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Abstract

Centrality metrics have become a popular concept in network science and optimization.
Over the years, centrality has been used to assign importance and identify influential elements
in various settings, including transportation, infrastructure, biological, and social networks,
among others. That said, most of the literature has focused on nodal versions of centrality.
Recently, group counterparts of centrality have started attracting scientific and practitioner
interest. The identification of sets of nodes that are influential within a network is becoming
increasingly more important. This is even more pronounced when these sets of nodes are
required to induce a certain motif or structure. In this study, we review group centrality metrics
from an operations research and optimization perspective for the first time. This is particularly
interesting due to the rapid evolution and development of this area in the operations research
community over the last decade. We first present a historical overview of how we have reached
this point in the study of group centrality. We then discuss the different structures and motifs
that appear prominently in the literature, alongside the techniques and methodologies that are
popular. We finally present possible avenues and directions for future work, mainly in three
areas: (i) probabilistic metrics to account for randomness along with stochastic optimization
techniques; (ii) structures and relaxations that have not been yet studied; and (iii) new emerging
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applications that can take advantage of group centrality. Our survey offers a concise review of
group centrality and its intersection with network analysis and optimization.

Keywords: Centrality metrics, group centrality, network analysis, network optimization, optimiza-
tion methods, graph theory

1 Introduction
Centrality is arguably the most popular concept studied in network science, graph theory, and the

operations research (OR) communities. It primarily focuses on the significance, influence, and/or
criticality of elements in a given network consisting of nodes and edges. Centrality metrics are
inherently fundamental in comprehending complex systems from a network topology perspective.
This is immediately visible from the large number of studies and applications that employ them.

Applications of centrality are wide-reaching and highly interdisciplinary. As an example, from
a supply chain perspective, centrality can indicate the importance of a particular supplier (or group
of suppliers) to the success of the supply chain operations. It can help decision makers identify
potential bottlenecks in the supply chain network [14]. Similarly, from an infrastructure network
perspective, centrality might express the importance of connection points in ensuring a reliable
and resilient network in the face of disruptive and cascading events [84]. In fact, choosing the
appropriate centrality measure is a crucial step in every application. We refer the reader to see
[21] for an extensive discussion on how to choose the right centrality metric depending on the
application.

Node-based centrality metrics (nodal centrality) are indices that aim to quantify the importance
of a single node in the grand scheme of a network. In the beginning, the notion of point centrality, a
precursor to the more famous nowadays betweenness centrality, was introduced in the fundamental
work by Bavelas [8]. Motivated and inspired by this work, more and more researchers from a wide
variety of fields started focusing on other forms of centrality, including but not limited to degree
[17], closeness [69], betweenness [33, 34, 77] and its more modern adaptation to flow betweenness
[35], and eigenvector centrality [12, 55] have been widely studied, applied, and taught. In fact,
several survey and review studies have focused on node-based centrality metrics in the literature,
especially in the context of network resiliency [97], biological networks [98], wireless sensor
networks [45], and general complex networks [79], among others.

Group centrality metrics, on the other hand, focus not on individual nodes but rather on
identifying clusters or groups of network elements that collectively maximize or minimize specific
criteria [28]. From an application standpoint, researchers have applied group centrality metrics to
various domains, including social networks [24], infrastructure networks [61], biological networks
[92], traffic networks [68], human disease networks [63], and transportation networks [94]. Overall,
group centrality has become a vital tool in the analysis of networks, one that provides a unique
perspective on network dynamics in various fields by analyzing the collective behavior of its
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interconnected elements.
It is important to mention that there is growing interest in the OR community regarding primarily

cohesive group [32] centrality metrics and their applications, especially in the last decade. Given a
network, a cohesive group may represent the group of nodes which are more densely interconnected
among themselves than with nodes outside the group. This, intentionally open-ended, definition
allows for different interpretations in different contexts. However, to the best of our knowledge,
no new/recent review study has been conducted on specifically group centrality metrics from
an optimization perspective. Hence, our work intends to provide a concise survey of how group
centrality metrics have been evolved over time and how they have been employed by OR researchers
to develop new optimization models and methodologies.

In our work, we are primarily interested in studies that aim to identify the best sets of nodes
forming groups with specific objectives and use optimization methods for this identification. In
large-scale networks, there could potentially be thousands, if not tens of thousands, of such sub-
groups. Hence, specialized optimization techniques including mathematical modeling and ad-
vanced solutions approaches (such as combinatorial branch-and-bound or Benders decomposition)
play a crucial role in solving this challenging task in real-life, large-scale networked systems.

Our work is outlined as follows. We begin with presenting preliminaries, definitions and
extensions regarding both node and group centrality in Section 2. Subsequently, we provide a
history behind group centrality metrics from the optimization perspective (see Section 3). In the
following section, the solution approaches and applications are briefly discussed (see Section 4).
In Section 5, we present the future research direction and important gaps in the field. Lastly, we
summarize our work in Section 6.

2 Definitions and extensions
In this section, we provide details regarding the concepts used throughout the paper. Let us

assume that we are given a simple, undirected, and connected (i.e., there exists a path between each
part of nodes) network G = (V,E). We refer the reader to [33] for detailed discussion on centrality
in disconnected graphs. As is common, V = {1, 2, · · · , n} and E ⊆ V × V represent the set of
nodes and edges, respectively. Given a node v ∈ V , let N(v) be the set of nodes that are neighbors
to v: mathematically, N(v) = {u : (u, v) ∈ E}.

Moreover, let Put be the set of all shortest (geodesic) paths connecting nodes u and t (Put ̸= ∅,
due to connectedness). We use a similar notation for the number of shortest paths connecting u to
t that pass through node v ̸= u, t. Specifically, we let this quantity be σut(v). For simplicity, we let
σut(·) = |Put|.

Before proceeding to our definitions, we will use duv be the length of the shortest path connecting
nodes u and v. Note that by definition, and path in Puv will have length duv. We are now ready to
present the definitions of three fundamental centrality metrics. For a given node v, we define:
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• Degree centrality: The number of adjacent nodes to v represented as |N(v)|. Often, we
report the normalized version of that quantity as |N(v)|

|V |−1
.

• Betweenness centrality: The fraction of the number of shortest paths going through node v

for a any two nodes u, t ∈ V \ {v}. It is calculated as
∑

u,t∈V
σut(v)
σut(·) .

• Closeness centrality: The inverse of the sum of shortest path between v and all other nodes
and is denoted as

∑
u∈V

1
duv

.

Given a subset of nodes S ⊆ V , we define G[S] as the induced subgraph where the edge set
is S × S ∩ E. In this work, we use G[S] for any group structure. Then, the centrality concepts
introduced above can be extended to sets of nodes S ⊆ V with a slight misuse of notation.

• Group degree centrality: Formally, we define the degree centrality of a set of nodes S as the
number of distinct adjacent nodes to any node in S. We letN(S) be the open neighborhood of
node set S: N(S) = {u : (u, v) ∈ E,∀v ∈ S}. Then, group degree centrality is calculated
as |N(S)| (or |N(S)|

|V |−|S| in the normalized version).

• Group betweenness centrality: The ratio of shortest paths going through any node in S for a
any two nodes u, t ∈ V \ {S} denoted as

∑
u,t∈V

σut(S)
σut(.)

.

• Group closeness centrality: The inverse of the sum of shortest path between any node in S

and all other nodes and is denoted as
∑

u∈V
1

duS
, where duS = minv∈S duv (i.e., duS is the

shortest path distance from node u to any node in S). We note that this quantity is also known
as group eccentricity.

We present Example 1 (based on Figure 1) showing the calculation for the three definitions
above for a set of nodes that does not induce a connected subgraph.

Example 1. In Figure 1, we have selected our group to be S = {2, 4, 6, 9}. Then, the group degree
centrality is |N(S)| = 9 or |N(S)|

|V \S| = 9/12 = 0.75 in the normalized version.
The group closeness centrality is 9 · 1

1
+ 3 · 1

2
= 21

2
, seeing as 9 nodes are at a distance of 1 and

3 nodes are at a distance of 2 from at least one node in S.
Finally, the group betweenness centrality is calculated as follows. First, we note how there are

132 possible paths to consider (from node 1 to nodes 3, 5, 7, . . . , 16, and then from node 3 to nodes
1, 5, 7, . . . , 16, and so on). Then, we observe how paths originating from some nodes will always
use at least one node in S (nodes 1, 5, 7). Others will sometimes use at least one node in S, whereas
others will not. Specifically, look at node 3: there are paths to 7 nodes (1, 5, 7, 13, 14, 15, 16) that
will always use at least one node in S and another 4 paths to nodes 8, 10, 11, 12 that will not. The
same calculation is true for nodes 8, 10, 11, 12. Finally, nodes 13, 14, 15, 16 will use at least one
node in S only for their paths towards 1, 3, 5, 7, 8, 10, 11, 12. In total, we have that the betweenness
centrality of S is calculated as 3·11+5·7+4·8

132
= 100

132
.
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Figure 1: The network for Example 1. The set of nodes selected to be in the group (nodes
S = {2, 4, 6, 9}) do not induce a connected subgraph.

When set S is required to induce a specific “motif” or structure (such as a clique or a star), then
we are dealing with the centrality of induced clusters. We provide here a definition of some of the
most prominently used types of structures here.

To begin with, a walk is a list of edges such that each edge has exactly one node in com-
mon with the previous one. Note how this definition allows for a repetition of nodes (e.g.,
{(u1, u2) , (u2, u3) , (u3, u1) , (u1, u4) , . . .} is a walk as node u1 is visited twice). A path is then a
walk that disallows any repetitions of nodes. A path where the starting and ending nodes are the
same is a cycle. Walks, paths, and cycles induce a connected subgraph, by definition. A connected
subgraph allows for any two nodes in the subgraph to be connected using a path that is all within
the subgraph. The largest connected subgraph in a graph is called a component. A connected graph
will only have one component: the full graph itself.

A set of nodes C ⊆ V forms a clique if C is inducing a complete subgraph [70]. In other words,
C ⊆ V forms a clique if all edges (i, j), i ∈ C, j ∈ C are present (E[G[C]] = C × C). On the
other hand, C ⊆ V is said to form a star if there exists exactly one node s ∈ C such that (s, j) ∈ E

for all other nodes j ∈ C \{s} and no other edge (i, j) exists between any two nodes i, j ∈ C \{s}.
We observe how s has a prominent role and is referred to as the center of the star, whereas all other
nodes i ∈ C \ {s} are referred to as the leaves of the star. We also note that both cliques and
stars appear to have a relationship to independent sets, where any two nodes cannot be adjacent. A
clique in graph G(V,E) is an independent set in the complement graph G′(V,E ′) where (i, j) ∈ E ′

if and only if (i, j) /∈ E. The leaves in the star in G(V,E) also induce an independent set in the
same graph G.
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Cliques and stars are both ideal situations. It may be impractical to expect that either all edges
exist between any two nodes in the whole group (clique) or that no edges exist between most of the
nodes in the group (star). For a star, the easier relaxation would be to allow any two nodes to be
adjacent, so long as they both have an edge connecting them to the center. This is referred to as a
representative. For cliques, the situation is more complex due to the number of properties that can
be relaxed. We discuss some of these relaxations next.

The diameter is the length/cost of the longest of all shortest paths in the network. In a clique,
the diameter is equal to 1 as all shortest paths are between immediately adjacent nodes. Relaxing
the diameter restriction affects the group’s reachability. A group of nodes inducing a subgraph with
diameter smaller than or equal to k is referred to as a k-club [62]. The density of a graph is the
fraction of edges that are present compared to all possible edges being present. The clique, being
an ideal subgraph, has density equal to 1 as all possible edges are present. Relaxing this restriction
allows some of the edges to be absent and affects the group’s familiarity. If fraction γ ∈ [0, 1] of
all possible edges is present, then this group forms a γ-quasi-clique [1]. As is easy to check γ = 1

is the same as a clique, and γ = 0 can be any group of nodes.
Next, we focus on degree (as defined earlier): clique members i ∈ C always have a degree of

|C| − 1; relaxing this requirement to having a degree of at least |C| − k leads to the definition of
k-plex [7, 81]. We can also see another common clique relaxation for the members’ degrees: a
k-core is defined as the induced subgraph where all nodes have minimum degree equal to k [80].
Last, we look at connectivity (or the group’s robustness). To disconnect a clique, we would need
to remove almost all of its members. Specifically, to produce a disconnected graph after removing
members of a clique C, we would need to delete |C| − 1 of them. On the other hand, relaxing this
to disconnect after removal of |C| − k nodes results in the definition of a k-block.

We present examples of some of these structures in Figure 2. We also would like to note that
not all of the above structures have been studied from a group centrality perspective. We present
the structures that have been studied later in Table 1 of Section 4.

This topic has been quite prominent in the optimization community, as we will discuss in the
next Section. An example of how the previously defined three notions of group centrality change
in the case of cliques is discussed next based on Figure 3 adapted from the works in [95] and [76].

Example 2. In Figure 3, we show two cliques: one of cardinality/size 3 containing nodes S1 =

{2, 3, 4} (marked in green, on the left side of the network) and of cardinality 4 on nodes S2 =

{8, 9, 10, 11} (marked in red, on the right side of the network).
The clique degree for them is equal to 5 and 3, respectively. This is easily calculated by

enumerating the number of nodes that are adjacent to at least one node in the clique. Specifically,
we have N(S1) = {1, 5, 6, 7, 8} with a cardinality of 5 and N(S2) = {3, 12, 13} with a cardinality
of 3.

The clique closeness for them is equal to 47
6

and 13
2

, respectively. The calculation is less obvious,
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(a) Walk 8 → 9 → 10 → 11 → 8 → 3 → 2. If the
walk ended when we visited node 8 for the second
time then it would form a cycle.
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(b) Path 1 → 2 → 3 → 8 → 10 → 11.
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(c) A clique of size 3 (in green) and a clique of
size 4 (in red). Any subset of these two groups is,
by definition, also a clique due to the hereditary
property of cliques.
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(d) A star with 3 leaves (in green) and a star with
4 leaves (in red). Note that we could have replaced
leaf 9 with leaf 11. Not both 9 and 11 can serve as
leaves though for the structure in red.
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(e) A γ-quasi-clique for γ = 0.5 in red. Note how
the induced graph includes 5 edges out of a total
of 10 possible edges. The nodes in green form a
2-plex, as every node in the group (of cardinality
|C| = 4) has degree at least |C| − 2 = 2.
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(f) A 2-club is shown in green. On the other hand,
the nodes in red do not induce a 2-club. While
nodes 4 and 5 are reachable within 2 hops, the path
uses a node outside the group. The structure in
green is also a 2-core (as all nodes have degree at
least 2).

Figure 2: A few examples from notable structures that have been proposed.
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Figure 3: The network for Examples 2 and 3. Observe how it is slightly different to the network
used in Figure 2 (has one fewer node and is missing some of the previous edges).
but still easy to follow. Specifically, S1 has 5 nodes at a distance of 1, 4 nodes at a distance of 2, 1
node at a distance of 3, and 2 nodes at a distance of 4, for a total calculation of 5· 1

1
+4· 1

2
+1· 1

3
+2· 1

4
.

Similarly, S2 has 3 neighboring nodes at a distance of 1, 5 nodes at a distance of 2, and 3 nodes at
a distance of 3 for a total of 3 · 1

1
+ 5 · 1

2
+ 3 · 1

3
.

Finally, the clique betweenness for them is equal to 19
33

and 28
55

. For this calculation, we first need
all shortest paths between any two nodes outside S1 (and later outside S2). There are 11 shortest
paths from any node to all other nodes: that is, a shortest path to any node except for the three
nodes in S1. For nodes 1, 5, 6, 7 all of their shortest paths will use at least one node in S. On the
other hand, the shortest paths originating from nodes 8, 9, 10, 11, 12, 13, 14, 15 do not necessarily
use any node in S, unless the destination is one of nodes 1, 5, 6, 7. There is a total of 132 shortest
paths, and a total of 4 · 11 + 8 · 4 = 76 use at least one node in S as an intermediary. Based on this
calculation, the betweenness centrality for S1 is 76

132
= 19

33
.

Similar calculations lead to the betweenness of S2. Specifically, node 12 will always use at
least one node in S2; nodes 13, 14, 15 will use at least one node in S2 when the path terminates
at any node in {1, 2, 3, 4, 5, 6, 7, 12}; finally, nodes 1, 2, 3, 4, 5, 6, 7 will use at least one node in
S2 for their shortest paths towards nodes 12, 13, 14, 15. Out of a total of 110 shortest paths,
1 · 10 + 3 · 8 + 7 · 4 = 62 will use at least one node in S2 and hence its betweenness is 62

110
= 31

55
.

In the example of Figure 3, we also note that it is not necessary that the structure identified is
maximal. A subgraph G[S] is maximal with regards to some property (e.g., inducing a clique as in
the example) if it cannot be made larger in size while satisfying that property. For example, nodes
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S ′ = {8, 9, 10} are a clique of size 3, but they are not forming a maximal clique, as adding node 11
maintains a clique structure and is of larger cardinality.

Example 3. Note a clique of size 3 containing nodes {8, 9, 10}. It is not maximal, as it is a
subset of the clique S2 from Example 2. That said, it can (despite it not being maximal) have
higher centrality than the maximal clique it belongs to. Specifically, in this example, its degree
is 4 (its open neighborhood consists of nodes 3, 11, 12, 13), which is larger than the degree of S2.
Additionally, it could have different closeness and betweenness values.

Example 3 reveals the necessity for smartly selecting nodes to add in the structure we are
building, as bigger in cardinality does not necessarily imply an improvement in its centrality. Using
the definitions from [76], we can assign a structure centrality value to a node. We say that the
structure centrality of a node is the maximum value of the centrality of the structure the node belongs
to among all structures it can be part of. For example, node 8 in Figure 3 can be part of many
cliques: the singleton clique {2}, the “edge” cliques {3, 8} , {8, 9} , {8, 10} , {8, 11} , {8, 12}, the
“triplet” cliques , {8, 9, 10} , {8, 9, 11} , {8, 10, 11}, and the maximum clique S2 = {8, 9, 10, 11}.
The clique that leads to the maximum centrality value is the clique centrality of that node. For
more details, see the calculations and definitions for other structures (e.g., stars, representatives,
quasi-cliques) and centrality metrics in [76].

3 Brief history on group centrality
In this section, we provide a review of a subset of studies related to group centrality metrics.

Our goal is to briefly describe how they are evolved and are adapted by OR scientists over time.
To start with, Figure 4 illustrates a chronological overview of group centrality metrics including
optimization techniques. We acknowledge that this figure may not capture all relevant studies on
group centrality metrics. Indeed, we do mention some works later that were omitted from the figure
and explain our reasoning. As mentioned previously, our primary goal is to predominantly focus
on OR studies whose number has been gradually increasing in recent years.

Pioneering the field are Everett and Borgatti [28] who are the first in the OR literature to discuss
extending centrality and importance to groups of nodes in a network. They motivate the question
for groups that are known a priori. We quote from their work: “Are the lawyers more central
than the accountants in a given organisation’s social network? Is one particular ethnic minority
more integrated into the community than another? To what extent are particular groups or classes
(women, the elderly, African-Americans, etc.) marginalized in different networks?”. This a priori
availability of group information that can help us derive descriptive information about the group
itself. However, as the authors also note in that same article, we may also focus on identifying
groups based on the structure of the network itself [28]. They do mention cliques as a motivation
for clique centrality; see the later work by Vogiatzis et al. [95].
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Figure 4: The emergence of OR scientists during the evolution of studies regarding group centrality
metrics in the last two decades.
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In their original [28] and subsequent work [29], they base their proposed metrics to nodal
centrality metrics. Specifically, they extend traditional metrics in the form of degree, closeness,
betweenness, and flow centrality to accommodate a group setting. The authors and subsequent
studies have shown how individual nodal calculations for centrality do not necessarily capture the
calculations that are necessary for group centrality. In the early 2000s, a fundamental study by
Newman and Girvan [66] (not included in the diagram of Figure 4) use betweenness centrality to
identify groups within a network. They do so by calculating edge betweenness and removing the
edge of highest score until the network is disconnected. Importantly, this metric is recalculated
after ever removal. As this work has an arguably different focus than our review, we do not include
it in our history. For completeness, though, and as readers may want to investigate the intersection
between community detection and centrality, we offer the interesting comparison made by Danon
et al. in [23].

Continuing with these earlier years of group importance, in [13] Borgatti utilizes group centrality
in social network analysis to solve a key player problem. The key player problem (also known as
the critical node detection problem) tasks itself with identifying a set of nodes that are “critical” for
the well-being or success of a network. More recent extensions have since focused on identifying
sets of network elements (nodes, edges, cliques). [13] proposes one of the very first combinatorial
optimization approaches in this domain. To our best knowledge, this is one of the earliest studies
where optimization algorithms (in the form of genetic algorithms) are employed in the context of
group centrality. The importance of players are measured through the impact of their absence on
the graph cohesiveness. The author also discusses how degree, betweenness, and closeness metrics
may fall short when applied “as is” for this problem definition of key players. Subsequently, in [72]
the authors study the problem of determining groups with the largest betweenness in a large-scale
network. They apply their algorithms on a network service provider infrastructure data set to
optimally distribute intrusion detection devices.

Another prominent work by Brandes [15] presents a wide range of variants of betweenness
centrality including proximal betweenness, bounded-distance betweenness, distance-scaled be-
tweenness, and edge betweenness. That same work also presents an algorithm to compute the
group betweenness of a “given" group. It is critical to mention that the paper focuses on computing
the centrality of a fixed group. This is an important step, and one that subsequent studies have used.
In this work, the high complexity associated with identifying the optimal group in terms of group
betweenness is also mentioned as an important factor. Thus, the study lacks algorithmic details in
detecting the most betweenness group, different than [72].

Nonetheless, Dolev, Elovici, and Puzis [26] further this research by studying group betweenness
centrality measured as the information flow in an evolving network. The authors propose a heuristic
approach with an approximation guarantee that generalizes the heuristic algorithm proposed in [72]
for a similar problem setting. Later, [30] improves the analysis of [26]. However, since none of
these algorithms scale well in complex networks, in [56] the authors design a randomized algorithm
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guaranteeing an approximation of 1 − 1/e − ϵ where ϵ > 0. In the following year (2010), Dolev,
Elovici, and Puzis again extend the notion of group betweenness centrality to routing betweenness
centrality for a traffic control network [25].

Notably, up to this point in our history, there have been no studies to focus on specific structures
like cliques or walks (see Section 2), nor do they propose optimization models. One of the first OR
studies in this domain is conducted and presented in [95]. Specifically, the study investigates the
most and least important cliques in networks based on three group centrality metrics introduced
in Section 2: degree, closeness, betweenness. The innovation of the work lies in the development
of integer linear programming models for each variant in a compact manner. To achieve that,
the authors impose an extra requirement of the size of the cliques that are being studied: this
requirement has since been dropped from more recent works. Additionally, contrary to much of
the more recent literature, the authors propose three variants for betweenness centrality, viewed as
optimistic, pessimistic, and probabilistic. Assume that there exist more than one geodesic paths
connecting two nodes, and at least one of them uses some node in the selected clique. Then, the
optimistic view of betweenness assumes that this is the only shortest path used; the pessimistic view
of betweenness assumes that this is not the shortest path used and another one, which is not using
a node in the clique is used; finally, the probabilistic version is the traditional view of betweenness.

Previous studies until 2016, primarily focus on group betweenness (with the exception of clique
centrality in 2015). At this point though, the focus switches towards closeness centrality. First,
[22] examines group closeness centrality in order to identify a set of k nodes with the highest group
closeness score. The authors first propose a greedy heuristic with an approximation guarantee. To
handle large-scale networks, they then develop an order-based sampling algorithm. Thereafter, we
observe an increase in OR research in group centrality. We note that [10] later improves the greedy
heuristic designed by [22] for the same problem through developing new techniques (bit-level
parallelism, submodularity improvement). We prefer not to include this study in Figure 4. It is
important to mention that group closeness is highly related to another important OR topic, that of
facility location in the form of the p-median problem [40] as pointed out in [10].

In [90], the researchers study group betweenness centrality and a number of variants including
the length-scaled and the bounded-distance betweenness centralities. The authors examine both
group of nodes and cohesive groups (k-clubs) and propose mixed-integer linear programming
models to solve the problem. Next, Zhao et al. [100] introduce H-group closeness centrality and
investigate how to maximize this metric in large disk-resident graphs. This group centrality metric
aims to identify a fixed sized node group with a distance restriction of H, which is the combination
of both group degree and group closeness concepts.

Still in 2017, [68] addresses a group closeness centrality concept. Very interestingly, the
application studied in the manuscript ties to the evacuation performance in a given network.
Specifically, the authors are interested in identifying which links to try to design (install) in order to
maximize the evacuation performance. In their work, the authors show how their problem can be
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reduced to a node selection problem. It is the node selection phase that is performed through group
centrality computation via a heuristic algorithm with the same approximation guarantee as will be
shown in later studies (see, e.g., [92]). In fact, this resemblance in approximation guarantees from
the greedy algorithm comes straight from submodularity and leads to an approximation guarantee
of 1 - 1

e
.

As an extension to the advancements in [95] and [90], the study conducted in [78] focuses
on determining the most betweenness central clique in a connected network. The important
contribution here is that, in contrast to previous works where the clique size is predefined by the
authors, the cardinality restriction is lifted in [78]. As is common in the literature up to now, they
first develop an integer programming model. At a next step, to speed up the optimization phase,
the authors then design and employ a combinatorial branch-and-bound (CBB) method. Indeed,
following their work, we see a significant uptick in the number of studies utilizing CBB in group
centrality literature. This fact shows that smart construction approaches can have quite the place in
the group centrality literature.

Interest in clique and clique relaxation problems and their intersection with centrality only
continues to grow. [71] studies the problem of identifying a γ-quasi-clique with the highest degree.
The authors first present a linear integer programming model, and then devise two exact solution
approaches: a) a CBB algorithm, and b) a degree decomposition algorithm.

So far, we are observing a smaller number of OR researchers and practitioners working with
group centrality with a focus on optimization. This is about to change in 2019, when we witness
the first surge in novel problem definitions within the OR community. [53] expands the concept
of flow closeness centrality, proposed by [16], for groups of nodes. This study carries extra
significance as it includes current flow in paths other than the shortest paths in the calculation of
closeness. Theoretically, the authors also derive the complexity of their problem, and propose two
approximation algorithms based on the greedy algorithm. We also refer the reader to [18] where
the authors utilize the concepts of paths and flows to introduce new group centrality measures.
However, they do not provide an optimization model or solution approaches, nor do they reference
any work presented in Figure 4 that was conducted after 2006.

Continuing with closeness, and similar to [68], [91] explores a new problem in edge detection
and closeness centrality. Specifically, they focus on the criticality measured by the influence of an
edge’s removal on the closeness centrality of nodes connected through these edges. While [68]
concentrates on new edge additions to the network, [91] studies the implications of edge removals
in relation to group closeness centrality. We note that both node and edge removal, in terms of
network element criticality, are broad research topics that we refrain from delving into more in our
study. Interested readers are pointed to the immense literature of network element criticality and
its applications (see, e.g., [52, 96]).

Following up, [92] proposes a novel group centrality metric named Star Degree Centrality (SDC)
where the goal is to identify the induced star with the maximum degree in a given network. The
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authors propose an optimization model and two approximation algorithms to demonstrate that SDC
can effectively detect essential proteins in protein-protein interaction networks. The significance
of this work is twofold. Firstly, it is one of the first OR studies applied in a large-scale, real-
world network (motivated by protein-protein interaction networks). Their extensive computational
results reveal how group centrality can play quite an important role in real-life networks, especially
in contexts where nodal metrics fail. Secondly, it investigates a new cohesive group (i.e., star)
following the study of cliques and their variants. Stars have a vital/critical element in their center,
which makes them very unique structures in a number of applications. In a different, concurrent
work, [36] proposes connectedness centrality under stochastic edge failure, which bears similarities
to group closeness centrality. The authors apply this new metric to road networks.

Continuing with 2020, [73] also focuses on maximizing closeness centrality for a connected
group of nodes with a restricted diameter, also called a k-club (see Section 2), a similar setting
observed in [90] for betweenness. A novelty is in the application: dockless bike-sharing systems
allow users to “park” their bikes anywhere, which makes the k-club of highest closeness particularly
desirable for both users (“close” to every node in the network) and bike-sharing providers (restricted
diameter to collect and find bikes). This study stands out as the first to apply closeness centrality
to k-clubs. As a side note, there is an extensive research (see, e.g., [82]) on identifying maximum
cardinality of a k-club (which, recall, is a clique relaxation and reduces to the clique problem for
k = 1).

We note another work titled “Group Degree Centrality and Centralization in Networks" by [50],
excluded in Figure 4. The study examines set of nodes with the largest degree. However, the focus
on largest-degree subgraphs without any connectivity restrictions aligns more with the maximum
coverage problem (see [59]) which is beyond our current scope. Similarly, the concept of group
coverage centrality, mostly studied by researchers outside the field of OR and out of the scope the
work, are not included in our review [27, 48, 58, 99], despite their importance.

Within the same year, [4] proposes a new group centrality called GED-Walk centrality. This
metric is motivated by Katz centrality [47]: as such, it focuses on walks of all lengths instead of
solely the shortest paths, offering an alternative to closeness and betweenness centrality measures.
Following this, [2] introduces an extension of group betweenness centrality called k-step centrality,
where shortest path lengths are restricted by k. It is important to note that [100] also places length
restrictions on shortest paths in their study of group closeness centrality, yet they are not cited
by [2]. The methodology used by [2] incorporates algorithms developed by [15] and [72]. In
another study, [54] proposes a new group centrality metric named h-index group centrality, which
incorporate the concept of h-index (see [44]) into groups.

Still discussing works in 2020, we also find another group centrality study for cliques. [64]
expands the most-closeness clique problem proposed by [95] into the concepts of maximum-
distance-closeness centrality and total-distance closeness centrality. They reference [100] with the
claim, “The maximum H-group closeness centrality problem is to detect a set of vertices of size at

14



most H with the maximum group closeness centrality in the network". However, we do not think
that this claim is accurate since H-group closeness centrality is concerned with a combination of
group degree and group closeness centrality with H being a constraint on the lengths of the shortest
paths. The study conducted by [64] shows similarity to [78], as they also remove the restriction of
a fixed-sized clique, but instead focus on the most closeness-central clique, as opposed to the most
betweenness-central clique.

As discussed earlier, [95] proposes three variants of most influential cliques with respect to
degree, closeness, and betweenness. While clique betweenness is studied by both [90] and [78],
the topic of clique closeness is covered by [64]. The missing piece is completed by [101] where
the authors study the most degree-central clique problem and relax the constraint on the maximum
allowed size of the clique.

In 2022, [19] proposes a more effective formulation along with an exact solution technique
(i.e., Benders Decomposition [74]) for the SDC problem, proposed by [92]. They also present
types of networks where the SDC problem is solvable in polynomial time. Additionally, in [76] the
authors investigate stars, cliques, and representative structures with respect to the same three group
centrality metrics. The authors further define a representative set as a group of nodes centered at
a node; in other words, it can be viewed as a relaxation of the star, allowing one node to serve
as a center while the leaves may or may not share edges between each other. They also propose
CBB algorithms for all three structures and all three metrics. Furthermore, [75] revisits the group
closeness maximization problem for directed graphs that do not require connectedness, proposing
a heuristic algorithm.

Unsurprisingly, in 2023, we witness even more studies in group centrality research. To start
with, [20] integrates probability values regarding edge connectivity and introduce the very first
“probabilistic" group centrality metric as stochastic pseudo-star degree centrality. According to the
authors a pseudo-star is a set of nodes forming a star with at least a probability θ ∈ [0, 1]. This
probability can be viewed as the equivalent of the probability of all edges between the designated
center and stars to exist, as well as no edges between any two leaves existing. We note here the
similarity between the pseudo-star and a probabilistic clique [60]. A probabilistic clique is defined
as a set of nodes that form a clique with at least probability θ ∈ [0, 1].

Returning to the pseudo-star degree centrality problem [20], this novel group centrality metric is
shown to be more effective than its deterministic correspondent (i.e., SDC, see [92]) in determining
essential proteins in protein-protein interaction networks. That said, it is important to note that
this study does not employ any stochastic optimization modeling or techniques. On the contrary,
the authors utilize a priori available probability values (obtained in the context of the practical
application from protein interaction frequencies) to identify the highest weighted degree pseudo-
star.

Then, [57] proposes other novel group centrality metrics called most degree-central walks and
paths. The study indicates that while the most central shortest paths can be identified in polynomial
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time, most central walks (e.g., paths) with a pre-defined length remains NP-complete. It is
important to notice that representative sets of nodes, as introduced in [76], do not cover walks and
paths. The authors impose a specific connectivity constraints among the nodes in the subgraph.
Thus, this can be classified as a distinct motif different from a clique and a star (see Figure 2(a) and
(b), compared to (c) and (d), respectively).

After [22] introduces group closeness centrality from an optimization perspective, [83] propose
two exact solution techniques for the same problem. Lastly, [51] revisits the problem of identifying
groups with maximum betweenness centrality as previously discussed by [72] and [90]. The authors
integrate mathematical modeling with randomized path sampling.

Before moving into the next section where we continue our discussion with analyzing group
structures and optimization methods utilized, we would like to mention one more aspect of group
centrality. During our review, we encountered a group of work in which group centrality is
addressed using the Shapley value [41]. This set of work is predominantly considered in social
network analysis using game theory, which is another branch of OR (see [9, 31, 61, 85, 86] in
order). However, these research products seem to be more independent of the framework that we
have presented above. While all of these studies reference [28] regarding group centrality, we did
not find any reference to the rest of the works presented in Figure 4. Thus, we prefer not to include
these studies during our analysis in the next section.

4 Structures and computational approaches
To begin with, we first discuss the graph structures examined by researchers. We categorize

these structures into five groups: group, clique, star, representative set, and walk, which are defined
in detail in Section 2. Regarding group centrality, we report three main types: degree, closeness,
and betweenness, along with a variant defined as any centrality measure not related to these three.
Table 1 summarizes the studies conducted on each group structure in terms of the aforementioned
group centrality metrics.

Degree Closeness Betweenness Variant

Group [3, 5, 10, 22, 53, 68,
75, 83, 91, 100]

[2, 15, 25, 26, 30,
51, 56, 72, 90]

[4, 13, 36, 54]

Clique [71, 95, 101] [64, 95] [78, 90, 95]

Star [19, 20, 92] [76] [76]

Representative
Set

[76] [76] [76]

Walk [57]
Table 1: Comparison of different group structures analyzed for group centrality metrics

As previously mentioned, groups with the largest degree centrality are more closely related
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to the maximum coverage problem literature; thus, the corresponding section in Table 1 does not
include any of these studies. Extensive research is conducted on groups of nodes without any
restrictions in terms of both closeness and betweenness centrality (see the first row in Table 1).
However, from OR scientists, we observe significant interest in cohesive groups. Specifically, they
focus on particular structures, with cliques attracting the most attention. In recent years, the star
structure is also examined from a group centrality perspective. In fact, [76] generalizes all clique
and star-type graph structures under representative sets, covering all the major group centrality
metrics in that study. Additionally, the authors define group centrality on a nodal level as the value
of the group (inducing a specific structure) with maximum centrality value, so long as it includes
that node as a member (in the case of cliques) or as a center (in the case of stars).

Since much of the existing literature covers mostly both star and clique structures, [57] examines
walk and path centrality, expanding the concept of cohesive groups. This study opens a new window
into the group centrality literature from a special structure perspective. Moreover, we note a study
by [89], which introduces a novel centrality measure named Forest Closeness Centrality for a
group of nodes. This concept builds upon the Forest Distance Closeness initially proposed by
[46]. However, due to the absence of a formal journal publication on this new measure and its
still-developing stage of research, we avoid providing more details about it in our study. Yet, we
mention it in the hopes that it will spark an interest in further investigation in very novel structures
and centrality metrics.

Degree Closeness Betweenness Variant

Mathematical
Modeling

[19, 20, 57, 71, 76,
92, 95, 101]

[10, 64, 73, 76, 83,
91, 95]

[76, 78, 90, 95]

Heuristic
Approaches

[36, 57] [22, 73, 75, 91] [2, 25, 72] [13, 36]

Approximation
Algorithms

[92] [3, 5, 10, 22, 53, 68,
100]

[26, 30, 56, 78] [4]

Branch & Bound
Approaches

[71, 76, 95, 101] [64, 76, 83] [76]

Decomposition
Algorithms

[19, 71], [20]

Table 2: Comparison of different optimization techniques employed for group centrality metrics

Next, we examine the optimization methodologies adopted by OR researchers. To begin,
we categorize solution methods into five main groups: (a) optimization modeling (e.g., integer
programming, linear programming), (b) heuristic algorithms, (c) heuristics with approximation
guarantees (i.e., approximation algorithms), (d) combinatorial branch-and-bound (CBB) algo-
rithms (this also includes “smart selection” algorithms that use lower and upper bounds), and (e)
decomposition algorithms (e.g., Benders Decomposition). For group (a), it is important to note that
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studies offering a heuristic approach or an exact solution technique are highly likely to include a
mathematical model, leading to potential duplication among cells. Regarding centrality, we report
the same metrics as shown in Table 1. As a result, we present Table 2 to categorize recent works
based on the methodology adopted.

In Table 2, we observe that studies examining clique centrality regardless of the centrality
metrics used are predominantly addressed through mathematical modeling and CBB approaches.
First of all, this is due to the fact that cliques (and clique relaxations) are very prominently featured
in OR studies and hence, OR practitioners are more prone to employ them. More importantly,
though, we note that CBB and other smart selection approaches are well-suited for clique problems
due to their hereditary property. Constructing a larger clique by adding a node or by combining
multiple smaller cliques can be done with a quick feasibility check, making CBB a good candidate.

Conversely, research related to highest degree star centrality frequently employ decomposition
algorithms to solve the large-scale models. In both [19] and [20], the authors implement various
Benders decomposition strategies, including traditional Benders approach, modern Benders, two-
phase, three-phase decomposition, and Logical Benders. The problems of star centrality with the
highest closeness and betweenness, on the other hand, are tackled by CBB approaches.

It is evident that studies lacking any specific motif are often tackled using heuristic or approx-
imation algorithms. In essence, there are additional studies regarding groups without motifs that
we do not include in Figure 4. For instance, the concept of group closeness, studied by [22], is
later adapted by other researchers to improve the approximation guarantee. [10] then scales up the
existing approximation, and [5] offers an algorithm that is one to two orders of magnitude faster,
based on a new local search heuristic. Subsequently, [3] provides a constant approximation for the
same local search algorithm.

We initially aimed to provide another table categorizing the existing research based on appli-
cation areas. However, we discover that the majority of work on group centrality, especially those
incorporating optimization techniques, focuses on randomly generated networks. These include
networks models including the Barabási–Albert, Erdős–Rényi, and Watts–Strogatz models. Such
networks are randomly generated, which allows for controlled experimentation and analysis but
may not always accurately reflect real-world scenarios. As we note in our directions for future work
(Section 5), we would like to see more group centrality metrics that are naturally derived from
emerging applications and emerging technologies around us.

Nevertheless, there are few exceptions where group centrality metrics are applied to real-world
scenarios. Specifically, we observe significant applications in biological networks, particularly
in protein-protein interaction networks (refer to [19, 20, 76, 92]). These studies utilize group
structures such as star and representative sets in analyzing protein-protein interaction networks to
determine essential proteins for the survival of the organisms.
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5 Future work
We observe that the OR community has seen significant advancements on group centrality in

the last decade as discussed in Section 3. In addition, we provide additional analysis to provide
more depth insights in Section 4. Yet, there are several unexplored areas that might of interest
to optimization experts. As recently introduced by [57], both walk and path group centrality are
evaluated primarily from the largest degree perspective. Thus, there is a research gap for these
novel group centrality metrics with respect to closeness and betweenness centrality that we believe
needs to be addressed.

Another research direction lies in the domain of tree structures within graphs. Trees, defined as
connected graphs where there exists a unique path between each node pair, as a special type of graph,
could serve as a basis for developing new group centrality measures. While the concept of spanning
tree centrality exists in literature, it differs from our understanding in this paper. The existing studies
focus on the probability of an edge being used in a uniformly sampled spanning tree [42, 87].
Identifying “central” trees could serve in application as developing communication protocols; their
relationships to connected dominating sets [39, 88] could also be further investigated.

Further, examining motif structures like cliques and stars through modified centrality metrics,
such as weighted versions, can be a fruitful direction. Identifying these structures in relation to
new centrality metrics is a promising area for future research. For example, researchers might be
interested in investigating variants of centrality metrics (e.g., the last column of Tables 1 and 2)
when it comes to cohesive groups. This interest arises because we no study examining these groups
beyond the scope of the three major group centrality metrics is encountered during our review.

[65] introduces a new measure of betweenness centrality based on random walks. This measure
considers the contribution of all paths, not just the shortest ones, while placing more weight on the
shortest paths and considering generating random walks (see [67]). Later, [37] extends this idea to
group to group version where centrality of a node is measured through a set of source and a set of
sink nodes. They indicate that “We look forward to extend random walk based centrality definition
to the group centrality setting in which we measure the centrality of groups rather than individual
nodes.". We believe that this might be another avenue for further research. Even though this metric
might sounds similar to the GED-centrality proposed by [4], we note that random-walk centrality
is more related to algebraic-based metrics including the Laplacian equations.

As for the solution techniques, we note that there is no study proposing exact solution approaches
for groups without motifs. Investigating this could lead to significant contributions. Additionally,
there is a clear path towards exploring probabilistic group centrality metrics, such as examining
the problem of maximum probabilistic clique [60] from a group centrality perspective. Assuming
static, unchanging conditions in large-scale network can be a significant limitation in real-world
scenarios where uncertainty and variability are inherent. That is why exploring this would be
important to understand network dynamics better.
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Considering that current models in OR literature are predominantly deterministic, introducing
stochastic optimization techniques, like two-stage stochastic models, could be a valuable addition to
the field. Such models can help in identifying influential groups that are crucial for the robustness
and efficiency of a network under probabilistic conditions. This approach could lead to more
resilient and adaptive network designs, thereby enhancing decision-making processes in areas such
as infrastructure planning, supply chain and logistics. Additionally, considering the fact that for
many networks we do not have a full picture of all the existing nodes and edges (see, e.g., illicit
networks which have attracted significant recent interest as in the works by [6, 49]), stochastic
extensions to group centrality can lead to more realistic identification of key actors in networks
with hidden elements.

In addition, it is evident that the majority of the research in group centrality and optimization
remains within the realm of theoretical research. Thus, we find it important to draw interest in
applying these concepts to real-world networks, such as in social network analysis and the identi-
fication of influential actors, transportation systems and their resilience, networks encountered in
socio-technical systems, or biological networks, to increase visibility and promote interdisciplinary
research opportunities. Specifically, we mention a few directions next.

We start, again, from a very important work by [57]: identifying paths and walks of high degree
can have applications in using autonomous vehicles to monitor a number of targets (by approaching
them). As autonomous vehicles are becoming more and more prominent in applications such as
humanitarian relief operations, last mile deliveries, health visits, etc., we believe that the study of
closeness metrics from the perspective of walks, paths, and tours/cycles will be an important piece
of the puzzle.

Nodal centrality has been prominent in interesting new societal problems, such as investigating
criminal and illicit networks [11, 38]. That said, group centrality metrics present a unique oppor-
tunity to identify many key illicit actors at once. Moreover, we mentioned earlier the need for more
stochastic measures of group centrality. These would be particularly interesting in this context, due
to the large number of hidden or obscured entities and relationships.

Additionally, a number of researchers have investigated criticality and centrality from the
perspective of disaster management (mostly evacuation). Continuing on that path, we believe it
is important to include refueling constraints (see, e.g., [93]) in the calculation of group centrality
when applied to evacuation, especially considering the scarcity of gas (and soon other alternative
fuels) during an emergency. Finally, another avenue for research is in pedagogy and the formation
of groups in the classroom (see, for example, [43]). Utilizing group centrality to identify groups
with “natural leaders” or groups that satisfy a specific connectivity constraint (e.g., high degrees
to other groups or mentors, high closeness to some mentor, etc.) can improve team formation and
lead to improved outcomes inside and outside the classroom.
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6 Conclusion
In this work, we review studies related to group centrality, focusing on identifying the most influ-

ential set of nodes in a network using predefined metrics such as degree, closeness, and betweenness.
Our emphasis is on approaches that utilize optimization modeling (e.g., linear programming) and
solution techniques, including heuristics, approximation algorithms, decomposition methods, and
combinatorial branch-and-bound methods.

We begin with providing preliminaries and definitions related to centrality and group centrality.
We then share a comprehensive discussion on the adoption of the group centrality concept by
OR researchers over time and indicate its rapidly growing interest. We then discuss how group
centrality is studied in various structures, including cliques and stars, and summarize the preferred
optimization techniques for different group centrality metrics.

Our findings reveal that OR researchers are primarily interested in identifying cohesive groups
with connectivity restrictions. However, there is an important lack in real-world applications, as
algorithms and models are predominantly tested on randomly generated, synthetic networks.

We identify several other research gaps. Firstly, there are few studies focusing on probabilistic
group centrality metrics, where the existence of edge connections or nodes may include randomness.
Moreover, we have not encountered any studies employing stochastic optimization techniques. It
could be interesting to explore how scenario-based stochastic approaches might provide more robust
group identification amidst randomness.
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