g are semi-
algebraic [BDL07, Theorem 3.1|, or more generally, when they are definable in
o-minimal structures [Bol+07, Theorem 14]. Semialgebraic functions are character-
ized by their graphs being the solution of a finite system of polynomial inequalities.
Furthermore, in view of [LP18, Theorem 4.1], Assumption 2 implies Assumption
with exponent § = 1/2. Another relationship between error bounds and the KL
inequality can be found in [Bol+17, Theorem 5].

The next result is akin to [ABS13; Bol+17; Ate+23; AAS24| and references
therein. The proof of convergence of DR splitting under Assumption 2 can be
found in [Ate23]. The case for FB splitting is similar by resorting to the same type
of arguments. A proof of global convergence of FB under Assumption 3 without
resorting to envelopes can be found in [ABS13, Theorem 5.1], while for the DR
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method the same type of result was obtained in [LP16] using a different type of
merit function.

Theorem 1 (Global convergence of proximal splitting methods). Let f : R? — R
and g : R = RU {+o00} comply to Assumption 1, and either satisfy Assumption
or Assumption 5. Then,
o If {z*} is generated by the FB method (10) and v € (O,min{Lgl,p_l}),
then {z*} converges to a critical point Z of problem (1).
o If {(z%,y*, 2F)} is generated by the DR method (2) and v € (0, min{(2 —
N (2Ls)71, p71Y), then both {a*} and {y*} converge to a critical point T
for problem (1), {z*} converges to z such that T = proz., ¢(Z).

A consequence of Theorem 1 is that, for the DR method, Z = R,(Z). In-
deed, whenever € (0,min{(2—X)(2Ls)~", p~'}), prox,, is a continuous operator.
Therefore, y* = prox.,, (2xk — zk) — prox,,(2z — z) = prox, (2proxw(2) — Z) =
R, (%). Because {z"} and {y*} have the same limit under the assumptions of The-
orem I, then Z = R, (Z).

Since the setting for global convergence to critical points is established, in the
next section we investigate some conditions yielding results of manifold identifica-
tion, which later leads us to the theory of saddle point avoidance.

5. SADDLE POINT AVOIDANCE OF DOUGLAS-RACHFORD SPLITTING METHOD

Throughout this section, we focus our attention on the DR method. The authors
in [DD22] prove analogous results for the FB method. In turn, the latter work
replicates the ideas of the smooth case of [Lee+16; Lee+19] for some first-order
methods. The core of the analysis is to interpret a certain first-order method
as a dynamical system that avoids eventually, almost surely, unstable fixed points.
More precisely, as explained in [DD22], given a locally C''-smooth map 7" : R? — R?
around an unstable fixed point Z in a neighborhood U, if the Jacobian VT'(Z) is
invertible, then the set of initial points from which the dynamics stay close to z

(19) {z €U :T*(z) € U for k > 1} has zero Lebesgue measure.

This is a consequence of the center stable-manifold theorem [Shul3, Theorem IIL.7].

The relationship between this approach and splitting methods is trough en-
velopes. As we discussed in Section , both the FB and DR methods enjoy
properties of first-order methods, even in the nonconvex nonsmooth case, via their
respective envelopes. Therefore, the underlying iteration map associated with such
envelopes supplies the desired interpretation of these methods as dynamical sys-
tems, from which avoidance of saddle points of the original objective function can
be derived.

We follow a two-step argument. First, we establish local smoothness of the
iteration mapping near saddle points of our interest, despite ¢ begin nonsmooth.
Then, we prove that such saddle points are unstable fixed points of the iteration
mapping.

All the results of the upcoming sections assume the following standing condition
for the stepsize :

(20) ve (omn{;f;})
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5.1. Characterization of critical points. In order to follow the reasoning of
[Lee+16; Lee+19] in a nonsmooth nonconvex setting, we first need to characterize
critical points of ¢ in relation to the iteration maps and critical points of the
envelopes, since ultimately both the iteration maps and envelopes are locally smooth
whenever ¢ admits a smooth manifold around critical points. Furthermore, small
neighborhoods of fixed points of the iteration maps are mapped onto such smooth
manifold, a result known as manifold identification [HLO7].

For the FB method, strict saddle points of ¢ correspond to unstable fixed points
of the iteration map z — prox,, (z — WVf(z))7 for sufficiently small v > 0 [DD22,
Theorem 4.1]. Our goal is to prove an analogous result for the DR method.

In the next result, we start by showing that critical points of ¢ correspond to
fixed points of the DR method iteration map S, through a proximal operation.

Proposition 3 (Characterization of critical points I). For any v > 0 satisfying
(20), Z is a critical point of ¢ if and only if there exists z such that T = proz. ;(Z)
and Z is a fized point of S,,.

Proof. For any critical point T of ¢, there exists 5§ € dg(z) such that § = -V f(z).
Define z = Z—~5, then Vf(Z) = —5 = v~ ' (2—2) implies & = prox ;(Z). Therefore,

OEVf(i)—i—@g( )
0~y z—2)+0g9(z
0e~r 1tz - (22—72))
T = prox,yg(Qx —Z)
=R,(z
=9 (*

)
+ 9g()

rries

N
S —

O

In order to relate critical points of the envelope <p7DR with the results of Propo-

sition 3, we would need to characterize the (Clarke) subdifferential of @?R, a task
that can be considered cumbersome. Instead, here we exploit local smoothness of
the problem under mild regularity assumptions to deduce smoothness of the en-
velopes, and thus reducing the subdifferential of ¢ DR ¢4 a singleton. One of the
fundamental properties yielding local smoothness of these operators is manifold
identification, a concept discussed in the following.

5.2. Manifold identification. In modern applications, nonsmoothness frequently
appear in a structured way, see [HLO7; Lew02; LOS00; Wri93] and references
therein. The key assumption for identification results is the existence of an active
manifold around a critical point, where the function is smooth, while in normal di-
rections it is sharp (cf. the concept of a partly smooth function in [Lew02]). Since
f is itself smooth, we only assume such active manifold exists for g. Recall that
denotes a critical point of ¢.

Assumption 4. Suppose g admits a C%?—smooth active manifold G at %, with
defining equations G = 0.

It turns out that Assumption 4 is satisfied by a large class of functions, as proven
in [DD22, Theorem 2.9] and [DIL16, Theorem 4.16]. This family of functions include
Isc weakly convex semialgebraic functions.

In [HLO7] and [DD22, Theorem 4.1], the authors prove that under Assumptions 4,
for all x near  and v € (0,p1), prox.,, (z —vVf(z)) € M. The following result
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is an analogous statement for the DR method. In short, this method identifies the
active manifold due to the sharpness condition.

Proposition 4 (Manifold identification). Consider the optimization problem (1),
and let T be a critical point of p. Under Assumption /, as long as v > 0 satisfies
(20), there exists z such that T = proz, ;(Z), and for all z near z and v, R,(2) lies

n G.

Proof. The existence of such z is guaranteed by Proposition 3. Let {z'} be a
sequence such that z* — Z. The continuity of the proximal operators of f and g
imply 2' := prox_;(z') — prox;(2) = z, and y' := R,(z") = R,(2) = I.

In view of the optimality condition of the problem in (17) at z = 2%, there exists
s € dg(y*) such that

. . 1 . .
s'=-Vf(') - -y —2).
Y

Taking the limit, it follows that s’ + V f(2%) — 0. Next, since V f is L;—Lipschitz
continuous, then

IV +s' < V) = Vi) + V@) + s
< Lylly' = 2| + [V f(a") + ]|
Taking the limit, it follows dist(0, Vf(y*) + dg(y*)) — 0. Therefore, in view of

Assumption 4, the sharpness condition implies y* € G for all sufficiently large i. [

This identification result can be employed to relate the optimality conditions of
problems (1) and (17). Under the assumptions of Proposition 4, problem (1) can
be reformulated as the following constrained optimization problem:

(21) min o(z) = f(z) + g(z).

Recall that G = 0 are the local defining equations for G around the critical point &
of problem (1), and let § : R? — R be any C?—smooth function that locally agrees
with g on G. Define the Lagrangian of problem (21) as

(22) Lo(z,A) = f(z) + §(z) + (G(x), A).
In this manner, there exists a multiplier A € R™ such that

0 = V.Lo(Z,\) )
= V(@) +Vi@)+ 5, MVGi(2).

Furthermore, since R,(Z) = Z, from Proposition 4, for all z close to Z, the
problem in (17) is equal to
(23)

min { F(prox,2)) + (71 (pros (). = pro, () + 9(6) + - = prow, () |

Define the parametric Lagrangian associated with (23) as:

L(z,y,A) = [(prox,(2)) + (Vf(prox,;(2)),y — prox,;(2)) + §(y)

(24) +%Hy7proxwf(2)ll2+<G(y),/\>-
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The optimality condition of problem (23) written in terms of the parametric La-
grangian are:

0 = V,L(%Z,\) .
(25) = Vf(prox,,(2)) + Vj(z) + S (7 —prox, ;(2)) + Y51 MVGi(T)
= V(@) + Vi) + Yoy MVGi(),

for some multiplier A\. Observe that these optimality conditions coincide with the
ones for problem (21).

In the next section, we exploit the manifold identification result to infer local
smoothness of the iteration map and the envelope associated with the DR method.

5.3. Smoothness of envelopes and iterations maps. In accordance to As-
sumption 4, we need the following refinement of Assumption | in order to deduce
local smoothness of the iteration map.

Assumption 5. Additionally to the conditions of Assumption 1, suppose f : R —
R is a C? function.

Since the iteration map is defined based on the proximal operator, the next result

is the first step towards establishing smoothness of S, and <p,IY)R.

Lemma 1 (Smoothness of proximal operator). Suppose Assumption 5 holds, and
v > 0 satisfies (20). Then, proz.; s a continuously differentiable map and the
Jacobian Vproa:vf(z) of prox,; at z is a symmetric positive definite matriz.

Proof. Choose any point zZ € R%. Since f is a C? function with L—Lipschitz contin-
wous gradient, then for any z € R%, ¢(z,) = f(-) + %H - —2z||? is a strongly convex
function, since y~! > Ly, and ¢ is C%-smooth. Furthermore, prox, ¢ is continuous,
because f is, in particular, weakly convex. Taking M = R¢ in Proposition | yields
that f7 is C?—smooth and prox. s is C'—smooth around z. Furthermore, in view
of [RW09, 10.32 Example|, for all z in a neighborhood of z,

Vii(z)=~"" (z— prox,yf(z)).
Therefore,
(26) Vprox, ¢(z) =1 — V2 f(2).

In particular, Vprox, f(z) is a symmetric matrix, and Vprox, , is continuous around
Z. Furthermore, since Vf is L—Lipschitz continuous, then V f7 is L—Lipschitz
continuous [TP20, Proposition 2.3], and thus the largest eigenvalue of V2f7(z) is
bounded above by L;. Consequently, for any v < L%n the smallest eigenvalue of

I—~V?f7(z) is positive, and thus Vprox. ;(z) is positive definite. The result follows
since Z is arbitrary.
O

The next result states the local smoothness property of the iteration map S,.
For that, we need to recall the Hessian matrices of the Lagrangian (24) defined in
Proposition

H.,=V2,L(z,2)), Hy =V, L(ZZ]).
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Theorem 2 (Smoothness of iteration maps and envelopes). Consider the optimiza-
tion problem (1). Let T be a critical point of ¢, and Z such that T = prox. ().
Under Assumptions / and 5, whenever v > 0 satisfies (20), the maps Ry and S,
defined in (11) and (15), respectively, are C*—smooth locally around z, and <p,lY)R
is a C%—smooth map locally around Z.

Furthermore, the gradient of the iteration map S, at z = Z is given by

(27) V5,(2) =1+ A(VR,(2) — Vproz, ;(2)),

and the directional derivative of R at z = Z is given by:

(28) VR, (2)h = argmin 2(H ,u, h) + (Hyyu, u).
u€eTg (i)

Moreover, for all z near z, the gradient of the DRE is
(29) V(p?R(z) = ’y_1Vprox7f(z) (I - 'yVQf(pmef(z))) (proz ;(z) — Ry(2)).

Proof. Given z € R, define ¢(z,-) as the objective function of the minimization
problem in (23). Our goal is to apply Proposition 1. Since v < p~! and g is
p—weakly convex, then ¢(z,-) is (y~! — p)—strongly convex. In view of the continu-
ity of the proximal operators of f and g for v > 0 satisfying (20), and Proposition 1,
R, is C'—smooth and @DR is C2—smooth on a neighborhood of 2z. Furthermore,
Lemma | implies the ex1stence and continuity of Vprox, ; on a neighborhood of z.
Thus (27) directly follows from (15), and thus V.S, is also continuous around Z.
For the gradient of @DR note that for points z close to z, due to Proposition 4,

it holds that
PR(z) = f(prox,;(2)) + +(Vf(prox, ;(2)), Ry (2) — prox, (2))
+9(R,(2)) +5- IIR (2) — prox, ¢ (2)[|.

Next, using the chain rule and rearranging terms, we obtain

VePR(2) = Vprox,;(2)Vf(prox, ;(2))
+Vprox, ;(2) V2 f (prox, ((2)) (Ry(z proxﬂY z))
+(VR,(2) — Vprox, ;(2)) V f (prox ( ) + VR, (2)Vg(R,(2))

+7 (VR (2) — Vprox, ¢(2) 2)) (R, (2 proxv ; )
= VR,(2) (Vf(proxﬂ{f(z)) VQ(R ~H(R,(z) — prox f(z))>
Vprox., ;(z) (V2 f (prox, ;(2)) — )(RV( ) — proxvf( z)).

From the definition of R, and Proposition 4, for all z close to z, the first-order
optimality conditions of (17) take the following form

0 = Vf(prox, ;(2)) + Vi(R, (2)) + 7~ (B, (2) — prox. ;(2)).
Thus, substituting this identity in the above expression for V@?R(z), yields (29).
O
The explicit form of the gradient of @,I?R around z allows us to deduce the
relationship between critical points of ¢ and ng, thus extending Proposition
Corollary 1 (Characterization of critical points II). Under Assumptions / and 5,

if v > 0 satisfies (20), T is a critical point of ¢ if and only if there exists Z such
that & = proz. ;(Z), and Z is a critical point of cp,lY)R
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Proof. Tt follows from Theorem 2 and Proposition 3 that 0 € d¢(Z) if and only if
T = R,(Z). In turn, this is equivalent to prox,;(z) = R,(Z). In view of (29), it
is also equivalent to V@?R(Z) = 0, since Vprox, ;(z)(I — 7V2f(proxwf(z))) is a
non-singular matrix, in view of Lemma | and the fact that v < L;l.

O

In this section, we have constructed the building blocks to analyze the avoidance
of saddle points property of the DR method. In the next section, we specify in what
sense these saddle points are avoided, and what type of saddle points are avoidable.

5.4. Active saddle point avoidance of Douglas-Rachford. Recall that in view
of Theorem 1, the limit of the DR sequence {z*} is a critical point of ¢. This limit
can be guaranteed to be a local minimizer (almost surely) if ¢ possesses the strict
saddle property, the main topic of this sections.

When a function h is C2, avoidable critical points are the ones with negative
curvature, that is, points such that Vh(zr) = 0 and the Hessian V2h(x) has at
least one negative eigenvalue. To generalize this idea for non-C? functions, we
require a sharpness condition to guarantee that the local V-shape geometry leads
the dynamics to a region of negative curvature.

We say that a critical point Z of a weakly convex function i : R? — RU{+oo} is
a strict saddle of h, if there exist an active C?—smooth manifold M of h at Z, such
that for some vector u € Tx(Z), the parabolic subderivative [RW09, Definition
13.59] satisfies d*haq(Z)(u) < 0. A geometric interpretation of strict saddle points
is that the function h restricted to M has negative curvature at such points. In the
context of problem (21), recall that the parabolic subderivative of g = ¢ + dg can
be expressed in terms of the Hessian of the Lagrangian (22) as follows (see [DD22]):

(30) d*pg () (1) = (V3,Lo(T, \u, )

for all u € Tg(T).

Moreover, we say h satisfies the strict saddle property, if any critical point of ¢
is either a strict saddle or a local minimizer. Under the same properties that assure
that Assumption 4 is fulfilled (cf. [DD22, Theorem 2.9] and [DIL16, Theorem 4.16]),
the strict saddle property is also satisfied. For instance, in our setting, it accounts
to ¢ = f + g belonging to the family of lsc weakly convex semialgebraic functions.
Observe that ¢ is already a (Ly + p)—weakly convex function.

As similarly proven in [DD22, Theorem 4.1] for the FB method, strict saddle
points of ¢ are in correspondence with unstable fixed points of the DR method
iteration map S,,.

Theorem 3 (Unstable fixed points of the DR iteration operator). Consider the
optimization problem (1), and v > 0 satisfying (20). Let T be strict saddle point
of ¢. Under Assumptions / and 5, Z is an unstable fized point of S, where * =

proz, ¢(2).
Proof. First, T is in particular a critical point, then Proposition | and Theorem

imply (28) for

1 1
H., = Vprox;(Z) (VQf(x) — 71) . Hyy=V%(z)+ -1+ Z N V2Gi(7).

i>1
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Let W denote the orthogonal projection matrix onto Tg(Z), and set H,, =
WH,,W and H,, = WH,,W. Note that since R,(Z) = Z is a strong local min-
imizer of the problem in (23), then H,, is (symmetric) positive definite. Due to
Lemma 1, in particular, H,,Vprox, ;(z) = Vprox, ;(z)Hy,.

In order to prove that VS, (%) has a real eigenvalue strictly greater than one, it
suffices to show there exists p > 1 such that

(AVprox, ¢(z) + (u — 1)I)Hyy + AH ., is singular.
Indeed, the optimality condition of (28) implies
VR, (2)h = —H,, H.yh,
and thus (27) yields
VS, (2)h = h— A(H,, Ha, + Vprox, ;(2))h.

In this manner, u € R is a a real eigenvalue of VS(z) if and only if there exists
h € R4\ {0} such that

VS, (5)h = uh
h—A(H,, H., + Vprox,;(2))h = uh
Hyyh — X(H .yh + Fnyproxvf(E)h) = pHyh
[Hyy (AVprox, ;(2) + (u—1)I) + AH.y|h = 0
[(AVprox, ;(2) + (n — 1)I)Hyy + AH.y | h = 0

We focus on proving that, for some pu > 1, (AVprox ;(2) + (un—1)I) Hyy + AH ., is
singular. First, since H,,, and Vprox, ;(z) are positive definite, then for sufficiently
large > 1, ()\VproxﬂY F(Z)+ (=11 )Fyy—f—)\ﬁzy has positive eigenvalues. Secondly,
for u=1,

Vprox,yf(i)ﬁyy +Fzy = Vprox,yf(i) VEg(z

where in the last line we used (22). In view of Lemma |, Vprox, ;(2)Hy, + H., is
similar to

(31) Vproxvf(é)l/gvaﬁo(:f, X)Vproxwf(z)lﬂ.
The assumption on Z and (30) implies there exists u € Tg(Z), such that
(V2 Lo(Z,\u,u) < 0.

Hence, the matrix in (31) has a negative eigenvalue, and consequently, so does
Vprox, ;(2)Hy, + H .

It follows from the continuity of the minimal eigenvalue function, the existence
of areal p > 1 such that (AVprox, ;(2)+(u—1)I)Hyy,+AH ., has a null eigenvalue,
and thus, is singular. Hence, VS, (Z) has real eigenvalue greater than one.

(]
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From the geometric nature of active strict saddle points, it is possible to prove
that the set of initial points of the DR dynamic system z*+! = S,y(zk) that converge
to an unstable fixed point, has measure zero. In order to globalize the result in (19),
we need to add a small momentum term to the dynamics (cf. [DD22, Theorem 4.2]),
so that the resulting iteration map is invertible, and thus be able to apply the Center
Stable Manifold theorem. More specifically, the following result is a consequence
of [DD22, Corollary 2.12]: given a lipeomorphism 7 : R — R?, if Uy denotes the
set of unstable fixed points of T" at which the Jacobian of T is invertible, then

(32) {x eR?: kliril T"(z) € L[T} has zero Lebesgue measure.
— 00

Theorem 4 (Douglas-Rachford method: global escape of strict saddles). Consider
the optimization problem (1). Under Assumptions / and 5, suppose ¢ has the strict
saddle property. Choose v > 0 satisfying (20), and a damping parameter o € (0,1)
such that ap < 1, where

il Ly Ly Ly
=]1-X +max{ ,1}( erax{,l +max{ ——, 1.
p= A 1—py Ly—~ 1—=Lygy L—Lygy

Consider the damped Douglas-Rachford splitting method

k—i-l:T

z L(ZF) = (1 - a)2F + S, (2F).

For almost all initial points 2°, if the limit of {z*} exists and is denoted z, then
T = proz, () is a local minimizer of .

Proof. First, note that (7) implies prox, s — Ry =7Ve,, (proxwf —"yVeﬂ,f) +7Veys.
Therefore, I — S, = (1 — A\)I + A(prox,; — R,) is a Lipschitz map with constant
p. Given 2° € R?, suppose {z*} converges to some z. Continuity of S, implies
that z is a fixed point of S, and Z = prox,;(2) is a critical point of ¢, due to
Proposition 3. Furthermore, Theorem 2 implies that V.S, (Z) and VT, (Z) exist.
From [DD22, Lemma 2.14], it follows

(i) zis a fixed point of T,

(ii) if z is an unstable fixed point of S, so it is of T, and

(iii) T’ is a lipeomorphism.

By way of contradiction, suppose Z is a strict saddle point of ¢. In view of
Theorem 3 and (ii), then Z is an unstable fixed point of T,. Due to (iii) and
Rademacher’s theorem, VT'(Z) is invertible almost surely, yielding a contradiction
with (32). Therefore, Z has to be a local minimizer of ¢, since ¢ has the strict
saddle property.

O

6. CONCLUDING REMARKS

In this work, we show that the Douglas-Rachford splitting method enjoys the
acclaimed property of saddle point avoidance for nonconvex nonsmooth problems,
just as the gradient descent method and the proximal point algorithm. In princi-
ple, such property seems straightforward to prove, since the algorithm is based on
simpler methods satisfying said property. However, the structure of the steps of
one Douglas-Rachford iteration makes the analysis more intricate and less direct.
The same question remains open for other methods that use first-order information
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or of proximal-type. Moreover, although our arguments provide a satisfactory ex-
planation to a behavior that has been observed numerically, there are still some
drawbacks. For instance, in practice we never compute exact solutions to the
subproblems, and thus convergence to local minimizers with inexact subproblem
solutions still remains to be theoretically justified.
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Appendices

PROOF OF PROPOSITION

Suppose {z*} is generated by the FB method. Then, (13) holds, and inf @EB =
inf ¢, for all y € (0, min{L;l, p~'}). As a consequence, {wEB(zk)} is a nonincreas-
ing sequence bounded from below, thus convergent to some ¢. The same estimate
yields the following inequality:

Z |25 = 242 < 7L(@ —infp),
k=1 L=7Ly
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which implies 2¥1 — 2F — 0 as k — +oo. In view of {F} C {z € R?: pI'B(2) <
PEB(20)
2% — %z as j — +00. Then, by continuity of the gradient and of prox,, Zkitl

prox, (2 — 7V f(z)). Since zFt1 — 2F

}, then {z*} is bounded. Take any cluster point z, and a subsequence

¥ — 0, then 2%t — 2 as well, yielding
Z = prox., (2 — 7Vf(2)), that is, any cluster point of {z*} is a fixed point of the
iteration operator z — prox., (z — 'ny(z)), and thus a critical point for problem
(1). Indeed, the first-order optimality conditions of the problem defining prox.,
imply

~VIE) = 2z =1V HE) - 2) € 0y(2),

and hence 0 € Vf(2) + 0g(Z).

Now suppose {z*} is generated using the DR method. We replicate the argu-
ments above step-by-step. First, (18) and inf @?R = inf ¢ hold for v € (0, min{(2—
N (2Lg) Y, p71}). Then, {@?R(zk)} is a convergent sequence (to some @) as a
nonincreasing sequence bounded from below. As for FB, (18) yields the following
inequality:

o0

(L+~Lp)*,
DM 2 < L (p —inf ),
k=1

which implies 21 — 2 — 0 as k — 400, and also 2*¥ — y* — 0. Furthermore,
{z*} is bounded because (p?R is level-bounded [TP20, Theorem 3.4(iii)], and thus
both {z*} and {y*} are bounded as well, due to Lipschitz continuity of the proximal
operator. In particular, {z*} and {*} have the same set of cluster points. Take any
cluster point z of {z¥}, and a subsequence 2%/ — z as j — +o0, and thus z%/ —
prox, ;(Z) = 7, and yki — prox, (27 — z). Note that the first-order optimality
condition of the problem defining prox. ; yields %(2 — %) = Vf(Z), and thus & =
Prox. (QE—’ny(f)). In other words, Z is a fixed point of the FB iteration operator,
and thus is a critical point of (1).
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