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Abstract

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth
non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual
averaging) for the classic subgradient method, the proximal subgradient method, and the
switching subgradient method. These equivalences enable O(1/T) convergence guarantees in
terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex
optimization. Consequently, our theory provides these classic methods with simple, optimal
stopping criteria and optimality certificates at no added computational cost. Our results apply
to a wide range of stepsize selections and of non-Lipschitz ill-conditioned problems where the
early iterations of the subgradient method may diverge exponentially quickly (a phenomenon
which, to the best of our knowledge, no prior works address). Even in the presence of such
undesirable behaviors, our theory still ensures and bounds eventual convergence.

1 Introduction

The study of gradient methods for iteratively solving nonsmooth convex minimization problems
dates back to as early as the 60s, see [1]. In recent decades, interest in first-order methods for
optimization has resurged in popularity throughout data science and machine learning domains
due to their low iteration cost and scalability. This has led to the development of a range of new
gradient methods [2-9]. Here, we instead focus on improving performance guarantees for classic
subgradient methods, the natural extensions of gradient descent to nonsmooth settings.

We consider general convex minimization problems of the following form

(1.1)
st. fs(x) <0 Vs=1...m

where the functions fs: € - R, s =0,...,m, are (strongly) convex but may be nonsmooth and not
globally Lipschitz continuous and r: &€ — R U {oo} is convex, closed, and simple, all defined over a
finite-dimensional Euclidean space £. We will consider iteratively solving problems of this general
form via a stochastic switching proximal subgradient method. This general method corresponds
to the classic subgradient method when r = 0 and m = 0, the proximal subgradient method
when m = 0, and the switching subgradient method of [10] when r = 0. Formal assumptions and
definitions are deferred to Section [21

This work provides equivalent dual descriptions and new primal-dual convergence rates for
all of these classic subgradient methods. Although our theory will be developed for stochastic,
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non-Lipschitz problems with r = 0 and m # 0, we first briefly present our results without these
generalities to showcase and introduce the key ideas.

The Classic Setting: Primal-Dual Theory for the Subgradient Method.

Supposing r = 0 and m = 0, the problem reduces to unconstrained minimization of fy: £ — R.
We assume access to an oracle capable of producing a subgradient at each iteration go(x) € 9fo(x) :=
{91 foly) = fo(z) + {9,y — x) Vy € E}. Note when fo is p-strongly convex (that is, f(z) — 4|3
is convex), each subgradient go(z) € Jfy(x), provides a quadratic lower bound

1
foly) = fo(z) + (go(x),y — 2) + Sy — |} vye&. (1.2)
To develop a primal-dual understanding, we consider the following reformulation

po = min fo(x) = minmax fo(y) + (g0(v).x — 9) + 5 1= — vl

o koo M (fo(yr) + (90 (un), = — we) + 5l — urll3)
= min max

T
ze€ yo,..yr€E oA
X A7 >0 2k=0 M

Zf:o A >0

where the first line replaces fp by the maximum of its quadratic subgradient lower bounds and
the second extends this to the maximum combination of such lower bounds. Any point = €
& provides a “primal solution” with primal gap fo(z) — px. Any collection of points y; and
weights \; provide a “dual solution”, which produces a lower bound on fo(z) of m(™)(z) =
S M (Fo i)+ (g0 (un) =)+ 4 lz—yi13)
Z:o Ak

The subgradient method builds a sequence of primal solutions {x} by repeatedly moving in

negative subgradient directions using a sequence of stepsizes o > 0

and a dual gap p, — inf m(D).

Ty = T — aggo(Tr) (1.3)

The method of dual averaging builds dual solutions yielding models m*) by repeatedly minimizing
this lower bounding model (with an optional §j regularization term) and then incorporating a new
subgradient go(yx+1) into the next model from the resulting point yx11 with weight Ag4q > 0

m® () = Yo i (fo(ws) + (90(wi),y — i) + Slly — will3)

%:?zo Ai (1.4)
— i ®) () + —LF = aol2 Y .
Yrt1 = argmin {m (v) TSy Iy yOHQ}

If one sets u = 0, this corresponds to the dual averaging method of Nesterov [3]. Other variations of
dual averaging from the literature are discussed in Section [2.1

In the not strongly convex setting of = 0, Nesterov [3] showed when S = B > 0 is constant,
these two methods are equivalent whenever o, = A\ /3. That is, they produce the same sequence of
iterates xr = yg. Our Theorem extends this equivalence to potentially strongly convex settings,
showing these two methods are equivalent whenever oy = A/ (e Z?:O X\ + ) and p+ > 0. Such
results allow one to equivalently view the classic subgradient method as either iteratively building a
primal solution converging down to optimal or building a lower bound converging up to optimal.

This new dual understanding enables us to develop primal-dual convergence theory for the
subgradient method. We find the dual model built by the subgradient method converges up to optimal
at the same rate as the iterates converge down. For example, if 3 = 0 and ||go(zx)|]2 < M uniformly,



a special case of our Theorem implies for any selection of oy and A with ag = A/ (@ Zf:o Ai),
the subgradient method (or equivalently dual averaging) has primal gap, dual gap, and distance to
optimality all converge with

ZT: S (@ . 7 ZT: e Qk
kX:OT)\() —p*+p*—1nfm(T)+§||$T+1 — zoprl3 < szfroi)\ : (1.5)
— — .
k=0 7k Dual Gap - - k=0 "k
Primal Gap Distance To Optimal

Selecting dual weights A\, = k + 1, corresponding to primal stepsizes oy = 2/u(k + 2) as considered
in [11, Section 3.2], this recovers and extends their optimal primal rate O(M?2/uT) to have a
matching dual term. This dual theory enables a computable optimal stopping criteria (assuming

Sr_g Mefolr)
T

u is known) as a primal-dual gap — inf m(?) less than e occurs within O(1/¢) steps

k=0 "k
ensuring both primal and dual accuracies of at least €. To the best of our knowledge, no such

criterion has been known, even for the classic subgradient method.

Given our primal-dual equivalence, our results can be equally seen as providing primal-dual
convergence guarantees for dual averaging. In this sense, we improve the prior best dual averaging
theory due to Deng et al. [12, Corollary 8] who showed a primal rate of O (M?/uT) when A\, =k +1
and B = p(T + 2) is constant. Note such rates are optimal (by the example presented in [13]),
meaning no faster objective gap convergence rate in terms of any of M, u, T can be achieved.

1.1 Owur Contributions

This work develops primal-dual equivalences and convergence theory beyond the above classic
subgradient method setting. We consider the general problem (1.1)) including an additive composite
objective, functional constraints, and stochastic subgradients.

e Dual Equivalences and Primal-Dual Convergence Theory. Our theory considers a
Stochastic Switching Prozimal Subgradient Method for the general problem class (1.1), which,
as special cases, captures projected, proximal, and switching subgradient methods as well as
gradient descent. We introduce a new dual averaging method for this general problem class,
Stochastic Lagrangian Proximal Dual Averaging, which our Theorem shows is equivalent
to the stochastic switching proximal subgradient method under proper selection of primal
stepsizes oy and dual weights A\p and 5. From this equivalence, our Theorem presents
new primal-dual convergence rate guarantees for these general methods.

e« Computable Stopping Criteria. Our theory identifies dual certificates implicitly built
by the range of considered subgradient methods. These certificates enable new computable
stopping criteria (assuming p is known), halting once the primal-dual gap is at most a target
accuracy €. The associated Lagrange multipliers may further be valuable when the subgradient
method is used as a subroutine of a larger computation.

e New Non-Lipschitz Analysis Bounds for Early Divergence Phenomena. Often,
nonsmooth optimization analysis focuses on Lipschitz continuous functions. Such theory
is limited to functions that asymptotically grow at most linearly. Our analysis uses a non-
Lipschitz model, allowing up to quadratic growth. By doing so, our theory provides new linear
primal-dual convergence guarantees for gradient descent in smooth optimization and new
guarantees for minimizing a sum fy = hy + he with smooth h; and nonsmooth but Lipschitz
ho, which is overall neither Lipschitz nor smooth. Numerics showcasing highly non-monotone
behaviors of subgradient methods on such problems are shown in Section [4, where our theory
still provides reasonably accurate predictions.



Outline. Section [2| introduces the considered primal and dual subgradient methods, related
literature, and the assumptions needed for our theory. Section [3|states and proves our equivalence
between these primal and dual perspectives and our improved primal-dual guarantees. Finally,
Section [ concludes with some numerical validation.

2 Preliminaries and Algorithm Definitions

Recall we are interested in the family of problems

min  fo(x) + r(x)
st. fo(x) <0 Vs=1l...m.

This extends the previously discussed classic subgradient method setting in three ways.
First, we allow for additive composite objectives fy+r for any closed convex r: £ — RU{occ0}. We
address this added term by assuming r is sufficiently simple that its proximal operator prox,, ,.(z) =

argmin,, {r(w) + ﬁ”x - z||%} can be evaluated at each iteration. For example, if r is an indicator
function for a closed convex constraint set, its proximal operator corresponds to projection onto
that set. Since r(z) + ﬁ”x — z||3 is strongly convex, it has a unique minimizer described by the
following equivalence

Zy = prox,, ,(z) <= ai(z —z4) €0r(z4) - (2.1)
k

Second, we allow for m strongly convex functional constraints fs(z) < 0 for s = 1,...,m. We
address these added terms by “switching”: Given a current iterate x, only one function fy,) will
be considered in that iteration. This function will be chosen as s(x) = 0 if x is feasible (that is,
fs(x) <0 for all s=1...m), otherwise s(x) can be chosen generically as any violated constraint
Js(a) (z) > 0. Third, we allow for stochasticity in our subgradient oracles for each function, denoted
by gs(z;&) such that Eggs(z;&) € 0fs(x). Note this trivially captures deterministic methods by
selecting gs(x; &) constant with respect to &.

Below, we introduce our considered primal and dual subgradient methods for solving such
problems. We introduce these using disjoint notations but will in Theorem [3.1] show these are, in
fact, the same algorithm in that their iterate sequences are identical.

A General Primal Subgradient Method. As a primal algorithm, consider the Stochastic
Switching Proximal Subgradient Method with stepsizes aj > 0 and sequence of iterates {xy} defined
by
et = {plroxo%r(a:;C — argo(rk; &k)) if xg is.feasible (2.2)
Tk — UGs(zy) (Th; k) otherwise.

for i.i.d. sampled &;. Throughout, we always assume «ay > 0, strictly. When m = 0, this is the
standard (stochastic) proximal subgradient method; when r = 0, this is the (stochastic) switching
subgradient method. Note when m > 0, only limited stochasticity can be allowed since an exact
determination of feasibility is required to decide the switching variable s(xy).

A General Dual Subgradient Method. To give a dual approach to solving , consider the



following equivalent minimax formulation

e, s o)+ ) 41
G T
. 2
=mip max Eg(Z S (fs(yk)(yk:) + (s () W3 €D T — Y) + 2”$-l/k\|2>
A0, AT—120 s=0 S(k<)7;5
Zk<T: s(yg)=0 Ar>0 o
Ng+1€0T(Ykt1)

1

Zk<T: s(yr)=0 Ak

+ Z Mk (7 (Yg1) <nk+1al‘_yk+1>)>

k<T
s(yx)=0

where the first equality is the standard primal Lagrangian formulation and the second equality
replaces each function by a combination of its lower bounds. Hence, any selection of values for
Yk, Ak, Nk gives a dual solution and a lower bound on p;.

As a dual algorithm, consider the following Stochastic Lagrangian Prozimal Dual Averaging with
dual weights A\ > 0 and regularization parameters 5 > 0. Throughout, we always assume A\ > 0,
strictly. Its sequence of iterates {y} based on i.i.d. sampled & is defined as follows: At iteration k,
construct the following (unnormalized) aggregations for each function based on the previous k — 1
iterations as

B I

FEUy)y = > N <fs(y,.)(yi) H{9s) (Wis &)y — i) + 5 lly = yil!%)
i<k: s(yi)=s

R(k—l)(y) — Z i (T(Yigs1) + (Mig1,Y — Yig1))
i<k: s(ys)=0

ME D (y) =3 FE D) + RE V()
s=0

where nij41 = 3 LVMED (yi1) + Ni(g0(vis &) + w(yisr — 9:1)) + Bi(yita — w0)) € Or(yit1) (see
Lemma - 1] for verification of this subdifferential containment). At iteration k = 0, these empty
summations are understood to take value zero. Then, based on the switching selection s(yx), a new
weighted model is constructed as

U0 () = Nk (fo(yr) + (9o (ks €)sy — wk) + 5lly — wkll3 +7(y))  if yy is feasible
e (ot @) + (950 Wk €605 — k) + 4lly — well3)  otherwise.

The Lagrangian proximal dual averaging method then iterates by minimizing the aggregation of
past models M*~1 plus the new model U*) (and an optional extra regularization term)

i = axganin { 40(g) + U0(g) + Zlly — yol} (2:3)

Note our definitions for the updated aggregate model M*) are chosen such that Yr+1 will also
be the unique minimizer of M®) (y) + %’“Hy — 9ol|3.

Lemma 2.1. yj.1 is the unique minimizer of M®)(y) + %Hy —yoll3.



Proof. First note that when v is infeasible (and so s(yg) # 0), M*) = M*=D L U®) From this,
the result is immediate. Now consider when yy is feasible (and so s(yx) = 0). Since yj41 is the
unique minimizer of M®*=1(y) + U®) (y) + %Hy — yol|3, the necessary and sufficient optimality
condition ensures yi4+1 is the unique solution to

0 € VM D (yei1) + Me(go(wrs &) + (yks1 — yk) + 07 (Yrs1)) + Br(¥hr1 — vo) -

Rewriting this as VM ® U (yry1) + Me(g0(yri &) + (ka1 — vx)) + Be(Yr1 — v0) € —Mdr(yrsa),
we see that nygy is the element of Or(yg41) certifying the minimization’s optimality. Therefore

0= VM* V) (yrs1) + Melgo (e &) + (st — Yk) + nis1) + Br(Wer1 — vo)
= VM® (1) + Br(yrr1 — vo)

and 50 Y41 is a the unique minimizer of M®)(y) 4 %‘“Hy — yol|3. O

Note whenever s(yx) = 0, the step corresponds to minimizing r plus a simple quadratic.
This amounts to computing a proximal operator for r and so is within the assumed computational
oracle model. Whenever s(yy) # 0, the step (2.3]) minimizes a simple quadratic and can be done in
closed form. The following easily verifiable lemmas provide a simple way to maintain the minimum
of the aggregate quadratic model.

Lemma 2.2. Any quadratic function of the form Q(2) = ¢+ (d,z) + 5||z — 2|3 with b > 0 is equal
to Q(2) = min Q + &z — argmin Q3.

Lemma 2.3. The sum of quadratics Q;(z) = a; + %Hz — 2|13 for i = 1,2 with b; > 0 equals

bi42
(Q1+Q2)(2) = a142 + 7Hz — 2110]|3
where a142 = a1 + ag + %Hzl — 213, biyo = b1 + ba, and 2149 = I)1bT11;221 + blengZQ'

2.1 Related Work

More General Distance Terms in Dual Minimization. Nesterov’s original development [3]
and most of the subsequent literature have considered a slightly different model for dual averaging
than discussed here. To the best of our knowledge, no previous dual averaging methods handled
functional constraints. Instead, they fix m = 0. Prior works have primarily fixed p = 0 (not utilizing
the quadratic improvement in lower bound quality from strong convexity) but allowed a more generic
distance function in the second term of dual averaging’s objective to be minimized at each step.
The “standard” dual averaging iteration for unconstrained minimization of fj is then

-’Ezvgz) T— mz))

m® (z) = S Nl @) +(go
i=o M (2.4)
Tp41 = argmin {m )(z) + 22 d(a:)}

for any p-strongly convex d(z). Our equivalent dual perspective fundamentally relies on these
improvements in the subgradient lower bounds and the distance function both being quadratics
|z — 2;]|2 and, as a result, are directly relatable. We do not expect our theory to generalize easily
for more generic distance functions.



Regularized Dual Averaging. A closely related method to the proximal subgradient method is
Regularized Dual Averaging proposed by Xiao [14] and further extended by [12,/15-18]. This method
applies to unconstrained additive composite problems minimizing fo + r by iterating

m®) () = Zima oot e et glewlE) | o)
Z'L O)\i (25)
i € angain {m®)(a) + o~ a0}

This method’s original development in [14] fixed © = 0 but allowed for a more general distance
function, as discussed above. Based on our Theorem regularized dual averaging can be seen as
a natural improvement on the proximal subgradient method. Regularized Dual Averaging utilizes r
entirely in its model function, whereas our equivalent dual description of the proximal subgradient
method ( specialized to this case, m = 0) uses the mixture of subgradient lower bounds and r,
iterating

m®) (z) = Zf:o >\i(fO($i)+<90(ii§§i),x—l‘i>+%||$—:m'||§) I Zf;ol Ai(r(xiﬂ)-s-(;:iﬂ7x_a;i+1>)+,\kr(x)
>ie 0 Ai DicoNi (2.6)
Tka1 € argmin {m(k) T)+ ——=r—||lr — xo } .
. (@) + g e = ol
Switching Subgradient Method Guarantees. Convergence rate guarantees for the switching

subgradient method of |[10] have been extensively studied for convex Lipschitz minimization [19-22]
and more recently for non-Lipschitz settings [23]. Our theory extends this prior theory to give

k:s(yg)=s

A
1; implicitly built by this
k:s(yg)=0
classic method (at no added cost). Recently, nonconvex guarantees were developed by [24] but are

beyond our scope.

Convex Conjugate-type Convergence Analysis. The recent series of works of Pefia and
Gutman [25-27] developed unified convergence guarantees for convex optimization (u = 0) for
a range of first-order methods from accelerated smooth methods to nonsmooth Bregman and
conditional subgradient methods. Beyond just showing convergence of the objective gap, these
works showed convergence of perturbed primal-dual quantities based on aggregating (sub)gradient
information. This work shares a similar spirit but addresses the setting of u > 0. Strong convexity
ensures our non-perturbed dual gaps are finite, a necessity for our theory.

The recent work of Diakonikolas and Orecchia [28] developed first-order methods by discretizing
continuous-time dynamical systems with decreasing gaps between aggregated upper and lower bounds
on optimality. This technique is able to recover dual averaging among many other standard first-
order methods. Although they only provide primal guarantees, their approach may be extendable
to bound dual gaps.

Prior Primal Weighted Averaging Analysis. The value and importance of returning a carefully
chosen weighted combination Zf;ol orxp of subgradient method iterates has been studied by several
prior works. Rakhlin et al. [29, Theorem 5] showed uniformly averaging the last ¢ € (0,1) fraction
of iterates (called g-suffix averaging) can lead to an optimal O(1/T") primal convergence rate for
strongly convex minimization. Shamir and Zhang [30, Theorem 3 and 4] improved this theory and
additionally showed polynomial weightings yield the same optimal rate with less computational
overhead. The s*-stepsize rule developed by Gustavsson et al. [31, Section 3.3] builds substantial
theory for such polynomial stepsizes and weightings o = (k + 1)P. The o = k + 1 choice of [11]
amounts to the simplest polynomial weighting choice. Our theory provides a novel insight into the

matching dual bounds and identifies Lagrange multipliers us =



source of these iterate aggregation weights: primal-dual guarantees hold for any stepsizes «; if the
averaging used is proportional to the stepsize’s corresponding dual weights oy o< Ag.

Alternative Lagrangian Dual Averaging Approaches. Our proposed Lagrangian Proximal
Dual Averaging Method implicitly sets the dual multipliers based on the frequency/total weight
of steps taken on each constraint function, after which the iteration amounts to repeated model
minimization. Alternatively, one could apply dual averaging to the Lagrangian minimax problem
directly. Such an approach is proposed and analyzed by Metel and Takeda [32].

2.2 Assumptions for our Convergence Theory

Our primal-dual convergence rate theory relies on three assumptions. Our first two assumptions are
standard, strong convexity and the existence of a Slater point.

Assumption A. The functions fs for s =0...m are each p > 0-strongly convex.

Assumption B. There exists some zg;, € dom Or with fs(zs,) <0 forall s=1...m.

Note strong convexity ensures there exists a unique minimizer xgpr € dom Or of . These
two points zgpr, g € dom Jr serve as important references that our analysis is done with respect
to. We fix two subgradients of r at these points: The subgradient ngy,, € Or(xepr) is chosen such
that fo(x) 4+ r(xopr) + (Nagr, © — Topr) is minimized over fs(x) < 0 at xgpr for all s =1...m. The
subgradient ng, € Or(xsL) can be chosen freely.

These two reference subgradients of r facilitate considering two lower bounds of the objective
fo+r for either y € {xgpr, xsr}, denoted by

hy(z) :== fo(x) +7(y) + (ny,x —y) .

At each iteration k, we denote the relative difference between xp and y € {xppr, zs1.} in (relaxed)
objective value or feasibility on the selected constraint function fy,) by

Se(y) = {hy(xk) — hy(y) if x;, is feasible o

fs(xk)(xk) - fs(:pk)(y) otherwise.

Note d;(y) is always finite since the real-valued objective function lower bound h, is used instead
of fo + r which takes value in the extended reals. Indeed, consider r as an indicator function for
some a simple constraint set. This set is projected onto each iteration where zj, is feasible for all of
the functional constraints, ensuring zj,1 is feasible for the simple constraint. We cannot, however,
guarantee that xzj satisfies the simple constraint, and so r(xx) may be infinite.

The sign of dx(y) may vary. If y = xgpr, then O (zgpr) is nonnegative, being lower bounded by
the level of suboptimality or current infeasibility

S P
When y = zg and xy, is feasible, d;(y) may be negative but is bounded below by
Ok(wsL) > inf hyg — hag (TsL) > —00 .
When y = zg. and xy, is infeasible, dx(y) is strictly positive, being bounded below by

6k:(xSL) >0- II11&X fs(xSL) >0.

S=1l..m

A common third assumption used in the analysis of subgradient methods is the uniform boundedness
of subgradients. However, if this holds everywhere, the objective must be uniformly Lipschitz



continuous, implying it asymptotically grows at most linearly. Contradicting this, strong convexity
implies it grows at least quadratically. To avoid such incongruences and to include combinations of
smooth and nonsmooth optimization, we consider a more general model than Lipschitz continuity
similar to that previously considered in |33} Section 1.2], allowing for quadratic growth.
Assumption C. For both y € {zgpr, zs1.}, there exist constants Lo, L; such that every iterate xy
has

{azk is feasible = B¢, llgo(@r; &) + nyll3 < LE+ Lidk(y) (2.8)

), is not feasible = Ee¢, |gs(ay) (@r: )5 < L§ + L16k(y) -

This assumption captures several common settings. In the standard nonsmooth optimization setting
where each f; is uniformly Lipschitz, Assumption C holds with L; = 0. Moreover, Assumption C
also holds in the standard smooth optimization setting where each f; has uniformly L-Lipschitz
gradient. The following lemma shows this condition holds for any additive combination of nonsmooth
Lipschitz and smooth settings with bounded variance in the stochastic subgradient oracles.

Lemma 2.4. If there exists functions f§1)7f§2) such that each fs = fs(l) + fs(2) fors=0,...,m
where fs(l) s uniformly M -Lipschitz and f5(2) has uniformly L-Lipschitz gradient and gg(s,)(Tk; §k)
has variance uniformly bounded by o2, then Assumption C holds.

The proof of this lemma is deferred to the appendix where the explicit constants Ly and Lq can
be found. Section [4] gives an illustrative numerical example of this form where Assumption C holds
despite the objective being neither Lipschitz nor smooth.

Note allowing non-Lipschitz objectives allows a range of undesirable “bad” behaviors to occur.
It allows the early iterations of the subgradient method to diverge exponentially. For example,
consider minimizing f(u,v) = 50u? 4+ 0.5v%, which has y = 1, Ly = 0, L1 = 200, with the subgradient
method initialized with xg = (1,0) and ay = 2/u(k + 2) (corresponding to A\, = k+ 1, B = 0).
For the first one hundred iterations, the size of xj grows exponentially, peaking with ||z100|2 just
over 10°, after which it converges monotonically to f’s minimizer. Despite such instances existing,
our theory shows that even if x; diverges in its early iterations, it will always subsequently converge
at least at rate O(1/T'). To the best of our knowledge, no existing analysis of subgradient methods
or dual averaging addresses this phenomenon.

To understand and bound such behaviors, we introduce the following two constants, dependent
on the choice of stepsizes aj and associated dual weights Ag,

Ty :=sup{k €{0,1,2...} | Liay > 1} , (2.9)
To

Co := Z Ap max {Lyoy, — 1,0} max{E¢0y (zopr), E¢dp(2sL)} - (2.10)
k=0

Observe that Tp, and hence Cp, is bounded if «y, is eventually always less than 1/L1, capturing all
stepsize policies with o — 0. Despite being bounded, the constant Cjy can be exponentially large in
Tp. The toy example considered above has Ty = 397 and Cy > 102, Such potentially exponential-
sized constants can be avoided through careful stepsize selection as if one selects ay, < 1/L; for all k
as then Ty = —oo and Cy = 0. In particular, under the classic assumption that subgradients seen are
uniformly bounded, Assumption C holds with L; = 0 and so Cy = 0. Regardless, our convergence
guarantees apply whenever Cj is finite. As a natural consequence of our main convergence analysis,
we find the rate xj can diverge, and hence the constant Cjy, are at most exponential in Ty (see

Proposition .



3 Primal-Dual Equivalence and Convergence Analysis

In this section, we show the considered primal switching proximal method ([2.2)) and dual Lagrangian
proximal method ({2.3)) are equivalent and subsequently state and prove new primal-dual convergence
guarantees for these methods.

Theorem 3.1. Let {x}} be the sequence of iterates of the primal method (2.2)) with stepsizes oy, > 0
and {gk} be the sequence of iterates of the dual method (2.3) for some Ak, Br, v > 0. If zo = yo,

By = B >0 is constant, and
A
Q= % , (3'1)
Wi Ai + B

then these methods are equivalent, that is xp = Y.

Proof. We prove this by inductively showing that z; = y; and for any iteration with s(xzp) =0
that ngy 1 = aik(xk — aggo(rk; &) — wr11) (i-e., the subgradients of r produced by the dual method
are exactly those produced by the primal method via (2.1))). By assumption, xg = yo. Suppose
for induction that x; = y; for all ¢ = 0,...,k and for all i = 0,...,k — 1 with s(x;) = 0 that
nip1 = o (2 — aigo(i;&) — xivr). Let Gi = go(yi; &) + niga if y; is feasible and gy, (vi; &)
otherwise. For each i < k, we claim z;11 = x; — «a;g;. If x; is infeasible, this is immediate. If
x; is feasible, since x;11 = y;+1, we have n; 11 € Or(x;41). As a result, ;41 = x; — a;g; by .
Inductively, we conclude for ¢ < k that z;11 — 29 = — Zi:o QG-

By Lemma Y1 is the unique solution to 3% i (g + pu(yk+1 — i) + B(Yrk+1 — yo) = 0.
Rearranging and simplifying this, it follows that

S oAty — o) — 2o Nidi

Yk+1 = Yo+

Z o Aipt+ /3
A _
S A (Zt 0 w) + 20 \idi
=Y — =0
oA+ 8
Zkl)\—zzwl“l_'_z A
t=0 t Z’L () )\ +5 =0 l-gl
= Yo —
Zf’f:o Aipt + ﬁ
S A
)\ 1=t+1 + 1
=y — o <Z’ 0 Atjﬁ - MGk
Yo Ain+ B o+ B
= MGk
=%Yoo — Z
toZz 0)\tlu+/8 Z 0)‘Zﬂ+ﬂ
= T — oGk
where the second equality uses the inductive hypothesis for each y; — yo = z; — 9 = — Zi;(l) QG

the third exchanges summands, and the remainder combines and simplifies terms. If x; is infeasible,
its immediate that x4+ = o — argr = yr+1. If zp is feasible, the above equality ensures

Oj}g(% — argo(Tr; &k) — Yky1) = Nig1 € Or(Yry1) -

Noting by (2.1)) that x4 is the unique solution to O%k(:z:k — aggo(xk; &) — 2) € Or(z), we must have
Tpt1 = Yg+1 and ngq = aik(:nk — axgo(Tk; &) — Tr11) as required. d

10



Remark 1. Theorem[3.1] suffices to give a dual description for any sequence of primal stepsizes with
ap € (0,1/p] and ay, € (0,1/u) thereafter: one can select any Ao and 8 satisfying ag = Ao/ (Ao + 3)
and then the corresponding sequence of dual weights is given by the recurrence

Qpy1 Mg ar Ao
A = TR —_ A= — —| . 3.2

T e ay, < ’ I, (1 — pay,) 040) (3:2)
Ak

One can inductively verify this sequence has o = —=2—— a
y verify q e

S
Qkt1
Ak+1 B Ak+1 Mgl Topang
o P - - [}
15 anPVEEENT DARPVE SRR O VT O S TTeT

Hence, provided dual weights A\, one can easily construct oy, as stated in the theorem, and conversely,
given stepsizes ay, one can easily construct corresponding weights A. For example, fiving Ao =1,
B = 0 multipliers for several common stepsizes are

= Ok41 -

1
:7:>>\:17
Tk D) "

2
= = N=k+1,
Tk 2) ¢

1 1/Vk+1 N
ay = PN S = M\ = T (1= 1/viTT) ~ exp(Vk)/VEk .
Remark 2. Nesterov [5] noted that in non-strongly convex settings (1 =0), decreasing stepsizes
ay corresponds to placing decreasing weight on new subgradient lower bounds A\, = a3. This runs
counter to the intuition that the newest models ought to be most relevant. Rather surprisingly, our
Theorem shows this fault does not extend to the strongly conver settings (u > 0). As seen above,
the decreasing stepsize selection of oy, = 2/u(k+2) corresponds to increasing dual weights N\, = k+1.

3.1 Statement of Primal-Dual Convergence Guarantees

For ease of presenting our convergence theory, we fix § = 0. This parameter’s primary purpose in
Nesterov’s development of dual averaging [3] was to make the model subproblem strongly convex.
Strongly convex problems p > 0, as considered here, have no such need. Following Remark [I} fixing
B = 0 only restricts the first stepsize as any sequence ag = 1/p and ay € (0,1/p) can still be dually
described.

We prove a uniform convergence guarantee in terms of the primal gap

Zk<T:s(xk.):0 Ak Pgpr (xk’)
Zk<T:s(a:k):0 Ak

primal-gaps (= — Ds

which utilizes a combination of the feasible objective values seen, the dual gap

M(T-1)
nf ,
Zk<T:s(xk):O Ak

which utilizes a combination of the subgradient lower bounds seen, and the distance to optimal. For
the primal and dual gaps to be well-defined, at least one feasible iterate must have been seen (i.e.,
D k<T:s(zp)=0 Mk > 0). Our assumptions facilitate a bound on how long it takes for this to occur.
We show the expected fraction of the dual weight that occurs on iterations with a feasible iterate
(i.e., s(xr) = 0) is bounded below.

dual-gapy := py — i

11



Proposition 3.1. Under Assumptions A-C, for any primal stepsizes oy, > 0 and dual weights
A > 0 satisfying (3.1) with =0, the stochastic switching proximal subgradient method (2.2)) has

E Zk<T:s(xk):0 Ak > TSL 1_ L% Zg;& Arag + Cp
EZ:_()I )\k: B 2(h37SL (st) — inf hGUSL) + TsL ZZ:_()I )\k

where Tsp, = 0 — maxg—1._m fs(xs) > 0.

A proof of this is given in Subsection [3.2.1] In deterministic settings, a feasible iterate must then
have been reached once this bound is positive. From this, we see that any stepsize selection with
> Akax/ Y Ay — 0 will asymptotically have at least e, (xSL)ISﬁlf e E= 0 fraction of the dual
weight on iterations with xj, feasible. Once a feasible iterate occurs, our primal and dual convergence
measures are well-defined. Alternatively, one could assume the initialization xzq is feasible to ensure
these quantities are well-defined. In either case, Subsection proves the following primal-dual
convergence guarantee as our main result.

Theorem 3.2. Under Assumptions A-C, for any primal stepsizes oy, > 0 and dual weights A\, > 0
satisfying (3.1) with B = 0, the stochastic switching prozimal subgradient method (2.2)) has

B Zk<T:s(:pk):0 Ak
13 T-1 A
Zk:() k
< L3320 Akaw + Co '
B Yhso M
Remark 3. Theorem recovers the primal convergence rate of (11, Section 3.2] with oy =
2/(u(k +2)) and extends it to be a primal-dual guarantee covering proximal, switching, and non-

Lipschitz settings. Theorem shows this stepsize corresponds to dual averaging with weights
A =k+1. When m =0, Theorem ensures

) (primal-gap; + dual-gap;) + %HxT — xngHg

412 N 2C)
(T+1) T(T+1)

E¢ {primal—gapT + dual-gap; + gHazT — :copTH%] < .

using that Zg;ol A =T(T+1)/2 and Zg;ol Mg = 2(T — 155 1/k)/u < 2T /. When m > 0
and the subgradient oracle is deterministic, applying Proposition[5.1] gives a rate worse by only a
factor depending on the Slater point of

E¢ {primal—gapT + dual-gap; + ngT — xngH%}

_ 2hag (w51) — inf hoy) + 751 ( aLg 20y )
= o 20 T+1)  T(T+1
TsL (1 - u(T-El) - T(T-El)) wT+1) (T+1)

Here, the role of Cy, defined in , bounding the effect of the non-Lipschitz constant L
becomes clear. The only role L1 plays in our rate via Ty, which in turn Cy may be exponentially
large in (see Proposition . If Cy is small, then convergence will be dominated by the classic
O(L%/uT) term as the dependence on Cy shrinks at a fast O(1/T?) rate.

Remark 4. Theorem further recovers and extends the classic linear convergence of proximal
gradient descent for smooth, strongly convex optimization. Assume m = 0 and fo is 5-smooth with

12



go(z;€) = Vfo(x). Then holds with Ly =0 and L1 =28 > “H Consider the stepsize selection
with ag = 1/ and o = 1/Ly constant thereafter, which corresponds to dual weights \g = 1 and
Ak =1-(1- w/L1)~k. This choice has Ty = 0 and Co = (% —1)do(zopr), giving the following linear
convergence

. I o _In H 4
primal-gap; + dual-gap; + §H£L'T — zoprl|5 < 750(3:0”) 1— )

using that Zf;ol Mo = (1 —p/Ly)~ T,

Remark 5. Theorem[3.4 provides new non-Lipschitz conditions for limiting primal-dual guarantees:
Under Assumptions A-C and given a deterministic subgradient oracle,

lim max {primal—gapT, dual-gapy, ||z — :ngTH%} =0
T—o0

if Cy is finite and Z%’ZO Ao/ z{zo A — 0. Note this implies Zfzo A — 00 since ag, A\ > 0. The
classic conditions needed for limiting primal convergence under Lipschitz continuity are oy, — 0,
which implieskCO is finite, and Z%:o a% / Z;{:O ar — 0, which differs slightly from our theory when
ap = A/ Y g Ni as

ko Sk T

=0 k

_ ey . —0 Mk

classically, one needs T—Zg\*’fl — 0  whereas we require &}07 0.
i=0""

Remark 6. One can select stepsizes to minimize our rate. Given Cy =0 and the first T stepsizes
Qg, . ..ar—1 and corresponding weights g, ... Ar—1, one can select ar and Ar to minimize our
convergence upper bound (1.5)) after one more step by settz’ngﬂ

A b Ak X Ypg A
ar = TiT and Ay = Zk:q?,lk Zk:o kO (3.3)
12 k=0 Mk Do Me(2/ 1 — ay)
Given ag = 1/ and Ao = 1, the numerically optimized parameters and rate are below.

k| 0 1 2 3 4 5 6 7 8
Ak | 1 1 1.2 1.4022 1.6025 1.8005 1.9966 2.1910 2.53841

1 1 1 1 1 1 1 1 1
Ok | 2u 2.6666p  3.2820p  3.8710p  4.4460p  5.0094p  5.5648u  6.1142p

Rate (C3) | 18 16 mo it Tuat Tt it :
ate (1.5) o 1.3333u 1.6410p 1.9350u  2.2230p  2.5047u  2.7824u  3.0571n  3.3293u

For comparison, this offers small gains over the “typical” stepsize ay, = 2/u(k + 2), shown below.
Numerics showing some small gains actually occur are in Section []

k| 0 1 2 3 4 5 9 7 8

e | 1 2 3 4 5 6 7 8 9

ap | L L 1 1 1 1 1 1 El

“w 1.5 21 2.5 3u 3.5 m 4.5 5L

o S D S S S S B S
ate (L.5) o 1.2857u  1.5662u  1.8404p  2.0126p  2.3824u  2.650du  2.9168u  3.1810u

!This can be verified by noting Ay, is B-smooth. Then the standard descent lemma ensures

hwnp‘r (mUPT) < hl‘upr(xk - (Vfo(xk) + nl‘upr)/ﬁ) < hwup‘r(xk) - %"Vf()(xk) + TL‘L'DPTHS‘

2 . . . . . d ZT7 Ak
The formula for the optimal Ar in (3.3]) can be verified as the unique solution to Fres z’é}% =0.
k=0"F
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Remark 7. For deterministic settings where u and an upper bound G* > L% are known, one can
also utilize our theory to adapt stepsizes to avoid any early exponential divergences. Recall such
divergences are quantified by Cy as discussed at the end of Section [3. If one selects decreasing
stepsizes with ag = 1/ and o < 1/Ly thereafter, Ty defined in must equal zero, and hence
no bad divergence can occur as

(Zk<T:s(a:k)0 )‘k
Yhso M

a2 kaf—ol Aeags + (51 — 1) 195 () (z0360) 17

< = —

K L (3.4)
Zf;& Ak

) (primal-gap; + dual-gapy)

where we bounded L < G* and Cy = (%—1)50(3/) < (ﬁ—l)w for eithery € {xopr, Tsr}.
Notice every quantity in is computable! Hence, if one selected generic decreasing stepsizes
ay, without knowing Ly to ensure o < 1/Lq, one can still check if convergence is occurring at the
above rate. If fails at some iteration, one can conclude oy > 1/Ly. In this case, one could

reasonably restart the method with reduced stepsizes, via an exponential backtracking.

Remark 8. Without strong convexity, one cannot guarantee convergence of a duality gap since a
linear M®) leads the duality gap to always be 0 or co. Our theory can still be applied by a standard
trick: Instead of unconstrained minimization (m = 0) of a convex function fo, one could minimize
the closely related strongly convex function

fo(@) = fo(@) + —=5lz — o]® .

(B

xX o . . r3 .
spz =, and so any e-minimizer of fo is

This perturbed problem has minimum value at most pyx + €
* 2
an (1+ %)e—minimuer for the original problem.
Note fq is €/ D?-strongly convex and since m = 0, one can select xsy = xopr. Moreover, if fo was
M -Lipschitz continuous, then as a sum of Lipschitz and smooth components, the perturbed objective
fo satisfies (2.8) with [i% = 6M? by Lemma |2.4. As a result, Theorem ensures applying the
subgradient method to fo with stepsize ay = 2D?/e(k + 2) has perturbed primal-dual gap converge
24M?2D?
e(T+1)
were given by [27].

at a rate +O(1/T?). Similar perturbed primal-dual guarantees using a novel proof method

3.2 Proof of Primal-Dual Convergence Guarantees

Our theory relies on two symmetric inductive results, one inequality slightly generalizing the classic
primal analysis and one novel inequality based on our dual perspective, in Lemmas [3.2] and
From these, we prove the feasibility guarantee Proposition [3.1] and our main result Theorem [3.2]

First, we show an inductive relationship on the (expected, unnormalized, squared) distance from
the iterates zj, to either xgpr or xgr, defined as

k-1
Ri(y) == (g > )‘i> Eellze — yll3 (3.5)

1=0

To simplify notations, throughout our analysis, we denote gy = gy(u,)(7k; §k) and wy = ,LLZ?:O Ai
(with the convention that w_; = 0 as the given summation is empty).

14



Lemma 3.2. Under Assumptions A-C, the switching proximal subgradient method (12.2)) with
ar = M/ 2K Ni has for either y € {xgpr, T}

Ak

Ri1(y) < Bi(y) — - ((2 — Lyiay) E¢oy(y) — L%Oék) :

Proof. This proof follows a standard analysis technique, directly expanding the definition of Ry1(y).
First, suppose xj is feasible. Then

wy,
Riy1(y) = 7E5HP1"0Xak,r($k — aggr) — proxy, (v + axny)|3

wy,
< 7E£H9€k — ay (g +ny) — yl13
w, AkQrg
= jEstk — ylI3 = MeEelgr + ny, xi — y) + 5 Eellgr + nyll3

w, % Ak Qi
< -5 Bellzk — yll3 — MBe (hy (1) — hy(y) + 5 llew = yll3) + —5 Eellgr + nyll3
AL Ol
= Ri(y) — MBedr(y) + ——Eellge + nyll3

where the first line uses that prox,, ,(y + axny) =y, the second uses the nonexpansiveness of the
proximal operator |34, Proposition 12.19], the third factors the norm squared and uses aj = A\, /wg,
and the fourth uses the strong convexity of h,. Then, applying the bound gives the claim.
Similarly, supposing x, is infeasible gives

Wy,
Ripi1(y) = 7E§||33k — argr — yll3

Ak,

_ %Egllka = yl13 = AeBe(gn i — y) + 5 Eellgull3
< %E{Hl‘k — I3 = MEe(foqp) (@) = fop) W) + g”iﬁk —yll3) + )\k;kEngk”%
— Ri(y) — MEedn(y) + 22K R g, 2
using strong convexity of fy(,,). Applying completes the proof. -

The dual portion of our convergence analysis relies on showing the same inductive relationship
on the (expected, unnormalized) dual gap defined as

Dy, = ST N | pe— Eginf M*D (3.6)
i<k:s(z;)=0
Dividing through by >, . s(2:)=0 i, once nonzero, gives the dual gap.

Lemma 3.3. Under Assumptions A-C, the switching proximal subgradient method ([2.2)) with
o = M/ 1SS0 \i has

A
Dy < Dy — 5 ((2 = Luow) Eedy(wopr) — Liou) -

Proof. Observe that one can rewrite M®*)(z) = Q1(z) + Q2(z) as the sum of two quadratics where
Q1(z) = M¥ =D (z) and Qy depends on whether z;, is feasible. In the notation of Lemma
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Lemmas and ensure Qq has a; = inf M* =1 p; = ,quz_Ol Ai, and 21 = xp. To determine Q)2,
first suppose xj, is feasible. Then we have

Q2(x) = Ak (fo(ﬁk) + (g, © — xp) + %Hfﬂ — g3 4+ r(@pt1) + (g1, T — fﬂk+1>> :

This quadratic can be written in the form Q2(2) = as + %z — 22||3 with

1
az = A (fo(fck) +7(Tpy1) + gy, gk + nkg1) — ﬂ”gk + nk+1H§> ;

by = puAg , 29 = Tp —

By Lemma the expected minimum value of the updated model E¢ inf M (*) is

. _ 1
E¢ inf ME=D 4 AkEe (fo(xk) + r(xpp1) + (pt1, gk + Nigr1) — ﬂ”gk + ng+1l3

k—1

h—1 )
+ == gy + nk+1||2> :
2#2?:0 Ai ’

From this, we conclude the lower bound

Eg inf M(k) > Eg inf M(k_l) + )\kEg <f0($k) + T($DPT) + <n$0PT’ Tk+1 — $DPT>

k 1

2p Z

+ g (Mgt 1, G + Niey1) — 7”9/@ + g |5 + —EE Hgk + nk+l”2>

= E¢inf M*~1 4 \Ee <5k($0PT) + De + (Nager, —0k(9k + Nkt1))

Qg 2
+ o (Npt1, gk + Na1) — ?Hgk + nk+1H2>

. _ «
— E§ me(k 1) + A (Egék(xng) + Px — ?kEéHgk + nxUPTH%)

where the inequality lower bounds 7 (k1) by 7(xopr) + (R, Tk+1 — Topt), the first equality applies
the definitions of dx(zgpr) in (2.7)), oy in (3.1)), and that z11 — xx = —ag(gx + nk11), and the last
equality combines and simplifies terms. In terms of Dy = > p.s(z,)=0 AiPs — E¢ Inf M (k=1) " this
gives the following recurrence

T

D1 < Dy, — M\Ee0p(zopr)

Applying 8]) gives the claim in this case. Now suppose xj, is infeasible. Then, noting ()2 minimizes

at xp — <& Lemma . ensures
(o= 22]],
T — — .
w2

1 4
Q2(z) = A <f5(mk)(96k) - ﬂ”ng% +5 %
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Then by Lemma the expected minimum value of the updated model E¢ inf M (k) is given by

Ak§:

1
Eg inf p k1) + /\kE{ (fs(xk ( ) ”ng%> )\
1:0

Akak

Ee [lgx ]l

= B¢ inf M*™Y 4 NEe fo () (21) — E5H9k||2 :

Noting fy(z,)(wopr) < 0, we conclude the lower bound
. . _ a
E¢ inf M®*) > E¢ inf M= 4N, <E§6k(:png) — ;Egﬂgk”%) .
In terms of Dy = > jig(z,)=0 AiP+ — B¢ inf M*=1) | this gives the recurrence

A
D1 < Di, = AvEedi(wopr) + ~5Eellgl

Bounding E¢||gx||3 by (2-8) gives the claim in this last case. O

As a direct consequence of our primal inductive lemma, we can bound the rate that dx(y) grows
in the first Ty iterations as being at most exponential. From this, one can explicitly upper bound
Cy exponentially in Tj.

Prop051t10n 3.4. Under Assumptions A-C, the switching proximal subgradient method . with
ap = Mo/ Ko Ni has for either y € {xopr, 25}

2

L
10k ()| < Lz — yl|3 + f? ,

max{27L1/M_2}L1>T <” 2 Li(z) L(Q) >
i

E —yl3< (1 —
elor —yl < (1+ ro =yt P

Proof. We first claim xj, satisfies

<5k ) < \JLE+ Lid(y) ok — yl2 -

The first inequality lower bounding dx(y) is immediate from . For the second inequality, note
that if zy, is feasible, convexity of hy, ensures that hy(y) > hy(zr) + (B¢, (9s(ap) (Tr; Ek) +1y), ¥ — Ti)-
If zy, is infeasible, f(z,)(Y) = fo(ay) (Tk) + (Bey, Gsay) (Th; §k), ¥ — 7). In either case, Cauchy-Schwarz
and Assumption C give the second inequality. Observe that if dx(y) < 0 , the first inequality above
ensures |0 (y)| < é—‘? < Ly||lzk —yl3+ é—(j). Instead, if dx(y) > 0, squaring the second inequality above
ensures 8x(y)? < (L3 + L16w(y)) 2k — 3, which implies

Ly + /I3 +4L3/|lzx — y3 , L2 ,
5 |z —ylls < f+L1||$k yll3;

ok(y) <

where the second inequality uses concavity to bound va + b < \/a + < Va+ 5 \[, completing
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the proposition’s first claim. To prove the proposition’s second claim, note

Ak
IE»SHH%H - Z/H% < E&”@c - ?JH% - m(@ - Llak)E£5k(y) - L(Q)ak)
i=0 i

< Bellew — yll3 + an(12 — Lia|[Bedy(y)| + L)
< (1+ a2 — Liog| L) Eellzy, — )13 + axl2 — Llak\* + Liai

ax{2,Li/p—2}L a 2,L —2V12 L2
1% 1% Ly p

where the first inequality uses Lemma divided by (§ Zf:o Ai), the second inequality applies simple
upper bounds, the third inequality uses our bound on |dx(y)|, and the fourth uses that 0 < ay, < 1/pu
and its consequence |2 — Lyag| < max{2,L;/pu — 2}. From this, the proposition s second claim
follows as such recurrences of the form a1, < b-ay,+c satisfy ar < bTaq +c 1 < bT(ao +55). O

3.2.1 Proof of Proposition Noting Ry(xs.) = 0 and Rp(zsy) > 0, inductively applying
Lemma [3:2] with y = zgr, shows

Z ?k ( (2 — Liag)Eedp(vse) — Lgak> <0.

From this, we find that

T—1 T—1
0< Z M (Lro, — 2)Eedp(xs) + Z L(Q))\kozk
k=0 k=0
T—1 T-1
=E; Z Mie(Lyag — 2)(max{0x(xs), 0} + min{dg(xs),0}) | + Z L%)\kak
k=0 k=0
T—1 T-1 T-1
< Co + EE Z )\k HlaX{(sk(LUSL 0} + Z )\k L1ak — 2) mln{ék(st) 0} + Z LO)\kak
= = k=0
T—1
< Cp — 7.Ee ST Ne| F 2(hag (ws) — inf heg )Ee S e+ D0 Loy
k<T:s(zy)#0 k<T:s(zy)=0 k=0

where the first inequality uses our inductive result, the second inequality uses the definition of Cy
in (2.10) and that o (zgpr) > 0, and the third inequality bounds the first two summations as follows:
(i) the first sum’s upper bound notes that if s(xy) # 0, then 0 (zs.) > 7s1. > 0 and (ii) the second
sum’s upper bound notes Liag —2 > —2 and if s(xy) = 0, then 0y (xs) > inf hyy — hag (zs1), which
may be negative. Rearrangement gives the claim as

T-1y _ 72v7T-1 B
Eg [ Z )\k] > TSL Zk:() Ak Lo Zk:() Arag — Co .

k<T:s(z))=0 2(hag (vsL) — inf hog ) + Tt

3.2.2 Proof of Theorem Applying Lemma with y = zgpr from k =0 to T"— 1 yields

= Lz)\kak = M
7 (Topr) + Z E§5k Topr) o(Topr) + Z +> 5 (Liog — 1) E¢p(wopr) -
k=0
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Similarly, applying Lemma [3.3| from k£ = 0 to T — 1 yields

T-1 Ak T-1 L2\ T-1 Ak
Dr+ > 5 Eedu(worr) < Do+ ) —5—+ > 5 (Lnay — 1) E¢dy(wopr) -

k=0 k=0 k=0 2

Noting Ro(zgpr) = Do = 0 and the last summation in each bound is at most half our initial blow-up
constant %Co, the sum of these inequalities provides a bound of

T-1 T-1
Ry(zopr) + Dr 4+ Y MeBebp(zopr) < D LiApoy + Co -
k=0 k=0

Lower bounding each E¢dy(xopr) with s(xy) # 0 by zero completes our proof.

4 Numerical Experiments

In this section, we numerically validate the accuracy of Theorem [3.2] in predicting actual observed
performance. Our three main numerical experiments address the impact of varying A, the quality
of our new primal-dual stopping criteria, and the accuracy of our Ty and Cj constants at predicting
initial divergences. All of our numerics are implemented in Julia 1.8. EEL

We consider the following deterministic family of nonsmooth, non-Lipschitz, strongly convex
minimization problems given A, C' € R™*" and b,d € R™

min fo(z) = |4z — bl + 3]C — d]f . (1)
TER™ 2

Note ||Az — bl|; is ||AT||OOH2—LipSChitzH However, computing this induced matrix norm is NP-
hard [35], so we instead upper bound it by >/, ||A;|| where A; denotes A’s ith row. Further
noting 3[Cz — d||3 is Apas(CTC)-smooth, by Lemma our Assumptions A-C hold with L =
8( [|Ai N2, L1 = 4Anae(CTC) and p = M\pin(CTC). We generate problem instances fixing
m =n = 100, zg = 0 and randomly drawing A, C , zopr with i.i.d. normal entries. To control p and
Li, weset C =1+ oC for various selections of ¢ > 0. When o = 0, we have 4 =1 and L1 = 4.
Initially as o increases, p decreases while L increases. To ensure xgpr is a minimizer and p, = 0,
we set b = Axgpr, d = Cxgpr.

4.1 Performance under Varied Stepsize Selections

First, we aim to measure the quality of Theorem [3.2]s bounds compared to actual convergence.
We fix f = 0 and ¢ = 0 and consider several polynomial selections of \; and our proposed,
optimized choice (3.3). Figure (1| shows the upper bound from Theorem in comparison to the
observed convergence of the aggregate measure primal-gap; + dual-gapy + 5||z7 — wopr||3 and
each component separately. As expected, the optimized parameters have the best theoretical
bound and the best observed aggregate performance early on. Moreover, it remains one of the best
methods throughout. Asymptotically, we see comparable convergence for all A\ # 1. The primal
convergence under uniform weights A\ = 1 was the slowest in line with our theory, which only
guarantees a O(log(7T')/T') rate. Uniform weights did yield the fastest convergence of the dual gap
and distance to optimal, which our theory cannot explain.

3The source code is available at https://github.com/AshleyLDL/Primal-Dual-Averaging-Coding
“The Lipschitz constant for || Az — b[[; follows from the chain rule as its subgradients are combinations of A’s rows
with weights in [—1, 1], so the largest subgradient is maxj, <1 [|[ATw|2 = | A ||co2-
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Primal+Dual+Distance Distance Squared
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Figure 1: Bounds and observed performance for different A, with § = 0.

4.2 High Accuracy of Primal-Dual Stopping Criteria

One practical benefit of our dual characterizations of subgradient methods is the resulting computable
dual lower bounds and hence stopping criteria, assuming p is known. As a shorthand, denote
the convergence of our dual lower bound on p, by di := p, — inf M*—1 /3> Ai. We denote the
convergence of three natural upper bounds on p, by the primal gap (averaging function values seen)
pr = Y Nif(mi)/ > Ai — p«, the function value at an averaged iterate py := f(3 Nizi/ D Ai) — Dx,
and the function value at the latest iterate oy := f(xx) — px. Combining these upper and lower
bounds gives three natural stopping criteria to ensure an e-accurate solution is found: stopping once
the gap between upper and lower bounds is less than €. Fixing ¢ = 0 and ¢ = 0.05, Table [1| shows
the number of iterations before these conditions were first reached.

Across every A\ # 1 configuration, we see pr and dr both converge relatively quickly. The
stopping criteria p; + d; < € is consistently reached in at most 25% more iterations than were
required to reach p; < e. Hence, up to a small constant, this criterion matches the ideal time to stop.
Note d; and p; both converged much slower than p; and d;. Correspondingly, the stopping criteria
0+ +dy < e and py + dy < € are highly accurate, being reached in all of our experiments within one
or two iterations of the first iteration with d; < € or p; <e.
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First t satisfying the given stopping criteria
Criteria =1 M=k +1 [ M=k +1)% [ M=k +1)3 | =k +1)* | M\ in
pr <€ 1204821 | 1940 997 1331 1664 4122
pr+dp < e || 1204821 | 2000 1223 1630 2038 4156
0 < € 237426 | 443222 664834 886445 1108056 533876
0 +di < e || 237428 | 443223 664835 886446 1108058 533876
Dt S € 4713468 | 886456 997251 1181927 1385070 1067789
pr+dp < e || 4713468 | 886456 997252 1181928 1385071 1067790
di <e 263 470 705 941 1176 509

Table 1: Stopping times for different criteria and Ay with e = 0.05,0 = 0.

Conditioning of problems as o varies
o 0 0.0001 0.001 0.01 0.02 0.05
Li/u |4 4.022 4.224 6.911 12.107 81.179
Ty 6 7 7 12 23 161
Co 1.472x10° 1.497x10°| 1.735x10°| 6.985x10°| 3.770x10°| 2.663x10%3

Table 2: Effects of o on problem conditioning measured by L;/u and consequently the duration
and amount of early divergences measured by Tp and Cy with ay = 2/u(k + 2).

4.3 Accuracy of C, at Predicting Early Iterate Divergence

Lastly, we consider settings where the initial iterates diverge rapidly, which our theory addresses
via the inclusion of the constant Cy, defined in . Here, we have defined C' = oC + I, for a
randomly Gaussian sampled C. As a result, the constants p = Anin(CTC) and Ly = 4\ ez (CTO)
depend on o. In Table [2, we show the effect o varying from 0 to 0.05, causing the condition number
Li/p to grow moderately. As a result, we see Ty grow linearly in L;/p and Cp grows exponentially,
exceeding 1021,

For such problems, our theory predicts the subgradient method with ay, = 2/u(k+2) may diverge
in the first Tj iterations but should eventually converge at least a O(1/T') rate. Figure [2| numerically
confirms this prediction with every performance measure exponentially growing to at least 10'6 as
o grows and a decreasing trend beginning before iteration Ty. We see pg, d and R,% (zgpr) rapidly
converge after Ty, whereas py and dj only decrease sublinearly. This slow convergence is likely
due to pr and dj being defined as weighted averages, which must slowly dilute the effects of early
“bad” iterations. Our theory predicts such exponential divergences can be avoided by ensuring 7T
(and hence Cj) are small. For example, setting agp = 1/p and then o = min{1/Ly,2/u(k + 2)}
thereafter rather than ay = 2/u(k + 2) as above ensures Ty = 0. Figure 3| verifies this mitigates the
previous diverging behavior.
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A Deferred Proof of Lemma (2.4

Consider either y € {zgpr, x5} Suppose first xy, is feasible and let g, = Ee, go(xx; &) +ny € Ohy(zk). Fix any
gy € Ohy(y). Note by the sum rule of subdifferential calculus, both gz, — Vfé2) (1) —ny and g, — Vf(gQ) (y) —ny
are subgradients of fél) and hence both have norm bounded by M. Consider the L-smooth function
hy () = 15 (@) + 157 ) + {9y = VI ()2 ) -

Note since g, — Vféz) (y) —ny € afél)(y), hy > hy and hy(y) = hy(y). Then one has

Ee, [lg0(zk; &) + nyll3

= 119113 + Ee, lgo (@r; &) — gill3

< 3| Vhy (o) 5 + 313k — Vfo” (wx) = nyll® +3llgy = VI3 (9) =y |3 + 0*

< GL(ﬁy(zk) — inf ily) + 6M? 4 o2

< 6Lk (y) + 6L(hy(y) — inf hy) + 6M% + o2

where the first inequality bounds ||a + b+ c||3 by 3||a||3 + 3||b]]3 + 3||cH2 and uses the assumed variance bound,
the second inequality uses smoothness to bound the first term as h, () — 5L L |Vhy(z1)||? > inf b, and the

M-Lipschitzness of fél) to bound the second and third terms, and the final inequality adds and subtracts
hy(y) and upper bounds fzy(xk) by hy(zx).
Similarly, now suppose xj is infeasible and let gr = Eg¢, gs(p)(Zr; k) € Ofs(ay)(wr). Fix any gy €

Ofs(z)(y). Note by the sum rule of subdifferential calculus, both g — st((?k)(xk) and g, — Vf s (i )( y) are
subgradients of fs((lz,k) and hence both have norm bounded by M. Consider the L-smooth function

Fatwn @) = £ @) + £ @) + 9y = VL @w)m = y) -

Note since g, — Vf((xk)( ) € 8f (xk)( )s fs(an) = fs(wk) and fo(z)(y) = fs(mk)(y). Then, identical reasoning
to that above gives

Ee, [lgo(2k; €015
= 1Gxl13 + Ee, 195 (@5 &) — Frll5
<3IIY faan) (@) 13 + 3llgx — VFE) @)1+ 3llgy — VI )3 + 0
< BL(fowp (1) — inf fogny)) + 6M2 + o2
< 6Lk (Y) + 6L(fo(wy)(y) — inf foa,)) + 6M> + 0°
Hence, Assumption C holds with

L =6M?+0*+6L max  max {hy(y) —inf ?Ly,fs(y) - inffs}

yE€{zorr, x5 } s=1...m

L, =6L .
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