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This paper addresses the single crew scheduling and routing problem in the context of road network repair and

restoration, which is critical in assisting complex post-disaster decisions in humanitarian logistics settings.

We present three novel formulations for this problem, which are the first suitable for column generation and

branch-and-price (BP) algorithms. Specifically, our first formulation is based on enumerating crew schedules

and routes while explicitly defining the relief paths. The second formulation relies on enumerating the

schedules, routes, and relief paths. Finally, the third formulation builds upon the second one by including

additional constraints and variables related to relief path decisions. Considering each formulation, we propose

BP algorithms that rely on several enhancements, including a new dynamic programming labeling algorithm

to efficiently solve the subproblems. Extensive computational results based on 648 benchmark instances

reveal that our BP algorithms significantly outperform existing exact approaches, solving 450 instances to

optimality, and remarkably 118 instances for the first time. Our framework is also very effective in improving

the lower bounds, upper bounds, and optimality gaps that have been reported in the literature.
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1. Introduction

Large-scale disasters such as hurricanes, earthquakes, floods, and landslides are examples of events

that usually have devastating effects on transportation network systems such as roads, bridges,

and tunnels. As a consequence, affected areas may become inaccessible, causing delays in the relief

distribution as well as in evacuation and rescue operations (Almeida, Goerlandt, and Pelot 2022),

which often results in victim suffering and loss of life (Moreno et al. 2020). The 2008 Wenchuan

earthquake in China, for example, caused destruction to the transport system of 53,289 km, which

includes 24 highways and 161 state or local roads, leaving many villages and towns isolated from

cities, distribution centers, and/or supply depots (Li, Ma, and Teo 2020). Similarly, during the

2010 Port-au-Prince earthquake in Haiti, affected areas had difficulty accessing essential services

such as the airport and seaport because of the large amount of debris blocking the roads (Bono

and Gutiérrez 2011). The heavy road damage associated with the 2010 Hurricane Igor in Atlantic

Canada isolated communities for up to eleven days (Masson 2014). These and many other real-world

examples including hurricanes, earthquakes, rainfalls, and landslides highlight the importance of

restoring the transportation infrastructure to effectively respond to disasters (Moreno et al. 2018,

Caunhye, Aydin, and Duzgun 2020).

Road restoration activities include removing debris, rearranging power lines, draining flooded

sections, installing temporary bridges, applying temporary road patches, and installing emergency

signage, among others. Within the context of humanitarian logistics, these activities belong to the

so-called disaster recovery phase, and their main goal is to “restore the system to the greatest

extent possible and stabilize the community involved” (Çelik et al. 2012). The restoration of the

infrastructure network span from hours to several days, depending on the number of damaged

locations that need to be repaired, the complexity of the repair operations, and the distance between

the locations to be repaired. The time spent by the restoration crew to reach out to the damaged

locations is also a key aspect of the problem when the repair operations must be done at different

locations over a vast area. For instance, according to a case-study based on the 2011 megadisaster

in the Serrana Region of Brazil (Moreno et al. 2020), a crew can spend more than half of the total

restoration time travelling to reach the damaged locations.

In this paper, we are particularly interested in an important variant of road restoration problems,

the so-called single crew scheduling and routing problem (SCSRP). The SCSRP is typically defined

on an undirected graph in which the set of vertices is split into a subset of damaged vertices,

representing the damaged locations over the road network; a subset of demand vertices, which

represent the affected areas that must become accessible in order to get humanitarian assistance;

and a subset of intersection vertices, which represent the connection of multiple road segments or

highways, but there is no demand and no damage associated to them. It considers that a highway
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or road segment can have one or more damaged locations (damaged vertices), as may occur in real

cases, especially on long highways. For instance, in the 2011 megadisaster in the Serrana Region of

Brazil, various roads longer than 30 kilometers suffered damage, but only specific points or locations

needed repair intervention rather than the entire highway. The road network also comprises a source

vertex or depot to be connected to the demand vertices. A single crew is available to perform

restoration activities over the damaged network.

The SCSRP aims to find out the relief paths, defined as the sequence of edges and vertices

necessary to connect the depot to affected areas; and the schedule or order in which the damaged

vertices must be repaired, which also entails the route that must be followed by the crew to perform

the restoration and return to the depot at the end of the operation. Damaged vertices cannot be

traversed unless they have been repaired. The goal is to restate the accessibility of the affected areas

as soon as possible. An affected area is called accessible when there exists a path connecting it to a

central supply depot using only undamaged and/or repaired vertices. Therefore, a critical subset of

damaged vertices must be repaired in order to restate the system accessibility.

Notably, the SCSRP involves a complex interdependence between crew scheduling and routing

decisions. The design of crew routes is challenging because the vertices and edges available at a given

moment in the time horizon depend on which vertices have been repaired, which in turn depend

on scheduling decisions. On the other hand, scheduling decisions also depend on routing. Defining

the schedule without considering routing decisions can lead to infeasible solutions in practice, since

damaged vertices that are not accessible (i.e., there is no feasible route to reach them) at a given

moment might be selected first in the schedule. Furthermore, the shortest paths between damaged

vertices change dynamically during restoration according to the schedule.

Because of the computational complexity of the SCSRP and related road restoration problems, as

well as the fact that practical optimization instances of those problems are usually large-scale, most

solution approaches are heuristics. To the best of our knowledge, only Maya-Duque, Dolinskaya, and

Sörensen (2016), Moreno, Munari, and Alem (2019) and Moreno, Munari, and Alem (2020) have

developed exact methods. The dynamic programming (DP) algorithm proposed by Maya-Duque,

Dolinskaya, and Sörensen (2016) has not been able to solve even some small instances within 24-hour

time limit. Additionally, although the BBC algorithms proposed by Moreno, Munari, and Alem

(2019, 2020) provide feasible solutions and valid lower bounds for all their tested instances, the

corresponding optimality gaps are relatively high even for some small instances, probably because

of poor lower bounds provided by the weak linear programming (LP) relaxations of the formulations

available so far. Therefore, this paper presents three new mathematical formulations for the SCSRP,

which are based on the enumeration of the crew scheduling, crew routing, and relief path decisions.

The main advantage of these formulations is that they have stronger LP relaxations than existing
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formulations. Since the complete enumeration of the schedules, routes, and relief paths may be

impractical for large-scale instances, we devise branch-and-price (BP) algorithms to effectively solve

the proposed formulations. BP is a branch-and-bound scheme that solves the linear relaxation

at each node of the branching tree with a column generation (CG) algorithm. This strategy has

yielded successful results in many related applications such as vehicle routing (Costa, Contardo, and

Desaulniers 2019, Munari et al. 2019) and scheduling (Legrain, Omer, and Rosat 2020, Lin, Juan,

and Chang 2020).

The overall contributions of this paper are threefold:

(i) We introduce for the first time in the authors’ best knowledge three mathematical formulations

for the SCSRP that are suitable to be solved by means of BP algorithms. The first formulation

is based on the enumeration of the crew schedules and routes and explicitly defines the relief

paths. Hence, in a CG setting, there is a single subproblem that determines crew schedules

and routes. The second formulation considers the enumeration of the schedules, routes, and

relief paths. In this case, columns can be generated resorting to two subproblems, one for

generating schedules and routes and another for generating relief paths. The third formula-

tion incorporates additional constraints and variables related to relief path decisions into the

second formulation. These formulations have a stronger LP relaxation than existing ones, and

significantly improve the lower bound obtained at the root node of the branch-and-bound tree.

(ii) We derive BP algorithms to solve the novel SCSRP formulations based on effective CG strate-

gies. Also, three heuristics based on the BP algorithms are devised to solve the problem. In

the heuristics, the pricing subproblems are not solved to optimality.

(iii) A labeling algorithm is devised to solve the pricing subproblems via DP. While labeling algo-

rithms considering time-dependent costs are common in the literature (Ioachim et al. 1998,

Desaulniers and Villeneuve 2000, Dabia et al. 2013), we propose a number of enhancement

strategies that make our labeling algorithm capable of solving the pricing subproblem effi-

ciently. To demonstrate the impact of the proposed strategies, a sensitivity analysis is further

conducted.

The efficiency of the novel approaches is assessed using 648 benchmark instances. Remarkably,

we managed to optimally solve 450 (69.44%) instances, 118 for the first time. Moreover, our BP

algorithms provide new better feasible solutions for 67 instances, while improve the lower bounds,

upper bounds, and optimality gaps by 13.3%, 3.8%, and 26.26%, respectively, on average.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature

related to road restoration problems and BP algorithms. Section 3 describes the SCSRP and presents

a compact formulation for this problem. Section 4 derives the new mathematical formulations, while

Section 5 develops the BP algorithms. Finally, we report the computational results and analyses in

Section 6 and draw the concluding remarks in Section 7.
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2. Related Literature

This section reviews two literature streams pertinent to our paper. Namely, the SCSRP and other

road restoration problems are discussed in Section 2.1, while the theme of BP algorithms applied

to solving different scheduling and routing problems is presented in Section 2.2.

2.1. SCSRP and Related Problems

The SCSRP is an NP-hard problem (Moreno et al. 2020) that has been tackled recently in the

literature by means of exact methods and heuristics. Maya-Duque, Dolinskaya, and Sörensen (2016)

introduced the SCSRP and proposed a DP algorithm to solve it. However, the DP algorithm was

able to solve to optimality only a few small instances of the problem. Therefore, because of the

limitations regarding their DP algorithm, the authors developed a metaheuristic based on GRASP

to solve medium and large instances. Later, Kim et al. (2018) and Shin, Kim, and Moon (2019)

proposed ant colony algorithms to solve the problem. Different from Maya-Duque, Dolinskaya, and

Sörensen (2016), Kim et al. (2018) defined a golden period for the repair operations and penalized

the accessibility after the golden period at a higher rate. Shin, Kim, and Moon (2019) considered

additional relief goods distribution decisions within the SCSRP, minimizing the relief distribution

time. Moreno, Munari, and Alem (2019) developed a branch-and-Benders-cut (BBC) algorithm to

solve the SCSRP. Additionally, they proposed a heuristic algorithm to find feasible solutions and

warm-start the BBC. The authors provided, for the first time, a valid lower bound for all the tested

instances of the problem. Moreno, Munari, and Alem (2020) enhanced this BBC approach and

hybridized it with two metaheuristics, namely simulated annealing and genetic algorithm. Moreno

et al. (2020) proposed new formulations and valid inequalities for the problem considering multiple

heterogeneous crews, and presented managerial insights based on small instances. Finally, similar

to Shin, Kim, and Moon (2019), Lakzaei et al. (2023) considered relief goods distribution decisions

to minimize both, the total relief time of demand vertices and the total restoration time of the

damaged vertices.

The literature on related variants of road restoration problems has been active in the last years

as well. Exact approaches have involved compact formulations solved with general-purpose mixed-

integer programming solvers (Yan and Shih 2009, Kasaei and Salman 2016, Sahin, Kara, and

Karasan 2016, Akbari and Salman 2017a, Akbari and Sayarshad 2022, Farzaneh et al. 2023). The

proposed heuristic methods have considered different strategies such as the division of the original

damaged network into smaller subnetworks (Yan and Shih 2007, 2009, Tuzun Aksu and Ozdamar

2014); the relaxation of some characteristics of the problem (Çelik, Ergun, and Keskinocak 2015,

Berktaş, Kara, and Karaşan 2016, Akbari and Salman 2017b,a); and construction algorithms fol-

lowed by improvement steps (Yan and Shih 2009, Kasaei and Salman 2016, Sahin, Kara, and Karasan
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2016, Akbari, Sadati, and Kian 2021). Moreover, matheuristics (Ajam, Akbari, and Salman 2022)

and several metaheuristics (Ajam, Akbari, and Salman 2019, Li and Teo 2019, García-Alviz et al.

2021, Elifcan, Dilek, and Linet 2022, Souza Almeida and Goerlandt 2022) have been successfully

developed in this context.

We are not aware of any BP algorithm developed thus far for the SCSRP or related problems.

Furthermore, the few exact methods proposed for the SCSRP show relatively high optimality gaps

even for small instances. For a comprehensive review of network repair and road restoration in

humanitarian operations, the reader is referred to Çelik (2016) and Almeida, Goerlandt, and Pelot

(2022).

2.2. BP Algorithms for Scheduling and Routing problems

A variety of scheduling and routing problems have been solved using BP algorithms. For example,

we find BP algorithms for the ship routing and scheduling problem (Stålhane et al. 2012), the home

health care scheduling and routing problem (Yuan, Liu, and Jiang 2015), the technician routing

and scheduling problem (Zamorano and Stolletz 2017), the aircraft scheduling and routing problem

(Ruther et al. 2017), the vehicle and crew scheduling problem (Horváth and Kis 2019), and the

bus driver scheduling and rostering problem (Lin, Juan, and Chang 2020). However, there are some

differences between the SCSRP and these problems that prevent their BP algorithms from being

straightforwardly applied to the SCSRP. First, unlike other scheduling and routing problems, the

vertices that need to be visited (repaired) in the SCSRP are not given a priori. In fact, deciding

which vertices need to be repaired is itself a combinatorial problem associated with the relief paths

definition. Second, edges and vertices can be traversed multiple times in the SCSRP, while this is not

allowed in other scheduling and routing problems; the shortest path between vertices dynamically

change over time; and the service times at vertices also change over time. A damaged vertex has

a service time greater than zero the first time it is visited (corresponding to the repair time), but

the service time is zero on subsequent visits to this same node. Third, the considered network in

the SCSRP is not a complete graph and, thus, the vertices that have to be repaired (i.e., those

used in the relief path definition) may not be directly reachable from the depot or other vertices.

Consequently, additional vertices that are not used in the relief paths may need to be repaired just

to access those that are in the relief paths. In the traditional scheduling and routing problems,

there is no need to visit additional vertices (customers in the context of vehicle routing) only to

reach another one. Lastly, in the SCSRP, the objective function is not linearly dependent on the

time at which vertices are visited, but actually defined by a more complex measure based on the

accessibility time. In most of the scheduling and routing problems, the objective function is not

time-dependent, or it depends linearly on travel and/or service times. All the mentioned differences
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prevent a trivial adaptation of existing approaches to the SCSRP and require the development of

new tailored formulations and procedures in a BP environment, especially regarding the effective

solution of pricing subproblems.

3. Problem Definition and Compact Formulation

Let G= (V,E) be an undirected graph representing a damaged network affected by extreme events,

in which V is the set of vertices and E is the set of edges. Edges represent highways or road segments

in the transportation network. Let Vr ⊂V be the set of damaged vertices, representing the damaged

locations in the transportation network, Vd ⊂ V be the set of demand vertices, representing the

affected communities in need of humanitarian assistance, and Vu ⊂ V be the set of intersection

vertices. Intersection vertices represent the connection of multiple edges, i.e., the points in the

transportation network where multiple road segments or highways intersect, but there is no demand

or damage associated to them. There is one depot (vertex 0) that is a supply vertex to be connected

to the demand vertices. An illustrative instance of the problem is presented in Figure 1(a) with

five damaged vertices (red triangles), three demand vertices (blue circles), two intersection vertices

(white circles), and twelve edges. It is important to note that G is not a complete graph. This means

that some vertices may not be directly accessible from the depot or other vertices, as this is often

the case in real-world transportation networks.
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(a) Ilustrative example.
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scheduling.
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(c) Optimal crew routing.

Figure 1 Illustrative example and its corresponding optimal relief paths, crew scheduling and crew routing decisions.
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There is a demand di for each vertex i∈ Vd and a predefined maximum distance ldi to reach vertex

i∈ Vd from the depot. Tight ldi values help avoid selecting long relief paths unnecessarily. It is also

possible to set ldi to a sufficiently large number (ldi =∞) to allow paths of any length to reach the

demand vertices. A travel time τe and a length (distance) `e are defined for each edge e∈ E . There

is a repair time δj spent by the crew to repair damaged vertex j ∈ Vr. Damaged vertices cannot be

traversed unless they have been repaired.

The SCSRP helps supporting the following decisions: (i) how to connect the depot to the demand

vertices (relief path decisions), (ii) to determine the schedule of the crew that will repair the damaged

vertices (scheduling decisions), and (iii) to define the route that the crew will travel in order to repair

the damaged vertices and return to the depot (routing decisions). Figure 1(b) shows the optimal

crew scheduling and optimal relief paths for the illustrative example. For the sake of simplicity,

this example assumes τe = `e = 1,∀e∈ E . The problem relies on minimizing the total inaccessibility

time, which is evaluated as the time that the demand vertices remain inaccessible from the depot.

The demands give the weight or importance of each demand vertex. A demand vertex i becomes

accessible when the damaged vertices used in the relief path from the depot to i are completely

repaired. For instance, demand vertex 3 in Figure 1(b) becomes accessible after damaged vertices 6

and 7 are completely repaired. Multiple relief paths 0− i may be available to reach a given demand

vertex i. In Figure 1(b), for example, we have one relief path 0−4 represented by p4 : 0→ 1→ 7→ 4.

An alternative relief path 0− 4 would be p′4 : 0→ 2→ 9→ 5→ 10→ 4.

The damaged vertices must be repaired by a single crew that departs from the depot. The schedul-

ing decisions define the order of the vertices repaired by the crew. Figure 1(b) illustrates a schedule

K defined by the ordered set of vertices (0, 7, 10, 9, 6, 0). Since the crew must depart and return

to the depot, we include vertex 0 at the beginning and at the end of the schedule. Damaged vertices

used in the relief paths (e.g., 6, 7, 9) must be repaired by the crew, and therefore, they have to be in

the schedule. The crew can also repair damaged vertices that are not used in the relief paths (e.g.,

vertex 10). In this case, it is better for the crew to repair vertex 10 instead of taking a longer path to

arrive at vertex 9. Some damaged vertices may not be necessary in order to restore the accessibility

of the demand vertices (e.g., vertex 8).

The routing decisions determine the route that the crew must travel to repair the vertices within

the schedule K and return to the depot at the end, as illustrated in Figure 1(c). The crew route

comprises crew paths defined as the sequence of vertices and edges used by the crew to travel

between two consecutive damaged vertices in its schedule. A path pij used by the crew to travel

from vertex i to vertex j is called crew path i− j. Vertices and edges can be traversed multiple

times by the crew. Damaged vertices are repaired at the first time they are visited by the crew,

thus repair times are only incurred once. In Figure 1(c), the route of the crew is composed by
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crew paths 0− 7,7− 10,10− 9,9− 6,6− 0, where crew path 9− 6 is p96 : 9→ 5→ 10→ 4→ 6, for

example. More than one path can be available for a crew to travel from one damaged vertex to the

next in its schedule. However, feasible paths between damaged vertices must include only vertices

that were not damaged (e.g., vertices 5, 4 in p96) and/or that have been repaired (e.g., vertex 10

in p96). Any feasible path composed of repaired damaged vertices and/or undamaged vertices can

be used by the crews to return to the depot without affecting the value of the objective function.

Finally, note that the crew paths that are feasible at a specific moment depends on which vertices

remain damaged (have not been repaired) at that moment, which in turn depends on the scheduling

decisions. Therefore, the available crew paths between damaged vertices change dynamically during

the restoration according to the schedule.

Mathematical formulations for the SCSRP have been previously presented by Maya-Duque, Dolin-

skaya, and Sörensen (2016) and Moreno, Munari, and Alem (2019), Moreno et al. (2020). Table 1

shows the mathematical notation of the following base model used in previous studies, which is

hereafter referred to as the SCSRP-CF.

(SCSRP-CF) min
∑
i∈Vd

di ·Zd
i . (1)

s.t. Zd
i ≥Zr

j + (Vji− 1) ·M, ∀ i∈ Vd, j ∈ Vr, (2)

Zr
j ≥Zr

i +
∑
e∈E

Peij · τe + δj − (1−Xij) ·M, ∀ i∈ Vr
0 , j ∈ Vr, (3)

Zr
j ≥Zr

l + (Nlij − 1) ·M, ∀ i∈ Vr
0 , j ∈ Vr, l ∈ Vr, (4)∑

i∈Vr0:
i6=j

Xij =Wj, ∀ j ∈ Vr, (5)

∑
i∈Vr0:
i 6=l

Xil−
∑
j∈Vr0:
j 6=l

Xlj = 0, ∀ l ∈ Vr
0 , (6)

∑
j∈Vr

X0j ≤ 1, (7)∑
e∈Ei

Peij =Xij, ∀ i∈ Vr
0 , j ∈ Vr, (8)∑

e∈Ej

Peij =Xij, ∀ i∈ Vr
0 , j ∈ Vr, (9)

∑
e∈Ek

Peij = 2Nlij, ∀ i∈ Vr
0 , j ∈ Vr, l ∈ V \ {i, j}, (10)

Wl ≥
∑
i∈Vr0

Nlij, ∀ l ∈ Vr, j ∈ Vr, (11)

Wl ≥ Vli, ∀ l ∈ Vr, i∈ Vd, (12)∑
e∈E0

Yej = 1, ∀ j ∈ Vd, (13)
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e∈Ej

Yej = 1, ∀ j ∈ Vd, (14)

∑
e∈Ek

Yej = 2Vlj, ∀ j ∈ Vd, l ∈ V \ {0, j}, (15)∑
e∈E

Yej · `e ≤ ldj , ∀ j ∈ Vd, (16)

Wj,Xij ∈ {0,1}, ∀ i∈ Vr
0 , j ∈ Vr

0 , (17)

Nlij ∈ {0,1}, ∀ i∈ Vr
0 , j ∈ Vr

0 , l ∈ V, (18)

Peij ≥ 0, ∀ i∈ Vr
0 , j ∈ Vr

0 , e∈ E , (19)

Vli ∈ {0,1}, ∀ i∈ Vd, l ∈ V, (20)

Yei ≥ 0, ∀ i∈ Vd, e∈ E , (21)

Zd
i ≥ 0,∀ i∈ Vd, (22)

Zr
i ≥ 0,∀ i∈ Vr

0 . (23)

The objective function (1) minimizes the inaccessibility time of the demand vertices. Constraints

(2) define the accessibility time of the demand vertices. Constraints (3) define the restoration time

of the damaged vertices and avoid subtours. Constraints (4) ensure that a vertex l in the path from

vertex i to vertex j must be repaired before vertex j. Constraints (5)–(7) define the schedule of the

crew for the damaged vertices that must be repaired. Constraints (8) state that damaged vertices

Table 1 Mathematical notation of the SCSRP formulations.
Sets
V Set of vertices.
Vd ⊂V Set of demand vertices.
Vr ⊂V Set of damaged vertices.
Vr
0 Set of damaged vertices including the source vertex 0 (Vr

0 = Vr ∪{0}).
E Set of edges.
Ei ⊆E Set of edges incident to vertex i∈ V.
Parameters
di Demand of vertex i∈ Vd.
δi Repair time of vertex i∈ Vr.
τe Travel time on edge e∈ E .
`e Length (distance) of edge e∈ E .
ldi Maximum distance allowed between vertex 0 and demand vertex i∈ Vd.
M sufficiently large number.
Decision variables
Wi ∈ {0,1} 1 if, and only if (iff), vertex i∈ Vr is repaired.
Xij ∈ {0,1} 1 iff vertex j ∈ Vr

0 is repaired immediately after vertex i∈ Vr
0.

Peij ∈ {0,1} 1 iff edge e∈ E is used in the crew path from vertex i∈ Vr
0 to vertex j ∈ Vr

0.
Nlij ∈ {0,1} 1 iff vertex l ∈ V is used in the crew path from vertex i∈ Vr

0 to vertex j ∈ Vr
0.

Yej ∈ {0,1} 1 iff edge e∈E is used in the relief path from vertex 0 to vertex j ∈ Vd.
Vlj ∈ {0,1} 1 iff vertex l ∈ V is used in the relief path from vertex 0 to vertex j ∈ Vd.
Zr

i ≥ 0 Restoration time of damaged vertex i∈ Vr
0.

Zd
i ≥ 0 Accessibility time of demand vertex i∈ Vd.
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used in relief paths must be repaired, while constraints (9) state that damaged vertices used in crew

paths must be repaired. Constraints (10)–(12) ensure the flow conservation in the crew path i− j.
Constraints (13)–(15) ensure the flow conservation in the relief path 0− j. Constraints (16) prohibit
the use of relief paths with a distance greater than the maximum distance allowed between the

depot and the demand vertices. Finally, constraints (17)–(23) impose the domain of the decision

variables. Variables Yej(Peij) do not need to be defined as binary variables because they naturally

assume binary values if variables Vkj(Nkij) are binaries (Moreno, Munari, and Alem 2019).

4. New Formulations for the SCSRP

In this section, we derive three new formulations for the SCSRP. The first formulation is based

on the explicit enumeration of the crew scheduling and crew routing decisions, while the relief

path decisions are considered as in model SCSRP-CF. The second formulation is based on the

explicit enumeration of the relief path, crew scheduling, and crew routing decisions. Finally, the third

formulation is derived from the second model by inserting additional relief path decision variables

and constraints defined as in model SCSRP-CF.

4.1. Route-based Formulation

This formulation assumes that variables and constraints related to the design of schedules and routes

are not explicitly considered in the model. Instead, all feasible schedules and routes are enumerated.

The additional parameters and variables used in the route-based formulation are defined as follows.

Additional sets
P Set of all feasible crew schedules.
R Set of all feasible routes.
Rp Set of all feasible routes given a schedule p∈P.
Additional parameters
zjr Restoration time of damaged vertex j ∈ Vr repaired using route r ∈R.
qjp Binary parameter that is equal to 1 iff damaged vertex j ∈ Vr is repaired in schedule p∈P.

Additional decision variable
λpr ∈ {0,1} 1 iff route r ∈Rp associated to schedule p∈P is selected in the optimal solution.

The route-based formulation is cast as follows:

(MP1) min
∑
i∈Vd

diZ
d
i , (24)

s.t. Constraints (2), (13)-(16), (20)-(23),∑
p∈P

∑
r∈Rp

qjpλpr ≥ Vji, ∀ i∈ Vd, j ∈ Vr, (25)

Zr
j ≥

∑
p∈P

∑
r∈Rp

zjrλpr, ∀ j ∈ Vr, (26)∑
p∈P

∑
r∈Rp

λpr ≤ 1, (27)
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λpr ∈ {0,1}, ∀ p∈P, r ∈Rp. (28)

Constraints (25) ensure the selection of a schedule p that repairs damaged vertex j if this vertex

is used in some relief path (i.e., Vji = 1). Constraints (26) define the restoration time of the dam-

aged vertices. Constraint (27) guarantees the selection of at most one pair route-schedule. Finally,

constraints (28) define the domain of the decision variables related to the selection of crew schedules

and routes.

4.2. Route and Path-based Formulation

In this formulation, all the possible schedules, routes and relief paths are explicitly enumerated. The

additional parameters and variables to define this formulation are as follows.

Additional sets
L Set of all feasible relief paths.
Li ⊆L Set of all relief paths to reach demand vertex i∈ Vd.

Additional parameter
gjf Binary parameter that is equal to 1 iff damaged vertex j ∈ Vr is used in relief path f ∈L.

Additional decision variable
θf ∈ {0,1} 1 iff the relief path f ∈L is selected in the optimal solution.

The route and path-based formulation is stated as follows:

(MP2) min
∑
i∈Vd

diZ
d
i , (29)

s.t. Constraints (22), (23), (26)-(28),

Zd
i ≥Zr

j −M(1−
∑
f∈Li

gjfθf ), ∀ i∈ Vd, j ∈ Vr, (30)∑
p∈P

∑
r∈Rp

qjpλpr ≥
∑
f∈Li

gjfθf , ∀ j ∈ Vr, i∈ Vd, (31)∑
f∈Li

θf = 1, ∀ i∈ Vd, (32)

θf ∈ {0,1}, ∀ f ∈L. (33)

The accessibility time is defined by constraints (30). Constraints (31) force the selection of a pair

route-schedule that repairs damaged vertex j if this vertex is used in some relief path. Constraints

(32) guarantee the selection of exactly one relief path for each demand vertex i. Finally, constraints

(33) define the domain of the decision variables related to relief path selection.

4.3. Route and Path-based Formulation with Explicit Relief Path Variables

This third formulation builds upon the second formulation by explicitly including relief path vari-

ables and constraints as in the original compact formulation SCSRP-CF. The so-called route and
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path-based formulation with explicit relief path variables is stated as follows:

(MP3) min
∑
i∈Vd

diZ
d
i , (34)

s.t. Constraints (2), (13)-(16), (20)-(23), (26)-(28), (30)-(33),

Vji ≥
∑
f∈Li

pjfθf , ∀ j ∈ Vr, i∈ Vd. (35)

Constraints (35) link the relief path variables Vji of the compact formulation with the relief path

variables θf of the route and path-based formulation, as constraints (2), (13)-(16) are included and

they are related to Vji.

5. Branch-and-Price Algorithms

In practical settings, the complete enumeration of the sets of feasible schedules, routes and relief

paths is impractical for large-scale instances. Hence, we develop BP algorithms to solve the novel

formulations presented in Section 4. BP is a branch-and-bound scheme in which we resort to the

CG technique at each branching node of the branching tree. CG is an iterative procedure that

solves the a sequence of restricted master problems (RMPs), defined as the linear programming

(LP) relaxation of the node and considering a subset of schedules, routes, and relief paths. At each

branching node, we initialize the first RMP with a subset of variables related to given columns

(schedules, routes, and relief paths), and the remaining RMPs have additional variables/columns

that are generated based on their reduced costs, by means of pricing subproblems. If no column

with negative reduced costs can be generated by these subproblems, the optimal solution of the last

solved RMP is also optimal for the node under evaluation.

In what follows, we introduce the restricted master problems and the pricing subproblems for

the BP approaches related to each novel formulation (Sections 5.1 and 5.2). We also introduce the

labeling algorithms tailored to solve the pricing subproblems (Sections 5.4 and 5.5). Then, we define

the branching rules used in the BP to enforce integer solutions (Section 5.6). Finally, we present

some enhancement strategies to speed up the proposed BP methods (Section 5.7).

5.1. Route-based Restricted Master Problem (RMP1)

We define the restricted master problem RMP1 as the LP relaxation of the problem MP1 over

subsets of schedules R̃ ⊆ R and routes P̃ ⊆ P. Let µ1
ij ≥ 0, υj ≥ 0, and ν ≤ 0 be the dual solution

associated with constraints (25), (26), and (27), respectively. Let µj =
∑

i∈Vd µ
1
ij. The reduced cost

c̄pr of the variable λpr is given by

c̄pr =
∑
j∈Vr

υjzjr−
∑
j∈Vr

µjqjp− ν.
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Hence, the pricing subproblem to generate the schedules and routes in P̃ and R̃ for RMP1 is defined

as follows:

(SP1) min
∑
j∈Vr

υjZ
r
j −

∑
j∈Vr

µjWj − ν, (36)

s.t. Constraints (3)-(11), (17)-(19), (23).

This subproblem is a variant of the shortest path problem (SPP) with negative costs and cycles

that additionally involves crew routing and scheduling decisions. It is closely related to the SPP with

resource constraints (SPPRC) that commonly appears in BP approaches for VRP variants (Feillet

2010, Irnich and Desaulniers 2005, Ioachim et al. 1998). However, different from the traditional

SPPRC, vertices and edges may be traversed multiple times; service times change dynamically over

time; and the shortest path between two vertices also change over time. Additionally, its objective

function does not depend linearly on the elapsed time, but on the time each vertex is repaired.

In addition to SP1, we define a relaxed SP1 subproblem (rSP1), in which the constraints and

variables defining the crew paths (Nlij, Peij) are eliminated and a lower bound for the travel time

of the crew between two consecutive damaged vertices i− j in its schedule is defined instead. This

relaxed subproblem is defined as follows:

(rSP1) min
∑
j∈Vr

υjZ
r
j −

∑
j∈Vr

µjWj − ν, (37)

s.t. Constraints (5)-(7), (17), (23),

Zr
j ≥Zr

i + t̃ij + δj − (1−Xij) ·M, ∀ i∈ Vr
0 , j ∈ Vr, (38)

where t̃ij is defined as the shortest travel time of the crew between vertices i and j over the original

graph G, and constraints (38) define the restoration time of the damaged vertices. Hence, the main

difference to SP1 is that the shortest path between any two damaged vertices is fixed and thus does

not change over time (but its cost is underestimated). The purpose of this relaxation is to reduce

computation times. Although rSP1 does not provide a solution for the original pricing problem SP1,

it is possible to efficiently derive a solution for SP1 given a solution for rSP1, using the algorithm

presented in Appendix A.

5.2. Route and Path-based Restricted Master Problem (RMP2)

We define the restricted master problem RMP2 as the LP relaxation of the problem MP2 over

subsets of schedules R̃ ⊆ R, routes P̃ ⊆ P, and relief paths L̃ ⊆ L. Let ωij ≥ 0, µ2
ij ≥ 0, and ηi

(free) be the dual solution vectors associated with constraints (30), (31), and (32), respectively. The

reduced cost s̄if of a column f associated with demand vertex i is given by

s̄if =
∑
j∈Vr

Mωijgjf +
∑
j∈Vr

µ2
ijgjf − ηi.
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The pricing subproblem to generate the relief paths associated with demand vertex i (L̃i) in RMP2

is then defined as follows:

(SP2) min
∑
j∈Vr

MωijVji +
∑
j∈Vr

µ2
ijVji− ηi, (39)

s.t. Constraints (13)-(16), (20), (21).

This subproblem is an SPPRC in which the only resource is related to the distance between vertex

0 and demand vertex i ∈ Vd being limited by ldi . Notably, we also need a pricing subproblem to

generate the schedules and routes in RMP2. This subproblem is defined similarly to SP1, using

µj =
∑

i∈Vd µ
2
ij instead of µj =

∑
i∈Vd µ

1
ij.

5.3. Route and Path-based Restricted Master Problem with Explicit Relief Path
Variables (RMP3)

The restricted master problem RMP3 is the LP relaxation of the problem MP3 over the subsets of

schedules R̃ ⊆ R, routes P̃ ⊆ P, and relief paths L̃ ⊆ L. Let ρij ≥ 0 be a dual solution associated

with constraints (35). The reduced cost s̄if of a column f associated to demand vertex i is given by

s̄if =
∑
j∈Vr

Mωijgjf +
∑
j∈Vr

µ2
ijgjf +

∑
j∈Vr

ρijgjf − ηi.

Then, the pricing subproblem to generate the relief paths associated with demand vertex i (L̃i) in

RMP3 is defined as follows:

(SP3) min
∑
j∈Vr

MωijVji +
∑
j∈Vr

µ2
ijVji +

∑
j∈Vr

ρijVji− ηi, (40)

s.t. Constraints (13)-(16), (20), (21).

Note that this subproblem is the same as defined in (39), except for one additional term in the

objective function. Finally, the pricing subproblem to generate crew schedules and routes in the

RMP3 is the same subproblem defined for the RMP2.

5.4. Labeling Algorithms to Generate the Crew Schedules and Routes

Labeling algorithms are popular techniques for solving variants of the SPPRC that appear as pricing

subproblems in BP algorithms for the VRP and its extensions (Costa, Contardo, and Desaulniers

2019, Alvarez and Munari 2017). Even though our subproblem SP1 can be cast as a variant of

the SPPRC, adapting the existing labeling algorithms to efficiently solve this subproblem is not

straightforward. Indeed, the objective function of SP1 depends on the restoration time of the dam-

aged vertices, which in turn depends on the total travel time spent in the partial route traveled

between damaged vertices as well as on the restoration time of the previously visited damaged ver-

tices. Additionally, vertices can be visited multiple times in the SP1, while the dual solution and
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the service time should only be accounted for during the first visit to the vertex. None of these

characteristics are fully considered in the labeling algorithms available in the existing literature.

Therefore, in the following subsections, we present labeling algorithms that are the first suited to

solving subproblems SP1 and rSP1.

5.4.1. Graph construction The first step to solve SP1 using our labeling algorithm is to

transform the original graph G into a graph G′ that considers only the damaged vertices plus two

additional vertices. The two additional vertices represent the depot as a source and sink vertex

(vertices s and t), which are defined as damaged vertices with repair time δ0 = 0 and can be visited

multiple times. Figure 2(b) shows an example of a graph G′ generated from graph G in Figure 2(a).

The travel time tij from vertex i to vertex j in graph G′ is set as the shortest travel time of the crew

between vertices i and j in the original graph G, but without using damaged vertices. Therefore,

parameter tij is computed by solving the shortest path problem over a graph in which damaged

vertices l ∈ Vr
0 : l 6= i, l 6= j have been removed from the original graph G. The removal of the damaged

vertices may result in multiple unconnected graph components in the graph. Consequently, there

may be no paths between some pairs of vertices i− j without using at least one damaged vertex.

In this case, we do not consider an edge connecting vertices i and j. For instance, there is no edge

connecting vertices 0 and 8 in Figure 2(b). In addition to graph G′, we build a graph G′′ that is

used to solve the relaxed subproblem rSP1. An example of a graph G′′ is presented in Figure 2(c).

In graph G′′, we allow the connection between all the damaged vertices, assuming a travel cost t̃ij

that is equal to the shortest travel time of the crew between vertices i and j over the original graph

G, considering that all vertices are undamaged/repaired.
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Figure 2 Example of graphs G, G′, and G′′.



Moreno, Munari, and Alem: CSRP in Road Restoration via BP Algorithms
Preprint submitted to Optimization Online 17

5.4.2. Label extension The proposed labeling algorithms aim to determine a schedule and its

corresponding route on graph G′ that leads to a column with a negative reduced cost. The route is

required to start and end at the depot (vertices s and t) and may visit other vertices in the network

multiple times. Each partial route from depot s to a given vertex i ∈ Vr
0 ∪ {t} is represented by a

label Li = (Ci, Vi,Ri,wi), where Ci is the total reduced cost of the route, Vi is the set containing all

the vertices visited in the route, Ri is the total time consumption of the route, and wi indicates the

last damaged vertex repaired by the crew. To start the algorithm, a label is initially defined at the

depot s with values Cs =−ν, Vs = {s}, Rs = 0, and ws =∅. Subsequently, the algorithm iteratively

extends each label Li in a given vertex i to each vertex j for which an edge (i, j) exists, generating

a new label Lj with the following values:

Cj =

{
Ci, if j ∈ Vi,
Ci + υjRj −µj, otherwise; Vj =

{
Vi, if j ∈ Vi,
Vj ∪{j}, otherwise;

Rj =

{
Ri + tij, if j ∈ Vi,
Ri + tij + δj, otherwise;

wj =

{
wi, if j ∈ Vi,
j, otherwise.

Similarly, to find a pair schedule-route over graph G′′ that leads to a column with a negative

reduced cost, each partial route from depot s to a given vertex i ∈ Vr ∪ {t} is represented by a

label Li = (Ci, Vi,Ri,wi). The algorithm iteratively extends each label Li in a given vertex i to each

non-visited vertex j, which generates a new label Lj with the following values:

Cj =Ci + υjRj −µj; Vj = Vi ∪{j}; Rj =Ri + t̃ij + δj; wj = j.

Note that the labeling algorithm for the SP1 allows vertices to be visited more than once, while

in the algorithm for the rSP1, vertices can be visited at most once. As a consequence, the number of

possible states generated in the labeling algorithm for the rSP1 is significantly smaller than in the

algorithm for the SP1. Additionally, stronger dominance rules can be established for the labeling

algorithm over graph G′′, as shown in Section 5.4.3.

5.4.3. Dominance rule In labeling algorithms, dominance rules help to eliminate partial

routes that are redundant or do not lead to optimal solutions, thus significantly reducing the num-

ber of required extensions. In what follows, we state dominance rules for the labeling algorithms

designed to solve SP1 and rSP1.

Proposition 1 (Dominance rule for the labeling algorithms). Let L1
i = (C1

i , V
1
i ,R

1
i ,w

1
i ) and L2

i =

(C2
i , V

2
i ,R

2
i ,w

2
i ) be two labels associated with partial routes ending at vertex i. Let φj =R2

i + t̃ij + δj,

which represents the earliest possible time at which damaged vertex j ∈ Vr \ V 2
i can be repaired in

any extension from label L2
i .

L1
i dominates L2

i in the labeling algorithm to solve SP1 if the following conditions hold:
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(i) C1
i ≤C2

i ;

(ii) (V 1
i = V 2

i )

or (V 1
i ⊂ V 2

i and
∑

j∈V 2
i
\V 1

i

δj ≤R2
i −R1

i and υj = 0, ∀j ∈ V 2
i \V 1

i )

or (V 2
i ⊂ V 1

i and µj −φjυj ≤ 0, ∀j ∈ V 1
i \V 2

i );

(iii) R1
i ≤R2

i ;

L1
i dominates L2

i in the labeling algorithm to solve rSP1 if the following conditions hold:
(i) C1

i ≤C2
i ;

(ii) V 1
i ⊆ V 2

i or (V 2
i ⊂ V 1

i and µj −φjυj < 0, ∀j ∈ V 1
i \V 2

i );

(iii) R1
i ≤R2

i .

Proposition 1 is proved in Appendix B.1. Condition (ii) could be set only as V 1
i = V 2

i . However,

this would be a weaker dominance rule.

5.4.4. Lower bound for the reduced cost The number of extensions required to find an

optimal solution in the labeling algorithms can be further reduced by eliminating partial paths that

do not lead to routes with negative reduced cost. Given a partial path represented by label Li, we

use a lower bound to verify whether the reduced costs of the routes that can be generated from Li

are greater than or equal 0.

Proposition 2 (Lower bound for the reduced cost in the labeling algorithms). Assume a label Li =

(Ci, Vi,Ri,wi), with Ci ≥ 0 and wi = i. Let S ⊆ Vr \ Vi be the set of all the non-visited damaged

vertices j with µj > 0. Let φj =Ri+ t̃ij +δj, representing the earliest possible time at which damaged

vertex j ∈ S can be repaired in any extension from label Li. Therefore, we define prizej as the

estimated potential reduction in cost Ci if damaged vertex j is repaired by the crew after damaged

vertex i, calculated as follows:

prizej = max

{
µj −φjυj,0

}
.

Let N be a lower bound for the number of damaged vertices that should be repaired after vertex i

to find a route with a reduced cost smaller than 0. The value of N can be computed based on the

prizes. Let Sp ⊆ S be a set containing the p vertices with the highest prizes prizej. Then, N is equal

to the smallest p such that
∑

j∈Sp prizej >Ci. Therefore, we define penaltyn, with n≤N , as the

estimated penalty associated with the nth damaged vertex repaired after damaged vertex i, calculated

as follows:

penaltyn = ρrankn υrankn ,

where, ρj = min
l∈S
{t̃lj}+ δj,∀j ∈ S : l 6= j; ρrankn is the sum of the n− 1 smallest ρj values such that

j ∈ Vr \ Vi for n > 1 and ρrankn = 0 for n= 1; and υrankn is the (|S| −N + n− 1)th highest υj value

such that j ∈ S for n> 1 and υrankn = 0 for n= 1.
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A lower bound CLB
i for the reduced cost of any route derived from Li in the labeling algorithm is

given by:

CLB
i =



Ci, if
∑
j∈S

prizej ≤Ci and
∑
j∈S

prizej = 0,

0, if
∑
j∈S

prizej ≤Ci and
∑
j∈S

prizej > 0,

Ci, if
∑
j∈S

prizej >Ci and
∑
j∈S

prizej ≤
N∑

n=1

penaltyn,

Ci−
∑
j∈S

prizej +

N∑
n=1

penaltyn, if
∑
j∈S

prizej >Ci and
∑
j∈S

prizej >

N∑
n=1

penaltyn.

Proposition 2 is proved in Appendix B.2.

5.4.5. Unreachable vertices We define a set of unreachable vertices to strengthen the domi-

nance rule, following the approach proposed in related studies (Feillet et al. 2004). These unreachable

vertices are determined based on the reduced cost of the extensions that can be generated from a

given partial route Li. We define φj = Ri + t̃ij + δj, V̄i = Vr \ Vi, and Li as the set of routes that

can be generated from Li. For the labeling algorithm to solve SP1, if µj − φjυj ≤ 0, ∀j ∈ V̄i, then
there exists no route Lj ∈Li such that Cj <Ci, and consequently, all vertices in set V̄i are defined

as unreachable. Regarding the labeling algorithm to solve rSP1, we introduce L′i as the set of routes
that visit vertex j and can be generated from Li, and Li as the set of routes that do not visit vertex

j and can be generated from Li. Additionally, C l represents the reduced cost of the partial route l.

If µj −φjυj ≤ 0, then it follows that min
l∈Li

C l ≤min
l∈L′i

C l, and vertex j is considered unreachable.

5.5. Labeling Algorithm to Generate the Relief Paths

We resort to a labeling algorithm to solve subproblem SP2 as well. In this case, the algorithm is

similar to that used in the literature to solve the SPPRC on traditional VRP variants. We execute

this algorithm for each demand vertex i∈ Vd independently, over an auxiliary graph Gi. This graph

considers the damaged vertices and two additional vertices only, representing the depot and demand

vertex i. An example of graph G5 is presented in Figure 3. The travel time tjk between two different

vertices j and k in graph Gi is set as the shortest distance between vertices j and k in the original

graph G, but without using damaged vertices, i.e., removing the damaged vertices from the original

graph G. Therefore, an edge connecting vertex j to vertex k can exist in graph Gi if there is a path

connecting vertex j to vertex k without using damaged vertices in the original graph G.

A time window [0, ldi ] is set for demand vertex i in graph Gi, thus forcing the selection of paths

with distance less than the maximum allowed distance between vertex 0 and demand vertex i∈ Vd,

as defined in constraints (16) of model SCSRP-CF. Given graph Gi, the label extension, dominance

rules, lower bounds, and unreachable vertex criteria are similar to the used to solve the SPPRC

derived from the classic VRP with time windows (Munari and Morabito 2018, Costa, Contardo,

and Desaulniers 2019).
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Figure 3 An example of graph G5.

5.6. Branching

At each node of the BP tree, we achieve an optimal solution of the RMP using the CG proce-

dure. If this optimal solution is integral, we have two cases: either its objective value is less than

the current upper bound, thus we update the upper bound and define this solution as the incum-

bent; or its objective value is not less than the current upper bound, thus the associated node is

pruned. If the optimal solution is not integral, branching must take place. After much experimen-

tation, we implement a scheme with three different branching strategies. To explain our branching

scheme, we introduce the following notation. Let λ̄pr and θ̄f represent the optimal solution vectors

obtained from the last solved RMP in the node. Additionally, we have the optimal solution vec-

tor V̄jl for formulation RMP1, and define the vector V̄jl =
∑

f∈Ll
gjf θ̄f for RMP2 and RMP3. Let

X̄ij =
∑

p∈P̃
∑

r∈R̃p
bijrλ̄pr, where bijr = 1 if vertex j is repaired immediately after vertex i in route

r, and bijr = 0 otherwise; zavg
j =

∑
p∈P̃

∑
r∈R̃p

zjrλ̄pr; and zmax
j = maxp∈P̃,r∈R̃p:λ̄pr>0{zjr}.

Based on the defined notation, three branching strategies are defined: on the scheduling decisions,

on the restoration time of damaged vertices, and on the vertices used in relief paths. We define a

metric h to prioritize the selection of branching decisions that may have a higher impact in the

child nodes. When branching takes place, we use the branching decision that has the higher metric

h. After branching, the selection of the next node to explore in the tree is based on the the best-

first strategy. The branching strategies as well as the definition of the metric h is presented in the

following subsections. The proposed metric prioritizes the branching on the vertices used in the

relief paths.

5.6.1. Branching on the scheduling decisions Assume X̄ij is not integer for a given pair

of nodes i, j ∈ Vr
0 . In child node 1, we set Xij = 0 by forbidding the restoration of damaged vertex j

after the restoration of damaged vertex i in the labeling algorithm to solve SP1; removing edge (i, j)

from graph G′′ in the labeling algorithm to solve rSP1; and dropping all columns corresponding

to schedules that do not satisfy X̄ij = 0 in the RMPs. In child node 2, we set Xij = 1 by adding
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the term (2 −Wi −Wj)max{0,2(
∑

j∈Vr µj − ν)} to the objective functions of SP1 and rSP1 to

force the restoration of damaged vertices i and j; forbidding the restoration of vertex j if vertex i

was not the last repaired vertex in the labeling algorithms to solve SP1 and rSP1; forbidding the

restoration of any vertex l 6= j if the last repaired vertex is vertex i in the labeling algorithms to solve

SP1 and rSP1; and dropping all columns corresponding to schedules that do not satisfy X̄ij = 1 in

RMPs. For branching on the scheduling decisions, the metric h is defined as h= 1
2
h1 + 1

2
h2, where

h1 = 2(0.5− |1− X̄ij − 0.5|), h2 =
tij

2t∗
+

δj

2δ∗
, t∗ = max

i′∈Vr0,j
′∈Vr
{ti′j′}, δ∗ = max

j′∈Vr
{δj′}.

5.6.2. Branching on the restoration time of damaged vertices Given zavg
j 6= zmax

j for

some j ∈ Vr, we proceed as follows. In child node 1, we set a time window for the restoration time

of vertex j such that Zr
j ≤ z

avg
j , when applying the labeling algorithms to solve SP1 and rSP1.

Additionally, we remove from the RMPs all columns corresponding to routes that do not satisfy

zjr ≤ zavg
j . In child node 2, we set a time window for the restoration time of vertex j such that

Zr
j > zavg

j in the labeling algorithms that solve SP1 and rSP1. In the RMPs, we drop all columns

corresponding to routes that do not satisfy zjr > zavg
j . For branching on the restoration time of

damaged vertices, the metric h is defined as h= zavg
j /zmax

j .

5.6.3. Branching on the vertices used in relief paths Assume that V̄jl is not integer for

some j ∈ V in RMP1 or j ∈ Vr in RMP2 or RMP3, and l ∈ Vd. In child node 1, we set Vjl = 0 in

RMP1; drop from RMP2 and RMP3 all columns corresponding to relief paths that do not satisfy

V̄jl = 0; and remove vertex j and all edges adjacent to it from graph Gi in the labeling algorithm that

solves SP2. In child node 2, we set Vjl = 1 in the RMP1; drop from RMP2 and RMP3 all columns

corresponding to relief paths that do not satisfy V̄jl = 1; and add the term (1−Vjl)max{0,2ηl} to the

objective function of SP2 to force the restoration of damaged vertex j. For branching on the vertices

used in relief paths, the metric h is defined as h= 10(1
2
h1 + 1

2
h2), where h1 = 2(0.5−|1− V̄jl−0.5|),

h2 = dl

2d∗
+

δj

2δ∗
if j ∈ Vr, h2 = dl

2d∗
if j ∈ V \Vr, d∗ = max

l′∈Vd
{dl′}, δ∗ = max

j′∈Vr
{δj′}.

5.7. Improvement Strategies

Different strategies were implemented to improve the performance of the BP algorithms. Some of

the enhancements are for the labeling algorithms proposed for the pricing subproblems SP1 and

rSP1 (Subsections 5.7.1, 5.7.2), while others affect the RMPs (Subsections 5.7.3, 5.7.4, 5.7.5). The

proposed enhancements are based on particular properties of the problem and on speed-up strategies

developed for related BP approaches.

5.7.1. Priority vertices and maximum number of vertices in crew paths Moreno,

Munari, and Alem (2019) developed a procedure based on solving shortest path problems to iden-

tify the so-called priority vertices, which are damaged vertices that are needed in the relief paths
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connecting the depot to demand vertices, and thus must be repaired by the crew. However, in

preliminary computational experiments, we observed that the pricing subproblems SP1 and rSP1

generated routes with negative reduced cost that did not include the restoration of some prior-

ity vertices. The corresponding columns are infeasible in the original SCSRP and thus should be

avoided. Hence, in the labeling algorithms, we force the consideration of the priority vertices by

adding the term |Q|M −
∑

j∈QMWj in the objective function of SP1 and rSP1, in which M =

max{0,2(
∑

j∈Vr µj − ν)} and Q is the set of priority vertices. It is important to highlight that,

although priority vertices are necessary to restore the connectivity of the network, they may not be

sufficient.

Moreover, we resort to a procedure to calculate the maximum number of damaged vertices (Rmax
ij )

that should be considered in a crew path pij, as introduced by Moreno et al. (2020). Such calculation

is performed using an algorithm that finds the elementary longest path (the one with more damaged

vertices) from vertex i to vertex j. Then, in the labeling algorithm for SP1, we limit to Rmax
ij the

number of vertices that can be visited in the crew path between vertices i and j.

5.7.2. Heuristic approaches to accelerate the labeling algorithms We adapted the sav-

ings heuristic (Clarke and Wright 1964) to generate initial routes in our labeling algorithms. In

addition, local search heuristics based on vertex insertion, deletion and exchange operations were

implemented to improve the quality of the initial solutions. In some cases, the proposed heuristics

were able to generate routes with negative reduced cost. Therefore, we add directly such solutions

to the RMPs without proving their optimality. It is well-known that suboptimal solutions with

negative reduced cost can be used to generate columns in the RMPs.

We also generate suboptimal solutions with negative reduced cost using the relaxed pricing sub-

problem rSP1. Basically, we solve this subproblem using the labeling algorithm, verify if the relaxed

solutions are feasible, and then derive solutions for SP1 using the algorithm presented in Appendix

A. If a route with a negative reduced cost is found for SP1, we add the corresponding columns to

the RMPs without solving SP1. Otherwise, we solve SP1.

5.7.3. Multiple feasible columns added to the RMPs by iteration The labeling algo-

rithm for SP1 may generate many routes with negative reduced cost. In this case, we add multiple

columns to the RMPs. Although such columns can be feasible for the RMPs in a given branch-

ing node of the BP tree, some of them may be infeasible for the original SCSRP when integrality

constraints are considered. We observe that, in most cases, a column with negative reduced cost is

infeasible for the original SCSRP when the repaired vertices are not enough to restore the connec-

tivity of the network, i.e., define the relief paths from the depot to demand vertices.
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Hence, for each solution obtained by the labeling algorithm for SP1, we check if the corresponding

pair schedule-route is feasible for the original SCSRP, before adding the column to the RMPs. To

do so, we create an auxiliary graph Gcheck by removing from graph G the damaged vertices that

were not repaired in the solution. Then, for each demand vertex i, we find the shortest relief path

(pi) from the depot to vertex i using Dijkstra’s algorithm. If the distance of path pi is greater than

ldi or path pi does not exist, then the pair schedule-route is infeasible for the original SCSRP and

the corresponding column is discarded. If all the solutions generated by the labeling algorithm are

infeasible for the original RMPs, we still add the column with the lowest reduced cost.

5.7.4. Best route selection Given a scheduling decision p, the best route r∗ for the crew can

be determined using the solution procedure presented in Appendix A. Thus, instead of considering

all possible routes r ∈ Rp in the master problems, we modify them to consider only the optimal

routes r∗ for a schedule p∈P. For example, MP1 is redefined as follows:

(MP1*) min
∑
i∈Vd

diZ
d
i ,

s.t. Constraints (2), (13)-(16), (20)-(23),∑
p∈P

qjpλpr∗ ≥ Vji, ∀ i∈ Vd, j ∈ Vr, (41)

Zr
j ≥

∑
p∈P

zjr∗λpr∗ , ∀ j ∈ Vr, (42)∑
p∈P

λpr∗ ≤ 1, (43)

λpr∗ ∈ {0,1}, ∀ p∈P. (44)

MP2 and MP3 are modified similarly, using only one optimal route r∗ for each schedule.

The pricing subproblems are the same as the ones presented in Section 5. However, every time

a pair schedule-route is obtained from the pricing subproblems, we determine the best route r∗

associated to that schedule using the solution procedure presented in Appendix A.

5.7.5. Other strategies In addition to the already described strategies, we use a metaheuristic

approach based on simulated annealing (SA) (Moreno, Munari, and Alem 2020) to warm-start the

BP with good quality initial columns. For formulations RMP1 and RMP2, we add valid inequalities

(VIs) related to relief path decisions (Moreno et al. 2020). The VIs are based on the idea that mul-

tiple paths can connect depot 0 to a demand vertex i, and that given two paths p and p′, one path

may dominate the other. This strategy is detailed in Appendix C. Another enhancement, based on

previous works, is the graph reduction strategy proposed by Moreno, Munari, and Alem (2019).

Basically, the idea is to set lower bounds for the accessibility time of the affected areas, and thus
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for the total cost, based on solving smaller graphs with a reduced number of demand and dam-

aged vertices. Finally, based on the framework proposed by Munari and Gondzio (2013), Gondzio,

Gonzalez-Brevis, and Munari (2013), we do not run the CG algorithm until proven optimality at

all nodes of the BP tree. Instead, we terminate the CG procedure prematurely, by setting a loose

optimality tolerance, and apply early branching if the node is not eligible for pruning.

6. Computational Experiments

In this section, we present the results of computational experiments to verify the performance of

the proposed algorithms. All the algorithms were coded in C++ and resorting to the libraries of

the IBM CPLEX Optimizer 22.11. The experiments were conducted on a Linux PC with an Intel

Core i7 CPU at 3.7 GHz and 16 GB of RAM using a single thread and a CPU time limit of one

hour. The algorithms were tested using 648 benchmark instances from the literature (Maya-Duque,

Dolinskaya, and Sörensen 2016, Moreno, Munari, and Alem 2019, Moreno et al. 2020). Originally,

these instances were derived from undamaged original networks by varying two parameters, namely,

α and β. Parameter α defines the proportion of damaged edges in the network. Parameter β specifies

the factor by which the distance between the depot and the demand vertices can increase in relation

to the shortest distance. The instances are described in Appendix D and publicly available at

Mendelay data (Moreno et al. 2022).

6.1. Experiment Description

In this section, we summarize the different variants of the CG and BP algorithms proposed to solve

the SCSRP. Initially, we test three CG algorithms, namely CG1, CG2 and CG3, to solve the linear

relaxation of the proposed formulations MP1, MP2 and MP3, respectively. These CG approaches

use the enhancement strategies presented in Section 5.7. For example, we depict in Figure 4 a basic

scheme of CG3. The algorithm begins by adding VIs and initial columns to the RMP3. After solving

this restricted master problem, it defines rSP1 using the obtained dual solution and then solves

this subproblem. If a solution with a negative reduced cost regarding SP1 is derived from rSP1, the

corresponding column is added to RMP3. Otherwise, it resorts to SP1. If a solution with a negative

reduced cost is found with SP1, the corresponding column is added to RMP3. If not, it solves SP2

and the resulting solution with negative reduced cost, if any, is used to define a new column for

RMP3. This process terminates when no column with negative reduced costs can be found. Note

that every time a new column is added to RMP3, the described process is repeated.

In addition, six BP methods were considered. The first three methods (BP1, BP2, BP3) use the

three CG approaches (CG1, CG2, CG3) to solve the linear relaxation at the branching nodes of

the tree. These methods are exact and provide valid lower and upper bounds for the problem. The

second group of BP methods (BP1H, BP2H, BP3H) are similar to BP1, BP2, and BP3, but the
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Figure 4 Basic scheme of the CG3 algorithm.

pricing subproblems are not solved to optimality. Instead, the labeling algorithms are limited to the

generation of a given reduced number of states, to speed up the convergence to an integer solution

(not necessarily optimal). Thus, BP1H, BP2H, and BP3H are heuristics that provide valid upper

bounds for the problem. The proposed solution strategies are summarized in Table 2.

Table 2 Description of the proposed solution strategies.
Method Description
LPR Linear relaxation of SCSRP-CF, including VIs from the literature
CG1 CG to solve the root node of MP1 + VIs related to relief paths
CG2 CG to solve the root node of MP2
CG3 CG to solve the root node of MP3 + VIs related to relief paths
BP1 BP to solve MP1 (using CG1)
BP2 BP to solve MP2 (using CG2)
BP3 BP to solve MP3 (using CG3)
BP1H Heuristic BP1 (pricing subproblems are not solved to optimality)
BP2H Heuristic BP2 (pricing subproblems are not solved to optimality)
BP3H Heuristic BP3 (pricing subproblems are not solved to optimality)
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6.2. Computational Performance of the CG Approaches

We first compare the performance of the CG approaches to solve the LP relaxation of the proposed

models (root node of the BP approaches). They are compared with the LP relaxation of the compact

formulation SCSRP-CF, referred to as the LPR. Table 3 summarizes the average results of the LPR

and CG approaches (first column). The second and third columns (#opt, %opt) indicate the number

and percentage of instances for which the LP relaxation at root node was solved to optimality

within one-hour time limit. The fourth and fifth columns indicate the average objective value and

computation time of the approaches, respectively. Finally, from column six to eight, Table 3 shows

the relative improvement in the objective value with respect to the value of the LPR (% (CG−LPR)

LPR
),

and the number and percentage of instances (#CG> LPR, %CG> LPR) for which the CG approach

strictly improved the value of the LPR.

Evidently, the new proposed formulations (MP1, MP2, MP3) have stronger LP relaxations than

the compact formulation (SCSRP-CF). In Table 3, we can observe that the average LP bound was

increased by more than 40%. Improvements were observed in up to 505 (77.93%) of the tested

instances. In the other instances, the CG approaches obtained the same linear relaxation cost than

LPR. Note that all CG methods failed at solving the LP relaxation for some instances within the

1-hour time limit. In fact, they solved to optimality less instances than LPR, and took a larger

average computation time. This is not a problem in the BP approaches since we do not need to

solve to optimality all nodes in the tree (only those eligible for pruning). Instead, in the BP tree,

we terminate the CG algorithms prematurely by setting a loose optimality tolerance on the first

explored nodes.

Among the different CG strategies, CG1 and CG2 were the ones that solved to optimality more

instances within the time limit of one hour. However, CG3 was the one that provided the best

objective value, on average. Note that the valid inequalities added (in advance) to MP1 and MP3

seem to significantly improve the quality of the linear relaxation cost. CG1 and CG3 improved the

average linear relaxation cost by 42.04% and 51.47%, respectively, while in CG2 the improvement

was 35.60% when compared to LPR. With the explicit consideration of the relief path decision

variables, CG3 seems to outperform CG2, mainly because of the valid inequalities added along with

the relief path variables.

Table 3 Average results of the CG strategies on the 648 tested instances.
Avg. obj. Avg. time CG improvements

Approach #opt %opt value* (seconds) % (CG−LPR)
LPR

#CG> LPR %CG> LPR
LPR 588 90.74 27,492 387
CG1 510 78.70 39,049 803 42.04 478 73.77
CG2 510 78.70 37,279 806 35.60 425 65.59
CG3 504 77.78 41,642 835 51.47 505 77.93

Avg. CG1-CG3 508 78.40 39,323 815 43.03 469 72.43
*
If not solved to optimality, a lower bound is obtained from the graph reduction strategy.
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Table 4 shows the improvements of the CG approaches in relation to LPR for different classes of

instances grouped according to the network size. The first column indicates the instance sets, while

the second column indicates the average number of demand nodes, total nodes, and total arcs of

the original networks from which the instances were generated. The third column shows the average

LP bound obtained with LPR (LPR obj. value). The following columns indicate, for the different

CG strategies, the average LP bound (obj. value) and the improvement in relation to the bounds

obtained with LPR. Better improvements in the objective values were observed for larger network

classes. For example, CG3 improved by 37.33%, on average, the objective value for instances L1-L15,

while the improvement for instances L16-L39 was 47.87%. In fact, the improvement was remarkably

up to 80.97% for some instance sets. Detailed results of the CG strategies for the different instances

classes are presented in Appendix E.

Table 4 Lower bound improvements of the CG strategies.
Instance Original network LPR CG1 CG2 CG3

sets |Vd|-|V|-|E| Obj. value Obj. value %imp.* Obj. value %imp.* Obj. value %imp.*

L1, L2, L3 19-25-39 17,291 26,389 30.48 26,157 28.67 28,155 34.71
L4, L5, L6 24-30-85 9,347 15,751 40.34 15,309 38.54 16,180 42.19
L7, L8, L9 28-35-115 13,833 23,565 40.15 22,565 37.55 24,679 43.30

L10, L11, L12 15-20-38 24,323 33,294 27.60 30,396 20.31 34,673 30.54
L13, L14, L15 35-40-144 22,686 35,264 35.56 33,979 32.69 35,196 35.89
L16, L17, L18 50-60-195 29,739 34,552 17.09 35,667 19.31 35,080 18.46
L19, L20, L21 70-80-247 13,954 20,196 30.95 19,236 27.25 20,123 30.60
L22, L23, L24 90-100-273 30,892 37,761 20.95 35,603 16.59 36,882 19.85
L25, L26, L27 125-140-323 12,963 22,449 41.35 22,053 40.58 21,207 37.28
L28, L29, L30 140-170-398 13,772 23,596 42.05 25,030 45.68 27,036 49.16
L31, L32, L33 200-200-448 5,075 15,336 66.98 15,235 66.77 15,352 67.00
L34, L35, L36 300-300-525 4,325 21,167 79.64 21,045 79.51 21,167 79.64
L37, L38, L39 400-400-625 4,195 20,610 79.34 21,740 80.69 22,014 80.97
CS1, CS2, CS3 13-60-89 66,283 82,866 11.42 80,907 15.13 96,600 31.09
CS4, CS5, CS6 20-60-89 78,820 127,832 38.77 115,098 31.33 138,311 43.29

L1-L15 24-30-84 17,496 26,853 34.83 25,681 31.55 27,777 37.33
L16-L39 172-181-379 14,365 24,458 47.29 24,451 47.05 24,858 47.87
CS1-CS6 17-60-89 72,551 105,349 25.10 98,002 23.23 117,456 37.19

* %imp = Obj. value in CG − Obj. value in LPR
Obj. value in LPR (%)

6.3. Computational Performance of the BP Approaches

Next, we analyze the computational performance of the proposed BP approaches. Table 5 summa-

rizes the average results of the BP methods and shows a comparison with the best solutions found

in the literature for the tested instances (LM) (Moreno et al. 2020). The first column indicates

the solution approaches, while the second and third columns show the number and percentage of

instances with solutions that have been proved optimal. Columns 4 to 8 present the average upper

bound, lower bound, gap, computation time, and number of branching nodes, respectively. The fol-

lowing columns show the improvement of the BP strategies with respect to the best upper bounds

and gaps from the literature.
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Table 5 Average results of the BP methods for the 648 tested instances.
Solution Avg. Avg. Avg. Avg. time # branching BP improvements (UB) BP improvements (gap)
approach #opt %opt UB LB2 gap (seconds) nodes Ratio3#imp %imp Diff3 Ratio3#imp %imp

LM1 332 51.23 96,683 42,206 23.07 1,899
BP1 387 59.72 93,461 46,199 18.55 1,533 3,709 3.33 41 6.33 4.52 19.60 227 35.03
BP2 440 67.90 92,409 47,376 17.58 1,355 90 4.42 58 8.95 5.49 23.82 262 40.43
BP3 450 69.44 93,018 47,817 17.01 1,228 59 3.79 55 8.49 6.06 26.26 271 41.82
BP1H 0 0.00 91,838 46,199 NA 1,206 2,852 5.01 69 10.65 NA NA NA NA
BP2H 0 0.00 92,220 47,304 NA 656 109 4.62 64 9.88 NA NA NA NA
BP3H 0 0.00 91,916 47,817 NA 612 110 4.93 62 9.57 NA NA NA NA
NA: Not available.

1 LM: Best solutions found in the literature for the tested instances (Maya-Duque, Dolinskaya, and Sörensen 2016, Moreno et al. 2020).
2 If not solved to optimality by the BP, a lower bound is obtained from the graph reduction strategy.
3 Diff = Obj. value in LM−Obj. value in BP; Ratio = Obj. value in LM − Obj. value in BP

Obj. value in LM (%).

In general, the BP approaches improved the average upper bound, lower bound and gap of the

solutions from the literature. Regarding the gap, BP3 showed the best overall performance, obtaining

smaller gaps for 271 (41.82%) of the instances when compared with LM. The relative (absolute)

reduction of the average gap was 26.26% (6.06), from 23.07 with LM to 17.01 with BP3. BP3 was

also the method that obtained the higher number of proven optimal solutions, for 450 (69.44%)

instances, while BP2 and BP1 proved optimality for 440 (67.90%) and 387 (59.72%) instances,

respectively. The approaches proposed so far in literature have managed to prove optimality for 332

(51.2%) instances only. Finally, notice that BP3 is the method that provided the greater average

lower bound. On average, the lower bound increased 13.29% from 42,206 with LM to 47,817 with

BP3. BP1 was the solution approach that presented the smallest improvement in the lower bound.

Figure 5 presents the performance profiles (Dolan and Moré 2002) for the BP approaches based

on upper bounds for the considered instances. Given a set P of instances and a set F of solution

methods, let UBfp be the upper bound of the solution of instance p solved by method f . The value

P (f, q) (y-axis) when q > 0 (x-axis) indicates the fraction of instances for which strategy f provides

solutions with an upper bound within a factor of 2q of the best obtained upper bound, i.e., the

fraction of instances for which UBfp + ε≤ 2q ·min
f ′∈F
{UBf ′p + ε}, where ε= 0.01 is a near-zero value.

The value of P (f, q) when q= 0 is the fraction of instances for which the strategy f reached the best

upper bound. For example, the red asterisk (*) in Figure 5 indicates that for 98% of the instances,

strategy BP1H provides solutions with upper bound within a factor of 20.03 (1.02) of the best upper

bound among all methods. Indeed, UBfp + ε≤ 1.02 ·min
f ′∈F
{UBf ′p + ε} for 98% of the instances, with

f = BP1H and F = {BP1, BP2, BP3, BP1H, BP2H, BP3H}.
Figure 5 evidences that the BP methods presented a similar performance for approximately 84% of

the instances regarding the obtained upper bounds. Interestingly, the heuristic BP1H is the method

showing the best performance for most of the instances, whereas the worst performance was due to

BP1, the exact version of BP1H. In general, the heuristic methods provided good upper bounds.

In summary, BP3 and BP1H are approaches with the best performance related to optimality gap

and upper bound, respectively. BP3 proved optimality for 118 (18.21%) new instances for the first
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Figure 5 Performance profiles based on upper bounds for the BP approaches.

time and achieved better gaps for other 153 (23.61%) instances. BP1H reduced the upper bound by

5.01%, on average, when compared with LM. The reduction on the upper bound was for 69 (10.65%)

instances, most of which are large instances. Overall and considering all approaches, the gap was

improved by more than 50% in 25% of the instances. In terms of upper bound (total accessibility

time), the improvement was up to 10% for most instances. In some cases, the total accessibility

time is dramatically reduced (by more than 40%), which is of utmost importance to mitigate human

suffering in a disaster aftermath. Detailed results of the BP strategies for the different instances

classes are presented in Appendix E

Tables 6 and 7 show, for instances L1-L39 and CS1-CS6, respectively, the average gap and compu-

tation time of BP3 according to different values of α and β. The parameter α defines the proportion

of damaged edges in the network, while β specifies the factor by which the distance between the

depot and the demand vertices can increase in relation to the shortest path (see Appendix D for

details). As in previous studies (Maya-Duque, Dolinskaya, and Sörensen 2016, Moreno, Munari, and

Alem 2019), the instances become more challenging when the percentage of damage (α) increases.

For example, the average computation time was 176 seconds for instances L1-L39 when α= 5% and

2,796 seconds when α= 50%. A more damaged network leads to an increase in crew schedules and

routes, consequently raising the number of columns to be added to the MP and slowing down the

convergence of the BPs. Additionally, solving SP1 becomes more challenging when there are more

damaged vertices in the network.

While previous studies have shown that the difficulty of solving an instance decreases as the

maximum tolerable percentage (β) increases, this behavior is not particularly pronounced for BP3.
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Table 6 Average gap and computation time of BP3 according to different α and β values for instances L1-L39.
Gap Time (seconds)
α α

β 5 10 25 30 50 Avg. β 5 10 25 30 50 Avg.
5 0.20 9.62 23.34 29.01 36.99 19.84 5 178 943 1,636 1,747 2,869 1,475
10 0.00 7.24 25.93 29.24 40.59 20.60 10 166 947 1,654 1,654 3,045 1,493
25 0.00 4.61 23.90 30.16 43.90 20.51 25 181 569 1,491 1,777 2,623 1,328
50 0.00 8.37 24.68 25.78 43.92 20.55 50 177 458 1,495 1,611 2,645 1,277
Avg. 0.05 7.46 24.46 28.55 41.35 20.37 Avg. 176 729 1,569 1,697 2,796 1,393

Table 7 Average gap and computation time of BP3 according to different α and β values for instances CS1-CS6.
Gap Time (seconds)
α α

β 5 10 14 Avg. β 5 10 14 Avg.
5 0.00 0.00 0.00 0.00 5 13 26 45 28
10 0.00 0.00 0.00 0.00 10 13 36 269 106
25 0.00 0.15 0.00 0.05 25 13 631 331 325
50 0.00 0.00 0.35 0.12 50 15 238 477 243
100 0.00 0.00 1.74 0.58 100 3 929 1,895 942
0 0.00 0.00 0.00 0.00 0 1 3 3 3

Avg. 0.00 0.02 0.35 0.12 Avg. 10 311 503 274

For example, L1-L39 exhibited similar average gaps and computation times across different β values.

Conversely, instances CS1-CS6 appear to become more challenging with increasing β. Nonetheless,

instances with β =∞ were the easiest in this case. Overall, BP3 showed longer computation times

for higher β values since more states have to be generated in SP2 and more columns are needed

in the MP. However, if β increases greatly, it is more likely to find non-dominated relief paths,

generating stronger VIs in the MP and thus speeding up the method.

Finally, we conducted further experiments to test the relevance of different improvement strategies

to CG3, the column generation algorithm of BP3. In Appendix F, we describe the results of six

alternative configurations of CG3 in which we turn off some improvement strategies. One of the

most effective strategies seem to be using the relaxed subproblem rSP. When subproblem rSP is

not adopted, the CG algorithm becomes slower since SP1 is more challenging to be solved than

rSP1, and it must be solved in all iterations to find columns with negative reduced cost. In this

case, the computational time increased by 144%. To achieve good results using CG3, strategies for

efficiently eliminating states in the labeling algorithm are also essential. We performed experiments

in which we turned off the use of lower bounds for the reduced cost and the use of strong dominance

rules by considering V 1
i = V 2

i in condition (ii) of Proposition 1. By tuning off both strategies, the

computation time increased by 164%, while the linear relaxation was optimality proven only in 5.4%

of the instances, compared to 77.8% in CG3.

7. Conclusions and Future Research

We proposed three formulations based on the enumeration of feasible routes, schedules and paths

for the single crew scheduling and routing problem (SCSRP) in road restoration, and designed

column generation (CG) and branch-and-price (BP) algorithms to solve each of them. For the first
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formulation, we generate columns representing the crew schedules and routes while the relief paths

are defined explicitly. In the second formulation, we generate columns representing the schedules,

routes and relief paths. Finally, the third formulation builds upon the second by the incorporation of

additional constraints and variables related to relief path decisions. These are the first formulations

and solution approaches for the SCSRP that are suitable to be solved by BP strategies. To improve

the performance of these approaches, we proposed labeling algorithms tailored for the subproblems,

a branching scheme based on different types of rules, and several other algorithmic enhancements.

We also derived effective heuristic algorithms from the proposed exact approaches.

The results of extensive computational experiments with 648 benchmark instances showed that

the proposed methods outperform existing state-of-the-art solution approaches. First, we have com-

pared the computational performance of the CG approaches to solve the LP relaxation of the

proposed models. The results evidenced that the proposed formulations have a considerably stronger

LP relaxation than the compact formulation used in previous studies, providing bounds that are

40% large, on average. In general, the BPs improved the average upper bound, lower bound, and

optimality gaps of the known solutions from the literature. The BP based on the third formulation

(BP3) showed the best overall performance, as it proved optimality for 108 (16.67%) new instances

for the first time and achieved better gaps for other 159 (24.53%) instances. In relation to the

upper bound, all the BP methods presented a similar performance for approximately 82% of the

instances. The heuristic derived from the BP based on the first formulation (BP1H) was the method

that presented the best overall performance in terms of upper bounds. On average, BP1H reduced

the upper bounds by 4.68% when compared with the solutions from the literature. This reduction

was in 65 (10.03%) instances, mainly, on larger instances. Finally, one key observation is that the

improvement in the performance of the BP approaches with respect to existing methods was sig-

nificantly more pronounced for larger instances (7.61%, on average). In some large instance classes,

BP1H improved the upper bound for up to 60% of the instances. The instances based on real data

had their optimality gaps reduced from 4.39 to 0.20, on average.

There are several avenues that can be further explored in future research. Regarding the solution

methods, one can devise other types of valid inequalities tailored for the proposed formulations and

the CG algorithm to improve the lower bounds and reduce the gap in even larger instances. Other

promising research direction is to extend the solution approaches to consider other variants of the

problem with distinct characteristics such as relief distribution, damaged edges, and alternative

objective functions such as latency. Also, the proposed BPs can be extended to consider multiple

crews, used as a subroutine for multi-crew problems, or adapted to solve scheduling and routing

problems in other contexts.
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Appendix A: Feasibility Check Algorithm

This appendix presents the feasibility check algorithm used to determine the best crew route r∗ associated

with a schedule K, adapted from (Moreno, Munari, and Alem 2019, 2020). Let K = (v0, v1, ..., v(h−1), vh,

..., vp, ..., v|Vr|) represent a schedule for the crew, where vi denotes the ith damaged vertex to be repaired,

and v0 = 0. Algorithm 1 finds the optimal paths between damaged vertices for a given schedule K.

Algorithm 1 Feasibility check algorithm (adapted from Moreno, Munari, and Alem (2019, 2020)).
Input:

Graph G= (V,E); Schedule K = (v0, v1, ..., vj , ..., v|Vr|); Parameters δj , ∀j ∈ Vr, and τe, ∀e∈ E ;

Output:

If K is feasible in the CSRP, return “Feasible Schedule” and save optimal values of Zr
j , ∀j ∈ Vr;

If schedule K is infeasible in the original CSRP, return “Infeasible Schedule”;

1: Ce := τe, ∀e∈ E ; Ce :=∞, ∀e∈ Ej , j ∈ Vr; Zr
j := 0, ∀j ∈ Vr;

2: for j = 1 to |Vr| do

3: Ce := τe + δvj , ∀e∈ Evj ;

4: Find the cost C of the shortest path from vertex vj−1 ∈K to vertex vj ∈K by Dijkstra’s algorithm;

5: if C < ∞ then

6: Zr
vj

:=Zr
vj−1

+ C;

7: Ce := τe, ∀e∈ Evj : e /∈
⋃|Vr|

i=j+1
Evi and Ce :=∞, ∀e∈ Evj : e∈

⋃|Vr|

i=j+1
Evi ;

8: else

9: return “Infeasible Schedule”;

10: end if

11: end for

12: return “Feasible Schedule”;

Appendix B: Proof of Propositions

In this section, we present the proof of propositions related to dominance rule (subsection B.1) and lower

bound for the reduced cost in the labeling algorithm (subsection B.2).

B.1. Proof of Dominance Rule

We will prove the proposition for the labeling algorithm to solve SP1. The proof for the labeling algorithm to

solve rSP1 is straightforward. We need to show that, under Hypotheses (i)–(iii), any feasible extension of L2
i

is also feasible for L1
i and leads to a column with a smaller or equal reduced cost. Let e∈E(L2

i ) be a feasible

extension of label L2
i that visits k > 0 vertices and ends at vertex j, resulting in label L2

j . Let Se = {e1, . . . , ek}

be the ordered set of vertices in extension e, where ek = j. Let R2
l be the total time consumption after visiting

a vertex l ∈ Se, and let P 2 = {Se} ∩ {Vr \ V 2
i } be the set of damaged vertices that were not visited in label
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L2
i , but visited in extension Se. Since we do not have resource constraints, extension e is also feasible for

label L1
i , resulting in label L1

j . In this context, the reduced cost for labels L1
j and L2

j are

C1
j =C1

i −
∑

er∈P1

(µer − verR1
er

),

C2
j =C2

i −
∑

er∈P2

(µer − verR2
er

).

Then,

C1
i =C1

j +
∑

er∈P1

(µer − verR1
er

),

C2
i =C2

j +
∑

er∈P2

(µer − verR2
er

).

The time consumption values for vertex er ∈ Se in the extension e from labels L1
i and L2

i are

R1
er

= tie1 + te1e2 + . . .+ te(r−1)er
+
∑

el∈P1:
l≤r

δj +R1
i ,

R2
er

= tie1 + te1e2 + . . .+ te(r−1)er
+
∑

el∈P2:
l≤r

δj +R2
i .

Then,

R1
i =R1

er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P1:
l≤r

δj),

R2
i =R2

er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P2:
l≤r

δj).

Now, we analyse the three cases considered in hypothesis (ii).

CASE I: V 1
i = V 2

i .

Consider R1
i ≤R2

i (hypothesis (iii)), then

R1
er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P1:
l≤r

δj)≤R2
er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P2:
l≤r

δj),

and

R1
er
−
∑

el∈P1:
l≤r

δj ≤R2
er
−
∑

el∈P2:
l≤r

δj .

Since V 1
i = V 2

i , we have that P 1 = P 2. Then, R1
er
≤R2

er
, ∀er ∈ Se. From C1

i ≤C2
i (hypothesis (i)), we have

that

C1
j +

∑
er∈P1

(µer − υerR
1
er

)≤C2
j +

∑
er∈P2

(µer − υerR
2
er

),

and ∑
er∈P1

µer −
∑

er∈P2

µer −
∑

er∈P1

verR
1
er

+
∑

er∈P2

υerR
2
er
≤C2

j −C1
j ,
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thus ∑
er∈P1

ver (R2
er
−R1

er
)≤C2

j −C1
j .

Since R1
er
≤R2

er
, then

∑
er∈P1

υer (R2
er
−R1

er
)≥ 0 and C2

j −C1
j ≥ 0. Consequently, C1

j ≤C2
j .

CASE II: V 1
i ⊂ V 2

i and
∑

j∈V 2
i
\V 1

i

δj ≤R2
i −R1

i and υj = 0, ∀j ∈ V 2
i \V 1

i .

Consider
∑

j∈V 2
i
\V 1

i

δj ≤R2
i −R1

i , then

∑
j∈V 2

i
\V 1

i

δj ≤R2
er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P2:
l≤r

δj)−R1
er

+ (tie1 + te1e2 + . . .+ te(r−1)er
+
∑

el∈P1:
l≤r

δj),

and ∑
j∈V 2

i
\V 1

i

δj ≤R2
er
−R1

er
+
∑

el∈P1:
l≤r

δj −
∑

el∈P2:
l≤r

δj .

According to hypothesis (ii), V 1
i ⊂ V 2

i , and consequently, P 2 ⊂ P 1. Then∑
j∈V 2

i
\V 1

i

δj −
∑

el∈P1\P2:
l≤r

δj ≤R2
er
−R1

er
.

Since
∑

j∈V 2
i
\V 1

i

δj −
∑

el∈P1\P2:
l≤r

δj ≥ 0, then R2
er
− R1

er
≥ 0, and R1

er
≤ R2

er
, ∀er ∈ Se. Now, consider C1

i ≤ C2
i

(hypothesis (i)). Then, ∑
er∈P1

µer −
∑

er∈P2

µer −
∑

er∈P1

verR
1
er

+
∑

er∈P2

υerR
2
er
≤C2

j −C1
j ,

and ∑
er∈P1\P2

µer −
∑

er∈P1\P2

υerR
1
er

+
∑

er∈P1∩P2

υer (R2
er
−R1

er
)≤C2

j −C1
j .

Since R1
er
≤R2

er
, then

∑
er∈P1∩P2

υer (R2
er
−R1

er
)≥ 0. From υj = 0, ∀j ∈ V 2

i \ V 1
i , we have that

∑
er∈P1\P2

µer −∑
er∈P1\P2

υerR
1
er
≥ 0. Consequently, C2

j −C1
j ≥ 0, i.e., C1

j ≤C2
j .

CASE III: V 2
i ⊂ V 1

i and µj −φjυj ≤ 0, ∀j ∈ V 1
i \V 2

i .

Consider R1
i ≤R2

i (hypothesis (iii)), then

R1
er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P1:
l≤r

δj)≤R2
er
− (tie1 + te1e2 + . . .+ te(r−1)er

+
∑

el∈P2:
l≤r

δj),

and

R1
er
−
∑

el∈P1:
l≤r

δj ≤R2
er
−
∑

el∈P2:
l≤r

δj .
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According to hypothesis (ii), V 2
i ⊂ V 1

i and, consequently, P 1 ⊂ P 2. Then∑
el∈P2\P1:

l≤r

δj ≤R2
er
−R1

er
.

Since
∑

el∈P2\P1:
l≤r

δj ≥ 0, then R2
er
−R1

er
≥ 0, and R1

er
≤ R2

er
, ∀er ∈ Se. For C1

i ≤ C2
i (hypothesis (i)), we have

that ∑
er∈P1

µer −
∑

er∈P2

µer −
∑

er∈P1

verR
1
er

+
∑

er∈P2

υerR
2
er
≤C2

j −C1
j ,

and ∑
er∈P2\P1

υerR
2
er
−

∑
er∈P2\P1

µer +
∑

er∈P1∩P2

υer (R2
er
−R1

er
)≤C2

j −C1
j .

Since R1
er
≤ R2

er
, then

∑
er∈P1∩P2

υer (R2
er
− R1

er
) ≥ 0. Given that µj − φjυj ≤ 0, ∀j ∈ V 1

i \ V 2
i , we obtain∑

er∈P2\P1

υerR
2
er
−

∑
er∈P2\P1

µer ≥ 0. Consequently, C1
j ≤C2

j .

�

B.2. Proof of Lower Bound for the Reduced Cost (Proposition 2)

Assume a label Li = (Ci, Vi,Ri,wi), with Ci ≥ 0 and wi = i. Let S ⊆Vr \ Vi be the set of all the non-visited

damaged vertices j with µj > 0. Since µj > 0, a potential reduction in the reduced cost Ci can be obtained

by visiting a damaged vertex j. We call this potential reduction “prize”. Let φj =Ri + t̃ij + δj be the earliest

possible time at which damaged vertex j ∈ S can be repaired in any extension from label Li. Therefore, we

define prizej as an estimated potential reduction in cost Ci if damaged vertex j is repaired by the crew

after damaged vertex i, which is calculated as follows:

prizej = max

{
µj −φjυj ,0

}
.

Since vertex j may not be repaired immediately after vertex i and/or it may not be possible to arrive at

vertex j using the shortest path (some vertices are still damaged), the actual time at which vertex j is

repaired may be higher, i.e., Rj ≥ φj . Consequently, the actual prize to visit vertex j may be smaller than

the estimated prize, i.e., µj −Rjυj ≤ µj − φjυj . Furthermore, if µj − φjυj ≤ 0, then µj −Rjυj ≤ 0. Thus,

prizej is an upper bound for the actual prize of visiting vertex j and Ci−
∑

j∈S prizej is a lower bound for

the reduced cost of extensions derived from label Li.

Consider the case in which
∑

j∈S prizej ≤Ci. If additionally we have
∑

j∈S prizej = 0, then it would not

be possible to obtain a reduced cost Cj <Ci for label extensions derived from Li and thus we set CLB
i =Ci

as a lower bound for the reduced cost. If
∑

j∈S prizej > 0, it would not be possible to have a reduced cost

Cj < 0 for label extensions derived from Li and we set CLB
i = 0 as a lower bound for the reduced cost.

Regarding the case with
∑

j∈S prizej >Ci, let N be a lower bound on the number of damaged vertices

that should be repaired after vertex i to find a route with a negative reduced cost. The value of N can be

calculated based on the prizes. Let Sp ⊆ S be a set containing the p vertices with the highest prizes prizej .

Then, N is equal to the smallest p such that
∑

j∈Sp
prizej > Ci. In this case, we can say that at least N
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damaged vertices have to be repaired after vertex i to potentially find a reduced cost Cj < 0 in extensions

derived from label Li. Let ln be the nth damaged vertex repaired after damaged vertex i. Then, a lower bound

estimation for the restoration time of damaged vertex l1 is R̃l1 =Ri + t̃i(l1) + δl1 , a lower bound estimation

for the restoration time of damaged vertex l2 is R̃l2 = R̃l1 + t̃(l1)(l2) + δl2 =Ri + t̃i(l1) + t̃(l1)(l2) + δl1 + δl2 , and

a estimation for the restoration time of damaged vertex ln is

R̃ln =Ri + t̃i(l1) + t̃(l1)(l2) + . . .+ t̃(l(n−1))(ln) + δl1 + δl2 + . . .+ δln .

If we consider ρ̃n = t̃(l(n−1))(ln) + δln and ρ̃rankn =

i=n∑
i=2

ρi, then we obtain

R̃ln =Ri + t̃i(l1) + δl1 + ρ̃l2 + . . .+ ρ̃ln =Ri + t̃i(l1) + δl1 + ρ̃rankn .

Note that the first three terms (Ri + t̃i(l1) + δl1) are considered in the definition of prize (prizel1
). An

additional cost ρ̃rankn υln can be computed based on the last term ρ̃rankn . We call this cost “penalty”. Although

extensions derived from label Li can consider different restoration orders, a lower bound for the penalties

can be established using the N −1 lowest values of ρ̃rankn and υn. In this context, the nth highest value of the

N − 1 lowest values of υn is multiplied by the nth lowest value of the N − 1 lowest values of ρ̃rankn . Therefore,

we define penaltyn as an estimated penalty associated with the nth damaged vertex repaired after damaged

vertex i, which is calculated as follows:

penaltyn = ρrankn υrank
n ,

where, given ρj = min
l∈S
{t̃lj} + δj ,∀j ∈ S : l 6= j, ρrankn is the sum of the n − 1 smallest ρj values such that

j ∈ Vr \Vi for n> 1 and ρrankn = 0 for n= 1. Additionally, υrank
n is the (|S|−N +n−1)th highest υj value such

that j ∈ S for n> 1 and υrank
n = 0 for n= 1. If

∑
j∈S prizej−

∑N

n=1 penaltyn ≤ 0, it would not be possible to

have a reduced cost Cj <Ci for label extensions derived from Li, and consequently, CLB
i =Ci is used as a lower

bound for the reduced cost. Otherwise, we use the lower bound CLB
i =Ci−

∑
j∈S prizej +

∑N

n=1 penaltyn.

�

Appendix C: Valid Inequalities

In this section, we present the VIs related to the relief path decisions proposed by Moreno et al. (2020).

Multiple relief paths 0− i may be available to reach a demand vertex i from the depot 0. Let Pd
i be the set of

possible 0− i relief paths. We call Ep and Vp as the set of edges and vertices used in path p∈Pd
i . Similarly,

Vr
p and Vu

p are the set of damaged and undamaged vertices used in path p∈Pd
i . We define wp as the sum of

the length of the edges used in path p, i.e., wp =
∑

e∈Ep
`e. We also define θdpi as the accessibility time of the

demand vertex i if path p is selected to connect the depot with the demand vertex i and θrj as the restoration

time of the damaged vertex j. Given two paths p, p′ ∈ Pd
i such that p 6= p′, we say that p dominates p′ if

Vr
p ⊆ Vr

p′ and wp ≤ ldi . In this case, p′ is a dominated path. We define Sd
i ⊆ Pd

i as the set of nondominated

paths from the depot to demand vertex i. Finally, let Pd∗
i = {p ∈ Sd

i | Vr
p = ∅} be the set of nondominated
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paths that do not visit any damaged vertex and p∗i be an element of set Pd∗
i . Using the notation above, we

state the valid inequalities as follows:

|Ep∗
i
|+ |Vu

p∗
i
|=

∑
e∈Ep∗

i

Yei +
∑

j∈Vu
p∗
i

Vji,∀ i∈ Vd, p∗i ∈Pd∗
i :Pd∗

i 6= ∅, (45)

(|E|+ |V|) · (|Vr
p| −

∑
j∈Vr

p

Vji)≥
∑

e∈E\Ep

Yei +
∑

j∈V\Vp

Vji,∀ i∈ Vd, p∈ Sd
i :Pd∗

i = ∅, (46)

∑
j∈Ui

Vji ≥ 1,∀ i∈ Vd :Pd∗
i = ∅, (47)

Zd
i ≥min

j∈Ui
(ρ∗0j + δj), ∀ i∈ Vd :Pd∗

i = ∅, (48)∑
j∈ni

Vji = |ni|,∀ i∈ Vd :Pd∗
i = ∅, (49)

Zd
i ≥Zr

j ,∀ j ∈ ni, i∈ Vd :Pd∗
i = ∅, (50)

Zd
i ≥

∑
j∈Vr

min
l∈Vr

0:
l 6=j

{
ρ∗lj + δj

}
·Vji,∀ i∈ Vd :Pd∗

i = ∅, (51)

where ρ∗ij is the shortest time for the crew to travel from vertex i to vertex j; Ui =
⋃

p∈Sd
i

Vr
p contains all the

damaged vertices of the nondominated paths; and ni =
⋂

p∈Sd
i

Vr
p contains the damaged vertices that are used

in all the nondominated paths.

Appendix D: Instance Description

The algorithms were tested using 648 benchmark instances from the literature (Maya-Duque, Dolinskaya,

and Sörensen 2016, Moreno, Munari, and Alem 2019, Moreno et al. 2020). The instances can be found

in Mendelay data (Moreno et al. 2022). Originally, these instances were derived from undamaged original

networks by varying two parameters, namely, α and β. Parameter α defines the proportion of damaged edges

in the network. Parameter β specifies the factor by which the distance between the depot and the demand

vertices can increase in relation to the shortest distance, i.e., li = (1 +β) · dist0i, where dist0i is the shortest

distance between the depot and the demand vertex i. Table 8 shows the characteristics of the set of instances.

The instance set and the number of demand nodes, total nodes and arcs in the original networks are given

in columns 1, 2, 3 and 4 of Table 8, respectively. Parameter α and β are shown in column 5 and 6, while

the total numbers of nodes and arcs in the damaged networks can be seen in columns 7 and 8 of Table 8,

respectively. The total number of instances (column 9 of Table 8) is generated by combining the values of

α and β. By combining the values of α and β for the original network L1, for example, 20 instances were

generated. For the original network L16, the values of α = 5%, 25%, and 50% are combined with β = 5% and

10% to form 6 instances, while the values of α = 10% and 30% are combined with β = 25% and 50% to form

4 instances, totalling 10 instances. Instances L1-L39 were randomly generated by Maya-Duque, Dolinskaya,

and Sörensen (2016) while instances CS1-CS6 where generated based on data from a real case disaster by

Moreno et al. (2020). It is worth mentioning that some of the large instances are actually much larger than

the practical instances we typically find in real-world situations. For example, Akbari and Salman (2017a,b)

considered one of the largest practical cases in the literature, involving networks with 240 damaged points,

349 vertices and 689 edges. Note that we are considering instances with up to 312 damaged vertices, 712

total vertices and 937 total edges.
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Table 8 Characteristics of the proposed set of instances.
Instance Original network Damaged network Total

set |Vd| |V| |E| Values for α (%) Values for β (%) |V| |E| instances
L1 19 25 40 5, 10, 25, 30, 50 5, 10, 25, 50 27 to 45 42 to 60 20
L2 19 25 37 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 43 38 to 55 20
L3 19 25 39 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 44 40 to 58 20
L4 24 30 83 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 71 87 to 124 20
L5 24 30 89 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 74 93 to 133 20
L6 24 30 84 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 72 88 to 126 20
L7 28 35 118 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 94 123 to 177 20
L8 28 35 115 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 92 120 to 172 20
L9 28 35 113 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 91 118 to 169 20
L10 15 20 39 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 39 40 to 58 20
L11 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
L12 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
L13 35 40 146 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 113 153 to 219 20
L14 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
L15 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
L16 50 60 191 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 155 200 to 286 6 | 4
L17 50 60 197 5, 25, 50 | 10, 30 25, 50 | 05, 10 69 to 158 206 to 295 6 | 4
L18 50 60 196 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 158 205 to 294 6 | 4
L19 70 80 247 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 203 259 to 370 6 | 4
L20 70 80 245 5, 25, 50 | 10, 30 05, 10 | 25, 50 92 to 202 257 to 367 6 | 4
L21 70 80 248 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 204 260 to 372 6 | 4
L22 90 100 274 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 237 287 to 411 6 | 4
L23 90 100 271 5, 25, 50 | 10, 30 25, 50 | 05, 10 113 to 235 284 to 406 6 | 4
L24 90 100 273 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 236 286 to 409 6 | 4
L25 125 140 324 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 302 340 to 486 6 | 4
L26 125 140 323 5, 25, 50 | 10, 30 05, 10 | 25, 50 156 to 301 339 to 484 6 | 4
L27 125 140 322 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 301 338 to 483 6 | 4
L28 140 170 398 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 369 417 to 597 6 | 4
L29 140 170 399 5, 25, 50 | 10, 30 25, 50 | 05, 10 189 to 369 418 to 598 6 | 4
L30 140 170 396 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 368 415 to 594 6 | 4
L31 200 200 447 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 423 469 to 670 6 | 4
L32 200 200 449 5, 25, 50 | 10, 30 05, 10 | 25, 50 222 to 424 471 to 673 6 | 4
L33 200 200 449 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 424 471 to 673 6 | 4
L34 300 300 524 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 550 to 786 6 | 4
L35 300 300 525 5, 25, 50 | 10, 30 25, 50 | 05, 10 326 to 562 551 to 787 6 | 4
L36 300 300 525 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 551 to 787 6 | 4
L37 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4
L38 400 400 625 5, 25, 50 | 10, 30 05, 10 | 25, 50 431 to 712 656 to 937 6 | 4
L39 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4
CS1 13 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18
CS2 13 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18
CS3 13 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18
CS4 20 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18
CS5 20 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18
CS6 20 60 89 5, 10, 15 5, 10, 25, 50, 100, ∞ 66 to 74 95 to 103 18

Total 648
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Appendix E: Additional Results

In this section, additional computational results are presented for the proposed CG and BP strategies. Table

9 shows the improvements of the CG approaches in relation to LPR. The first column indicates the instance

sets, while the second column shows the LP bound obtained with LPR (LPR obj. value). The following

columns indicate, for the different CG strategies, the average LP bound (obj. value) and the improvement

in relation to the values obtained by LPR. Note that higher improvements are observed in larger instances.

Table 9 Lower bound improvements of the CG strategies for the different instances sets.
Instance LPR CG1 CG2 CG3

sets Obj. value Obj. value %imp.* Obj. value %imp.* Obj. value %imp.*

L1 6,670 8,858 24.70 8,309 19.73 8,862 24.74
L2 17,952 24,205 25.83 24,057 25.38 28,737 37.53
L3 27,250 46,105 40.90 46,105 40.90 46,867 41.86
L4 9,835 16,382 39.97 15,976 38.44 16,441 40.18
L5 7,862 16,146 51.30 15,791 50.21 16,217 51.52
L6 10,343 14,726 29.76 14,160 26.95 15,883 34.88
L7 16,694 30,743 45.70 28,285 40.98 31,463 46.94
L8 12,376 18,091 31.59 16,958 27.02 19,851 37.66
L9 12,428 21,861 43.15 22,452 44.65 22,723 45.31
L10 34,558 43,604 20.75 40,729 15.15 45,215 23.57
L11 20,004 31,646 36.79 28,652 30.19 33,002 39.39
L12 18,407 24,630 25.27 21,806 15.59 25,801 28.66
L13 14,432 20,495 29.58 19,073 24.33 21,094 31.58
L14 35,317 51,953 32.02 49,682 28.91 51,012 30.77
L15 18,310 33,344 45.09 33,183 44.82 33,483 45.31
L16 20,481 22,663 9.63 22,029 7.03 22,876 10.47
L17 13,484 19,825 31.98 21,945 38.55 20,508 34.25
L18 55,252 61,167 9.67 63,028 12.34 61,856 10.68
L19 16,104 20,969 23.20 18,904 14.81 20,295 20.65
L20 11,535 20,208 42.92 19,758 41.62 20,401 43.46
L21 14,222 19,412 26.73 19,047 25.33 19,672 27.70
L22 55,957 63,159 11.40 59,049 5.24 60,789 7.95
L23 18,984 22,526 15.72 21,752 12.72 23,153 18.01
L24 17,735 27,599 35.74 26,007 31.81 26,705 33.59
L25 11,170 17,950 37.77 18,922 40.97 17,980 37.87
L26 12,537 26,593 52.85 25,656 51.13 26,240 52.22
L27 15,182 22,804 33.43 21,580 29.65 19,402 21.75
L28 19,988 25,854 22.69 31,903 37.35 37,578 46.81
L29 12,335 20,824 40.77 20,114 38.68 20,424 39.61
L30 8,993 24,111 62.70 23,074 61.02 23,104 61.07
L31 7,159 15,801 54.69 15,742 54.52 15,802 54.69
L32 2,995 15,450 80.62 15,350 80.49 15,497 80.68
L33 5,072 14,758 65.63 14,613 65.29 14,758 65.63
L34 5,046 23,724 78.73 23,720 78.73 23,724 78.73
L35 3,674 19,358 81.02 19,117 80.78 19,359 81.02
L36 4,256 20,418 79.15 20,299 79.03 20,418 79.15
L37 4,237 17,232 75.41 20,637 79.47 20,657 79.49
L38 5,083 26,988 81.17 26,973 81.16 26,988 81.17
L39 3,267 17,609 81.45 17,609 81.45 18,397 82.24
CS1 53,245 43,310 -22.94 59,639 10.72 77,807 31.57
CS2 82,862 120,604 31.29 116,445 28.84 124,606 33.50
CS3 62,742 84,684 25.91 66,635 5.84 87,387 28.20
CS4 60,607 110,766 45.28 103,820 41.62 131,303 53.84
CS5 93,107 144,551 35.59 138,679 32.86 149,897 37.89
CS6 82,745 128,178 35.45 102,794 19.50 133,734 38.13

Avg. L1-L15 17,496 26,853 34.83 25,681 31.55 27,777 37.33
Avg. L16-L39 14,365 24,458 47.29 24,451 47.05 24,858 47.87
Avg. CS1-CS6 72,551 105,349 25.10 98,002 23.23 117,456 37.19
* %imp = (Obj. value in CG−Obj. value in LPR)

Obj. value in LPR (%)
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Tables 10 to 12 show the improvement of BP1 (BP1H), BP2 (BP2H), and BP3 (BP3H), concerning gap

and upper bound for the different instance sets.

Table 10 Improvement of BP1 and BP1H concerning gap and upper bound for the different instance sets.
LM1 BP1 BP1H

Instance Avg. Avg. Avg. Avg. Avg. time %UB UB %Gap Gap Gap Avg. Avg. time %UB UB
sets UB Gap UB Gap (seconds) imp2 ratio2 imp2 diff2 ratio2 UB (seconds) imp2 ratio2

L1 9,745 0.58 9,745 0.00 160 0.00 0.00 15.00 0.58 100.00 9,745 8 0.00 0.00
L2 34,089 2.10 34,089 1.53 869 5.00 0.00 10.00 0.58 27.41 34,089 779 5.00 0.00
L3 49,862 0.37 49,862 1.21 278 0.00 0.00 0.00 -0.84 -230.79 49,862 281 0.00 0.00
L4 18,031 2.60 18,027 1.90 467 5.00 0.02 10.00 0.69 26.70 18,027 206 5.00 0.02
L5 18,074 5.65 18,074 4.23 733 0.00 0.00 20.00 1.42 25.08 18,074 196 0.00 0.00
L6 20,917 7.58 20,917 6.77 727 0.00 0.00 30.00 0.81 10.74 20,917 409 0.00 0.00
L7 36,511 4.03 36,511 5.86 929 0.00 0.00 40.00 -1.83 -45.34 36,511 835 0.00 0.00
L8 26,021 9.18 26,636 6.62 857 0.00 -2.37 25.00 2.56 27.85 26,021 783 0.00 0.00
L9 33,903 15.25 34,220 7.84 908 0.00 -0.94 40.00 7.41 48.60 33,903 402 0.00 0.00
L10 48,460 2.12 48,460 3.88 1,478 0.00 0.00 10.00 -1.76 -82.81 48,460 1,177 0.00 0.00
L11 38,538 3.52 38,538 0.52 501 0.00 0.00 20.00 3.00 85.23 38,538 414 0.00 0.00
L12 28,037 0.66 28,037 0.40 248 15.00 0.00 10.00 0.26 39.29 28,037 81 15.00 0.00
L13 23,528 4.29 23,546 4.10 738 0.00 -0.08 15.00 0.19 4.48 23,528 581 0.00 0.00
L14 80,975 18.02 81,007 15.58 2,162 0.00 -0.04 35.00 2.44 13.56 80,631 1,438 10.00 0.43
L15 51,385 15.85 51,397 5.13 1,225 0.00 -0.02 55.00 10.72 67.66 51,385 227 0.00 0.00
L16 38,737 11.68 38,737 14.72 2,163 0.00 0.00 20.00 -3.04 -26.04 38,737 1,835 0.00 0.00
L17 30,448 14.06 30,475 6.01 826 0.00 -0.09 50.00 8.04 57.22 30,448 884 0.00 0.00
L18 94,580 18.90 94,754 16.99 2,522 0.00 -0.18 50.00 1.91 10.11 94,580 2,543 0.00 0.00
L19 45,802 29.14 45,811 16.22 2,167 0.00 -0.02 40.00 12.91 44.33 45,802 1,524 0.00 0.00
L20 41,776 29.95 41,780 21.07 1,820 10.00 -0.01 40.00 8.87 29.63 41,781 1,128 10.00 -0.01
L21 58,692 36.72 59,119 41.53 2,167 0.00 -0.73 20.00 -4.81 -13.09 58,727 2,187 0.00 -0.06
L22 145,789 33.24 149,042 32.54 2,883 0.00 -2.23 30.00 0.71 2.12 145,923 2,899 0.00 -0.09
L23 57,415 29.46 57,636 30.41 2,834 0.00 -0.39 30.00 -0.95 -3.22 57,415 2,190 0.00 0.00
L24 93,233 38.43 93,541 37.89 2,173 0.00 -0.33 40.00 0.54 1.41 93,435 1,034 0.00 -0.22
L25 72,577 40.81 73,082 37.34 2,190 0.00 -0.70 50.00 3.48 8.52 72,726 1,696 0.00 -0.21
L26 111,583 46.08 111,585 43.00 3,135 0.00 0.00 50.00 3.08 6.69 111,583 2,650 0.00 0.00
L27 69,320 41.72 69,320 35.86 2,198 0.00 0.00 50.00 5.85 14.03 69,322 2,217 0.00 0.00
L28 175,526 41.63 175,573 36.43 2,709 0.00 -0.03 40.00 5.20 12.50 175,534 2,854 0.00 0.00
L29 87,407 57.33 87,752 46.40 2,893 0.00 -0.40 50.00 10.94 19.08 87,317 1,992 10.00 0.10
L30 122,538 46.89 123,305 43.65 2,209 0.00 -0.63 50.00 3.24 6.90 122,607 2,208 0.00 -0.06
L31 130,166 76.33 123,383 52.01 2,898 40.00 5.21 100.00 24.33 31.87 123,196 1,028 50.00 5.35
L32 128,151 72.48 119,672 52.04 2,238 50.00 6.62 90.00 20.44 28.20 116,607 1,243 50.00 9.01
L33 96,869 68.23 93,037 51.09 2,731 30.00 3.96 80.00 17.15 25.13 89,218 1,258 50.00 7.90
L34 279,824 87.75 268,036 61.48 3,126 50.00 4.21 100.00 26.27 29.94 267,066 2,288 60.00 4.56
L35 254,391 86.08 252,855 69.24 3,369 10.00 0.60 100.00 16.84 19.56 247,678 2,360 60.00 2.64
L36 283,101 86.97 275,452 69.81 2,926 30.00 2.70 100.00 17.17 19.74 264,519 1,430 60.00 6.56
L37 393,965 90.85 364,153 71.18 3,600 40.00 7.57 100.00 19.67 21.65 347,717 2,183 60.00 11.74
L38 546,699 90.68 514,809 77.25 3,600 40.00 5.83 100.00 13.43 14.81 457,720 2,250 80.00 16.28
L39 441,764 88.61 326,663 70.94 3,001 60.00 26.05 100.00 17.67 19.94 330,628 2,107 60.00 25.16
CS1 84,656 3.56 84,656 3.01 2,543 0.00 0.00 5.56 0.55 15.42 84,596 2,874 11.11 0.07
CS2 134,255 1.49 134,255 0.82 5 0.00 0.00 11.11 0.66 44.64 134,255 1,024 0.00 0.00
CS3 99,514 2.46 99,514 1.29 617 0.00 0.00 11.11 1.17 47.55 99,512 1,494 5.56 0.00
CS4 145,455 8.48 145,455 7.46 2,918 0.00 0.00 11.11 1.02 12.02 143,739 2,871 22.22 1.18
CS5 166,114 3.78 166,114 2.16 87 0.00 0.00 11.11 1.62 42.76 166,114 90 0.00 0.00
CS6 163,644 6.55 163,644 5.15 739 0.00 0.00 16.67 1.40 21.34 163,644 840 0.00 0.00

Avg. L1-L15 34,538 6.12 34,604 4.37 819 1.67 -0.23 22.33 1.75 7.85 34,515 521 2.33 0.03
Avg. L16-L39 158,348 52.67 149,566 43.13 2,599 15.00 2.38 61.67 9.54 15.88 145,429 1,916 22.92 3.69
Avg. CS1-CS6 132,273 4.39 132,273 3.32 1,151 0.00 0.00 11.11 1.07 30.62 131,977 1,532 6.48 0.21

1 LM: literature method. Best solutions found in the literature for the tested instances (Moreno et al. 2020).
2 %UB imp: percentage of instances for which UB in LM>UB in BP1; %Gap imp: percentage of instances for which
Gap in LM>Gap in BP1; Gap diff = Gap in LM−Gap in BP1; Gap (UB) ratio = Gap (UB) in LM−Gap (UB) in BP1

Gap (UB) in LM (%).
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Table 11 Improvement of BP2 and BP2H concerning gap and upper bound for the different instance sets.
LM1 BP2 BP2H

Instance Avg. Avg. Avg. Avg. Avg. time %UB UB %Gap Gap Gap Avg. Avg. time %UB UB
sets UB Gap UB Gap (seconds) imp2 ratio2 imp2 diff2 ratio2 UB (seconds) imp2 ratio2

L1 9,745 0.58 9,745 0.15 371 0.00 0.00 10.00 0.43 74.28 9,745 12 0.00 0.00
L2 34,089 2.10 34,089 0.83 537 5.00 0.00 10.00 1.27 60.38 34,089 143 5.00 0.00
L3 49,862 0.37 49,862 0.00 35 0.00 0.00 5.00 0.37 100.00 49,862 29 0.00 0.00
L4 18,031 2.60 18,027 1.64 545 5.00 0.02 15.00 0.96 36.97 18,027 10 5.00 0.02
L5 18,074 5.65 18,074 0.86 429 0.00 0.00 30.00 4.79 84.72 18,074 13 0.00 0.00
L6 20,917 7.58 20,917 3.29 386 0.00 0.00 40.00 4.29 56.60 20,917 30 0.00 0.00
L7 36,511 4.03 36,511 4.62 733 0.00 0.00 45.00 -0.59 -14.52 36,511 425 0.00 0.00
L8 26,021 9.18 26,022 5.70 767 0.00 -0.01 25.00 3.47 37.84 26,021 611 0.00 0.00
L9 33,903 15.25 33,903 7.59 730 0.00 0.00 40.00 7.66 50.21 34,024 404 0.00 -0.36
L10 48,460 2.12 48,460 1.51 632 0.00 0.00 10.00 0.61 28.85 48,460 264 0.00 0.00
L11 38,538 3.52 38,538 1.45 562 0.00 0.00 15.00 2.07 58.87 38,538 256 0.00 0.00
L12 28,037 0.66 28,037 0.40 286 15.00 0.00 10.00 0.26 39.29 28,037 277 15.00 0.00
L13 23,528 4.29 23,528 4.05 858 0.00 0.00 15.00 0.24 5.63 23,529 249 0.00 0.00
L14 80,975 18.02 81,076 15.58 2,162 0.00 -0.12 35.00 2.44 13.51 81,050 900 0.00 -0.09
L15 51,385 15.85 51,402 5.20 1,192 0.00 -0.03 55.00 10.65 67.20 51,392 50 0.00 -0.01
L16 38,737 11.68 38,737 7.29 749 0.00 0.00 40.00 4.39 37.60 38,737 785 0.00 0.00
L17 30,448 14.06 30,448 5.97 777 0.00 0.00 60.00 8.09 57.55 30,448 831 0.00 0.00
L18 94,580 18.90 95,095 16.75 2,168 0.00 -0.54 50.00 2.15 11.39 95,526 1,634 0.00 -1.00
L19 45,802 29.14 45,840 16.23 2,168 0.00 -0.08 40.00 12.90 44.29 45,818 1,063 0.00 -0.04
L20 41,776 29.95 41,828 21.08 1,822 10.00 -0.12 40.00 8.86 29.60 41,728 278 20.00 0.12
L21 58,692 36.72 59,007 41.38 2,166 0.00 -0.54 20.00 -4.65 -12.67 58,831 740 0.00 -0.24
L22 145,789 33.24 147,844 30.34 2,189 0.00 -1.41 50.00 2.90 8.72 146,986 1,806 0.00 -0.82
L23 57,415 29.46 57,380 32.47 2,883 10.00 0.06 20.00 -3.01 -10.23 57,509 2,999 0.00 -0.16
L24 93,233 38.43 94,063 37.92 2,176 0.00 -0.89 40.00 0.51 1.31 94,186 437 0.00 -1.02
L25 72,577 40.81 72,939 36.77 2,187 0.00 -0.50 60.00 4.04 9.91 73,006 1,342 10.00 -0.59
L26 111,583 46.08 111,610 41.62 2,187 0.00 -0.02 60.00 4.45 9.67 111,614 661 0.00 -0.03
L27 69,320 41.72 69,317 35.86 2,188 20.00 0.00 50.00 5.85 14.03 69,336 1,940 0.00 -0.02
L28 175,526 41.63 175,627 37.63 2,603 10.00 -0.06 40.00 4.00 9.60 175,818 1,439 0.00 -0.17
L29 87,407 57.33 87,425 46.09 2,761 10.00 -0.02 50.00 11.24 19.61 87,504 1,313 10.00 -0.11
L30 122,538 46.89 122,720 43.47 2,207 0.00 -0.15 50.00 3.42 7.30 122,585 1,110 0.00 -0.04
L31 130,166 76.33 120,003 51.94 2,899 50.00 7.81 100.00 24.40 31.96 118,120 685 50.00 9.25
L32 128,151 72.48 117,090 51.97 2,230 60.00 8.63 90.00 20.51 28.29 116,564 696 50.00 9.04
L33 96,869 68.23 88,805 50.64 2,896 40.00 8.32 90.00 17.60 25.79 91,574 631 50.00 5.47
L34 279,824 87.75 264,924 61.53 2,994 30.00 5.32 100.00 26.22 29.88 268,042 1,128 50.00 4.21
L35 254,391 86.08 241,378 69.19 2,945 50.00 5.12 100.00 16.89 19.62 239,871 1,118 60.00 5.71
L36 283,101 86.97 284,765 69.85 2,925 30.00 -0.59 100.00 17.12 19.69 272,396 1,157 50.00 3.78
L37 393,965 90.85 345,522 71.20 3,600 60.00 12.30 100.00 19.64 21.62 352,782 1,515 60.00 10.45
L38 546,699 90.68 482,535 77.44 3,600 40.00 11.74 100.00 13.24 14.60 474,262 1,512 60.00 13.25
L39 441,764 88.61 331,426 70.92 2,993 60.00 24.98 100.00 17.69 19.96 330,638 1,400 60.00 25.15
CS1 84,656 3.56 84,614 0.52 458 5.56 0.05 22.22 3.03 85.26 84,596 480 11.11 0.07
CS2 134,255 1.49 134,255 0.00 222 0.00 0.00 22.22 1.49 100.00 134,255 45 0.00 0.00
CS3 99,514 2.46 99,512 0.00 1,168 5.56 0.00 44.44 2.46 100.00 99,512 1,108 5.56 0.00
CS4 145,455 8.48 143,761 2.55 942 16.67 1.16 38.89 5.93 69.94 143,761 859 16.67 1.16
CS5 166,114 3.78 166,114 0.00 320 0.00 0.00 33.33 3.78 100.00 166,114 135 0.00 0.00
CS6 163,644 6.55 163,644 1.16 1,924 0.00 0.00 33.33 5.39 82.24 163,644 1,891 0.00 0.00

Avg. L1-L15 34,538 6.12 34,546 3.52 682 1.67 -0.01 24.00 2.59 46.66 34,552 245 1.67 -0.03
Avg. L16-L39 158,348 52.67 146,930 42.73 2,430 20.00 3.31 64.58 9.94 18.71 146,412 1,176 22.08 3.42
Avg. CS1-CS6 132,273 4.39 131,983 0.71 839 4.63 0.20 32.41 3.68 89.57 131,980 753 5.56 0.21

1 LM: literature method. Best solutions found in the literature for the tested instances (Moreno et al. 2020).
2 %UB imp: percentage of instances for which UB in LM>UB in BP2; %Gap imp: percentage of instances for which
Gap in LM>Gap in BP2; Gap diff = Gap in LM−Gap in BP2; Gap (UB) ratio = Gap (UB) in LM−Gap (UB) in BP2

Gap (UB) in LM (%).
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Table 12 Improvement of BP3 and BP3H concerning gap and upper bound for the different instance sets.
LM1 BP3 BP3H

Instance Avg. Avg. Avg. Avg. Avg. time %UB UB %Gap Gap Gap Avg. Avg. time %UB UB
sets UB Gap UB Gap (seconds) imp2 ratio2 imp2 diff2 ratio2 UB (seconds) imp2 ratio2

L1 9,745 0.58 9,745 0.15 289 0.00 0.00 15.00 0.43 74.28 9,745 21 0.00 0.00
L2 34,089 2.10 34,089 0.00 210 5.00 0.00 10.00 2.10 100.00 34,089 318 5.00 0.00
L3 49,862 0.37 49,862 0.00 22 0.00 0.00 5.00 0.37 100.00 49,862 23 0.00 0.00
L4 18,031 2.60 18,027 0.00 235 5.00 0.02 20.00 2.60 100.00 18,027 18 5.00 0.02
L5 18,074 5.65 18,074 0.43 354 0.00 0.00 30.00 5.22 92.41 18,074 16 0.00 0.00
L6 20,917 7.58 20,917 3.29 469 0.00 0.00 40.00 4.29 56.60 20,917 45 0.00 0.00
L7 36,511 4.03 36,511 4.62 727 0.00 0.00 45.00 -0.59 -14.52 36,511 460 0.00 0.00
L8 26,021 9.18 26,021 5.70 727 0.00 0.00 25.00 3.47 37.85 26,021 429 0.00 0.00
L9 33,903 15.25 33,903 7.59 905 0.00 0.00 40.00 7.66 50.21 33,903 387 0.00 0.00
L10 48,460 2.12 48,460 0.76 201 0.00 0.00 15.00 1.36 64.37 48,460 205 0.00 0.00
L11 38,538 3.52 38,538 0.93 198 0.00 0.00 15.00 2.59 73.63 38,538 238 0.00 0.00
L12 28,037 0.66 28,037 0.40 189 15.00 0.00 10.00 0.26 39.29 28,037 202 15.00 0.00
L13 23,528 4.29 23,528 4.05 760 0.00 0.00 15.00 0.24 5.63 23,528 233 0.00 0.00
L14 80,975 18.02 81,017 15.57 2,162 0.00 -0.05 35.00 2.45 13.59 81,002 676 0.00 -0.03
L15 51,385 15.85 51,397 5.19 1,194 0.00 -0.02 55.00 10.66 67.22 51,385 44 0.00 0.00
L16 38,737 11.68 38,737 7.29 1,168 0.00 0.00 40.00 4.39 37.60 38,737 780 0.00 0.00
L17 30,448 14.06 30,476 5.99 766 0.00 -0.09 60.00 8.07 57.37 30,448 834 0.00 0.00
L18 94,580 18.90 94,667 16.65 2,163 0.00 -0.09 50.00 2.25 11.91 94,589 1,611 0.00 -0.01
L19 45,802 29.14 45,802 16.21 2,168 0.00 0.00 40.00 12.92 44.36 46,209 784 0.00 -0.89
L20 41,776 29.95 41,781 21.07 1,822 10.00 -0.01 40.00 8.87 29.63 41,836 289 0.00 -0.14
L21 58,692 36.72 58,765 41.30 2,166 0.00 -0.12 20.00 -4.57 -12.45 58,934 1,113 0.00 -0.41
L22 145,789 33.24 145,923 30.15 2,606 10.00 -0.09 50.00 3.09 9.29 146,787 1,904 0.00 -0.68
L23 57,415 29.46 57,415 27.78 2,884 0.00 0.00 20.00 1.68 5.69 57,566 2,661 0.00 -0.26
L24 93,233 38.43 93,412 38.04 2,174 0.00 -0.19 40.00 0.39 1.02 93,846 391 0.00 -0.66
L25 72,577 40.81 73,715 36.84 2,192 0.00 -1.57 60.00 3.98 9.75 73,187 1,275 0.00 -0.84
L26 111,583 46.08 111,710 41.87 2,191 0.00 -0.11 60.00 4.21 9.13 111,589 590 0.00 -0.01
L27 69,320 41.72 69,342 35.89 1,290 0.00 -0.03 50.00 5.83 13.98 69,320 1,927 0.00 0.00
L28 175,526 41.63 176,425 35.62 2,219 0.00 -0.51 50.00 6.01 14.44 175,613 1,356 0.00 -0.05
L29 87,407 57.33 87,500 46.26 2,892 10.00 -0.11 50.00 11.07 19.32 87,437 480 10.00 -0.03
L30 122,538 46.89 122,615 43.45 2,203 0.00 -0.06 50.00 3.45 7.35 122,782 1,021 0.00 -0.20
L31 130,166 76.33 124,848 52.02 2,899 40.00 4.09 100.00 24.31 31.85 126,716 668 40.00 2.65
L32 128,151 72.48 119,797 52.04 2,230 50.00 6.52 90.00 20.44 28.20 120,039 578 50.00 6.33
L33 96,869 68.23 96,281 51.41 2,896 20.00 0.61 90.00 16.82 24.65 91,001 640 40.00 6.06
L34 279,824 87.75 266,167 60.04 2,966 50.00 4.88 100.00 27.71 31.58 261,542 1,291 50.00 6.53
L35 254,391 86.08 243,900 67.62 2,946 60.00 4.12 100.00 18.46 21.44 243,955 1,093 60.00 4.10
L36 283,101 86.97 273,684 69.80 2,932 40.00 3.33 100.00 17.17 19.74 266,028 1,116 60.00 6.03
L37 393,965 90.85 359,226 66.18 3,600 60.00 8.82 100.00 24.66 27.15 347,436 1,425 60.00 11.81
L38 546,699 90.68 499,140 68.34 3,600 30.00 8.70 100.00 22.34 24.63 469,915 1,548 70.00 14.05
L39 441,764 88.61 334,612 71.01 2,988 50.00 24.26 100.00 17.60 19.87 319,100 1,373 60.00 27.77
CS1 84,656 3.56 84,596 0.00 263 11.11 0.07 33.33 3.56 100.00 84,596 296 11.11 0.07
CS2 134,255 1.49 134,255 0.00 209 0.00 0.00 22.22 1.49 100.00 134,255 59 0.00 0.00
CS3 99,514 2.46 99,512 0.00 444 5.56 0.00 44.44 2.46 100.00 99,512 1,208 5.56 0.00
CS4 145,455 8.48 143,739 0.06 394 22.22 1.18 50.00 8.43 99.32 143,739 582 22.22 1.18
CS5 166,114 3.78 166,114 0.00 37 0.00 0.00 33.33 3.78 100.00 166,114 83 0.00 0.00
CS6 163,644 6.55 163,644 1.16 1,058 0.00 0.00 38.89 5.39 82.25 163,644 1,840 0.00 0.00

Avg. L1-L15 34,538 6.12 34,542 3.24 576 1.67 0.00 25.00 2.87 57.37 34,540 221 1.67 0.00
Avg. L16-L39 158,348 52.67 148,581 41.79 2,415 17.92 2.60 65.00 10.88 20.31 145,609 1,114 20.83 3.38
Avg. CS1-CS6 132,273 4.39 131,977 0.20 401 6.48 0.21 37.04 4.18 96.93 131,977 678 6.48 0.21

1 LM: literature method. Best solutions found in the literature for the tested instances (Moreno et al. 2020).
2 %UB imp: percentage of instances for which UB in LM>UB in BP3; %Gap imp: percentage of instances for which
Gap in LM>Gap in BP3; Gap diff = Gap in LM−Gap in BP3; Gap (UB) ratio = Gap (UB) in LM−Gap (UB) in BP3

Gap (UB) in LM (%).
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Appendix F: Sensitivity Analysis on the Improvement Strategies

We present the results of experiments that verify the impact of different improvement strategies to the per-

formance of CG3, the column generation algorithm of BP3. Table 13 summarizes the results of six alternative

configurations of CG3 in which we turn off one improvement strategy at a time. For each configuration, the

table presents the average computation time (Avg. time) as well as the number and percentage (#Opt, %Opt)

of instances solved to optimality within the 1-hour time limit. According to the results, all the improvement

strategies considered in Table 13 significantly affect the performance of CG3.

Table 13 Average computational results of CG3 without some improvement strategies.
CG3 CG3-S1 CG3-S2 CG3-S3 CG3-S4 CG3-S5 CG3-S6

Avg. time (seconds) 1,348 2,258 1,611 3,257 2,044 1,804 3,583
#Opt 504 244 453 260 326 413 35
#%Opt 77.78 37.65 69.91 40.12 50.31 63.73 5.40

Configuration CG3-S1 turns off the use of vertice priorities in the relief paths and crew routes (see Section

5.7.1). In this case, the computation time was 67% higher. The reason for this increase is that many routes

generated from SP1 are infeasible for the original SCSRP problem. CG3-S2 turns off the SA metaheuristic

to generate initial columns in the MP (see Section 5.7.5). This configuration resorts to a simple construction

heuristic (Moreno, Munari, and Alem 2019) to generate initial columns. The computation time increases by

19% and the LP relaxation was solved to optimality for 51 less instances when compared to CG3. CG3-S3

do not use rSP1, only SP1. As a result, the CG algorithm becomes slower since SP1 is more difficult to solve

than rSP1, and it is solved in all iterations to find columns with negative reduced cost.

CG3-S4, CG3-S5, and CG3-S6 are directly related with the performance of the labeling algorithm to solve

SP1 and SP1r, regarding the use of improved lower bounds and dominance rules (see Sections 5.4.3 and

5.4.4). CG3-S4 does not use the proposed lower bounds for the reduced cost, whereas CG3-S5 turns off the

strong dominance rules by considering V 1
i = V 2

i in condition (ii) of Proposition 1. Finally, CG3-S6 does not

consider any of these two improvements. CG3-S4 proved optimality only for 50.31% of the instances, while

CG3-S5 proved optimality for 63.73%. The average computation time in both cases is greater than the one

in CG3. In CG3-S6, the computation time increases by 164%, while optimality was only proved for 5.4% of

the instances, compared to 77.78% in CG3. Overall, these strategies show a slower labeling algorithm that

is inefficient at eliminating dominated states.
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