
A Low-Rank Augmented Lagrangian Method
for Large-Scale Semidefinite Programming

Based on a Hybrid Convex-Nonconvex Approach

Renato D.C. Monteiro ∗ Arnesh Sujanani ∗ Diego Cifuentes †

January 22, 2024 (second version: March 15, 2024, third version: March 31, 2024)

Abstract

This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite
programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL)
method where the AL subproblems are solved by a hybrid low-rank (HLR) method. The recipe
behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point method
with inner acceleration; 2) Frank-Wolfe steps to escape from spurious local stationary points. In
contrast to the low-rank method of Burer and Monteiro, HALLaR finds a near-optimal solution
(with provable complexity bounds) of SDP instances satisfying strong duality. Computational
results comparing HALLaR to state-of-the-art solvers on several large SDP instances arising
from maximum stable set, phase retrieval, and matrix completion, show that the former finds
highly accurate solutions in substantially less CPU time than the latter ones. For example, in
less than 20 minutes, HALLaR can solve a maximum stable set SDP instance with dimension
pair (n,m) ≈ (106, 107) within 10−5 relative precision.

Keywords: semidefinite programming, augmented Lagrangian, low-rank methods, proximal
point method, Frank-Wolfe method, iteration complexity, adaptive method, global convergence
rate

1 Introduction

Semidefinite programming (SDP) has many applications in engineering, machine learning, sciences,
finance, among other areas. However, solving large-scale SDPs is very computationally challenging.
In particular, interior point methods usually get stalled in large-scale instances due to lack of
memory. This has motivated a recent surge of first-order methods for solving SDPs that scale to
larger instances [18, 25, 46, 51, 56, 63, 65, 67–69].

This paper introduces HALLaR, a new first-order method for solving SDPs with bounded trace.
Let Sn be the space of symmetric n× n matrices with Frobenius inner product • and with positive
semidefinite partial order ⪰. HALLaR solves the primal/dual pair of SDPs:

min
X

{C •X : AX = b, X ∈ ∆n} (P)

∗Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-
0205. (Email: monteiro@isye.gatech.edu & asujanani6@gatech.edu). These authors were partially supported by
AFORS Grant FA9550-22-1-0088.

†Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205.
(Email: diego.cifuentes@isye.gatech.edu). This author was supported partially supported by the Office of Naval
Research, N00014-23-1-2631.

1

max
p∈Rm,θ∈R

{−bT p− θ : S := C +A∗p+ θI ⪰ 0, θ ≥ 0} (D)

where b ∈ Rm, C ∈ Sn, A : Sn → Rm is a linear map, A∗ : Rm → Sn is its adjoint, and ∆n is the
spectraplex

∆n := {X ∈ Sn : trX ≤ 1, X ⪰ 0}. (1)

HALLaR is based on Burer and Monteiro’s low-rank (LR) approach [7, 8] which is described in the
next paragraph.

Low-rank approach. The LR approach is motivated by SDPs often having optimal solutions with
small ranks. More specifically, it is known (see [2, 48, 55]) that r∗ ≤

√
2m, where r∗ is the smallest

among the ranks of all optimal solutions of (P). The LR approach consists of solving subproblems
obtained by restricting (P) to matrices of rank at most r, for some integer r, or equivalently, the
nonconvex smooth reformulation

min
U

{
C • UUT : A(UUT) = b, ∥U∥F ≤ 1, U ∈ Rn×r

}
. (Pr)

Problems (P) and (Pr) are equivalent when r ≥ r∗, in the sense that if U∗ is optimal for (Pr) then
X∗ = U∗U

T
∗ is optimal for (P). The advantage of (Pr) compared to (P) is that its matrix variable

U has significantly less entries than that of (P) when r ≪ n, namely, nr instead of n(n + 1)/2.
However, as (Pr) is nonconvex, it may have stationary points which are not globally optimal. For
a generic instance, the following results are known: i) if r ≥

√
2m then all local minima of (Pr) are

globally optimal (see [3–5, 14, 15, 49]); and ii) if r <
√
2m then (Pr) may have local minima which

are not globally optimal (see [59]).

Outline of HALLaR. HALLaR is an inexact augmented Lagrangian (AL) method that generates
sequences {Xt} and {pt} according to the recursions

Xt ≈ argmin
X

{Lβ(X; pt−1) : X ∈ ∆n}, (2a)

pt = pt−1 + β(AXt − b) (2b)

where

Lβ(X; p) := C •X + pT (AX − b) + β

2
∥AX − b∥2. (3)

The key part of HALLaR is an efficient method, called Hybrid Low-Rank (HLR), for finding an
approximate global solution Xt of the AL subproblem (2a). The HLR method solves subproblems
of the form

min
Y

{
Lβ(Y Y T ; pt−1) : ∥Y ∥F ≤ 1, Y ∈ Rn×r

}
(Lr)

for some integer r ≥ 1. Subproblem (Lr) is equivalent to the subproblem obtained by restricting
X in (2a) to matrices with rank at most r. Since (Lr) is nonconvex, it may have a spurious (near)
stationary point, i.e., a (near) stationary point Y such that Y Y T is not (nearly) optimal for (2a).

More specifically, HLR finds an approximate global solution Xt of (2a) by solving a sequence
of nonconvex subproblems (Lrk)k≥1 such that rk+1 ≤ rk + 1, according to following steps: i) find
a near stationary point Y = Yk ∈ Rn×rk of (Lrk) using an adaptive accelerated inexact proximal
point (ADAP-AIPP) method that is based on a combination of ideas developed in [13, 36, 37, 47,

2

57]; ii) check if YkY T
k is nearly optimal for (2a) through a minimum eigenvalue computation and

terminate the method if so; else iii) use the following escaping strategy to move away from the
current spurious near stationary point Yk: perform a Frank-Wolfe (FW) step from Yk to obtain
a point Ỹk with either one column in which case (the unlikely one) rk+1 is set to one, or with
rk + 1 columns in which case rk+1 is set to rk + 1, and use Ỹk as the initial iterate for solving
Lrk+1

. The initial pair (r1, Ỹ0) for HLR is chosen by using a warm start strategy, namely, as the
pair obtained at the end of the HLR call for solving the previous subproblem (2a). It is worth
noting that HALLaR only stores the current iterate Y and never computes the (implicit) iterate
Y Y T (lying in the X-space).

Under the strong duality assumption, it is shown that HALLaR obtains an approximate primal-
dual solution of (P) and (D) with provable computational complexity bounds expressed in terms of
parameters associated with the SDP instance and user-specified tolerances.

Computational impact. Our computational results show that HALLaR performs very well on
many large-scale SDPs such as phase retrieval, maximum-stable-set, and matrix completion. In all
these applications, HALLaR efficiently obtains accurate solutions for large-scale instances, largely
outperforming other state-of-the-art solvers. For example, HALLaR takes approximately 1.75 hours
(resp., 13 hours) on a personal laptop to solve within 10−5 relative precision maximum stable set SDP
instance for a Hamming graph with n ≈ 4, 000, 000 and m ≈ 40, 000, 000 (resp., n ≈ 16, 000, 000
and m ≈ 200, 000, 000). Moreover, HALLaR takes approximately 11.3 hours on a personal laptop
to solve within 10−5 relative precision a phase retrieval SDP instance with n ≈ 3, 000, 000 and
m ≈ 36, 000, 000. An important reason for the good computational performance of HALLaR is that
the rank of the iterates Xt remain relatively small throughout the whole algorithm.

Related works. This part describes other methods for solving large-scale SDPs. SDPNAL+
[63, 68] is an AL based method that solves each AL subproblem using a semismooth Newton-CG
method. Algorithms based on spectral bundle methods (more generally bundle methods) have
also been proposed and studied for solving large-scale SDPs (e.g., [9, 19, 30, 31, 45]). The more
recent works (e.g., [18, 25, 42, 46, 69]) propose methods for solving large-scale SDPs based on the
alternating direction method of multipliers (ADMM). The remaining of this section discusses in
more detail works that rely on the nonconvex LR approach and the FW method, since those works
are more closely related to this paper. The reader is referred to the survey paper [43] for additional
methods for solving large scale SDPs.

The nonconvex LR approach of [7, 8] has been successful in solving many relevant classes of
SDPs. The SDPLR method developed in these works solves (Pr) with an AL method whose AL
subproblems are solved by a limited memory BFGS method. Although SDPLR only handles equality
constraints, it is possible to modify it to handle inequalities (e.g., [38]). HALLaR is also based on
the AL method but it applies it directly to (P) instead of (Pr). Moreover, in contrast to SDPLR,
HALLaR solves the AL subproblems using the HLR method outlined above.

This paragraph describes works that solve (possibly a sequence of) (Pr) without using the
AL method. Approaches that use interior point methods for solving (Pr) have been pursued for
example in [52]. In the context of MaxCut SDPs, several specialized methods have been proposed
which solve (Pr) using optimization techniques which preserves feasibility (e.g., [6, 21, 32, 35, 44]).
Finally, Riemannian optimization methods have been used to solve special classes of SDPs where
the feasible sets for (Pr) are smooth manifolds (e.g., [33, 35, 44, 53]).

The FW method minimizes a convex function g(X) over a compact convex domain (e.g., the
spectraplex ∆n). It is appealing when a sparse solution is desired, where the notion of sparsity is

3

broad (e.g., small cardinality and/or rank). The FW method has been used (e.g., [29, 34, 56]) for
solving SDP feasibility problems by minimizing g(X) = ϕ(AX − b) where ϕ is either the squared
norm function ∥ · ∥2 or the function LSE(y) = log(

∑
i exp yi). Several papers (e.g., [23, 28, 39, 50])

introduce variants of the FW method for general convex optimization problems.
In the remaining of the “Related works” part, we discuss AL-based SDP low-rank methods

directly applicable to (P) and hence which (approximately) solves subproblems in the form of (2a).
An interesting method for solving (P) in this manner is CGAL of [65, 66] which generates its iterates
by performing only FW steps for the AL subproblems (2a). As HALLaR, the method of [66] only
generates iterates in the Y -space. Its Lagrange multiplier update policy though differs from (2b)
in that it updates the Lagrange multiplier in a more conservative way, i.e., with β in (2b) replaced
by a usually much smaller γt > 0, and does so only when the size of the new tentative multiplier
is not too large. Moreover, instead of using a pure FW method to solve (2a), an iteration of the
subroutine HLR invoked by HALLaR to solve (2a) consists of an ADAP-AIPP call applied to (Lr)
and, if HLR does not terminate, also a FW step (which generally increases the rank of the iterate
by one). As demonstrated by our computational results, the use of ADAP-AIPP calls significantly
reduces the number of FW steps performed by HALLaR, and, as a by-product, keeps the ranks of
its iterates considerably smaller than those of the CGAL iterates.

The CGAL method was enhanced in [67] to derive a low-storage variant, namely, Sketchy-
CGAL. Instead of explicitly storing its most recent Y -iterate as CGAL does, this variant computes
a certain approximation of the above iterates lying in Rn×r where r ∈ {1, . . . , n− 1} is a specified
threshold value whose purpose is to limit the rank of the stored approximation. It is shown in [67]
that Sketchy-CGAL has O(m + nr) memory storage, and that it outputs an O(r∗/(r − r∗ − 1))-
approximate solution of (P) (constructed using the sketch) under the assumption that r > r∗ + 1,
where r∗ is the largest among the ranks of all optimal solutions of (P). In contrast to either CGAL
or HALLaR, a disadvantage of Sketchy-CGAL is that the accuracy of its output primal approximate
solution is often low and degrades further as r decreases, and can even be undetermined if r ≤ r∗+1.
Finally, alternative methods for solving SDPs with O(m + nr∗) memory storage are presented in
[20, 56, 60].

Finally, more recent SDP low-rank solvers have been proposed which approximately solve (2a)
by solving a sequence of nonconvex subproblems in the form (Lr) using either a Riemannian trust-
region approach [61] or a Riemannian semi-smooth Newton method [62].

Structure of the paper. This paper is organized into four sections. Section 2 discusses the
HLR method for solving the AL subproblem (2a) and, more generally, smooth convex optimization
problems over the spectraplex ∆n. It also presents complexity bounds for HLR, given in Theo-
rem 2.5. Section 3 presents HALLaR for solving the pair of SDPs (P) and (D) and presents the
main complexity result of this paper, namely Theorem 3.2, which provides complexity bounds for
HALLaR. Finally, Section 4 presents computational experiments comparing HALLaR with various
solvers in a large collection of SDPs arising from stable set, phase retrieval, and matrix completion
problems.

1.1 Basic Definitions and Notations

Let Rn be the space of n dimensional vectors, Rn×r the space of n × r matrices, and Sn the
space of n×n symmetric matrices. Let Rn++ (Rn+) be the convex cone in Rn of vectors with positive
(nonnegative) entries, and let Sn++ (Sn+) be the convex cone in Sn of positive (semi)definite matrices.
Let ⟨·, ·⟩ and ∥ · ∥ be the Euclidean inner product and norm on Rn, and let • and ∥ · ∥F be the
Frobenius inner product and norm on Sn. The minimum eigenvalue of a matrix Q ∈ Sn is denoted

4

by λmin(Q), and vmin(Q) denotes a corresponding eigenvector of unit norm. For any t > 0 and
a ≥ 0, let log+a (t) := max{log t, a}.

For a given closed convex set C ⊆ Rn, its boundary is denoted by ∂C and the distance of a
point z ∈ Rn to C is denoted by dist(z, C). The diameter of C, denoted DC , is defined as

DC := sup{∥Z − Z ′∥ : Z,Z ′ ∈ C}. (4)

The indicator function of C, denoted by δC , is defined by δC(z) = 0 if z ∈ C, and δC(z) = +∞
otherwise. The domain of a function h : Rn → (−∞,∞] is the set domh := {x ∈ Rn : h(x) < +∞}.
Moreover, h is said to be proper if domh ̸= ∅. The ϵ-subdifferential of a proper convex function
h : Rn → (−∞,∞] is defined by

∂ϵh(z) := {u ∈ Rn : h(z′) ≥ h(z) + ⟨u, z′ − z⟩ − ϵ, ∀z′ ∈ Rn} (5)

for every z ∈ Rn. The classical subdifferential, denoted by ∂h(·), corresponds to ∂0h(·). Recall that,
for a given ϵ ≥ 0, the ϵ-normal cone of a closed convex set C at z ∈ C, denoted by N ϵ

C(z), is

N ϵ
C(z) := {ξ ∈ Rn : ⟨ξ, u− z⟩ ≤ ϵ, ∀u ∈ C}.

The normal cone of a closed convex set C at z ∈ C is denoted by NC(z) = N0
C(z).

Given a differentiable function ψ : Rn → R, its affine approximation at a point z̄ ∈ Rn is

ℓψ(z; z̄) := ψ(z̄) + ⟨∇ψ(z̄), z − z̄⟩ ∀z ∈ Rn. (6)

The function ψ is L-smooth on a set Ω ⊆ Rn if its gradient is L-Lipschitz continuous on Ω, i.e.,

∥∇ψ(x′)−∇ψ(x)∥ ≤ L∥x′ − x∥ ∀x, x′ ∈ Ω. (7)

The set of L-smooth functions on Ω is denoted by C1(Ω;L).

2 Hybrid Low-Rank Method

This section introduces a Hybrid Low-Rank (HLR) method which, as outlined in the introduction,
uses a combination of the ADAP-AIPP method and Frank-Wolfe steps for approximately solving
convex problems of the form as in (2a). This section consists of three subsections. The first
subsection introduces the main problem that the HLR method considers and introduces a notion of
the type of approximate solution that it aims to find. The second subsection presents the ADAP-
AIPP method and its complexity results. The third subsection states the complete HLR method
and establishes its total complexity.

2.1 Problem of Interest and Solution Type

Let g : Sn → R be a convex and differentiable function. The HLR method is developed in the
context of solving the problem

g∗ := min {g (Z) : Z ∈ ∆n} (8)

where ∆n is the spectraplex as in (1) and g is Lg-smooth on ∆n, i.e., there exists Lg ≥ 0 such that

∥∇g(Z ′)−∇g(Z)∥F ≤ Lg∥Z ′ − Z∥F ∀Z,Z ′ ∈ ∆n. (9)

The goal of the HLR method is to find a near-optimal solution of (8) whose definition is given
immediately after the next result.

5

Lemma 2.1. Let Z ∈ ∆n be given and define

θ(Z) := max{−λmin(∇g(Z)), 0}. (10)

Then:

a) there hold
θ(Z) ≥ 0, ∇g(Z) + θ(Z)I ⪰ 0; (11)

b) for any ϵ > 0, the inclusion holds

0 ∈ ∇g(Z) + ∂ϵδ∆n(Z) (12)

if and only if
∇g(Z) • Z + θ(Z) ≤ ϵ. (13)

Proof. (a) The result is immediate from the definition of θ(Z) in (10).
(b) It is easy to see that ∂ϵδ∆n(Z) = N ϵ

∆n(Z). Statement (b) then follows immediately from
this observation, the definition of θ(Z) in (10), and Proposition A.2(b) with G = ∇g(Z).

Relation (13) provides an easily verifiable condition for checking whether Z satisfies inclusion
(12). Moreover, (13) is equivalent to the “complementary slackness” condition

(1− trZ) θ(Z) + [∇g(Z) + θ(Z)I] • Z ≤ ϵ. (14)

Definition 2.2. An ϵ-optimal solution of (8) is a matrix Z ∈ ∆n satisfying relation (12) or (13).

The next lemma shows that the objective value of an ϵ-optimal solution of (8) is within ϵ of the
optimal value of (8).

Lemma 2.3. An ϵ-optimal solution Z of (8) satisfies that g(Z)− g∗ ≤ ϵ.

Proof. Let Z∗ be an optimal solution of (8). Relation (12) implies that −∇g(Z) ∈ N ϵ
∆n(Z) and

hence that ⟨−∇g(Z), Z∗ − Z⟩ ≤ ϵ. It then follows from this relation and the fact that g is convex
that

g(Z∗)− g(Z) ≥ ⟨∇g(Z), Z∗ − Z⟩ ≥ −ϵ,

which immediately implies the result.

2.2 The ADAP-AIPP Method

As already mentioned in the introduction, one iteration of the HLR method consists of a call to
the ADAP-AIPP method followed by a FW step. The purpose of this subsection is to describe the
details of the ADAP-AIPP method.

For a given integer s, consider the the subproblem obtained by restricting (8) to matrices Z of
rank at most s, or equivalently, the reformulation

min{g̃(U) := g(UUT) : U ∈ B̄s
1}, (15)

where
B̄s
r := {U ∈ Rn×s : ∥U∥F ≤ r} (16)

denotes the Frobenius ball of radius r in Rn×s. In this subsection, the above set will be denoted by
B̄r since the column dimension s remains constant throughout its presentation.

6

The goal of the ADAP-AIPP method is to find an approximate stationary solution of (15) as
described in Proposition 2.4(a) below. Briefly, ADAP-AIPP is an inexact proximal point method
which attempts to solve its (potentially nonconvex) prox subproblems using an accelerated composite
gradient method, namely, ADAP-FISTA, whose description is given in Appendix B. A rough
description of the j-th iteration of ADAP-AIPP is as follows: given Wj−1 ∈ B̄1 and a positive
scalar λj−1, ADAP-AIPP calls the ADAP-FISTA method to attempt to find a suitable approximate
solution of the possibly nonconvex proximal subproblem

min
U∈B̄1

{
λg̃(U) +

1

2
∥U −Wj−1∥2F

}
, (17)

where the first call made is always performed with λ = λj−1. If ADAP-FISTA successfully finds
such a solution, ADAP-AIPP sets this solution as its next iterate Wj and sets λ as its next prox
stepsize λj . If ADAP-FISTA is unsuccessful, ADAP-AIPP invokes it again to attempt to solve (17)
with λ = λ/2. This loop always terminates since ADAP-FISTA is guaranteed to terminate with
success when the objective in (17) becomes strongly convex, which occurs when λ is sufficiently
small.

The formal description of the ADAP-AIPP method is presented below. For the sake of simpli-
fying the input lists of the algorithms stated throughout this paper, the parameters σ and χ are
considered universal ones (and hence not input parameters).

ADAP-AIPP Method

Universal Parameters: σ ∈ (0, 1/2) and χ ∈ (0, 1).
Input: quadruple (g̃, λ0,W , ρ̄) ∈ (C1 (∆n;Lg) ,R++, B̄1,R++).

0. set W0 =W , j = 1, and
λ = λ0, M̄0 = 1; (18)

1. choose Mj ∈ [1, M̄j−1] and call the ADAP-FISTA method in Appendix B with universal input
(σ, χ) and inputs

x0 =Wj−1, (µ,L0) = (1/2,Mj), (19)

ψs = λg̃ +
1

2
∥ · −Wj−1∥2F , ψn = λδB̄1

; (20)

2. if ADAP-FISTA fails or its output (W,V,L) (if it succeeds) does not satisfy the inequality

λg̃(Wj−1)−
[
λg̃(W) +

1

2
∥W −Wj−1∥2F

]
≥ V • (Wj−1 −W), (21)

then set λ = λ/2 and go to step 1; else, set (λj , M̄j) = (λ, L), (Wj , Vj) = (W,V), and

Rj :=
Vj +Wj−1 −Wj

λj
(22)

and go to step 3;

3. if ∥Rj∥F ≤ ρ̄, then stop with success and output (W,R) = (Wj , Rj); else, go to step 4;

4. set j ← j + 1 and go to step 1.

7

Several remarks about ADAP-AIPP are now given. First, at each iteration, steps 1 and 2
successively call the ADAP-FISTA method with inputs given by (19) and (20) to obtain a prox
stepsize λj ≤ λj−1 and a pair (Wj , Vj) satisfying (21) and

∥Vj∥F ≤ σ∥Wj −Wj−1∥F , Vj ∈ λj
[
∇g̃(Wj) + ∂δB̄1

(Wj)
]
+ (Wj −Wj−1) (23)

where σ is part of the input of ADAP-AIPP. Such a pair (Wj , Vj) can be viewed as an approximate
stationary solution of prox subproblem (17) with λ = λj , where the residual Vj is relaxed from
being zero to a quantity that is now relatively bounded as in (23). Second, it follows immediately
from the inclusion in relation (23) and the definition of Rj in (22) that the pair (Wj , Rj) computed
in step 2 of ADAP-AIPP satisfies the inclusion Rj ∈ ∇g̃(Wj) + ∂δB̄1

(Wj) for every iteration j ≥ 1.
As a consequence, if ADAP-AIPP terminates in step 3, then the pair (W,R) = (Wj , Rj) output by
this step is a ρ̄-approximate stationary solution of (15), i.e., it satisfies

R ∈ ∇g̃(W) + ∂δB̄1
(W), ∥R∥F ≤ ρ̄. (24)

Finally, it is interesting to note that ADAP-AIPP is a universal method in that it requires no
knowledge of any parameters (such as objective function curvatures) underlying problem (15).

Before stating the main complexity result of the ADAP-AIPP method, the following quantities
are introduced

Ḡ := sup{∥∇g(UUT)∥F : U ∈ B̄3}, Lg̃ := 2Ḡ+ 36Lg, (25)

λ := min{λ0, 1/(4Lg̃)}, Cσ =
2(1− σ)2

1− 2σ
, (26)

where λ0 is the initial prox stepsize of ADAP-AIPP and Lg and B̄3 are as in (9) and (16), respectively.
Observe that Cσ is well-defined and positive due to the fact that σ ∈ (0, 1/2).

The main complexity result of ADAP-AIPP is stated in the proposition below. Its proof is in
Appendix C.

Proposition 2.4. The following statements about ADAP-AIPP hold:

(a) ADAP-AIPP terminates with a pair (W,R) that is a ρ̄-approximate stationary solution of
(15) and its last iteration index l satisfies

1 ≤ l ≤ T := 1 +
Cσ
λρ̄2

[
g̃(W)− g̃(W)

]
, (27)

where ρ̄ > 0 is an input tolerance, W is the initial point, and Cσ and λ are as in (26);

(b) the total number of ADAP-FISTA calls performed by ADAP-AIPP is no more than

T + ⌈log+0 (λ0/λ)/ log 2⌉ (28)

where λ0 is the initial prox stepsize and T is as in (27).

Some remarks about Proposition 2.4 are now in order. First, it follows from statement (a) that
g̃(W) ≤ g̃(W). Second, recall that each ADAP-AIPP iteration may perform more than a single
ADAP-FISTA call. Statement (b) implies that the total number of ADAP-FISTA calls performed
is at most the total number of ADAP-AIPP iterations performed plus a logarithmic term.

8

2.3 HLR Method

The goal of this subsection is to describe the HLR method for solving problem (8).
An iteration of HLR consists of a call to ADAP-AIPP followed by an FW step (if it does not

terminate after the ADAP-AIPP call). Hence, HLR is a hybrid method that combines two types of
approaches, i.e., a nonconvex optimization one (ADAP-AIPP) and a convex optimization one (FW
method). The formal description of the HLR method is presented below.

HLR Method

Input: A quintuple (Ȳ0, g, ϵ̄, ρ̄, λ0) ∈ B̄s0
1 × C1 (∆n;Lg)× R3

++ for some s0 ≥ 1.
Output: Ȳ ∈ B̄s

1 for some s ≥ 1 such that Ȳ Ȳ T is an ϵ̄-optimal solution of (8).

0. set Ỹ0 = Ȳ0, s = s0, and k = 1.

1. call ADAP-AIPP with quadruple (g, λ0, ρ̄,W) = (g, λ0, ρ̄, Ỹk−1) and let (Yk,Rk) ∈ B̄s
1 ×Rn×s

denote its output pair (W,R);

2. compute

θk = max{−λmin(Gk), 0}, yk =

{
vmin(Gk) if θk > 0,

0 otherwise,
(29)

where
Gk := ∇g(YkY T

k) ∈ Sn (30)

and (λmin(Gk), vmin(Gk)) ∈ R× Rn is a minimum eigenpair of Gk;

3. set
ϵk := (GkYk) • Yk + θk. (31)

If
ϵk ≤ ϵ̄ (32)

then stop and output pair (Ȳ , θ̄) = (Yk, θk); else go to step 4;

4. compute
αk = argmin

α

{
g
(
αyk(yk)

T + (1− α)YkY T
k

)
: α ∈ [0, 1]

}
} (33)

and set

(Ỹk, s) =

{
(yk, 1) if αk = 1([√

1− αkYk,
√
αkyk

]
, s+ 1

)
otherwise;

(34)

5. set k ← k + 1 and go to step 1.

Remarks about each of the steps in HLR are now given. First, step 1 of the k-th iteration of
HLR calls ADAP-AIPP with initial point Ỹk−1 ∈ B̄s

1 to produce an iterate Yk ∈ B̄s
1 that is an

ρ̄-approximate stationary solution of nonconvex problem (15). Second, step 2 performs a minimum
eigenvector (MEV) computation to compute the quantity θk in (29), which is needed for the termi-
nation check performed in step 3. Third, the definition of θ(·) in (10), and relations (30), (29), and
(31), imply that

θk = θ(YkY
T
k), ϵk = ∇g(YkY T

k) • (YkY T
k) + θ(YkY

T
k).

9

Hence, it follows from Lemma 2.1(b) that termination criterion (32) in step 3 is equivalent to
checking if YkY T

k is a ϵ̄-optimal solution of (8). Fourth, if the termination criterion in step 3 is
not satisfied, a FW step at YkY T

k for (8) is taken in step 4 to produce an iterate ỸkỸ T
k as in (33)

and (34). The computation of Ỹk is entirely performed in the Y -space to avoid forming matrices
of the form Y Y T , and hence to save storage space. The reason for performing this FW step is to
make HLR escape from the spurious near stationary point Yk of (15) (see the end of the paragraph
containing (Lr) in the Introduction). Finally, the quantity s as in (34) keeps track of the column
dimension of the most recently generated Ỹk. It can either increase by one or be set to one after
the update (34) is performed.

The complexity of the HLR method is described in the result below whose proof is given in the
next subsection.

Theorem 2.5. The following statements about the HLR method hold:

(a) the HLR method outputs a point Ȳ such that Z̄ = Ȳ Ȳ T is a ϵ̄-optimal solution of (8) in at
most

S(ϵ̄) :=

1 +
4max

{
g(Z̄0)− g∗,

√
4Lg(g(Z̄0)− g∗), 4Lg

}
ϵ̄

 (35)

iterations (and hence MEV computations) where Z̄0 = Ȳ0Ȳ
T
0 , Lg is as in (9), and g∗ is the

optimal value of (8);

(b) the total number of ADAP-FISTA calls performed by the HLR method is no more than

(1 +Q)S(ϵ̄) + Cσmax{8Ḡ+ 144Lg, 1/λ0}
ρ̄2

[
g(Z̄0)− g(Z̄)

]
(36)

where λ0 is given as input to the HLR method, and Ḡ, Cσ, and Q are as in (25), (26), and
(50), respectively.

Two remarks about Theorem 2.5 are now given. First, it follows from statement (a) that HLR
performs O (1/ϵ̄) iterations (and hence MEV computations). Second, statement (b) implies that
the total number of ADAP-FISTA calls performed by HLR is O

(
1/ϵ̄+ 1/ρ̄2

)
where ρ̄ is the input

tolerance for each ADAP-AIPP call in step 1 of HLR.
Recall from the Introduction that an iteration of the HALLaR method described in (2a) and (2b)

has to approximately solve subproblem (2a), which is accomplished by the HLR method specialized
to the case where g(·) = Lβ(·; p). In the following, we discuss how to specialize some of the steps
of the HLR to this case. Step 1 of HLR calls the ADAP-AIPP method whose steps can be easily
implemented if it is known how to project a matrix onto the unit ball B̄1 and how to compute
∇g̃(Y) where g̃(Y) is as in (15). Projecting a matrix onto the unit ball is easy as it just involves
dividing the matrix by its norm. Define the quantities

q(Y ; p) := p+ β(A(Y Y T)− b), θ̃(Y ; p) := max{−λmin[C +A∗ (q(Y ; p))], 0}. (37)

When g(·) = Lβ(·; p), the matrix ∇g̃(Y) can be explicitly computed as

∇g̃(Y) = 2∇g(Y Y T)Y, ∇g(Y Y T) = C +A∗(q(Y ; p)). (38)

Also, the stepsize αk in step 4 of HLR has a closed form expression given by

αk = min

{
CYk • Yk + (A∗qk)Yk • Yk + θ̃(Yk; p)

β∥A(YkY T
k)−A(yk(yk)T)∥2

, 1

}

10

where

qk := q(Yk; p), yk :=

{
vmin

(
∇g(YkY T

k)
)

if θ̃(Yk; p) > 0,
0 otherwise.

(39)

2.4 Proof of Theorem 2.5

This subsection provides the proof of Theorem 2.5. The following proposition establishes important
properties of the iterates generated by HLR.

Proposition 2.6. For every k ≥ 1, define

Zk = YkY
T
k , ZFk = yky

T
k , Dk := Zk − ZFk , Z̃k = ỸkỸ

T
k , (40)

where yk is as in (31). Then, for every k ≥ 1, the following relations hold:

ZFk ∈ argmin
U
{ℓg(U ;Zk) : U ∈ ∆n}; (41)

Z̃k = Zk − αkDk; (42)
ϵk = Gk •Dk; (43)
αk = argmin

α∈[0,1]
g(Zk − αDk)} (44)

g(Zk+1) ≤ g(Z̃k) ≤ g(Zk) (45)

where ϵk and αk are as in (29) and (33), respectively. Moreover, for every k ≥ 1, it holds that

θk ≥ 0, Gk + θkI ⪰ 0, Gk • Zk + θk = ϵk. (46)

Proof. Relation (41) follows immediately from the way yk is computed in (31), the definitions of Zk
and ZFk in (40), and Proposition A.1 with G = Gk and (ZF , θF) = (ZFk , θk).

To show relation (43), it is first necessary to show that

θk = −Gk • ZFk . (47)

Consider two possible cases. For the first case, suppose that θk = 0, which in view of the definitions
of yk and ZFk in (29) and (40), respectively implies that ZFk = 0. Hence, relation (47) immediately
follows. For the other case suppose that θk > 0 and hence (θk, yk) = (−λmin(Gk), vmin(Gk)). This
observation and the fact that (λmin(Gk), vmin(Gk)) is an eigenpair of Gk imply that Gkyk•yk = −θk,
which in view of the definition of ZFk in (40) immediately implies relation (47).

It is now easy to see that the definition of ϵk in (29), relation (47), the update rule for Ỹk in
(34), and the definitions of Zk, ZFk , and Dk in (40) imply that

Z̃k = Zk − αkDk

ϵk = Gk • (Zk − ZFk) = Gk •Dk

αk = argmin
α

{g(Zk − αDk) : α ∈ [0, 1]}}

and hence relations (42), (43), and (44) follow.
Relation (27) and the fact that HLR during its k-th iteration calls ADAP-AIPP with initial

point W = Ỹk−1 and outputs point W = Yk imply that g̃(Yk) ≤ g̃(Ỹk−1). This fact together with
the definition of g̃ in (15) and the definitions of Zk and Z̃k in (40) imply the first inequality in (45).

11

Now the first inequality in (45) and relations (41), (42), (43), and (44) imply that Zk = YkY
T
k and

Z̃k = ỸkỸ
T
k can be viewed as iterates of the k-th iteration of the RFW method of Appendix D.

The second inequality in (45) is then an immediate consequence of this observation and the second
relation in (138).

The first two relations in (46) follow directly from the definitions of Gk and θk in (30) and (29),
respectively. The definitions of ϵk and Zk in (31) and (40), respectively, immediately imply the
third relation in (46).

Since step 1 of the HLR method consists of a call to the ADAP-AIPP method developed in
Subsection 2.2, the conclusion of Proposition 2.4 applies to this step. The following result, which
will be useful in the analysis of the HLR method, translates the conclusion of Proposition 2.4 to
the current setting.

Proposition 2.7. The following statements about step 1 of the k-th iteration of the HLR method
hold:

(a) the ADAP-AIPP call terminates with a pair (Yk,Rk) satisfying

Rk ∈ ∇g̃(Yk) + ∂δB̄1
(Yk), ∥Rk∥F ≤ ρ̄, (48)

and the number lk of ADAP-AIPP iterations performed by the ADAP-AIPP call in step 1
satisfies

1 ≤ lk ≤ Tk := 1 +
Cσmax{8Ḡ+ 144Lg, 1/λ0}

ρ̄2

[
g̃(Ỹk−1)− g̃(Yk)

]
(49)

where λ0 and ρ̄ are given as input to the HLR method and Lg, g̃, Ḡ, and Cσ are as in (9),
(15), (25), and (26) respectively;

(b) the number of ADAP-FISTA calls performed by the ADAP-AIPP call in step 1 is no more
than Tk +Q where

Q :=
⌈
log+0

(
λ0max{8Ḡ+ 144Lg, 1/λ0}

)
/ log 2

⌉
. (50)

Proof. (a) The first statement is immediate from relation (24) and the fact that ADAP-AIPP out-
puts pair (Yk,Rk) = (W,R). To prove the second statement, suppose that the ADAP-AIPP call
made in step 1 terminates after performing lk iterations. It follows immediately from Proposi-
tion 2.4(a) and the fact that the HLR method during its k-th iteration calls ADAP-AIPP with
initial point W = Ỹk−1 and outputs point W = Yk that lk satisfies

1 ≤ lk
(27)
≤ 1 +

Cσ
λρ̄2

[
g̃(Ỹk−1)− g̃(Yk)

]
. (51)

The result then follows from the definitions of λ and Lg̃ in (26) and (25), respectively.
(b) The result follows immediately from (a), the fact that the number of times λ is divided by

2 in step 2 of ADAP-AIPP is at most ⌈log+0 (λ0/λ)/ log 2⌉, and the definitions of λ and Lg̃ in (26)
and (25), respectively.

We are now ready to give the proof of Theorem 2.5.

12

Proof of Theorem 2.5. (a) Consider the matrix Z̄ = Ȳ Ȳ T where Ȳ is the output of the HLR method.
The definition of Gk in (30), the fact that the definitions of θk and θ(·) in (29) and (10), respectively,
imply that θk = θ(YkY

T
k), relation (46), and the stopping criterion (32) in step 3 of the HLR method

immediately imply that the pair (Z̄, θ(Z̄)) satisfies relation (13) in Lemma 2.1(b) with ϵ = ϵ̄ and
hence Z̄ is an ϵ̄-optimal solution of (8). To show that the number of iterations that the HLR
method performs to find such an ϵ̄-optimal solution is at most the quantity in (35), observe that
Proposition 2.6 establishes that the HLR method generates iterates Yk and Ỹk during its k-th
iteration such that Zk = YkY

T
k and Z̃k = ỸkỸ

T
k can be viewed as iterates of the k-th iteration

of the RFW method of Appendix D. The result then immediately follows from this observation,
Theorem D.1, and the fact that the diameter of ∆n is at most 2.

(b) Suppose that the HLR method terminates at an iteration index K̄. It follows from relations
(50) and (35) and the definition of Tk in (49) that the HLR method performs at most

(1 +Q)S(ϵ̄) + Cσmax{8Ḡ+ 144Lg, 1/λ0}
ρ̄2

K̄∑
k=1

[
g̃(Ỹk−1)− g̃(Yk)

]
(52)

ADAP-FISTA calls. Now using the fact that g̃(Ỹk) ≤ g̃(Yk), it is easy to see that the last term in
(52) is summable:

K̄∑
k=1

g̃(Ỹk−1)− g̃(Yk) = g̃(ỸK̄−1)− g̃(YK̄) +
K̄−1∑
k=1

g̃(Ỹk−1)− g̃(Yk)

≤ g̃(ỸK̄−1)− g̃(YK̄) +

K̄−1∑
k=1

g̃(Ỹk−1)− g̃(Ỹk) = g̃(Ỹ0)− g̃(YK̄). (53)

The result then follows from relations (52) and (53), the facts that YK̄ = Ȳ , Z̄ = Ȳ Ȳ T , Ỹ0 = Ȳ0,
Z̄0 = Ȳ0Ȳ

T
0 , and the definition of g̃ in (15).

3 HALLaR

This section presents an inexact AL method for solving the pair of primal-dual SDPs (P) and (D),
namely, HALLaR, whose outline is given in the introduction. It contains two subsections. Sub-
section 3.1 formally states HALLaR and presents its main complexity result, namely Theorem 3.2.
Subsection 3.2 is devoted to the proof of Theorem 3.2.

Throughout this section, it is assumed that (P) and (D) have optimal solutions X∗ and (p∗, θ∗),
respectively, and that both (P) and (D) have the same optimal value. It is well-known that such an
assumption is equivalent to the existence of a triple (X∗, p∗, θ∗) satisfying the optimality conditions:

(primal feasibility) A(X∗)− b = 0, tr(X∗) ≤ 1, X∗ ⪰ 0,

(dual feasibility) S∗ := C +A∗p∗ + θ∗I ⪰ 0, θ∗ ≥ 0, (54)
(complementarity) ⟨X∗, S∗⟩ = 0, θ∗(1− trX∗) = 0.

This section studies the complexity of HALLaR for finding an (ϵp, ϵc)-solution of (54), i.e., a
triple (X̄, p̄, θ̄) that satisfies

(ϵp-primal feasibility) ∥A(X̄)− b∥ ≤ ϵp, tr(X̄) ≤ 1, X̄ ⪰ 0,

(dual feasibility) S̄ := C +A∗p̄+ θ̄I ⪰ 0, θ̄ ≥ 0, (55)
(ϵc-complementarity) ⟨X̄, S⟩+ θ̄(1− tr X̄) ≤ ϵc.

13

3.1 Description of HALLaR and Main Theorem

The formal description of HALLaR is presented next.

HALLaR Method

Input: Initial points (U0, p0) ∈ B̄s0
1 ×Rm, tolerance pair (ϵc, ϵp) ∈ R2

++, penalty parameter β ∈ R++,
and ADAP-AIPP parameters (ρ̄, λ0) ∈ R2

++.
Output: (X̄, p̄, θ̄) ∈ ∆n × Rm × R+, an (ϵp, ϵc)-solution of (54)

0. set t = 1 and
ϵ̄ = min{ϵc, ϵ2pβ/6}; (56)

1. call HLR with input (g, Ȳ0, λ0, ϵ̄, ρ̄) = (Lβ(·; pt−1), Ut−1, λ0, ϵ̄, ρ̄) where Ut−1 ∈ B̄st−1

1 , and let
Ut ∈ B̄st

1 denote its output Ȳ ;

2. set
pt = pt−1 + β(A(UtUTt)− b); (57)

3. if ∥A(UtUTt) − b∥ ≤ ϵp, then set T = t and return (X̄, p̄, θ̄) = (UTU
T
T , pT , θ̃(UTU

T
T ; pT−1))

where θ̃(·; ·) is as in (37);

4. set t = t+ 1 and go to step 1.

Some remarks about each of the steps in HALLaR are now given. First, step 1 invokes HLR to
obtain an ϵ̄-optimal solution UtU

T
t of subproblem (2a) using the previous Ut−1 ∈ B̄st−1

1 as initial
point. Second, step 2 updates the multiplier pt according to a full Lagrange multiplier update.
Third, it is shown in Lemma 3.1 below that the triple (UtU

T
t , pt, θ̃(UtU

T
t ; pt−1)) always satisfies the

dual feasibility and ϵc-complementarity conditions in (55) where θ̃(·; ·) is as in (37). Finally, step 3
checks if UtUTt is an ϵp-primal feasible solution. It then follows from the above remarks that if this
condition is satisfied, then the triple (UtU

T
t , pt, θ̃(UtU

T
t ; pt−1)) is an (ϵp, ϵc)-solution of (55).

Lemma 3.1. For every iteration index t, the triple (UtU
T
t , pt, θ̃(UtU

T
t ; pt−1)) satisfies the dual

feasibility and ϵc-complementarity conditions in (55) where θ̃(·; ·) is as in (37).

Proof. The definitions of q(·; ·) and θ̃(·; ·) in (37), the second relation in (38) with Y = Ut and
p = pt−1, and the update rule for pt in (57) imply that

∇Lβ(UtUTt ; pt−1) = C +A∗pt, θ̃(UtU
T
t ; pt−1) = max{−λmin(C +A∗pt), 0}.

It is then easy to see from the above relation that the triple (UtUTt , pt, θ̃(UtUTt ; pt−1)) always satisfies
the dual feasibility condition in (55).

The fact that the definition of ϵ̄ in (56) implies that ϵ̄ ≤ ϵc, the fact that UtUTt is an ϵ̄ solution
of (2a), and the formula for ∇Lβ(UtUTt ; pt−1) above imply that

0 ∈ C +A∗pt + ∂ϵcδ∆n(UtU
T
t).

It then follows immediately from the above inclusion and relation (14) with Z = UtU
T
t , g =

Lβ(·; pt−1), and θ(·) = θ̃(·; pt−1) that the triple (UtU
T
t , pt, θ̃(UtU

T
t ; pt−1)) always satisfies the ϵc-

complementarity condition in (55).

14

Before stating the complexity of HALLaR, the following quantities are first introduced:

F̄β :=
β

2
∥AX0 − b∥2 +

5∥p∗∥2 + ∥p∗∥
√
3∥p∗∥2 + 2βϵ̄

β
+ 3ϵ̄ (58)

Ḡβ := ∥C∥F + ∥A∥
(
9β∥A∥+

√
4∥p∗∥2 + 2βϵ̄+ β∥b∥

)
(59)

κ̄β :=
⌈
log+0

(
λ0max{8Ḡβ + 144β∥A∥2, 1/λ0}

)
/ log 2

⌉
(60)

where p∗ is an optimal dual solution and ϵ̄ is as in (56).
The main result of this paper is now stated.

Theorem 3.2. The following statements hold:

a) HALLaR terminates with an (ϵp, ϵc)-solution (X̄, p̄, θ̄) of the pair of SDPs (P) and (D) in at
most

J :=

⌈
3∥p∗∥2

β2ϵ2p

⌉
(61)

iterations where p∗ is an optimal solution to (D);

(b) HALLaR performs at most
J · P̄β(ϵp, ϵc) (62)

and

J
[
(1 + κ̄β)P̄β(ϵp, ϵc)

]
+
CσF̄βmax{8Ḡβ + 144β∥A∥2, 1/λ0}

ρ̄2
(63)

total HLR iterations (and hence MEV computations) and total ADAP-FISTA calls, respec-
tively, where

P̄β(ϵp, ϵc) :=

1 +
4max

{
F̄β,

√
4β∥A∥2F̄β, 4β∥A∥2

}
min{ϵc, ϵ2pβ/6}

 , (64)

ρ̄ is an input parameter to HALLaR, and F̄β, Cσ, Ḡβ, and κ̄β are as in (58), (25), (59), and
(60), respectively.

Two remarks about Theorem 3.2 are now given. First, it follows from statement (a) that HAL-
LaR performs O

(
1/(β2ϵ2p)

)
iterations. Second, statement (b) and the definitions of J , P̄β(ϵp, ϵc),

and F̄β in (61), (64), and (58), respectively imply that HALLaR performs

O
(

1

βϵ2pmin{ϵc, ϵ2pβ}

)
(65)

and

O
(

1

βϵ2pmin{ϵc, ϵ2pβ}
+
β2

ρ̄2

)
(66)

total HLR iterations (and hence MEV computations) and ADAP-FISTA calls, respectively. In
contrast to the case where β = O(1), the result below shows that the bounds (65) and (66) can be
improved when β = O(1/ϵp).

Corollary 3.3. If β = O (1/ϵp) and ρ̄ = βmin{ϵc, ϵ2pβ/6}, then HALLaR performs at most

O
(

1

ϵ2p
+

1

ϵ2c

)
(67)

total HLR iterations (and hence MEV computations) and total ADAP-FISTA calls.

15

Proof. The conclusion of the corollary immediately follows from relations (65) and (66) together
with the assumptions that β = O(1/ϵp) and ρ̄ = βmin{ϵc, ϵ2pβ/6}.

It can be shown that each ADAP-FISTA call performs at most

O1

(√
2
[
1 + λ0(2Ḡβ + 36β∥A∥2)

]
log+1

(
1 + λ0

[
2Ḡβ + 36β∥A∥2

]))
(68)

iterations/resolvent evaluations.1 This is an immediate consequence of Lemma C.2(a) in Ap-
pendix C, the definition of Lg̃ in (25), the fact that Lβ(X; pt−1) is (β∥A∥2)-smooth, and Lemma 3.7
which is developed in the next subsection.

3.2 Proof of Theorem 3.2

Since HALLaR calls the HLR method at every iteration, the next proposition specializes Theo-
rem 2.5, which states the complexity of HLR, to the specific case of SDPs. Its statement uses the
following quantities associated with an iteration t of HALLaR:

F (t)
β := Lβ(Xt−1, pt−1)− min

X∈∆n
Lβ(X, pt−1), (69)

G(t)β := sup{∥∇Lβ(UUT , pt−1)∥ : U ∈ B̄st−1

3 }, (70)

κ
(t)
β =

⌈
log+0

(
λ0max{8G(t)β + 144β∥A∥2, 1/λ0}

)
/ log 2

⌉
, (71)

Proposition 3.4. The following statements about the HLR call in step 1 of the t-th iteration of the
HALLaR hold:

(a) it outputs Ut such that Xt = UtU
T
t is an ϵ̄-optimal solution of

min
X∈∆n

Lβ(X; pt−1)

by performing at most

P(t)
β (ϵ̄) :=

1 +
4max

{
F (t)
β ,

√
4β∥A∥2F (t)

β , 4β∥A∥2
}

ϵ̄

 (72)

iterations (and hence MEV computations) where F (t)
β and ϵ̄ are as in (69) and (56), respec-

tively;

(b) the total number of ADAP-FISTA calls within such call is no more than

(1 + κ
(t)
β)P(t)

β (ϵ̄) +
Cσmax{8G(t)β + 144β∥A∥2, 1/λ0}

ρ̄2
[Lβ(Xt−1, pt−1)− Lβ(Xt, pt−1)] (73)

where λ0 is given as input to HLR, and Cσ, G(t)β , and κ
(t)
β are as in (26), (70), and (71),

respectively.
1A resolvent evaluation of h is an evaluation of (I + γ∂h)−1(·) for some γ > 0.

16

Proof. (a) Recall that each HLR call during the t-th iteration of HALLaR is made with (g, Ȳ0, λ0, ϵ̄, ρ̄) =
(Lβ(·; pt−1), Ut−1, λ0, ϵ̄, ρ̄). The result then immediately follows from Theorem 2.5(a), the definition
of F (t)

β in (69), and the fact that Lβ(X; pt−1) is (β∥A∥2)-smooth.
(b) The proof follows directly from Theorem 2.5(b), statement(a), the fact that Lβ(·; pt−1) is

(β∥A∥2)-smooth, and the definitions of G(t)β and κ(t)β in (70) and (71), respectively.

The following Lemma establishes key bounds which will be used later to bound quantities F (t)
β ,

G(t)β , and κ(t)β that appear in Proposition 3.4.

Lemma 3.5. The following relations hold:

max
t∈{0,...T}

∥pt∥ ≤ ∥p∗∥+
√
3∥p∗∥2 + 2βϵ̄, (74)

β

T∑
t=1

∥AXt − b∥2 ≤
3∥p∗∥2

β
+ 2ϵ̄, (75)

where T is the last iteration index of HALLaR, p∗ is an optimal Lagrange multiplier, and ϵ̄ is as in
(56).

Proof. It follows immediately from Proposition 3.4(a) and the definition of ϵ̄-optimal solution that
the HLR call made in step 1 of the t-th iteration of HALLaR outputs Ut such that Xt = UtU

T
t

satisfies
0 ∈ ∇Lβ(Xt; pt−1) + ∂ϵ̄δ∆n . (76)

It is then easy to see that HALLaR is an instance of the AL Framework in Appendix E since the
HLR method implements relation (152) in the Blackbox AL with (ϵ̂c, ϵ̂d) = (ϵ̄, 0). The proof of
relations (74) and (75) now follows immediately from relations (157) and (158) and the fact that
p0 = 0.

Lemma 3.6. For every iteration index t of HALLaR, the following relations hold:

F (t)
β ≤ F̄β (77)
t∑
l=1

[Lβ(Xl−1, pl−1)− Lβ(Xl, pl−1)] ≤ F̄β (78)

where Xt = UtU
T
t and F (t)

β and F̄β are as in (69) and (58), respectively.

Proof. Let t be an iteration index. We first show that

Lβ(Xt−1, pt−1) ≤ λmin(C) +
β

2
∥AX0 − b∥2 +

3∥p∗∥2

β
+ 2ϵ̄. (79)

holds. It follows immediately from the definition of Lβ(X; p) in (3), the fact thatX0 = argminX∈∆n C•
X, the Cauchy-Schwarz inequality, and the fact that p0 = 0, that

Lβ(X0, p0)
(3)
≤ C •X0 +

β

2
∥A(X0)− b∥2 = λmin(C) +

β

2
∥A(X0)− b∥2. (80)

Hence, relation (79) holds with t = 1. Suppose now that t ≥ 2 and let l be an iteration index such
that l < t. Relation (45), the fact that HALLaR during its l-th iteration calls the HLR method

17

with input g = Lβ(X, pl−1) and initial point Ȳ0 = Ul−1, and the fact that Xl = UlU
T
l imply that

Lβ(Xl, pl−1) ≤ Lβ(Xl−1, pl−1) and hence that

Lβ(Xl, pl)− Lβ(Xl−1, pl−1) ≤ Lβ(Xl, pl)− Lβ(Xl, pl−1)
(57),(3)
= β∥A(Xl)− b∥2 (81)

in view of the update rule (57) and the definition of Lβ(·; ·) in (3). Summing relation (81) from
l = 1 to t− 1 and using relation (75) gives

Lβ(Xt−1, pt−1)− Lβ(X0, p0)
(81)
≤ β

t−1∑
l=1

∥A(Xl)− b∥2
(75)
≤ 3∥p∗∥2

β
+ 2ϵ̄. (82)

Relation (79) now follows by combining relations (80) and (82).
Now, relation (74), the fact that minX∈∆n C •X = λmin(C), and the definition of Lβ(·; ·) in (3),

imply that for any t = 0, . . . , T ,

Lβ(X, pt)− λmin(C) ≥ Lβ(X, pt)− C •X =
1

2

∥∥∥∥ pt√
β
+
√
β(AX − b)

∥∥∥∥2 − ∥pt∥22β

(74)
≥ −

2∥p∗∥2 + βϵ̄+ ∥p∗∥
√

3∥p∗∥2 + 2βϵ̄

β
∀X ∈ ∆n (83)

where T is the last iteration index of HALLaR. Relations (79) and (83) together with the definition
of F̄β in (58) then imply that Lβ(Xt−1, pt−1) − Lβ(X, pt−1) ≤ F̄β for every X ∈ ∆n and iteration
index t. Relation (77) then follows immediately from this conclusion and the definition of F (t)

β in
(69).

To show relation (78), observe that relations (81) and (75) imply that for any iteration index t
the following relations hold:

t∑
l=1

Lβ(Xl−1, pl−1)− Lβ(Xl, pl−1)

=

t∑
l=1

[Lβ(Xl−1, pl−1)− Lβ(Xl, pl)] +

t∑
l=1

[Lβ(Xl, pl)− Lβ(Xl, pl−1)]

(81)
= Lβ(X0, p0)− Lβ(Xt, pt) + β

t∑
l=1

∥A(Xl)− b∥2
(75)
≤ Lβ(X0, p0)− Lβ(Xt, pt) +

3∥p∗∥2

β
+ 2ϵ̄.

Relation (78) then follows immediately from the above relation, relation (83) with X = Xt, relation
(80), and the definition of F̄β in (58).

Lemma 3.7. For every iteration t of HALLaR, we have G(t)β ≤ Ḡβ where G(t)β and Ḡβ are as in (70)
and (59), respectively.

Proof. Let t be an iteration index of HALLaR and suppose that U ∈ B̄st−1

3 . It is easy to see from
the definition of Lβ(·; ·) in (3) that

∇Lβ(UUT ; pt−1) = C +A∗pt−1 + βA∗(A(UUT)− b). (84)

18

It then follows from the fact that U ∈ B̄st−1

3 , Cauchy-Schwarz inequality, triangle inequality, relation
(84), and bound (74) that

∥∇Lβ(UUT ; pt−1)∥F
(84)
= ∥C +A∗pt−1 + βA∗(A(UUT)− b)∥F
≤ ∥C∥F + ∥A∥∥pt−1∥+ β∥A∥2∥UUT ∥F + β∥A∥ ∥b∥
≤ ∥C∥F + ∥A∥∥pt−1∥+ 9β∥A∥2 + β∥A∥ ∥b∥
(74)
≤ ∥C∥F + ∥A∥

(
9β∥A∥+ ∥p∗∥+

√
3∥p∗∥2 + 2βϵ̄+ β∥b∥

)
which immediately implies the result of the lemma in view of the definitions of G(t)β and Ḡβ in (70)
and (59), respectively.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. (a) It follows immediately from Lemma 3.1 that output (X̄, p̄, θ̄) satisfies the
the dual feasibility and ϵc-complementarity conditions in (55). It then remains to show that the
triple (X̄, p̄, θ̄) satisfies the ϵp-primal feasibility condition in (55) in at most J iterations where J
is as in (61). To show this, it suffices to show that HALLaR is an instance of the AL framework
analyzed in Appendix E. Observe first that (P) is a special case of (148) with f(X) = C •X and
h(X) = δ∆n(X). It is also easy to see that the call to the HLR in step 1 of HALLaR is a special way of
implementing step 1 of the AL framework, i.e., the Blackbox AL. Indeed, Proposition 3.4(a) implies
that the output Ut of HLR satisfies 0 ∈ ∇Lβ(UtUTt ; pt−1)+∂ϵ̄δ∆n(UtU

T
t) and hence HLR implements

relation (152) in the Blackbox AL with (X̂, R̂) = (UtU
T
t , 0), (ϵ̂c, ϵ̂d) = (ϵ̄, 0), g = Lβ(·; pt−1), and

h = δ∆n(·).
In view of the facts that HALLaR is an instance of the AL framework and p0 = 0, it then follows

immediately from Theorem E.1 that HALLaR terminates within the number of iterations in (61)
and that the output (X̄, p̄, θ̄) satisfies the ϵp-primal feasibility condition in (55).

(b) Consider the quantity P(t)
β (ϵ̄) as in (72) where t is an iteration index of HALLaR. It

follows immediately from relations (56) and (77) and the definition of P̄β(ϵp, ϵc) in (64) that
P(t)
β (ϵ̄) ≤ P̄β(ϵp, ϵc). Hence, it follows from Proposition 3.4(a) that each HLR call made in step

1 of HALLaR performs at most P̄β(ϵp, ϵc) iterations/MEV computations. The result then follows
from this conclusion and part (a).

(c) Let t be an iteration index of HALLaR. Lemma 3.7 implies that G(t)β ≤ Ḡβ and κ
(t)
β ≤ κ̄β

in view of the definitions of κ(t)β and κ̄β in (71) and (60), respectively. Hence, it follows from this

conclusion, the fact that P(t)
β (ϵ̄) ≤ P̄β(ϵp, ϵc), Proposition 3.4(b), and part (a) that the total number

of ADAP-FISTA calls performed by HALLaR is at most

J [(1 + κ̄β)] P̄β(ϵp, ϵc) +
Cσmax{8Ḡβ + 144β∥A∥2, 1/λ0}

ρ̄2

[
T∑
t=1

Lβ(Xt−1, pt−1)− Lβ(Xt, pt−1)

]

where J is as in (61) and T is the last iteration index of HALLaR. The result in (c) then fol-
lows immediately from the above relation together with the fact that relation (78) implies that∑T

t=1 [Lβ(Xt−1, pt−1)− Lβ(Xt, pt−1)] ≤ F̄β .

19

4 Computational experiments

In this section the performance of HALLaR is tested against state-of-the art SDP solvers. The
experiments are performed on a 2019 Macbook Pro with an 8-core CPU and 32 GB of memory.
The methods are tested in SDPs arising from the following applications: maximum stable set, phase
retrieval, and matrix completion.

This section is organized into five subsections. The first subsection provides details on the
implementation of HALLaR. The second subsection explains the SDP solvers considered in the
experiments. The remaining subsections describe the results of the computational experiments in
each of the applications.

4.1 Implementation details

Our implementation of HALLaR uses the Julia programming language. The implementation applies
to a class of SDPs slightly more general than (P). Let F ∈ {R,C} be either the field of real
or complex numbers. Let Sn(R) (resp. Sn(C)) be the space of n × n symmetric (resp. complex
Hermitian) matrices, with Frobenius inner product • and with positive semidefinite partial order ⪰.
The implementation applies to SDPs of the form

min
X

{C •X : AX = b, trX ≤ τ, X ⪰ 0, X ∈ Sn(F)}

where b ∈ Rm, C ∈ S(F)n, A : S(F)n → Rm is a linear map, and A∗ : Rm → Sn(F) is its adjoint. In
contrast to (P), the trace of X is bounded by τ instead of one. The inputs for our implementation
are the initial points U0, p0, the tolerances ϵc, ϵp, and the data describing the SDP instance, which
is explained below. In the experiments, the primal initial point U0 is a random n × 1 matrix with
entries generated independently from the Gaussian distribution over F, and the dual initial point
p0 is the zero vector. Our computational results below are based on a variant of HALLaR, also
referred to as HALLaR in this section, which differs slightly from one described in Section 3 in
that the penalty parameter β and the tolerance ϵ̄ for the AL subproblem are chosen in an adaptive
manner based on some of the ideas of the LANCELOT method [16].

The data defining the SDP instance involves matrices of size n× n which should not be stored
as dense arrays in large scale settings. Instead of storing a matrix M ∈ Sn(F), it is assumed that a
routine that evaluates the linear operator L(M) : Fn → Fn, v 7→Mv is given by the user.

Similar to the Sketchy-CGAL method of [67], our implementation of HALLaR requires the
following user inputs to describe the SDP instance:

(i) The vector b ∈ Rm and the scalar τ > 0.

(ii) A routine for evaluating the linear operator L(C).

(iii) A routine for evaluating linear operators of the form L(A∗p) for any p ∈ Rm.

(iv) A routine for evaluating the quadratic function

qA : Fn → Rm, y 7→ A(yyT). (85)

Note that the routine in (iv) allows A to be evaluated on any matrix in factorized form since
A(Y Y T) =

∑
i qA(yi) where the sum is over the columns yi of Y . In addition, the routines in

(ii) and (iii) allow to multiply matrices of the form C + A∗p with a matrix Y by multiplying by
each of the columns yi separately. It follows that all steps of HALLaR (including the steps of HLR

20

and ADAP-AIPP) can be performed by using only the above inputs. For instance, the eigenvalue
computation in Step 2 of HLR is performed using iterative Krylov methods, which only require
matrix-vector multiplications.

4.2 Competing methods

We compare HALLaR against the following SDP solvers:

• CSDP : Open source Julia solver based on interior point methods;

• COSMO: Open source Julia solver based on ADMM/operator splitting;

• ManiSDP: Open source MATLAB solver based on AL and Riemannian trust-region method
[61];

• SDPLR : Open source MATLAB solver based on Burer and Monteiro’s LR method;

• SDPNAL+ : Open MATLAB source solver based on AL with a semismooth Newton method;

• T-CGAL : Thin variant of the CGAL method [65] that stores the iterates Xt in factored form;

• r-Sketchy : Low-rank variant of CGAL that only stores a sketch of π(Xt) ∈ Fn×r of the
iterates Xt ∈ Sn(F).

We use the default parameters in all methods. The r-Sketchy method is tested with two possible
values of r, namely, r = 10 and r = 100.

Given a tolerance ϵ > 0, all methods, except SDPLR, stop when a primal solution X ∈ ∆n and
a dual solution (p, θ, S) ∈ Rm × R+ × S+n satisfying

∥AX − b∥
1 + ∥b∥

≤ ϵ, |pval− dval|
1 + |pval|+ |dval|

≤ ϵ, ∥C +A∗p+ θI − S∥
1 + ∥C∥

≤ ϵ, (86)

is generated, where pval and dval denote the primal and dual values of the solution, respectively.
SDPLR terminates solely based on primal feasibility, i.e., it terminates when the first condition in
(86) is satisfied. The above conditions are standard in the SDP literature, although some solvers use
the l∞ norm instead of the Euclidean norm. Given a vector p ∈ Rm, HALLaR, SDPLR, r-Sketchy,
and T-CGAL, set θ := max{−λmin(C+A∗p), 0} and S := C+A∗p+θI. The definition of θ implies
that S ⪰ 0 and that the left-hand side of the last inequality in (86) is zero.

Recall that a description of r-Sketchy is already given in the paragraph preceding the part
titled "Structure of the paper" in the Introduction. We now comment on how this method keeps
track of its iterates and how it terminates. First, it never stores the iterate Ut but only a rank r
approximation Ũt of it as already mentioned in the aforementioned paragraph of the Introduction.
(We refer to Ut as the implicit iterate as is never computed and Ũt as the computed one.) Second, it
keeps track of the quantities C •(UtUTt) and A(UtUTt) which, as can be easily verified, allow the first
two relative errors in (86) with X = UtU

T
t to be easily evaluated. Third, we kept the termination

criterion for r-Sketchy code intact in that it still stops when all three errors in (86) computed with
the implicit solution Ut, i.e., with X = UtU

T
t , are less than or equal to ε. The fact that r-Sketchy

terminates based on the implicit solution does not guarantee, and is even unlikely, that it would
terminate based on the computed solution. Fourth, if r-Sketchy does not terminate within the time
limit specified for each problem class, the maximum of the three errors in (86) at its final computed
solution Ũt, i.e., with X = ŨtŨ

T
t , is reported.

21

The solver COSMO includes an optional chordal decomposition pre-processing step (thoroughly
discussed in [24, 26, 58]), which has not been invoked in the computational experiments reported
below. This ensures that all solvers are compared over the same set of SDP instances.

The tables in the following three subsections present the results of the computational experiments
performed on large collections of maximum stable set, phase retrieval, and matrix completion, SDP
instances. A relative tolerance ϵ = 10−5 is set and a time limit of either 10000 seconds (≈ 3 hours) or
14400 seconds (= 4 hours) is given. An entry of a table marked with ∗/N (resp., ∗∗) means that the
corresponding method finds an approximate solution (resp., crashed) with relative accuracy strictly
larger than the desired accuracy 10−5 in which case N expresses the maximum of the three final
relative accuracies in (86). For r-Sketchy, entries marked as ∗/N mean that it did not terminate
within the time limit and the maximum of the three final relative accuracies in (86) of its final
computed solution Ũt was N . The bold numbers in the tables indicate the algorithm that had the
best runtime for that instance.

4.3 Maximum stable set

Given a graph G = ([n], E), the maximum stable set problem consists of finding a subset of vertices
of largest cardinality such that no two vertices are connected by an edge. Lovász [41] introduced a
constant, the ϑ-function, which upper bounds the value of the maximum stable set. The ϑ-function
is the value of the SDP

max {eeT •X : Xij = 0, ij ∈ E, trX = 1, X ⪰ 0, X ∈ Sn(R)} (87)

where e = (1, 1, . . . , 1) ∈ Rn is the all ones vector. It was shown in [27] that the ϑ-function agrees
exactly with the stable set number for perfect graphs.

Tables 1, 2, 3, 4, and 5 present the results of the computational experiments performed on the
maximum stable set SDP. Table 1 compares HALLaR against all the methods listed in Subsection 4.2
on smaller graph instances, i.e., with number of vertices not exceeding 70,000. All graph instances
considered, except the last instance, are taken from the GSET data set, a curated collection of
randomly generated graphs that can be found in [64]. The larger GSET graphs (GSET 66-81) are
all toroidal graphs where every vertex has degree 4. The last graph instance presented in Table 1 is
a large toroidal graph with approximately 70,000 vertices that we generated ourselves. A time limit
of 10000 seconds (approximately 3 hours) is given. Table 2 compares HALLaR against T-CGAL,
10-Sketchy, and 100-Sketchy, on large graph instances with up to 1 million vertices and 10 million
edges. CSDP was not included in Table 2 since it crashed on all but one of the instances included in
it. All graph instances considered in Table 2 are Hamming H(d, 2) graphs, a special class of graphs
that has 2d number of vertices and d 2d−1 number of edges. The vertex set of such graphs can be
seen as corresponding to binary words of length d, and the edges correspond to binary words that
differ in one bit. A time limit of 14400 seconds (4 hours) is now given.

Tables 3 and 4 solely present the performance of HALLaR on extremely large-sized Hamming
instances (i.e., with number of vertices exceeding 1 millon) and hard graph instances from real-world
datasets, respectively. The graph instances considered in Table 4 are taken from the DIMACS10,
Stanford SNAP, AG-Monien, GHS_indef, and Network Repositories [1, 17, 40, 54].

Table 5 displays a special comparison between HALLaR, SDPLR, and ManiSDP on 6 different
Hamming graphs. One of the reasons for not including these codes in Table 1 is that they require
inputs in SDPA format which, for the GSET graphs, are not available in any public available repos-
itory and would be quite time-consuming to generate. Another reason is that SDPLR terminates
only based on the first condition in (86) and hence often finds a solution that does not satisfy the
second condition in (86) with the desired accuracy of ϵ = 10−5. An entry marked with time/N in

22

Problem Instance Runtime (seconds)

Graph(n; |E|) HALLaR T-CGAL 10-Sketchy 100-Sketchy CSDP COSMO SDPNAL+

G1(800; 19,176) 218.23 */.13e-02 */.31e-01 */.31e-01 226.01 322.91 60.30

G10(800; 19,176) 241.51 */.20e-02 */.78e-01 */.31e-01 220.44 229.22 55.30

G11(800; 1,600) 3.01 1631.45 220.59 234.76 3.74 118.66 73.50

G12(800; 1,600) 3.06 414.27 72.56 57.03 3.12 9531.99 70.20

G14(800; 4,694) 66.46 */.27e-03 6642.00 7231.30 9.31 3755.36 115.30

G20(800; 4,672) 439.37 */.37e-03 */.12e-01 */.12e-01 11.42 */.69e-04 341.20

G43(1000; 9,990) 96.79 */.25e-04 */.51e-01 */.26e-01 42.39 */.10e-02 62.10

G51(1,000; 5,909) 190.98 */.23e-03 */.98e-02 */.99e-02 16.97 */.33e-04 284.40

G23(2,000; 19,990) 390.34 */.64e-03 */.86e-01 */.19e-01 288.77 5739.78 503.80

G31(2,000; 19,990) 357.75 */.68e-03 */.20e-01 */.19e-01 290.72 5946.84 498.30

G32(2,000; 4,000) 3.62 3732.70 329.17 349.73 29.04 */.58e-03 853.90

G34(2,000; 4,000) 3.52 1705.60 162.85 177.84 29.04 458.11 1101.80

G35(2,000; 11,778) 730.54 */.78e-03 */.62e-02 */.62e-02 730.54 120.60 2396.60

G41(2,000; 11,785) 555.02 */.17e-02 */.59e-02 */.59e-02 114.73 */.37e-03 2027.20

G48(3,000; 6,000) 3.49 4069.30 288.64 306.91 81.97 1840.91 6347.50

G55(5,000; 12,498) 253.22 */.33e-02 */.80e-02 */.79e-02 535.57 */.11e-02 */.17e-01

G56(5,000; 12,498) 264.46 */.38e-02 */.80e-02 */.79e-02 523.06 */.27e-02 */.20e00

G57(5,000; 10,000) 4.14 7348.50 791.75 831.06 336.93 8951.40 */.10e00

G58(5,000; 29,570) 2539.83 */.96e-02 */.24e-01 */.43e-02 2177.03 */.20e-03 */.43e-01

G59(5,000; 29,570) 2625.47 */.54e-02 */.24e-01 */.43e-02 2178.33 */.37e+02 */.65e-01

G60(7,000; 17,148) 476.65 */.21e-02 */.13e-01 */.67e-02 2216.50 */.39e+02 */.10e+01

G62(7,000; 14,000) 5.00 */.28e-03 1795.50 1474.40 1463.18 */.12e-03 */.10e+01

G64(7,000; 41,459) 3901.68 */.16e-01 */.36e-02 */.36e-02 7127.72 */.99e+01 */.10e+01

G66(9,000; 18,000) 5.77 */.82e-01 2788.70 3022.70 2076.17 */.77e-03 */.10e+01

G67(10,000; 20,000) 5.87 */.13e-01 3725.80 3941.70 7599.80 ** */.47e+01

G72(10,000; 20,000) 5.92 */.11e00 3936.30 3868.60 7450.01 ** */.47e+01

G77(14,000; 28,000) 8.08 */.24e00 */.60e-02 */.60e-02 ** ** */.99e00

G81(20,000; 40,000) 10.89 */.10e00 */.91e-01 */.71e-01 ** ** */.10e+01

tor(69,192; 138,384) 40.64 */.38e00 */.63e00 */.29e00 ** ** **

Table 1: Runtimes (in seconds) for the Maximum Stable Set problem. A relative tolerance of ϵ = 10−5 is set and a time limit
of 10000 seconds is given. An entry marked with ∗/N (resp., ∗∗) means that the corresponding method finds an approximate
solution (resp., crashed) with relative accuracy strictly larger than the desired accuracy in which case N expresses the maximum
of the three relative accuracies in (86).

Table 5 means that SDPLR finds an approximate solution (within the time limit) that satisfies the
first condition but not the second one in (86), in which case N expresses the final value of the left
hand side of the latter condition. An entry marked with */N1/N2 means that SDPLR did not finish
in the allowable time in which case N1 and N2 express the left-hand sides of the first and second
conditions in (86), respectively.

Remarks about the results presented in Tables 1, 2, 3, 4, and 5 are now given. As seen from
Table 1, CSDP and HALLaR are the two best-performing methods on these smaller graph instances.
HALLaR, however, is the only method that can solve each of the instances to the desired accuracy
of 10−5 within the time limit of approximately 3 hours. On graph instances where the number of
vertices exceeds 14,000 (resp., 10,000), CSDP (resp., COSMO) cannot perform a single iteration
within 3 hours or crashes. SDPNAL+ crashed with a lack of memory error on the last graph instance

23

Problem Instance Runtime (seconds)

Graph(n; |E|) HALLaR T-CGAL 10-Sketchy 100-Sketchy

H13,2(8,192; 53,248) 5.04 */.23e00 1603.80 882.03

H14,2(16,384; 114,688) 9.09 */.45e00 6058.60 6712.20

H15,2(32,768; 245,760) 65.22 */.19e00 */.19e-01 */.14e-01

H16,2(65,536; 524,288) 104.71 */.11e-01 */.24e00 */.11e-01

H17,2(131,072; 1,114,112) 69.63 */.34e-01 */.72e00 */.32e-01

H18,2(262,144; 2,359,296) 244.90 */.99e-02 */.88e-02 */.31e00

H19,2(524,288; 4,980,736) 786.73 */.42e00 */.35e00 */.24e00

H20,2(1,048,576; 10,485,760) 1138.17 */.47e00 */.31e-02 */.31e-02

Table 2: Runtimes (in seconds) for the Maximum Stable Set problem. A relative tolerance of ϵ = 10−5 is set and a time limit
of 14400 seconds (4 hours) is given. An entry marked with ∗/N (resp., ∗∗) means that the corresponding method finds an
approximate solution (resp., crashed) with relative accuracy strictly larger than the desired accuracy in which case N expresses
the maximum of the three relative accuracies in (86).

Problem Instance Runtime of HALLaR (seconds)

Graph(n; |E|) ϵ = 10−5 ϵ = 10−8 ϵ = 10−10

H20,2(1,048,576; 10,485,760) 1138.17 1157.19 1265.06

H21,2(2,097,152; 22,020,096) 2815.50 2931.55 3134.84

H22,2(4,194,304; 46,137,344) 6264.50 6920.11 7668.22

H23,2(8,388,608; 96,468,992) 14188.23 16673.39 17029.87

H24,2(16,777,216; 201,326,592) 46677.82 51941.35 53241.758

Table 3: Runtimes of HALLaR (in seconds) for the Maximum Stable Set problem. Relative tolerances of ϵ = 10−5, 10−8, and
10−10 are set.

with 69,192 vertices. Although T-CGAL, 10-Sketchy, and 100-Sketchy do not perform especially
well on the smaller graph instances considered in Table 1, they are included for comparison on the
larger graph instances considered in Table 2 since they require considerably less memory than CSDP,
COSMO, and SDPNAL+. The results presented in Table 2 demonstrate that HALLaR performs
especially well for larger instances as it is the only method that can solve all instances within the
time limit of 4 hours. T-CGAL, 10-Sketchy, and 100-Sketchy cannot find a solution with the desired
accuracy of 10−5 on most of the instances considered, often finding solutions with accuracies on the
range of 100 to 10−2. CSDP was tested on the problems considered in Table 2 but not included for
comparison since it crashed on every instance except one. COSMO and SDPNAL+ are not included
for comparison due to their high memory requirements.

Tables 3 and 4 show that HALLaR can solve extremely large Hamming instances and hard
real-world instances, respectively, within a couple of hours. Table 3 shows that HALLaR can solve
with 10−10 accuracy a Hamming instance with 4 million vertices and 40 million edges (resp., 16
million vertices and 200 million edges) in approximately 2 hours (resp., 15 hours). Table 4 shows
that HALLaR can solve with 10−5 accuracy a huge Debruijin graph instance (which arises in the
context of genome assembly) in just under 4 hours.

The results presented in Table 5 display the superior performance of HALLaR compared to
SDPLR and ManiSDP on six different Hamming graphs. Compared to these two methods, HALLaR
not only finds more accurate solutions within the time limit of 4 hours but is also at least 80 times
faster than them on the three largest instances.

24

Problem Instance Runtime (seconds)

Problem Size (n;m) Graph Dataset HALLaR

10,937; 75,488 wing_nodal DIMACS10 1918.48

16,384; 49,122 delaunay_n14 DIMACS10 1355.01

16,386; 49,152 fe-sphere DIMACS10 147.93

22,499; 43,858 cs4 DIMACS10 747.66

25,016; 62,063 hi2010 DIMACS10 3438.06

25,181; 62,875 ri2010 DIMACS10 2077.97

32,580; 77,799 vt2010 DIMACS10 2802.37

48,837; 117,275 nh2010 DIMACS10 8530.38

24,300; 34,992 aug3d GHS_indef 8.56

32,430; 54,397 ia-email-EU Network Repo 530.21

11,806; 32,730 Oregon-2 SNAP 2787.19

11,380; 39,206 wiki-RFA_negative SNAP 1151.31

21,363; 91,286 ca-CondMat SNAP 7354.75

31,379; 65,910 as-caida_G_001 SNAP 3237.93

26,518; 65,369 p2p-Gnutella24 SNAP 344.83

22,687; 54,705 p2p-Gnutella25 SNAP 235.03

36,682; 88,328 p2p-Gnutella30 SNAP 542.07

62,586; 147,892 p2p-Gnutella31 SNAP 1918.30

49,152; 69,632 cca AG-Monien 47.24

49,152; 73,728 ccc AG-Monien 12.14

49,152; 98,304 bfly AG-Monien 13.15

16,384; 32,765 debr_G_12 AG-Monien 818.61

32,768; 65,533 debr_G_13 AG-Monien 504.29

65,536; 131,069 debr_G_14 AG-Monien 466.67

131,072; 262,141 debr_G_15 AG-Monien 488.07

262,144; 524,285 debr_G_16 AG-Monien 1266.71

524,288; 1,048,573 debr_G_17 AG-Monien 5793.57

1,048,576; 2,097,149 debr_G_18 AG-Monien 13679.12

Table 4: Runtimes (in seconds) for the Maximum stable set problem. A relative tolerance of ϵ = 10−5 is set.

Problem Instance Runtime (seconds)

Graph(n; |E|) HALLaR SDPLR ManiSDP

H10,2(1024; 5120) 2.90 1.28 4.65

H11,2(2048; 11264) 3.03 10.14 20.38

H12,2(4096; 24576) 3.49 56.60/.12e-03 140.26

H13,2(8192; 53248) 5.04 399.89/.38e-03 1862.00

H14,2(16384; 114688) 9.09 2469.11/.16e-02 12264.47

H15,2(32768; 245760) 65.22 */.11e-01/.46e00 */.15e-01

Table 5: Runtimes (in seconds) for the maximum stable set problem. A relative tolerance of ϵ = 10−5 is set and a time limit of
14400 seconds (4 hours) is given. An entry marked with time/N means that SDPLR finds an approximate solution (within the
time limit) that satisfies the first condition but not the second one in (86), in which case N expresses the final value of the left
hand side of the latter condition. An entry marked with */N1/N2 means that SDPLR did not finish in 4 hours in which case
N1 and N2 express the left-hand sides of the first and second conditions in (86), respectively.

25

4.4 Phase retrieval

Given m pairs {(ai, bi)}mi=1 ⊆ Cn × R+, consider the problem of finding a vector x ∈ Cn such that

|⟨ai, x⟩|2 = bi, i = 1, . . . ,m.

In other words, the goal is to retrieve x from the magnitude of m linear measurements. By creating
the complex Hermitian matrix X = xxH , this problem can be approached by solving the complex-
valued SDP relaxation

min
X

{
tr(X) : ⟨aiaHi , X⟩ = bi, X ⪰ 0, X ∈ Sn(C)

}
.

The motivation of the trace objective function is that it promotes obtaining a low rank solution.
It was shown in [12] that the relaxation is tight (i.e., the vector x can be retrieved from the SDP
solution X) when the vectors ai are sampled independently and uniformly on the unit sphere.
Notice that this class of SDPs does not have a trace bound. However, since the objective function is
precisely the trace, any bound on the optimal value can be used as the trace bound. In particular,
the squared norm of the vector x is a valid trace bound. Even though x is unknown, bounds on its
norm are known (see for example [66]).

Computational experiments are performed on the synthetic data set from [67] that is based
on the coded diffraction pattern model from [11]. Given n, the hidden solution vector x ∈ Cn is
generated from the complex standard normal distribution. The are m = 12n measurements that
are indexed by pairs (j, l) ∈ [12] × [n]. Consider vectors yj ∈ Cn for j ∈ [12], where the entries
of yj are products of of two independent random variables: the first is the uniform distribution
on {1, i,−1,−i}, and the second chooses from {

√
2/2,
√
3} with probabilities 4/5 and 1/5. The

linear measurements correspond to modulating the vector x with each of the yj ’s and then taking
a discrete Fourier transform:

⟨aj,k, x⟩ := DFT(yj ◦ x)l for j ∈ [12], l ∈ [n]

where ◦ denotes the Hadamard product, and DFT(·)l denotes the l-th entry of the discrete Fourier
transform. The vector b is obtained by applying the measurements to x. The trace bound is set as
τ = 3n, similarly as in [67].

Tables 6 and 7 present the results of the computational experiments performed on the phase
retrieval SDP. As mentioned in the above paragraph, all instances considered are taken from a
synthetic dataset that can be found in [67]. Table 6 compares HALLaR against T-CGAL, 10-
Sketchy, and 100-Sketchy on medium sized phase retrieval instances, i.e., the dimension n is either
10000 or 31623. The ranks of the outputted solutions of HALLaR and T-CGAL are now also
reported. For entries corresponding to HALLaR and T-CGAL, the number reported after the last
forward slash indicates the rank of that corresponding method’s outputted solution. A time limit
of 14400 seconds (4 hours) is given. Table 7 solely presents the performance of HALLaR on larger
sized phase retrieval instances, i.e., with dimension n greater than or equal to 100,000. The rank of
the outputted solution of HALLaR is again reported.

Table 6 only compares HALLaR against T-CGAL and Sketchy-CGAL since these are the only
methods that take advantage of the fact that the linear maps A and A∗ in the phase retrieval SDP
can be evaluated efficiently using the fast Fourier transform (FFT). As seen from Table 6, HALLaR
is the best performing method and the only method that can solve each instance to a relative
accuracy of 10−5 within the time limit of 4 hours. T-CGAL and Sketchy-CGAL were unable to
solve most instances to the desired accuracy, often finding solutions with accuracies on the range of

26

Problem Instance Runtime (seconds)

Problem Size (n;m) HALLaR T-CGAL 10-Sketchy 100-Sketchy

10,000; 120,000 69.11/2 */.18e-01/561 */.13e-01 */.25e-01

10,000; 120,000 66.14/2 */.54e-01/521 11112.00 */.80e-01

10,000; 120,000 64.42/2 */.12e00/224 */.31e-01 */.13e00

10,000; 120,000 99.98/2 */.28e-01/201 */.13e00 */.26e-01

31,623; 379,476 620.82/3 */.29e00/1432 */.77e-01 */.23e00

31,623; 379,476 982.34/2 */.23e00/729 */.63e-01 */.93e00

31,623; 379,476 870.25/2 */.66e00/794 */.65e-02 */.78e-01

31,623; 379,476 712.09/2 */.10e+01/1280 */.10e+01 */.82e00

Table 6: Runtimes (in seconds) for the Phase Retrieval problem. A relative tolerance of ϵ = 10−5 is set and a time limit
of 14400 seconds (4 hours) is given. An entry marked with ∗/N means that the corresponding method finds an approximate
solution with relative accuracy strictly larger than the desired accuracy in which case N expresses the maximum of the three
relative accuracies in (86). For entries corresponding to HALLaR and T-CGAL, the number reported after the last forward
slash indicates that the rank of that corresponding method’s outputted solution.

Problem Instance Runtime (seconds)

Problem Size (n;m) HALLaR

100,000; 1,200,000 1042.92/4

100,000; 1,200,000 1147.46/3

100,000; 1,200,000 929.67/5

100,000; 1,200,000 939.23/5

316,228; 3,794,736 8426.94/5

316,228; 3,794,736 2684.83/1

316,228; 3,794,736 7117.31/6

316,228; 3,794,736 7489.42/7

3,162,278; 37,947,336 40569.10/1

Table 7: Runtimes (in seconds) for the Phase Retrieval problem. The number after the forward slash indicates the rank of
HALLaR’s outputted solution. A relative tolerance of ϵ = 10−5 is set.

100 to 10−2 in 4 hours. Sketchy-CGAL was also over 150 times slower than HALLaR on the single
instance that it was able to find a 10−5 accurate solution.

Since T-CGAL and Sketchy-CGAL did not perform well on the medium sized phase retrieval
instances considered in Table 6, computational results for large sized phase retrieval instances are
only presented for HALLaR in Table 7. The results presented in Table 7 show that HALLaR solves
a phase retrieval SDP instance with dimension pair (n,m) ≈ (105, 106) in approximately 15 minutes
and also one with dimension pair (n,m) ≈ (106, 107) in just 11 hours.

4.5 Matrix completion

Consider the problem of retrieving a low rank matrix M ∈ Rn1×n2 , where n1 ≤ n2, by observing a
subset of its entries: Mij , ij ∈ Ω. A standard approach to tackle this problem is by considering the
nuclear norm relaxation:

min
Y

{
∥Y ∥∗ : Yij =Mij , ∀ ij ∈ Ω, Y ∈ Rn1×n2

}

27

The above problem can be rephrased as the following SDP:

min
X

{ 1

2
tr(X) : X =

(
W1 Y
Y T W2

)
⪰ 0, Yi,j =Mi,j ∀ ij ∈ Ω, X ∈ Sn1+n2(R)

}
(88)

Problem Instance Runtime (seconds)

Problem Size (n;m) r HALLaR 10-Sketchy

10,000; 828,931 3 321.81 */.81e00/.89e-02

10,000; 828,931 3 332.54 */.80e00/.82e-02

10,000; 2,302,586 5 1117.60 */.92e00/.28e00

10,000; 2,302,586 5 1067.15 */.11e+01/ .41e00

31,623; 2,948,996 3 1681.03 */.81e00/.69e-02

31,623; 2,948,996 3 1362.22 */.81e00/.82e-02

31,623; 8,191,654 5 4740.48 */.90e00/.43e-01

31,623; 8,191,654 5 5238.57 */.90e00/.84e-01

Table 8: Runtimes (in seconds) for the Matrix Completion problem. A relative tolerance of ϵ = 10−5 is set and a time limit of
14400 seconds (4 hours) is given. An entry marked with ∗/N1/N2 means that the implicit solution corresponding to 10-Sketchy
had relative accuracy strictly larger than the desired accuracy in which case N1 (resp., N2) expresses the maximum of the three
relative accuracies in (86) of its computed (resp., implicit) solution.

Problem Instance Runtime (seconds)

Problem Size (n;m) r HALLaR

75,000; 3,367,574 2 3279.85

75,000; 7,577,040 3 5083.68

100,000; 4,605,171 2 2872.44

100,000; 10,361,633 3 6048.63

150,000; 7,151,035 2 10967.74

150,000; 16,089,828 3 14908.08

200,000; 9,764,859 2 13454.12

200,000; 21,970,931 3 28021.56

Table 9: Runtimes (in seconds) for the Matrix Completion problem. A relative tolerance of ϵ = 10−5 is set.

The nuclear norm relaxation was introduced in [22]. It was shown in [10] it provably completes
the matrix when m = |Ω| is sufficiently large and the indices of the observations are independent
and uniform.

Similar to the SDP formulation of phase retrieval in subsection 4.4, the SDP formulation of
matrix completion does not include a trace bound, but the objective function is a multiple of the
trace. Hence, any bound on the optimal value leads to a trace bound. In particular, a valid trace
bound is 2∥Y0∥∗, where Y0 ∈ Rn1×n2 is the trivial completion, which agrees with Mij in the observed
entries and has zeros everywhere else. However, computing the nuclear norm of Y0 is expensive,
as it requires an SVD decomposition. In the experiments the inexpensive, though weaker, bound
τ = 2

√
n1∥Y0∥F is used instead.

The matrix completion instances are generated randomly, using the following procedure. Given
r ≤ n1 ≤ n2, the hidden solution matrix M is the product UV T , where the matrices U ∈ Rn1×r

and V ∈ Rn2×r have independent standard Gaussian random variables as entries. Afterwards, m

28

independent and uniformly random observations from M are taken. The number of observations is
m = ⌈γ r(n1 + n2 − r)⌉ where γ = r log(n1 + n2) is the oversampling ratio.

Tables 8 and 9 present the results of the computational experiments performed on the matrix
completion SDP. All instances are generated randomly using the procedure described in the previous
paragraph. Table 8 compares HALLaR against 10-Sketchy on medium sized matrix completion
instances, i.e., the dimension n = n1 + n2 is either 10000 or 31623. A time limit of 14400 seconds
(4 hours) is given. On instances where 10-Sketchy did not terminate within the time limit, the
relative accuracy of both of its computed and implicit solutions are now reported. An entry marked
with ∗/N1/N2 means that, within 4 hours, the implicit solution corresponding to 10-Sketchy had
relative accuracy strictly larger than the desired accuracy in which case N1 (resp., N2) expresses the
maximum of the three relative accuracies in (86) of its computed (resp., implicit) solution. Table 9
solely presents the performance of HALLaR on larger sized matrix completion instances, i.e., with
dimension n greater than or equal to 75000.

Table 8 only compares HALLaR against 10-Sketchy due to 10-Sketchy’s low memory require-
ments and its superior/comparable performance to 100-Sketchy and T-CGAL on previous problem
classes. As seen from Table 8, HALLaR is the best performing method and the only method that
can solve each instance to a relative accuracy of 10−5 within the time limit of 4 hours. 10-Sketchy
is unable to solve a single instance to the desired accuracy, often finding solutions with accuracies
on the range of 100 to 10−2 in 4 hours.

Since 10-Sketchy did not perform well on the medium sized matrix completion instances consid-
ered in Table 8, computational results for large sized matrix completion instances are only presented
for HALLaR in Table 9. The results presented in Table 9 show that HALLaR solves a matrix com-
pletion instance with dimension pair (n,m) ≈ (105, 106) in approximately 48 minutes and also one
with dimension pair (n,m) ≈ (105, 107) in just 1.7 hours.

A Technical Results

The following section states some useful facts about the spectraplex ∆n defined in (1). The first
result characterizes the optimal solution a given linear form over the set ∆n. The second result
characterizes its ϵ-normal cone.

A.1 Characterization of Optimal Solution of Linear Form over Spectraplex

Consider the problem
min
U
{G • U : U ∈ ∆n}, (89)

where ∆n is as in (1). The optimality condition for (89) implies that Z is an optimal solution of
(89) if and only if there exists θ ∈ R such that the pair (Z, θ) satisfies

G+ θI ⪰ 0, (G+ θI) • Z = 0, θ ≥ 0, θ(tr(Z)− 1) = 0. (90)

The following proposition explicitly characterizes solutions of the above problem using the special
structure of ∆n.

Proposition A.1. Let (λmin, vmin) be a minimum eigenpair of G and define

θF = max{−λmin(G), 0}, ZF =

{
vminv

T
min if θF > 0,

0 otherwise.
(91)

Then the pair (Z, θ) = (ZF , θF) satisfies (90). As a consequence, ZF is an optimal solution of (89).

29

Proof. Consider the pair (ZF , θF) as defined in (91). It is immediate from the definition of θF that
θF ≥ 0. Consider now two cases. For the first case, suppose that θF = 0 and hence ZF = 0. It
then follows immediately that the pair (ZF , θF) satisfies the optimality conditions in (90).

For the second case, suppose that θF > 0. Thus θF = −λmin(G) and ZF = vminv
T
min. Clearly,

then G+θF I ⪰ 0 and tr(ZF) = 1 and hence the pair (ZF , θF) satisfies the first and fourth relations
in (90). The fact that (−θF , vmin) is an eigenpair implies that G • ZF = −θF and hence the pair
(ZF , θF) also satisfies the second relation in (90).

A.2 Characterization of ϵ-Normal Cone of Spectraplex

Proposition A.2. Let Z ∈ ∆n and θ = θF where θF is as in (91). Then:

a) there hold
θ ≥ 0, G+ θI ⪰ 0; (92)

b) for any ϵ > 0, the inclusion holds
0 ∈ G+N ϵ

∆n(Z) (93)

if and only if
G • Z + θ ≤ ϵ. (94)

Proof. (a) It follows immediately from the definition of θF in (91) and the fact that θ = θF that
the two relations in (92) hold.

(b) Proposition A.1 implies that the pair (ZF , θF) satisfies the relation G • ZF = −θF where
(ZF , θF) is as in (91). It then follows from this relation, the fact that θ = θF , and the inclusions
−G ∈ N ϵ

∆n(Z) and ZF ∈ ∆n that

ϵ ≥ −G • (ZF − Z) = G • Z + θ.

For the other direction, suppose the pair (Z, θ) satisfies (94) and let U ∈ ∆n. It then follows that

−G • (U − Z) = G • Z − (G+ θI) • U + θ tr(U)

≤ G • Z + θ − (G+ θI) • U
≤ ϵ− 0 = ϵ.

Hence, −G ∈ N ϵ
∆n(Z), proving the result.

B ADAP-FISTA Method

Let E denote a finite-dimensional inner product real vector space with inner product and induced
norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. Also, let ψn : E→ (−∞,∞] be a proper closed convex
function whose domain domψn := N ⊆ E, has finite diameter Dψn .

ADAP-FISTA considers the following problem

min{ψ(u) := ψs(u) + ψn(u) : u ∈ E} (95)

where ψs is assumed to satisfy the following assumption:

30

(B1) ψs is a real-valued function that is differentiable on E and there exists L̄ ≥ 0 such that

∥∇ψs(u′)−∇ψs(u)∥ ≤ L̄∥u′ − u∥ ∀u, u′ ∈ B̃, (96)

where
B̃ := N + B̄Dψn (97)

and B̄l := {u : ∥u∥ ≤ l} is the closed unit ball centered at 0 with radius l.

We now describe the type of approximate solution that ADAP-FISTA aims to find.

Problem: Given ψ satisfying the above assumptions, a point x0 ∈ N , a parameter σ ∈ (0,∞), the
problem is to find a pair (y, r) ∈ N × E such that

∥r∥ ≤ σ∥y − x0∥, r ∈ ∇ψs(y) + ∂ψn(y). (98)

We are now ready to present the ADAP-FISTA algorithm below.

ADAP-FISTA Method

Universal Parameters: σ > 0 and χ ∈ (0, 1).
Input: initial point x0 ∈ N , scalars µ > 0, L0 > µ, and function pair (ψs, ψn).

0. set y0 = x0, A0 = 0, τ0 = 1, and i = 0;

1. Set Li+1 = Li;

2. Compute

ai =
τi +

√
τ2i + 4τiAi(Li+1 − µ)
2(Li+1 − µ)

, x̃i =
Aiyi + aixi
Ai + ai

, (99)

yi+1 := argmin
u∈N

{
qi(u; x̃i, Li+1) := ℓψs(u; x̃i) + ψn(u) +

Li+1

2
∥u− x̃i∥2

}
, (100)

If the inequality

ℓψs(yi+1; x̃i) +
(1− χ)Li+1

4
∥yi+1 − x̃i∥2 ≥ ψs(yi+1) (101)

holds go to step 3; else set Li+1 ← 2Li+1 and repeat step 2;

3. Compute

Ai+1 = Ai + ai, τi+1 = τi + aiµ, (102)
si+1 = (Li+1 − µ)(x̃i − yi+1), (103)

xi+1 =
1

τi+1
[µaiyi+1 + τixi − aisi+1] ; (104)

4. If the inequality

∥yi+1 − x0∥2 ≥ χAi+1Li+1∥yi+1 − x̃i∥2, (105)

holds, then go to step 5; otherwise, stop with failure;

31

5. Compute
vi+1 = ∇ψs(yi+1)−∇ψs(x̃i) + Li+1(x̃i − yi+1). (106)

If the inequality
∥vi+1∥ ≤ σ∥yi+1 − x0∥ (107)

holds then stop with success and output (y, v, L) := (yi+1, vi+1, Li+1); otherwise, i ← i + 1
and go to step 1.

The ADAP-FISTA method was first developed in [57]. The method assumes that the gradient
of ψs is Lipschitz continuous on all of E since it requires Lipchitz continuity of the gradient at the
sequences of points {x̃i} and {yi}. This assumption can be relaxed to as in (B3) by showing that
the sequence {x̃i} lies in the set B̃ defined in (97). The following lemma establishes this result
inductively by using several key lemmas which can be found in [57].

Lemma B.1. Let m ≥ 1 and suppose ADAP-FISTA generates sequence {x̃i}mi=0 ⊆ B̃. Then, the
following statements hold:

(a) L0 ≤ Li+1 ≤ max{L0, 4L̄/(1− χ)} for any i ∈ {0, . . .m};

(b) for any x ∈ N , the relation

Ai[ψ(ym+1)− ψ(x)] +
τm+1

2
∥x− xm+1∥2 ≤

1

2
∥x− x0∥2 −

χ

2

m∑
i=0

Ai+1Li+1∥yi+1 − x̃i∥2

(108)

holds;

(c) x̃m+1 ∈ B̃.

As a consequence, the entire sequence {x̃i} ⊆ B̃.

Proof. (a) Let i ∈ {0, . . .m}. Clearly yi+1 ∈ B̃ since the definition of B̃ in (97) implies that B̃ ⊇ N .
Now, using the facts that x̃i ∈ B̃ and yi+1 ∈ B̃, assumption (B1) implies that ∇ψs is Lipschitz
continuous at these points. The proof of (a) is then identical to the one of Lemma A.3(b) in [57].

(b) Clearly, since ADAP-FISTA generates sequence {x̃i}mi=0, its loop in step 2 always terminates
during its first m iterations. Hence, ADAP-FISTA also generates sequences {yi}m+1

i=0 and {xi}m+1
i=0 .

The proof of relation (108) then follows from this observation, (a), and by using similar arguments
to the ones developed in Lemmas A.6-A.10 of [57].

(c) It follows from the fact that τm+1 ≥ 1, relation (108) with x = ym+1, and the definition of
Dψn that ∥ym+1 − xm+1∥ ≤ ∥ym+1 − x0∥ ≤ Dψn . This relation, the fact that ym+1 ∈ N , and the
definition of B̃ in (97) then imply that

xm+1 ⊆ N + B̄Dψn = B̃.

The result then immediately follows from the fact that x̃m+1 is a convex combination of xm+1 and
ym+1 and that B̃ is a convex set.

The last statement in Proposition B.1 follows immediately from (c) and a simple induction
argument.

32

We now present the main convergence results of ADAP-FISTA, whose proofs can be found in [57].
Proposition B.2 below gives an iteration complexity bound regardless if ADAP-FISTA terminates
with success or failure and shows that if ADAP-FISTA successfully stops, then it obtains a stationary
solution of (95) with respect to a relative error criterion. It also shows that ADAP-FISTA always
stops successfully whenever ψs is µ-strongly convex.

Proposition B.2. The following statements about ADAP-FISTA hold:

(a) if L0 = O(L̄), it always stops (with either success or failure) in at most

O1

√
L̄

µ
log+1 (L̄)

iterations/resolvent evaluations;

(b) if it stops successfully, it terminates with a triple (y, v, L) ∈ N × E× R++ satisfying

v ∈ ∇ψs(y) + ∂ψn(y), ∥v∥ ≤ σ∥y − x0∥, L ≤ max{L0, 4L̄/(1− χ)}; (109)

(c) if ψs is µ-convex on N , then ADAP-FISTA always terminates with success and its output
(y, v, L), in addition to satisfying (109) also satisfies the inclusion v ∈ ∂(ψs + ψn)(y).

C Proof of Proposition 2.4

This section provides the proof of Proposition 2.4 stated in Subsection 2.2.
Let B̄r := {U : ∥U∥F ≤ r}. The following lemma establishes that the function g̃(·) in (15) has

Lipschitz continuous gradient over B̄3.

Lemma C.1. The function g̃(U) defined in (15) is Lg̃-smooth on B̄3 where Lg̃ is as in (25).

Proof. Let U1, U2 ∈ B̄3 be given. Adding and subtracting U1U
T
2 and using the triangle inequality,

we have

∥U1U
T
1 − U2U

T
2 ∥F ≤ ∥U1∥ ∥U1 − U2∥F + ∥U2∥ ∥U1 − U2∥F ≤ 6∥U1 − U2∥F . (110)

This relation, the chain rule, the triangle inequality, the facts that U1, U2 ∈ B̄3 and g is Lg-smooth
on B̄3, and the definition of Ḡ in (25), then imply that

∥∇g̃(U1)−∇g̃(U2)∥F = ∥2∇g(U1U
T
1)U1 − 2∇g(U2U

T
2)U2∥F

≤ ∥2∇g(U1U
T
1)U1 − 2∇g(U1U

T
1)U2∥F + ∥2∇g(U1U

T
1)U2 − 2∇g(U2U

T
2)U2∥F

≤ 2∥∇g(U1U
T
1)∥F ∥U1 − U2∥F + 2∥U2∥ ∥∇g(U1U

T
1)−∇g(U2U

T
2)∥F

(25)
≤ 2Ḡ∥U1 − U2∥F + 6∥∇g(U1U

T
1)−∇g(U2U

T
2)∥F

(9)
≤ 2Ḡ∥U1 − U2∥F + 6Lg∥U1U

T
1 − U2U

T
2 ∥F

(110)
≤ 2Ḡ∥U1 − U2∥F + 36Lg∥U1 − U2∥F = (2Ḡ+ 36Lg)∥U1 − U2∥F .

The conclusion of the lemma now follows from the above inequality and the definition of Lg̃ in
(25).

33

The following lemma establishes key properties about each ADAP-FISTA call made in step 1 of
ADAP-AIPP. It is a translation of the results in Proposition B.2.

Lemma C.2. Let (ψs, ψn) be as in (20). The following statements about each ADAP-FISTA call
made in the j-th iteration of ADAP-AIPP hold:

(a) if Mj = O(1 + λ0Lg̃), it always stops (with either success or failure) in at most

O1

(√
2 (1 + λ0Lg̃) log

+
1 (1 + λ0Lg̃)

)
iterations/resolvent evaluations where λ0 is the initial prox stepsize and Lg̃ is as in (25);

(b) if ADAP-FISTA stops successfully, it terminates with a triple (W,V,L) ∈ B̄1 × Sn × R++

satisfying
V ∈ λ

[
∇g̃(W) + ∂δB̄1

(W)
]
+ (W −Wj−1) (111)

∥V ∥F ≤ σ∥W −Wj−1∥F , L ≤ max{Mj , ω(1 + λ0Lg̃)} (112)

where ω = 4/(1− χ);

(c) if ψs is 1/2-convex on B̄1, then ADAP-FISTA always terminates with success and its output
(W,V,L) always satisfies relation (21).

Proof. (a) The result follows directly from Proposition B.2 in Appendix B and hence the proof
relies on verifying its assumptions. First it is easy to see that domψn + B̄2 = B̄3, where ψn is
as in (20). It also follows immediately from the fact that λ ≤ λ0 and from Lemma C.1 that ψs
is (1 + λ0Lg̃)-smooth on B̄3 in view of its definition in (20). These two observations imply that
L̄ = 1+λ0Lg̃ satisfies (96). Hence, it follows from this conclusion, the fact that each ADAP-FISTA
call is made with (µ,L0) = (1/2,Mj), and from Proposition B.2(a) that statement (a) holds.

(b) In view of the definition of ψs in (20), it is easy that see that∇ψs(W) = λg̃(W)+(W−Wj−1).
Statement (b) then immediately follows from this observation, the fact that each ADAP-FISTA call
is made with inputs x0 = Wj−1, L0 = Mj , and (ψs, ψn) as in (20), and from Proposition B.2(b)
with L̄ = 1 + λ0Lg̃.

(c) It follows immediately from Proposition B.2(c) and the fact that each ADAP-FISTA call is
made with inputs (ψs, ψn) as in (20) and µ = 1/2 that the first conclusion of statement (c) holds
and that output (W,V,L) satisfies inclusion

V ∈ ∂
(
λ
(
g̃ + δB̄1

)
(·) + 1

2
∥ · −Wj−1∥2F

)
(W) . (113)

Inclusion (113) and the definition of subdifferential in (5) then immediately imply that output
(W,V,L) satisfies relation (21).

The lemma below shows that, in every iteration of ADAP-AIPP, the loop within steps 1 and
2 always stops and shows key properties of its output. Its proof (included here for completeness)
closely follows the one of Proposition 3.1 of [57].

Lemma C.3. The following statements about ADAP-AIPP hold for every j ≥ 1:

(a) the function ψs in (20) has (1 + λ0Lg̃)-Lipschitz continuous gradient on B̄3;

34

(b) the loop within steps 1 and 2 of its j-th iteration always ends and the output (Wj , Vj , Rj , λj , M̄j)
obtained at the end of step 2 satisfies

Rj ∈ ∇g̃(Wj) + ∂δB̄1
(Wj); (114)(

1− σ
σ

)
∥Vj∥F ≤ ∥λjRj∥F ≤ (1 + σ)∥Wj −Wj−1∥F ; (115)

λj g̃(Wj−1)−
[
λg̃(Wj) +

1

2
∥Wj −Wj−1∥2F

]
≥ Vj • (Wj−1 −Wj); (116)

M̄j ≤ max{Mj , ω(1 + λ0Lg̃)}; (117)

λ0 ≥ λj ≥ λ, (118)

where ω = 4/(1 − χ), λ0 is the initial prox stepsize, and Lg̃ and λ are as in (25) and (26),
respectively; moreover, every prox stepsize λ generated within the aforementioned loop is in
[λ, λ0].

Proof. (a) It follows that ψs has (1 + λLg̃)-Lipschitz continuous gradient on B̄3 in view of its
definition in (20) and Lemma C.1. The result then follows immediately from the fact that λ ≤ λ0.

(b) We first claim that if the loop consisting of steps 1 and 2 of the j-th iteration of ADAP-AIPP
stops, then relations (114), (115), (116), and (117) hold. Indeed, assume that the loop consisting
of steps 1 and 2 of the j-th iteration of ADAP-AIPP stops. It then follows from the logic within
step 1 and 2 of ADAP-AIPP that the last ADAP-FISTA call within the loop stops successfully and
outputs triple (Wj , Vj , M̄j) satisfying (21), which immediately implies that (116) holds. Since (a)
implies that L̄ = 1 + λ0Lg̃ satisfies relation (96), it follows Proposition B.2(b) with (ψs, ψn) as in
(20), x0 =Wj−1, and L0 = Mj that the triple (Wj , Vj , M̄j) = (y, v, L) satisfies inequality (117) and
the following two relations

Vj ∈ λj [∇g̃(Wj) + ∂δB̄1
(Wj)] +Wj −Wj−1 (119)

∥Vj∥F ≤ σ∥Wj −Wj−1∥F . (120)

Now, using the definition of Rj in (22), it is easy to see that the inclusion (119) is equivalent to
(114) and that the inequality in (120) together with the triangle inequality for norms imply the two
inequalities in (115).

We now claim that if step 1 is performed with a prox stepsize λ ≤ 1/(2Lg̃) in the j-th iteration,
then for every l > j, we have that λl−1 = λ and the l-th iteration performs step 1 only once. To show
the claim, assume that λ ≤ 1/(2Lg̃). Using this assumption and the fact that Lemma C.1 implies
that g̃ is Lg̃ weakly convex on B̄3, it is easy to see that the function ψs in (20) is strongly convex
on B̄1 ⊆ B̄3 with modulus 1 − λLg̃ ≥ 1/2. Since each ADAP-FISTA call is performed in step 1 of
ADAP-AIPP with µ = 1/2, it follows immediately from Proposition B.2(c) with (ψs, ψn) as in (20)
that ADAP-FISTA terminates successfully and outputs a pair (W,V) satisfying V ∈ ∂(ψs+ψn)(W).
This inclusion, the definitions of (ψs, ψn), and the definition of subdifferential in (5), then imply
that (21) holds. Hence, in view of the termination criteria of step 2 of ADAP-AIPP, it follows that
λj = λ. It is then easy to see, by the way λ is updated in step 2 of ADAP-AIPP, that λ is not
halved in the (j + 1)-th iteration or any subsequent iteration, hence proving the claim.

It is now straightforward to see that the above two claims, the fact that the initial value of
the prox stepsize is equal to λ0, and the way λj is updated in ADAP-AIPP, imply that the lemma
holds.

Lemma C.4. For any j ≥ 1, the quantity Mj satisfies

Mj ≤ ω(1 + λ0Lg̃) (121)

35

where ω = 4/(1− χ), λ0 is the initial prox stepsize, and Lg̃ is as in (25).

Proof. The result follows from a simple induction argument. The inequality with j = 1 is immediate
due to the facts that M1 = 1 and ω > 1. Now suppose inequality (121) holds for j − 1. It then
follows from relation (117) and the fact that Mj ≤ M̄j−1 that

Mj ≤ M̄j−1

(117)
≤ max{Mj−1, ω(1 + λ0Lg̃)} = ω(1 + λ0Lg̃),

where the equality is due to the assumption that (121) holds for j−1. Hence, Lemma C.4 holds.

Remark C.5. It follows from Lemma C.4 that Mj = O(1+λ0Lg̃) and hence Lemma C.2(a) implies
that each ADAP-FISTA call made in step 1 of ADAP-AIPP performs at most

O1

(√
2 (1 + λ0Lg̃) log

+
1 (1 + λ0Lg̃)

)
iterations/resolvent evaluations where λ0 is the initial prox stepsize and Lg̃ is as in (25).

The following lemma shows that ADAP-AIPP is a descent method.

Lemma C.6. If j is an iteration index for ADAP-AIPP, then

λ

Cσ
∥Rj∥2F ≤ g̃(Wj−1)− g̃(Wj) (122)

where Cσ and λ are as in (26).

Proof. It follows immediately from the first inequality in (115), relation (116), and the definitions
of Rj and Cσ in (22) and (26), respectively that:

λj g̃(Wj−1)− λj g̃(Wj)
(116)
≥ 1

2
∥Wj −Wj−1∥2F + Vj • (Wj−1 −Wj)

=
1

2
∥Wj−1 −Wj + Vj∥2F −

1

2
∥Vj∥2F

(22)
=

1

2
∥λjRj∥2F −

1

2
∥Vj∥2F

(115)
≥ 1

2
∥λjRj∥2F −

σ2

2(1− σ)2
∥λjRj∥2F

=
1− 2σ

2(1− σ)2
∥λjRj∥2F

(26)
=
∥λjRj∥2F
Cσ

. (123)

Dividing inequality (123) by λj and using relation (118) then imply

g̃(Wj−1)− g̃(Wj)
(123)
≥ λj

Cσ
∥Rj∥2F

(118)
≥ λ

Cσ
∥Rj∥2F

from which the result of the lemma immediately follows.

We are now ready to give the proof of Proposition 2.4.

36

Proof of Proposition 2.4. (a) The first statement of (a) follows immediately from the fact that re-
lation (114) and the termination criterion of ADAP-AIPP in its step 3 imply that the pair (W,R)
satisfies (24). Assume now by contradiction that (27) does not hold. This implies that there exists
an iteration index l such that

l > 1 +
Cσ
λρ̄2

[g̃(W)− g̃(Wl)] . (124)

As ADAP-AIPP generates l as an iteration index, it does not terminate at the (l − 1)-th iteration.
In view of step 3 of ADAP-AIPP, this implies that ∥Rj∥F > ρ̄ for every j = 1, . . . , l− 1. Using this
conclusion and the fact that W0 =W , and summing inequality (122) from 1 to l, we conclude that

(l − 1)ρ̄2 <
l−1∑
j=1

∥Rj∥2F ≤
l∑

j=1

∥Rj∥2F
(122)
≤ Cσ

λ

l∑
j=1

g̃(Wj−1)− g̃(Wj) =
Cσ
λ

[g̃(W)− g̃(Wl)]

which can be easily seen to contradict (124).
(b) The result follows immediately from (a) and the fact that the number of times λ is divided

by 2 in step 2 of ADAP-AIPP is at most ⌈log+0 (λ0/λ)/ log 2⌉.

D Relaxed Frank-Wolfe Method

Let E denote a finite-dimensional inner product real vector space with inner product and induced
norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. Let Ω ⊆ E be a nonempty compact convex set with
diameter DΩ. Consider the problem

(P) g∗ := min
U
{g(U) : U ∈ Ω} (125)

where g : E→ R is a convex function that satisfies the following assumption:

(A1) there exists Lg > 0 such that

g(U ′)− ℓg(U ′;U) ≤ Lg
2
∥U ′ − U∥2 ∀U,U ′ ∈ Ω. (126)

The formal description of the Relaxed FW (RFW) method and its main complexity result for
finding a near-optimal solution of (125) are presented below. The proof of the main result is given
in the next subsection.

RFW Method

Input: tolerance ϵ̄ > 0 and initial point Z̃0 ∈ Ω.
Output: a point Z̄.

0. set k = 1;

1. find a point Zk ∈ Ω such that
g(Zk) ≤ g(Z̃k−1); (127)

2. compute

ZFk ∈ argmin{ℓg(U ;Zk) : U ∈ Ω}, Dk := Zk − ZFk , ϵk := ⟨∇g(Zk), Dk⟩; (128)

37

3. if ϵk ≤ ϵ̄, then stop and output the point Z̄ = Zk; else compute

αk = argmin
α

{g(Zk − αDk) : α ∈ [0, 1]}} (129)

and set
Z̃k = Zk − αkDk; (130)

4. set k ← k + 1 and go to step 1.

Theorem D.1. For a given tolerance ϵ̄ > 0, the RFW method finds a point Z̄ ∈ Ω such that

0 ∈ ∇g(Z̄) + ∂ϵ̄δΩ(Z̄) (131)

in at most 1 +
4max

{
g(Z̃0)− g∗,

√(
g(Z̃0)− g∗

)
LgD2

Ω, LgD
2
Ω

}
ϵ̄

 (132)

iterations where Lg is as in (126) and DΩ is the diameter of Ω.

D.1 Proof of Theorem D.1

This subsection is dedicated to proving Theorem D.1.
The following lemma establishes important properties of the iterates Zk and ϵk.

Lemma D.2. For every k ≥ 1, the following relations hold:

ϵk ≥ g(Zk)− g∗, (133)

0 ∈ ∇g(Zk) + ∂ϵkδΩ(Zk), (134)

where ϵk is defined in (128) and g∗ is the optimal value of (125).

Proof. Suppose Z ′ ∈ Ω. It follows from the fact g is convex, the definitions of Dk and ϵk in (128),
and the way ZFk is computed in (128) that

g(Zk)− ϵk
(128)
= g(Zk) + ⟨∇g(Zk), ZFk − Zk⟩

(128)
≤ g(Zk) + ⟨∇g(Zk), Z ′ − Zk⟩ ≤ g(Z ′). (135)

Since (135) holds for any Z ′ in Ω, it must hold for the minimizer Z∗ of (125), and hence g(Zk)−ϵk ≤
g∗, which immediately shows relation (133).

It follows from the fact that ZFk ∈ argmin{ℓg(U ;Zk) : U ∈ Ω} that

0 ∈ ∇g(Zk) + ∂δΩ(Z
F
k).

It then follows from the above relation, the definition of ϵ-subdifferential in (5), and the definition
of ϵk in (128) that inclusion (134) holds.

The following lemma establishes that the RFW method is a descent method.

38

Lemma D.3. Define

α̂k := min

{
1,

ϵk
LgD2

Ω

}
∀k ≥ 1. (136)

Then the following statements hold for every k ≥ 1:

ϵk ≤
2

α̂k

(
g(Zk)− g(Z̃k)

)
, (137)

g(Zk+1) ≤ g(Z̃k) ≤ g(Zk). (138)

Proof. It follows from the definitions of ϵk, αk, Z̃k, and α̂k in (128), (129), (130), (136), respectively,
the fact that ∥Dk∥2 ≤ D2

Ω, and from applying inequality (126) with U ′ = Zk − α̂kDk and U = Zk
that

g(Z̃k)
(129),(130)
≤ g(Zk − α̂kDk)

(126)
≤ g(Zk)− α̂k⟨∇g(Zk), Dk⟩+

α̂2
kLg
2

D2
Ω

(128)
= g(Zk)− α̂kϵk +

α̂2
kLg
2

D2
Ω

(136)
≤ g(Zk)− α̂kϵk +

α̂kϵk
2

= g(Zk)−
α̂kϵk
2

which immediately implies relation (137).
The first inequality in (138) follows immediately from (127). The second inequality in (138)

follows immediately from relations (137) and (133).

The next proposition establishes the convergence rate of the RFW method.

Proposition D.4. For every k ≥ 2, the following relations hold:

g(Zk)− g∗ ≤
2

k − 1
max

{
g(Z̃0)− g∗, LgD2

Ω

}
, (139)

min
k≤j<2k

ϵj ≤
4

k − 1
max

{
g(Z̃0)− g∗,

√(
g(Z̃0)− g∗

)
LgD2

Ω, LgD
2
Ω

}
. (140)

Proof. Define γ̃0 := g(Z̃0) − g∗ and let γj := g(Zj) − g∗ for any iteration index j. It then follows
from relations (133) and (137) and relation (138) with k = j that the following two relations hold

α̂j
2
γj

(133)
≤ α̂j

2
ϵj

(137)
≤ g(Zj)− g(Z̃j)

(138)
≤ g(Zj)− g(Zj+1) = γj − γj+1 (141)

γj+1

(138)
≤ γj

(133)
≤ ϵj . (142)

Hence, using relations (141) and (142), relation (127) with k = 1, and the expression for α̂j in (136),
it follows that

1

γj+1
− 1

γj
=
γj − γj+1

γj+1γj

(141)
≥ α̂jγj

2γj+1γj

(136)
=

1

2γj+1
min

{
1,

ϵj
LgD2

Ω

}
(143)

(142)
≥ 1

2
min

{
1

γ1
,

1

LgD2
Ω

}
(127)
≥ 1

2
min

{
1

γ̃0
,

1

LgD2
Ω

}
. (144)

It follows from summing the inequality in (143) from j = 1 to k − 1 that

1

γk
≥ 1

γk
− 1

γ1
≥ k − 1

2
min

{
1

γ̃0
,

1

LgD2
Ω

}
, (145)

39

which, together, with the definition of γk implies relation (139).
It follows from summing the relation in (137) from j = k to j = 2k + 1 and relations (138) and

(145) that

2

k − 1
max{γ̃0, LgD2

Ω}
(145)
≥ γk ≥ g(Zk)− g(Z2k+1)

=
2k∑
j=k

g(Zj)− g(Zj+1)
(138)
≥

2k∑
j=k

g(Zj)− g(Z̃j)
(137)
≥

2k∑
j=k

α̂j
2
ϵj . (146)

It now follows from relation (146) and the definition of α̂j in (136) that

4

(k − 1)2
max

{
γ̃0, LgD

2
Ω

} (146)
≥ min

k≤j≤2k
α̂jϵj

(136)
≥ min

k≤j≤2k

{
1,

ϵj
LgD2

Ω

}
min

k≤j≤2k
ϵj , (147)

which implies relation (140) in view of the definition of γ̃0.

We are now ready to prove Theorem D.1.

Proof of Theorem D.1. The stopping criterion in step 3 of the RFW method and relation (134)
immediately imply that output Z̄ satisfies relation (131).

In view of the stopping criterion in step 3 of the RFW method, the iteration complexity result
in (132) follows immediately from relation (140).

E AL method for linearly-constrained convex optimization

This section is dedicated to analyzing the convergence of the augmented Lagrangian framework for
solving linearly-constrained convex optimization problems.

Let E denote an Euclidean space, A : E → Rm be a linear operator, b ∈ Rm, f : E → R be a
differentiable convex function, and h : E→ (−∞,∞] be a closed proper convex function. Consider
the linearly-constrained convex optimization problem

min{ϕ(X) := f(X) + h(X) : AX = b}, (148)

where the domain of h has finite diameter Dh. The following assumption is also made.

Assumption E.1. There exists (X∗, p∗) such that

0 ∈ ∇f(X∗) + ∂h(X∗) +A∗p∗, AX∗ − b = 0 (149)

Given a previous dual iterate pt−1, the AL framework finds the next primal iterate Xt by

Xt ≈ argmin
X

Lβ(X; pt−1) (150)

where
Lβ(X; p) := f(X) + h(X) + ⟨p,AX − b⟩+ β

2
∥AX − b∥2 (151)

is the augmented Lagrangian function and β > 0 is a fixed penalty parameter. We assume the
existence of a blackbox that inexactly solves such minimization problems as in (150).

40

Blackbox AL. Given a pair (ϵ̂c, ϵ̂d) ∈ R2
+ and convex functions g : E → R and h : E → R, the

blackbox returns a pair (X̂, R̂) satisfying

X̂ ∈ domh, R̂ ∈ ∇g(X̂) + ∂ϵ̂ch(X̂), ∥R̂∥ ≤ ϵ̂d. (152)

The AL framework is now presented formally below.

AL Framework

Input: p0 ∈ Rm, tolerances ϵp > 0, ϵd ≥ 0, ϵc ≥ 0, and penalty parameter β > 0.
Output: triple (X̄, p̄, R̄).

0. Set t = 1 and
ϵ̂c = min{ϵc, βϵ2p/6}, ϵ̂d = min{ϵd, βϵ2p/(6Dh)}; (153)

1. Call the Blackbox AL with tolerance pair (ϵ̂c, ϵ̂d) and functions h = h and g(·) = Lβ(·; pt−1)
and let (Xt, Rt) be its output;

2. Set
pt = pt−1 + β(AXt − b); (154)

3. If ∥AXt − b∥ ≤ ϵp, then set T = t and return (XT , pT , RT);

4. Set t← t+ 1 and go to step 1.

The following result states the main iteration complexity of the AL framework and establishes
the boundedness of its sequence of Lagrange multipliers. The proof of the result is given in the next
subsection.

Theorem E.1. Under Assumption E.1, the following statements about the AL framework hold:

(a) the AL framework terminates with an iterate (XT , pT , RT) ∈ domh× Rm × E such that

RT ∈ ∇f(XT) + ∂ϵch(XT) +A∗pT , ∥RT ∥ ≤ ϵd, ∥AXT − b∥ ≤ ϵp (155)

and

T ≤
⌈
3∥p∗ − p0∥2

β2ϵ2p

⌉
; (156)

(b) there hold
max

t∈{0,...T}
∥pt∥ ≤ ∥p∗∥+

√
3∥p∗ − p0∥2 + 2β(Dhϵ̂d + ϵ̂c), (157)

β2
T∑
l=1

∥AXl − b∥2 ≤ 3∥p∗ − p0∥2 + 2β(Dhϵ̂d + ϵ̂c), (158)

where p∗ is an optimal Lagrange multiplier and ϵ̂c and ϵ̂d are as in (153).

41

E.1 Proof of Theorem E.1

This subsection is dedicated to proving Theorem E.1. The proof relies on the following two prelim-
inary lemmas.

Lemma E.2. For any t ≥ 1, the following relation holds

⟨AXt − b, p∗ − pt⟩ ≥ ⟨Rt, X∗ −Xt⟩ − ϵ̂c, (159)

where (X∗, p∗) is an optimal primal-dual pair of (148).

Proof. Since (X∗, p∗) is an optimal primal-dual pair, it follows that

0 ∈ ∂ϕ(X∗) +A∗p∗, AX∗ = b, (160)

where ϕ is as in (148). Relation (152) implies that

Rt ∈ ∇f(Xt) + ∂ϵ̂ch(Xt) +A∗pt ⊆ ∂ϵ̂cϕ(Xt) +A∗pt. (161)

It follows from relations (160) and (161) and the definition of ϵ̂c-subdifferential that

ϕ(Xt)− ϕ(X∗)
(160)
≥ ⟨−A∗p∗, Xt −X∗⟩

ϕ(X∗)− ϕ(Xt)
(161)
≥ ⟨Rt −A∗pt, X∗ −Xt⟩ − ϵ̂c.

Adding the two above relations implies that

⟨A∗(p∗ − pt), Xt −X∗⟩ ≥ ⟨Rt, X∗ −Xt⟩ − ϵ̂c. (162)

Relations (160) and (162) then imply that

⟨AXt − b, p∗ − pt⟩
(160)
= ⟨A(Xt −X∗), p∗ − pt⟩ = ⟨Xt −X∗,A∗(p∗ − pt)⟩

(162)
≥ ⟨Rt, X∗ −Xt⟩ − ϵ̂c,

from which the result immediately follows.

Lemma E.3. For any iteration index t of the AL framework, there holds:

β2
t∑
l=1

∥AXl − b∥2 ≤ ∥p∗ − p0∥2 − ∥p∗ − pt∥2 + 2βt(Dhϵ̂d + ϵ̂c). (163)

Proof. Let t be an iteration index of the AL framework and suppose l ≤ t. By completing the
square and using relation (154), it follows that

∥p∗ − pl−1∥2 − ∥p∗ − pl∥2 = ∥pl−1 − pl∥2 + 2⟨pl − pl−1, p∗ − pl⟩
(154)
= β2∥AXl − b∥2 + 2β⟨AXl − b, p∗ − pl⟩. (164)

Moreover, relation (159), the definition of Dh, the Cauchy-Schwarz inequality, and the fact that the
Blackbox is called in step 1 with tolerance ϵ̂d, imply that

2β⟨AXl − b, p∗ − pl⟩
(159)
≥ 2β⟨Rl, X∗ −Xl⟩ − 2βϵ̂c ≥ −2βDhϵ̂d − 2βϵ̂c. (165)

Combining relations (164) and (165), we then conclude that

∥p∗ − pl−1∥2 − ∥p∗ − pl∥2 ≥ β2∥AXl − b∥2 − 2βDhϵ̂d − 2βϵ̂c. (166)

The conclusion of the lemma now follows by summing relation (166) from l = 1 to t.

42

We are now ready to prove Theorem E.1

Proof of Theorem E.1. (a) Let t be an iteration index of the AL framework. The fact that the
Blackbox AL is called in step 1 with inputs g and (ϵ̂c, ϵ̂d) implies that its output (Xt, Rt) satisfies
that ∥Rt∥ ≤ ϵ̂d and also

Rt ∈ ∇g(Xt) + ∂ϵ̂ch(Xt) = ∇f(Xt) +A∗(pt−1 + β(AXt − b)) + ∂ϵ̂ch(Xt)

= ∇f(Xt) + ∂ϵ̂ch(Xt) +A∗pt.

Since ϵ̂c ≤ ϵc and ϵ̂d ≤ ϵd, it follows that

Rt ∈ ∇f(Xt) + ∂ϵch(Xt) +A∗(pt), ∥Rt∥ ≤ ϵd.

Since the above relations hold for any iteration index t, the output (XT , pT , RT) of the AL framework
satisfies the first two relations in (155). It remains to show that the AL framework terminates and
that its last iteration index T satisfies (156). Suppose by contradiction that the AL framework
generates an iteration index t̂ satisfying

t̂ >

⌈
3∥p∗ − p0∥2

β2ϵ2p

⌉
. (167)

In view of the stopping criterion of step 3 of the AL framework, this implies that ∥AXt − b∥ > ϵp
for every t = 1, . . . t̂− 1. Using this conclusion, relation (163) with t = t̂− 1, and the definitions of
ϵ̂c and ϵ̂d in (153), it follows that

(t̂− 1)ϵ2p <
t̂−1∑
l=1

∥AXl − b∥2
(163)
≤ ∥p∗ − p0∥2

β2
+ (t̂− 1)

2β(Dhϵ̂d + ϵ̂c)

β2

(153)
≤ ∥p∗ − p0∥2

β2
+ (t̂− 1)

2ϵ2p
3

(168)

which clearly contradicts the bound on t̂ in (167). Hence, in view of this conclusion and the
termination criterion in step 3, the AL framework must terminate with final iteration index T
satisfying (156) and output (XT , pT , RT) satisfying the third relation in (155).

(b) Let t ≤ T where T is the final iteration index of the AL framework. It then follows from
taking square root of relation (163) and triangle inequality that

∥pt∥
(163)
≤ ∥p∗∥+

√
∥p∗ − p0∥2 + 2βt(Dhϵ̂d + ϵ̂c) ≤ ∥p∗∥+

√
∥p∗ − p0∥2 + 2βT (Dhϵ̂d + ϵ̂c). (169)

The fact that T satisfies relation (156) and the definitions of ϵ̂c and ϵ̂d in (153) then imply that

2βT (Dhϵ̂d+ ϵ̂c)
(156)
≤ 6(Dhϵ̂d + ϵ̂c)

βϵ2p
∥p∗−p0∥2+2β(Dhϵ̂d+ ϵ̂c)

(153)
≤ 2∥p∗−p0∥2+2β(Dhϵ̂d+ ϵ̂c). (170)

Relation (157) then immediately follows from combining relations (169) and (170).
It follows from relation (163) with t = T that

β2
T∑
l=1

∥AXl − b∥2
(163)
≤ ∥p∗ − p0∥2 + 2βT (Dhϵ̂d + ϵ̂c). (171)

Combining relations (170) and (171) then immediately implies inequality (158).

43

References

[1] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors. Graph Parti-
tioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop, Georgia Institute
of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings, volume 588 of Contemporary
Mathematics. American Mathematical Society, 2013.

[2] Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete
& Computational Geometry, 13:189–202, 1995.

[3] Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed analysis for
low-rank solutions to semidefinite programs in quadratic penalty form. In Conference On Learning
Theory, pages 3243–3270. PMLR, 2018.

[4] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro approach
works on smooth semidefinite programs. Advances in Neural Information Processing Systems, 29, 2016.

[5] Nicolas Boumal, Vladislav Voroninski, and Afonso S Bandeira. Deterministic guarantees for burer-
monteiro factorizations of smooth semidefinite programs. Communications on Pure and Applied Math-
ematics, 73(3):581–608, 2020.

[6] Samuel Burer and Renato DC Monteiro. A projected gradient algorithm for solving the maxcut SDP
relaxation. Optimization methods and Software, 15(3-4):175–200, 2001.

[7] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical programming, 95(2):329–357, 2003.

[8] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidefinite pro-
gramming. Mathematical programming, 103(3):427–444, 2005.

[9] M.L. Overton C. Helmberg and F. Rendl. The spectral bundle method with second-order information.
Optimization Methods and Software, 29(4):855–876, 2014.

[10] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Communi-
cations of the ACM, 55(6):111–119, 2012.

[11] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval from coded diffraction
patterns. Applied and Computational Harmonic Analysis, 39(2):277–299, 2015.

[12] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift: Exact and stable signal
recovery from magnitude measurements via convex programming. Communications on Pure and Applied
Mathematics, 66(8):1241–1274, 2013.

[13] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex optimization.
SIAM J. Optim., 28(2):1751–1772, 2018.

[14] Diego Cifuentes. On the Burer–Monteiro method for general semidefinite programs. Optimization
Letters, 15(6):2299–2309, 2021.

[15] Diego Cifuentes and Ankur Moitra. Polynomial time guarantees for the Burer-Monteiro method. Ad-
vances in Neural Information Processing Systems, 35:23923–23935, 2022.

[16] Andrew R Conn, Nicholas IM Gould, and Philippe Toint. A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM Journal on Numerical
Analysis, 28(2):545–572, 1991.

[17] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1), dec 2011.

44

[18] Qi Deng, Qing Feng, Wenzhi Gao, Dongdong Ge, Bo Jiang, Yuntian Jiang, Jingsong Liu, Tianhao Liu,
Chenyu Xue, Yinyu Ye, et al. New developments of ADMM-based interior point methods for linear
programming and conic programming. arXiv preprint arXiv:2209.01793, 2022.

[19] Lijun Ding and Benjamin Grimmer. Revisiting spectral bundle methods: Primal-dual (sub)linear con-
vergence rates. SIAM Journal on Optimization, 33(2):1305–1332, 2023.

[20] Lijun Ding, Alp Yurtsever, Volkan Cevher, Joel A Tropp, and Madeleine Udell. An optimal-storage
approach to semidefinite programming using approximate complementarity. SIAM Journal on Opti-
mization, 31(4):2695–2725, 2021.

[21] Murat A Erdogdu, Asuman Ozdaglar, Pablo A Parrilo, and Nuri Denizcan Vanli. Convergence rate
of block-coordinate maximization Burer–Monteiro method for solving large SDPs. Mathematical Pro-
gramming, 195(1-2):243–281, 2022.

[22] Maryam Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University,
2002.

[23] Robert M Freund, Paul Grigas, and Rahul Mazumder. An extended Frank–Wolfe method with “in-
face” directions, and its application to low-rank matrix completion. SIAM Journal on optimization,
27(1):319–346, 2017.

[24] Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota, and Kazuhide Nakata. Exploiting sparsity in
semidefinite programming via matrix completion i: General framework. SIAM Journal on Optimization,
11(3):647–674, 2001.

[25] Michael Garstka, Mark Cannon, and Paul Goulart. Cosmo: A conic operator splitting method for
convex conic problems. Journal of Optimization Theory and Applications, 190(3):779–810, 2021.

[26] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz. Positive definite completions
of partial hermitian matrices. Linear Algebra and its Applications, 58:109–124, 1984.

[27] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for perfect graphs.
In North-Holland mathematics studies, volume 88, pages 325–356. Elsevier, 1984.

[28] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algorithms for norm-
regularized smooth convex optimization. Math. Program., 152(1-2):75–112, 2015.

[29] Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American symposium on
theoretical informatics, pages 306–316. Springer, 2008.

[30] C. Helmberg and K.C. Kiwiel. A spectral bundle method with bounds. Math. Program., 93(2):173–194,
2002.

[31] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM Journal on
Optimization, 10(3):673–696, 2000.

[32] Steven Homer and Marcus Peinado. Design and performance of parallel and distributed approximation
algorithms for maxcut. Journal of Parallel and Distributed Computing, 46(1):48–61, 1997.

[33] Wen Huang, Kyle A Gallivan, and Xiangxiong Zhang. Solving PhaseLift by low-rank Riemannian
optimization methods for complex semidefinite constraints. SIAM Journal on Scientific Computing,
39(5):B840–B859, 2017.

[34] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems. In
Proceedings of the 27th International Conference on International Conference on Machine Learning,
ICML’10, page 471–478, Madison, WI, USA, 2010. Omnipress.

45

[35] Michel Journée, Francis Bach, P-A Absil, and Rodolphe Sepulchre. Low-rank optimization on the cone
of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351, 2010.

[36] W. Kong, J.G. Melo, and R.D.C. Monteiro. Complexity of a quadratic penalty accelerated inexact
proximal point method for solving linearly constrained nonconvex composite programs. SIAM J. Optim.,
29(4):2566–2593, 2019.

[37] W. Kong, J.G. Melo, and R.D.C. Monteiro. An efficient adaptive accelerated inexact proximal
point method for solving linearly constrained nonconvex composite problems. Comput. Optim. Appl.,
76(2):305–346, 2019.

[38] Brian Kulis, Arun C Surendran, and John C Platt. Fast low-rank semidefinite programming for em-
bedding and clustering. In Artificial Intelligence and Statistics, pages 235–242. PMLR, 2007.

[39] Sören Laue. A hybrid algorithm for convex semidefinite optimization. In Proceedings of the 32nd
International Conference on Machine Learning, ICML, 2012.

[40] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[41] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information theory, 25(1):1–
7, 1979.

[42] Ramtin Madani, Abdulrahman Kalbat, and Javad Lavaei. ADMM for sparse semidefinite programming
with applications to optimal power flow problem. In 2015 54th IEEE Conference on Decision and
Control (CDC), pages 5932–5939. IEEE, 2015.

[43] Anirudha Majumdar, Georgina Hall, and Amir Ali Ahmadi. Recent scalability improvements for
semidefinite programming with applications in machine learning, control, and robotics. Annual Re-
view of Control, Robotics, and Autonomous Systems, 3:331–360, 2020.

[44] Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto Imbuzeiro Oliveira. Solving SDPs
for synchronization and MaxCut problems via the G rothendieck inequality. In Conference on learning
theory, pages 1476–1515. PMLR, 2017.

[45] F. Oustry. A second-order bundle method to minimize the maximum eigenvalue function. Math.
Program., 89(1):1–33, 2000.

[46] Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169:1042–1068, 2016.

[47] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst for gradient-based non-
convex optimization. In AISTATS 2018-21st International Conference on Artificial Intelligence and
Statistics, pages 1–10, 2018.

[48] Gábor Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal
eigenvalues. Mathematics of operations research, 23(2):339–358, 1998.

[49] Thomas Pumir, Samy Jelassi, and Nicolas Boumal. Smoothed analysis of the low-rank approach for
smooth semidefinite programs. Advances in Neural Information Processing Systems, 31, 2018.

[50] Nikhil Rao, Parikshit Shah, and Stephen Wright. Conditional gradient with enhancement and truncation
for atomic-norm regularization. In NIPS workshop on Greedy Algorithms. Citeseer, 2013.

[51] James Renegar. Accelerated first-order methods for hyperbolic programming. Mathematical Program-
ming, 173(1-2):1–35, 2019.

46

[52] David M Rosen. Scalable low-rank semidefinite programming for certifiably correct machine perception.
In Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop on the Algorithmic
Foundations of Robotics 14, pages 551–566. Springer, 2021.

[53] David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard. SE-Sync: A certifiably correct
algorithm for synchronization over the special Euclidean group. The International Journal of Robotics
Research, 38(2-3):95–125, 2019.

[54] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015.

[55] Alexander Shapiro. Rank-reducibility of a symmetric matrix and sampling theory of minimum trace
factor analysis. Psychometrika, 47:187–199, 1982.

[56] Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient structured convex opti-
mization via extreme point sampling. SIAM Journal on Mathematics of Data Science, 3(3):787–814,
2021.

[57] A. Sujanani and R.D.C. Monteiro. An adaptive superfast inexact proximal augmented Lagrangian
method for smooth nonconvex composite optimization problems. J. Scientific Computing, 97(2), 2023.

[58] Lieven Vandenberghe, Martin S Andersen, et al. Chordal graphs and semidefinite optimization. Foun-
dations and Trends® in Optimization, 1(4):241–433, 2015.

[59] Irene Waldspurger and Alden Waters. Rank optimality for the Burer–Monteiro factorization. SIAM
journal on Optimization, 30(3):2577–2602, 2020.

[60] Alex L Wang and Fatma Kilinc-Karzan. Accelerated first-order methods for a class of semidefinite
programs. arXiv preprint arXiv:2206.00224, 2022.

[61] J. Wang and L. Hu. Solving Low-Rank Semidefinite Programs via Manifold Optimization. Available on
arXiv:2303.01722, 2023.

[62] Yifei Wang, Kangkang Deng, Haoyang Liu, and Zaiwen Wen. A decomposition augmented lagrangian
method for low-rank semidefinite programming. SIAM Journal on Optimization, 33(3):1361–1390, 2023.

[63] Liuqin Yang, Defeng Sun, and Kim-Chuan Toh. SDPNAL+: a majorized semismooth Newton-CG aug-
mented L agrangian method for semidefinite programming with nonnegative constraints. Mathematical
Programming Computation, 7(3):331–366, 2015.

[64] Yinyu Ye. Gset dataset of random graphs. https://www.cise.ufl.edu/research/sparse/matrices/
Gset, 2003.

[65] Alp Yurtsever, Olivier Fercoq, and Volkan Cevher. A conditional-gradient-based augmented lagrangian
framework. In International Conference on Machine Learning, pages 7272–7281. PMLR, 2019.

[66] Alp Yurtsever, Ya-Ping Hsieh, and Volkan Cevher. Scalable convex methods for phase retrieval. In 2015
IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pages 381–384. IEEE, 2015.

[67] Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable semidefinite
programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021.

[68] Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh. A newton-cg augmented lagrangian method for
semidefinite programming. SIAM Journal on Optimization, 20(4):1737–1765, 2010.

[69] Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn. Fast
ADMM for semidefinite programs with chordal sparsity. In 2017 American Control Conference (ACC),
pages 3335–3340. IEEE, 2017.

47

