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Abstract The cosine measure was introduced in 2003 to quantify the richness of a finite posi-
tive spanning sets of directions in the context of derivative-free directional methods. A positive
spanning set is a set of vectors whose nonnegative linear combinations span the whole space.
The present work extends the definition of cosine measure. In particular, the paper studies co-
sine measures relative to a subspace, and proposes a deterministic algorithm to compute it. The
paper also studies the situation in which the set of vectors is infinite. The extended definition of
the cosine measure might be useful for subspace decomposition methods.

Keywords Positive spanning set · positive basis · cosine measure · gradient approximation ·
subspace decomposition

1 Introduction

Given a set of vectors D in Rn, the concepts of spanning, linear independence, and basis, are
considered foundational to linear algebra. Closely related, but less well studied, are the ideas of
positive spanning, positive linear independence, and positive basis [7]. All of these notions can be
defined considering a set’s properties relative to Rn or relative to a linear subspace [20].

In addition to the intrinsic mathematical interest in these concepts, positive bases have been
shown to be fundamental to the convergence analysis in direct-search methods in derivative-free
optimization. The first occurrence dates from 1996 [18] and more recent presentations are found
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in the textbooks [3] and [6]. A key tool in this analysis is the cosine measure, introduced in [15].
Algorithms to compute the cosine measure are provided in [10,21]. Results on the maximal
value of the cosine measure for positive bases of Rn are developed in [12,19]. The notion of
cosine measure is also briefly investigated for positive k-spanning set of Rn in [11]. Until now,
this cosine measure was only deeply studied for positive spanning sets of Rn. In this paper, we
explore the cosine measure relative to a subspace, which effectively provides a measure of how
well a subset of the positive spanning set considered explores that subspace. The results herein
will be of high value in understanding the subspace decomposition methods which are recently
gaining traction in [2,5,9,14,17,26].

The main goals of this paper are to introduce the notion of cosine measure relative to a
subspace, to demonstrate its value in understanding positive spanning properties of a set, and to
provide a deterministic algorithm to compute it. As a secondary goal, we provide several novel
results examining the case where the set of vectors is infinite.

The remainder of this paper is organized as follows. The notation is presented in Section 2
and background results that are necessary to understand this paper are provided. This includes
positive spanning, positive linear independence, positive basis, cosine measure, cosine vector set,
and active set. These final three definitions are extended to include “relative to a subspace”. In
Section 3, properties of a positive spanning set of a linear subspace are investigated. It is shown
that many known results regarding Rn are easily adapted to working in a subspace or working
with an infinite set. In Section 4, the notion of cosine measure relative to a subspace is explored.
Several results are provided that link the positive span, cosine measure, and cosine measure
relative to a subspace. The case where the cosine measure relative to a subspace is equal to 0 is
examined. The section concludes with new results showing how the cosine measure relative to a
subspace can be used to provide a general error bound on the true gradient of a smooth function.
In Section 5, a deterministic algorithm to compute the cosine measure relative to the span of the
set is provided and proven to return the correct results. In Section 6, the main results of this
paper are summarized.

2 Notation and Preliminaries

The zero vector in Rn is denoted by 0n and the vector of all ones in Rn is denoted by 1n. When
the dimension of the vector is clear, we may omit the subscript. The ith coordinate vector in Rn

is denoted ei.
We denote by Bn(x

0;∆) the open ball centered about x0 ∈ Rn with radius 0 < ∆ < ∞ and
by Bn(x

0;∆) the closed ball centered about x0 with radius ∆. That is

Bn(x
0;∆) =

{
x ∈ Rn : ∥x− x0∥ < ∆

}
and Bn(x

0;∆) =
{
x ∈ Rn : ∥x− x0∥ ≤ ∆

}
.

Given a set of vectors D ⊆ Rn (possibly infinite), the cardinality of D is denoted by |D|. The
radius of the smallest ball centered at the origin containing the set D is denoted by ∆D and
given by

∆D = sup
d∈D
∥d∥. (1)

When useful, in this paper, a set of vectors is represented as a matrix where each column repre-
sents a vector in the set. That is

D = {d1, d2, . . . , dm} is interchangable with D =
[
d1 d2 . . . dm

]
.
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The dimension of a linear subspace L ⊆ Rn is denoted by dim(L). A trivial subspace L ⊂ Rn

is a set of the form L = {0n} or L = ∅. Similarly, a set D in Rn is said to be trivial if D = {0n}
or D = ∅. In this paper, the linear subspace considered are assumed to be nontrivial.

We now focus on the key definitions studied in this paper. In the remaining of this paper, the
word linear may be omitted when discussing the notion of span, subspace and basis. All these
notions are defined for the linear case.

Definition 1 (span, positive span) Let D ⊆ Rn.

i. The span of D is denoted by span(D) and defined by

span(D) =

{
x ∈ Rn : x =

k∑
i=1

αidi, k ∈ N, di ∈ D,αi ∈ R

}
.

ii. The positive span of D is denoted by pspan(D) and defined by

pspan(D) =

{
x ∈ Rn : x =

k∑
i=1

λidi, k ∈ N, di ∈ D,λi ≥ 0

}
.

Note that span(D) is always a linear subspace of Rn. Moreover, L is a linear subspace of Rn

if and only if L = span(L).
The projection of a vector v ∈ Rn onto a linear subspace L will be denoted by ProjL v. We

will be particularly interested in the projection onto span(D). For ease of writing, we provide this
with the special notation PD = Projspan(D). In Section 5, we shall make use of the well-known
formula

PD v = DD†v,

where D† denotes the Moore–Penrose pseudoinverse of D [23, Chapter 7].

Definition 2 (spanning, positive spanning) Let D ⊆ Rn and L be a subspace of Rn.

i. The set D is said to be a spanning set of L, or spans L, if and only if span(D) = L.
ii. The set D is said to be a positive spanning set of L, or positively spans L, if and only if

pspan(D) = L.

It is easy to prove that, if D (positively) spans L, then D must be a subset of L. Indeed, one
always has

D ⊆ pspan(D) ⊆ span(D).

The term (positively) independent is used to mean that removing any vector from the set
changes the (positive) spanning properties of the set.

Definition 3 (independence, positive independence) Let D ⊆ Rn.

i. The set D is said to be dependent if and only if there exists a vector d ∈ D such that d ∈
span(D\{d}). Conversely, D is said to be independent if and only if span(D\{d}) ̸= span(D)
for any d ∈ D.

ii. The set D is said to be positively dependent if and only if there exists a vector d ∈ D such
that d ∈ pspan(D \ {d}). Conversely, D is said to be positively independent if and only if
pspan(D \ {d}) ̸= pspan(D) for any d ∈ D.

Finally, we introduce the notion of a (positive) basis of a subspace.

Definition 4 (basis, positive basis) Let D ⊆ Rn and L be a subspace of Rn.
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i. The set D is a basis of L if and only if D is independent with span(D) = L.
ii. The set D is a positive basis of L if and only if D is positively independent with pspan(D) =

L.

It is well known that if D is a basis of L then |D| = dim(L). It is shown in [20, Cor. 2.4
& Thm 6.6] that the minimal cardinality of a positive basis of a subspace L is dim(L) + 1 and
the maximal cardinality is 2 dim(L). Positive bases of these sizes are called minimal positive
bases and maximal positive bases (respectively). Positive bases with cardinality strictly between
dim(L) + 1 and 2 dim(L) are called intermediate positive bases.

We end this section by recalling the definition of cosine measure and defining the cosine
measure relative to a subspace. The cosine measure is valuable tool to quantify how well a set
covers the space Rn. We will see that the cosine measure relative to a subspace extends the value
of this tool to work with a subspace of Rn. We begin with the definition of cosine measure (as
given in [12,21]) and the corresponding cosine vector set (from [10]).

Definition 5 (cosine measure) Let D ⊆ Rn be a nonempty finite set of nonzero vectors. The
cosine measure of D is defined by

cm (D) = min
u∈Rn

∥u∥=1

max
d∈D

u⊤d

∥d∥
,

and the cosine vector set of D, denoted by cV(D), is defined by

cV(D) = argmin
u∈Rn

∥u∥=1

max
d∈D

u⊤d

∥d∥
.

Note that the original definition of the cosine measure requires D to be finite. Another
limitation of the cosine measure is that is it focuses on how well the set covers the entire space
Rn. As a result, if D is a positive spanning set of a proper subspace, then the cosine measure
will always return cm (D) = 0 (Corollary 23 herein). To address these limitations, we introduce
the cosine measure relative to a subspace, which provides information on how well a set covers a
linear subspace. Simultaneously, we define a corresponding cosine vector set and allow for both
concepts to be well-defined for infinite sets.

However, since an empty set, or the zero vector, provides no coverage of Rn, the cosine
measure relative to a subspace is defined for nonempty sets of nonzero vectors. If a set is empty,
the cosine measure (relative to a subspace) should be assumed to be undefined. If a set contains
the zero vector, then one should remove the vector and work with the remaining set. If the
remaining set is empty, then the result would again be undefined.

For the remainder of this paper we shall assume that the set D is a nonempty
set of nonzero vectors.

Definition 6 (cosine measure relative to L) Let L ⊆ Rn be a nontrivial linear subspace
and let D ⊆ Rn be a nonempty set of nonzero vectors. The cosine measure of D relative to L is
denoted by cmL(D) and defined by

cmL(D) = min
u∈L
∥u∥=1

sup
d∈D

u⊤d

∥d∥
, (2)

and the cosine vector set of D relative to L, denoted by cVL(D), is defined by

cVL(D) = argmin
u∈L
∥u∥=1

sup
d∈D

u⊤d

∥d∥
.
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If L = Rn and |D| is finite, then the cosine measure relative to L returns the classical cosine
measure: cmRn(·) = cm (·). Indeed, if D is finite, then the sup can be replaced by max in (2). If
D is a trivial set or if L is a trivial subspace of Rn, then the cosine measure and cosine vector set
(relative to L) are undefined. When D is a nonempty set of nonzero vectors and L is a nontrivial
subspace, the cosine measure relative to a subspace returns a value in [−1, 1]. Besides, the cosine
vector set of D relative to L is well-defined and nonempty. Notice that when D is an infinite set,
then the cosine vector set may be infinite.

Remark 7 Given a nonempty set of nonzero vectors D and a nontrivial linear subspace L in
Rn such that D ̸⊆ L, one might consider projecting each normalized vector d/∥d∥ ∈ D onto L

before computing the cosine measure of D relative to L. Denote by D̃ the set obtained from these
projections and by d̃ a vector in the set D̃. Note that the set D̃ might contain the zero vector. If
the computations are done using the projected set D̃, then it is crucial to keep the zero vector in
the set D̃. The cosine measure of D relative to L can be computed as follows whenever we work
from the projected set D̃ rather than using the original set D:

cmL(D) = min
u∈L
∥u∥=1

sup
d∈D

u⊤d

∥d∥

= min
u∈L
∥u∥=1

sup
d∈D

u⊤
(
ProjL

d

∥d∥
+

(
d

∥d∥
− ProjL

d

∥d∥

))
= min

u∈L
∥u∥=1

sup
d̃∈ D̃

u⊤d̃, (3)

as u⊤
(

d
∥d∥ − ProjL

d
∥d∥

)
= 0 for any u ∈ L.

The following example shows the importance of keeping the zero vector in the projected set
D̃ if the computations are done from the projected set D̃.

Example 8 Let D = {e1, e2} ⊆ R2 and L = {x ∈ R2 : x2 = 0}. Then

cmL(D) = 0.

The projection of e1 onto L is equal to e1 and the projection of e2 onto L is equal to 0. We
obtain the projected set D̃ = {e1,0}. Computing the cosine measure of D relative L as defined

in Equation (3), we obtain cmL(D) = 0. However, if one removes the zero vector from D̃, the
final result would be

min
u∈L
∥u∥=1

sup
d̃∈ D̃\{0}

u⊤d̃ = −1 ̸= cmL(D).

We shall often be interested in the special case when L = span(D). For ease of writing, when
the linear subspace considered is the span of a set, we only write the set name and omit the word
span in the subscript. More precisely,

cmD(·) = cmspan(D)(·) and cVD(·) = cVspan(D)(·).

Finally, some analysis will require examining the active set of the cosine measure relative to L.
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Definition 9 (active set) Let L ⊆ Rn be a nontrivial linear subspace and D ⊆ Rn be a
nonempty set of nonzero vectors.

The active set for D at a cosine vector u ∈ cVL(D) relative to L is denoted by AL(D,u) and
defined by

AL(D,u) =

{
d ∈ D :

d⊤u

∥d∥
= cmL(D)

}
.

The active set for D relative to L is denoted by AL(D), and defined by

AL(D) =
⋃

u∈ cVL(D)

AL(D,u).

As above, we are mostly interested in the special case of L = span(D). For this case we use
the special notation

AD(·, ·) = Aspan(D)(·, ·).

3 Properties of a positive spanning set of a linear subspace

In this section, properties of positive spanning sets of a linear subspace are investigated. The
results are developed to consider both the cases where |D| is finite and |D| is infinite. We begin
by showing that a set D contained in a linear subspace L is a positive spanning set of L if and
only if pspan(D) = span(D) = L.

Lemma 10 Let L ⊆ Rn be a linear subspace. Then D positively spans L if and only if pspan(D) =
span(D) = L.

Proof (⇒) Suppose that D positively spans L; i.e., pspan(D) = L. This implies D ⊆ L and
therefore pspan(D) ⊆ span(D) ⊆ L = pspan(D).
(⇐) Conversely, if pspan(D) = span(D) = L, then D positively spans L by definition. ⊓⊔

We next show that if |D| is infinity and the positive span is a linear subspace, then the
positive span can be created through a finite subset of D. We use the following lemma.

Lemma 11 [4, Theorem 2.11] Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero
vectors. Then D contains a basis of span(D).

Corollary 12 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors and L be a
linear subspace of Rn. If pspan(D) = L, then there exists a finite subset of vectors C ⊆ D such
that pspan(C) = L.

Proof If D is a finite set, then take C = D.
Suppose D is an infinite set and dim(L) ≥ 1. By Lemma 10, pspan(D) = L implies L =

span(D). By Lemma 11, the set D contains a basis of span(D). Denote this basis by B =
{b1, b2, . . . , bm} where m = dim(span(D)). Define v = −

∑m
i=1 bi. Since pspan(D) = span(D),

the vector v can be written as

v = α1d1 + d2 + · · ·+ αkdk

where di ∈ D and k is an integer greater or equal than 1. Since the pspan(B ∪ {v}) = span(D)
[20, Theorem 5.1], we have

pspan(B ∪ {d1, d2 . . . , dk}) = pspan(B ∪ {v}) = span(D) = L.

The set B ∪ {d1, d2 . . . , dk} is finite, so the proof is complete. ⊓⊔
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Note that the above result requires D to be a positive spanning set. Indeed, consider the
floating ring set defined by D = {x ∈ R3 : (x1)

2 + (x2)
2 = 1, x3 = 1}. It can be shown

that the set D is positively independent [13]. As such, for any finite subset C ⊆ D, we have
pspan(C) ̸= pspan(D).

This inspires the following result about positive independence for an infinite set of vectors.

Corollary 13 Let D ⊆ Rn be an infinite set of vectors. If D is positively independent, then
pspan(D) ̸= span(D).

Proof Let E be a finite subset of D with pspan(E) = span(D). If D is positively independent,
then pspan(D) = pspan(E) creates a contradiction. ⊓⊔

Notice that Corollary 13 is specific to infinite sets. Indeed, a finite set of positively independent
vectors D such that pspan(D) = span(D) is a positive basis.

We now extend [20, Theorem 2.5] to the cases of infinite sets.

Theorem 14 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors. Then the
following are equivalent.

(i) The set D is a positive spanning set of span(D).
(ii) For any d ∈ D, −d is in pspan(D \ {d}).

Moreover, these imply that there exists a finite subset C ⊆ D such that pspan(C) = pspan(D).
Suppose C is a finite subset of D such that pspan(C) = pspan(D) (if D is finite, then C = D).

Let s = |C| ≥ 1. Then the following are equivalent.

(iii) The set D is a positive spanning set of span(D).
(iv) The set C is a positive spanning set of span(D).
(v) There exists α ∈ Rs, such that α > 0 and Cα = 0n.
(vi) There exists β ∈ Rs, such that β ≥ 1 and Cβ = 0n.
(vii) There exists γ ∈ Rs such that γ ≥ 0 and Cγ = −C1s.

where items (v), (vi), and (vii), interpret C as a matrix in Rn×s.

Proof Parts (i) and (ii) are equivalent by [20, Theorem 2.5]. Suppose thatD is a positive spanning
set of span(D). By Corollary 12, part (i) implies that there exists a finite subset C ⊆ D such
that pspan(C) = span(D). The proof of equivalence of parts (iii) to (vii) is identical to the proof
for finite sets provided in [20, Theorem 2.5]. ⊓⊔

Our next example shows the importance of pspan(C) = pspan(D) in the second half of
Theorem 14.

Example 15 Consider D∞ = {d : ∥d∥ = 1, d1 ≥ 0} ⊆ R2. The set C = {e2,−e2} is contained in
D∞, but pspan(C) ̸= pspan(D∞). Notice that C satisfies parts (v), (vi), and (vii) of Theorem
14, but C is not a positive spanning set of span(D∞).

In practice, Theorem 14(vii) is useful to decide if a given set is a positive spanning set.
Theorem 14(vii) can also be used to show how to extend a set that is not a positive spanning set
into a positive spanning set by adding only one vector.

Proposition 16 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors. Suppose
pspan(D) ̸= span(D). Let m = dim(span(D)) and B = {b1, · · · , bm} ⊆ D be a basis of span(D).
Define the vector w = −

∑m
j=1 bj . Then

(i) the set D′ = D ∪ {w} is a positive spanning set of span(D), and
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(ii) the set D′′ = D ∪ −B is a positive spanning set of span(D).

Proof (i) Let C = B ∪ {w}. By [3, Thm 6.4], pspan(C) = span(B) = span(D). We also have
that the sum of the vectors of C is the null vector. Therefore, Theorem 14(v) ensures that
pspan(D′) = span(D).
(ii) The result follows similarly using C = B ∪ (−B). ⊓⊔

One of the most useful properties of a positive spanning set of Rn is that for any nonzero
vector v ∈ Rn, there exists a vector d in the positive spanning set for which

v⊤d > 0.

It follows that given f ∈ C1, a positive spanning set of Rn contains a descent direction of f at
any point x0 ∈ Rn where ∇f(x0) ̸= 0n. This result can be generalized to the linear subspaces
and infinite sets. To do this, we apply the following lemma.

Lemma 17 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors. If pspan(D) ̸=
span(D), then all the vectors in D are contained in a closed half-space of span(D).

Proof Follows immediately from [22, Corollary 11.7.3]. ⊓⊔

Proposition 18 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors. Then
pspan(D) = span(D) if and only if for any nonzero vector v ∈ span(D) there exists a vector
d ∈ D such that

v⊤d > 0. (4)

Proof (⇒) Suppose pspan(D) = span(D). Let v be a nonzero vector in span(D). As v ∈
pspan(D), v can be written as

v = α1d1 + α2d2 + · · ·+ αmdm,

where αj ≥ 0 for all j ∈ {1, 2, . . . ,m}. It follows that

0 < v⊤v = α1d
⊤
1 v + α2d

⊤
2 v + · · ·+ αmd⊤mv.

Hence, we must have d⊤j v > 0 for at least one j ∈ {1, 2, . . . ,m}.
(⇐) Conversely, suppose that given any v ∈ span(D) \ {0n} there exists a d ∈ D such that
v⊤d > 0. If pspan(D) ̸= span(D), then by Lemma 17 there exists h ∈ span(D) \ {0n} such that
all vectors in D are contained in {w ∈ span(D) : w⊤h ≤ 0}. This leads to a contradiction by
taking v = h. ⊓⊔

In Proposition 18, if we let the nonzero vector v be in Rn rather than span(D), then the
result does not necessarily hold. The forward direction is true if we replace the strict inequality
in (4) by an inequality. Proposition 19 provides a proof of this claim.

Proposition 19 Let D ⊆ Rn be a nonempty (possibly infinite) set of nonzero vectors. If pspan(D) =
span(D), then for any vector v ∈ Rn, there exists a vector d ∈ D such that

v⊤d ≥ 0.

Proof Let v ∈ Rn and note that v⊤d = (PD v)⊤d for all d ∈ D. If PD v = 0n, then v⊤d = 0 for
all d ∈ D. If PD v ̸= 0n, then by Proposition 18 there exists d ∈ D such that (PD v)⊤d > 0. ⊓⊔

The converse of Proposition 19 is not necessarily true. For example, consider the set D =
{e1,−e1, e2} ⊆ R2. For this set, for any vector v ∈ R2, there exists d ∈ D such that v⊤d ≥ 0,
however pspan(D) ̸= span(D).

In the next section, the notion of cosine measure relative to a linear subspace is investigated.
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4 Cosine measure relative to a subspace

Definition 6 extends the definition of the cosine measure to include the idea of a cosine measure
relative to a subspace. In this section we explore the basic properties of this new definition. As
we are most interested in the cosine measure relative to span(D), many results focus on cmD(D).

Since the definition of the cosine measure assumes D is finite, results involving the cosine
measure include the assumptions that D in finite.

We begin with the obvious relationship between the cosine measure and the cosine measure
relative to a subspace.

Proposition 20 Let D ⊆ Rn be a nonempty finite set of nonzero vectors, L be a nontrivial
linear subspace of Rn. Then

cm(D) ≤ cmL(D)

with equality if and only if cV(D) ∩ L ̸= ∅.

Proof Since L is a nontrivial subspace of Rn, the definitions of the cosine measures ensure that

cm(D) = min
u∈Rn

∥u∥=1

max
d∈D

u⊤d

∥d∥
≤ min

u∈L
∥u∥=1

max
d∈D

u⊤d

∥d∥
= cmL(D).

Now, suppose cm(D) = cmL(D). Let u∗ ∈ cVL(D). Then u∗ must be in cV(D), so cV ∩ L ̸= ∅.
Conversely, suppose cV(D) ∩ L ̸= ∅. Let u# ∈ cV(D) ∩ L. Then

cm(D) = max
d∈D

(u#)⊤d

∥d∥
≥ min

u∈L
∥u∥=1

max
d∈D

u⊤d

∥d∥
= cmL(D).

Since cm(D) ≤ cmL(D), we must have cm(D) = cmL(D). ⊓⊔

4.1 Relating pspan(D) and cmD(D)

We now turn our attention to how the cosine measure relative to a subspace provides knowledge
about positive spanning properties. We begin with an example computing the cosine measure
relative to a subspace. We will return to this example after each result to illustrate what the
information the cosine measure relative to a subspace provides. In the following example, it is
relatively easy to find the exact value of the cosine measure relative to a subspace since the
subspaces considered are either one dimensional or two dimensionals. A deterministic algorithm
will be provided in Section 5.

Example 21 Consider the sets of directionsD1 = {e1,−e1, e2,−e2} ⊆ R3 andD2 = {e1,−e1, e2} ⊆
R3 and the subspaces L = {x ∈ R3 : 4x1 = 3x2, x3 = 0} and M = {x ∈ R3 : x1 = x3 = 0}. First,
note that

cm (D1) = 0, cV(D1) = {e3,−e3}
and cm (D2) = 0, cV(D2) = {v = (0, v2, v3) : ∥v∥ = 1, v2 ≤ 0}.

The shaded regions in Figure 1 represent the positive span of D1 on the left and of D2 on
the right. Both figures also show the subspaces L and M .

There are exactly two unit vectors in L:

u1 =

0.60.8
0

 and u2 =

−0.6−0.8
0

 .
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M

L

pspan(D1)−e1

e1

e2

−e2 M

L

pspan(D2)−e1

e1

e2

Fig. 1 Illustrations of the positive spans of D1 and D2

The cosine measures and cosine vectors relative to the subspace L are

cmL(D1) = min

{
max
d∈D1

u⊤d : u ∈ {u1, u2}
}

= 0.8, cVL(D1) = {u1, u2}

and cmL(D2) = min

{
max
d∈D2

u⊤d : u ∈ {u1, u2}
}

= 0.6, cVM (D2) = {u2}.

In the subspace M, there are exactly two unit vectors: e2 and −e2. We obtain

cmM (D1) = min

{
max
d∈D1

u⊤d : u ∈ {e2,−e2}
}

= 1, cVL(D1) = {e2,−e2}

and cmM (D2) = min

{
max
d∈D2

u⊤d : u ∈ {e2,−e2}
}

= 0, cVM (D2) = {−e2}.

Considering the subspaces span(D1) and span(D2), we find

cmD1
(D1) = 1/

√
2, cVD1

(D1) = {(v1, v2, 0) : |v1| = |v2| = 1/
√
2}

and cmD2
(D2) = 0, cVD2

(D2) = {−e2}.

Given a nontrivial finite set D ⊆ Rn, it is known that cm(D) > 0 if and only if D positively
spans Rn [21, Theorem 4.2]. Note that since pspan(D) ⊆ span(D), the previous result can be
expressed as follows: given a nontrivial finite set D ⊆ Rn, we have cm(D) > 0 if and only if
pspan(D) = span(D). Thus, neither D1 nor D2 in Example 21 is a positive spanning set of R3.
The cosine measure provides no further information.

The next proposition shows the ability of the cosine measure relative to a subspace to detect
if the subspace is contained in the positive span of D.

Proposition 22 Let D ⊆ Rn be a nonempty set of nonzero vectors and L ⊆ span(D) be a
nontrivial linear subspace. Then L ⊆ pspan(D) if and only if cmL(D) > 0. In particular,
pspan(D) = span(D) if and only if cmD(D) > 0.

Proof (⇒) Suppose L ⊆ pspan(D). Let u∗ ∈ cVL(D). Since u∗ ∈ L, we have that u∗ can be
expressed as u∗ = α1d1 + α2d2 + · · ·+ αmdm, where αj ≥ 0 for all j ∈ {1, 2, . . . ,m}. Similar to
Proposition 18, 1 = (u∗)⊤u∗ = α1d

⊤
1 u

∗ + α2d
⊤
2 u

∗ + · · · + αmd⊤mu∗ implies d⊤j v > 0 for at least
one j ∈ {1, 2, . . . ,m}. Thus cmL(D) > 0.

(⇐) Conversely, suppose cmL(D) > 0. This implies that given any v ∈ L with ∥v∥ = 1 there
exists d ∈ D such that v⊤d > 0. If L is not a subset of pspan(D), then pspan(D) ̸= span(D),
so applying Lemma 10 in the same manner as Proposition 18 leads to the same contradiction.
Thus L ⊆ pspan(D).

The final statement comes from setting L = span(D). ⊓⊔
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In Example 21, cmL(D1) > 0, cmL(D2) > 0, cmM (D1) > 0; thus L ⊆ pspan(D1), L ⊆
pspan(D2), and M ⊆ pspan(D1). Also, cmD1

(D1) > 0, so pspan(D1) = span(D1). However,
cmM (D2) ≤ 0, so M is not a subspace of pspan(D2). Also, cmD2

(D2) = 0, so pspan(D2) ̸=
span(D2).

Next we prove the claim in the introduction: “if D is a positive spanning set of a proper
subspace, then the cosine measure will always return 0”.

Corollary 23 Let D ⊆ Rn be a nonempty finite set of nonzero vectors. Suppose span(D) ̸= Rn.
If pspan(D) = span(D), then cm(D) = 0.

Proof Select any v ∈ Rn with ∥v∥ = 1. Let vD = PD v and vD⊥ = v − vD. Since pspan(D) =
span(D), Proposition 22 implies cmD(D) > 0, which further implies

max
d∈D

(vD)⊤d

∥d∥
≥ 0,

with equality only if vD = 0n. Since vD⊥ is in the orthogonal subspace to D, (vD⊥)⊤d = 0 for
all d ∈ D. Thus,

max
d∈D

(v)⊤d

∥d∥
= max

d∈D

(vD)⊤d

∥d∥
+max

d∈D

(vD⊥)⊤d

∥d∥
≥ 0,

with equality only if vD = 0n. Selecting v to be in the orthogonal subspace to span(D) now
demonstrates cm(D) = 0. ⊓⊔

In Example 21, span(D1) ̸= R3 and cm(D1) = 0, so Corollary 23 allows for the possibility
that pspan(D1) = span(D1). However, notice that this is not sufficient to ensure that result, as
D2 in Example 21 also has cm(D2) = 0, but pspan(D2) ̸= span(D2). Hence, Corollary 23 cannot
be made into an ‘if and only if’ statement.

The next theorem further investigates the relation between the value of the cosine measure
and the value of the cosine measure relative to the subspace span(D).

Theorem 24 Let D be a nonempty finite set of nonzero vectors in Rn. If cm(D) ̸= cmD(D),
then pspan(D) = span(D) ̸= Rn.

Proof If cm(D) ̸= cmD(D), then Proposition 20 using L = Rn implies that span(D) ̸= Rn.
For eventual contradiction, suppose cm(D) ̸= cmD(D) and pspan(D) ̸= span(D). From

Proposition 20, cm(D) ̸= cmD(D) implies that cm(D) < cmD(D). From Proposition 22, pspan(D) ̸=
span(D) implies that cmD(D) ≤ 0. Hence, we have

cm(D) < cmD(D) ≤ 0. (5)

Let v ∈ cV(D) and notice that Proposition 20 implies v /∈ span(D). Let vD = PD v and notice
that v⊤d = v⊤Dd for all d ∈ D. This implies that

cm(D) = max
d∈D

v⊤
d

∥d∥
= max

d∈D
v⊤D

d

∥d∥
,

which further implies vD ̸= 0n. Define ℓ = ∥vD∥. Considering vD ∈ span(D) and ∥ 1ℓ vD∥ = 1, we
obtain

cmD(D) ≤ max
d∈D

(
1

ℓ
vD

)⊤
d

∥d∥
=

1

ℓ
cm(D) < cm(D),

where the last inequality comes from 0 < ℓ < 1 and cm(D) < 0. This contradicts inequality (5),
so the initial supposition cannot hold. ⊓⊔

Returning to Example 21, notice that cm(D1) = cmD1
(D1), and indeed we have span(D1) =

pspan(D1) ̸= R3. In Example 21, we find the cm(D2) = cmD2
(D2) = 0, so Theorem 24 does not

apply. In the next section, we explore what cmD(D) = 0 tells us about D.
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4.2 Consequence of cmD(D) = 0

In this section, we focus exclusively on properties of cmD(D). Since the results do not involve
cm(D), we no longer require the assumption that D is a finite set. However, for the sake of
simplicity, we continue to assume that D is a nonempty set of nonzero vectors.

To explore the consequences of cmD(D) = 0 we first begin by examining the other extreme
case: cmD(D) = 1.

Proposition 25 Let D ⊆ Rn be a nonempty set of nonzero vectors. Define U = {u ∈ span(D) :

∥u∥ = 1} and D̂ = cl{d/∥d∥ : d ∈ D}, where cl denotes the closure of the set. Then the following
are equivalent.

(i) U = D̂,
(ii) cmD(D) = 1,
(iii) cVD(D) = U ,
(iv) AD(D) = U .

Proof Clearly (i) implies (ii), (iii), and (iv). Therefore we only need to show (ii) implies (i).

Suppose cmD(D) = 1. By construction, D̂ ⊆ U . Let u∗ ∈ U . By definition of the cosine measure
relative to span(D),

1 = cmD(D) = min
u∈ span(D)∥u∥=1

sup
d∈D

u⊤d

∥d∥
= min

u∈ span(D)
∥u∥=1

sup
d̂∈D̂

u⊤d̂ ≤ sup
d̂∈D̂

(u∗)⊤d̂ ≤ ∥u∗∥ = 1,

where the last inequality is true by Cauchy–Schwarz. Moreover, the last inequality is an equality
if and only if d̂ = u∗. Since equality holds across the above, this implies u∗ ∈ D̂. Thus U ⊆ D̂,
which provides (i) and the proof is complete. ⊓⊔

An important consequence of Proposition 25 is that if |D| = 2, then either cmD(D) = 1 or
cmD(D) < 0.

Corollary 26 Let D ⊆ Rn be a set of nonzero vectors with exactly 2 vectors. Then either
cmD(D) = 1 or cmD(D) < 0.

Proof Let D = {d1, d2}. Set u = −
(

d1

∥d1∥ + d2

∥d2∥

)
. If u = 0n, then Proposition 25 creates

D̂ = { d1

∥d1∥ ,−
d1

∥d1∥} = U , so cmD(D) = 1. If u ̸= 0n, then set u∗ = u/∥u∥ and notice

cmD(D) ≤ max

{
(u∗)⊤d1
∥d1∥

,
(u∗)⊤d2
∥d2∥

}
=

1

∥u∥

(
−1− d⊤1 d2

∥d1∥∥d2∥

)
< 0.

⊓⊔

We now begin our examination of the consequences of cmD(D) = 0. Our goal is to show that
cmD(D) = 0 if and only if D contains a finite nontrivial subset that is a positive spanning. The
proof is reductionist in nature and uses the following lemma, which shows that if cmD(D) = 0,
then there exists a subset V ⊆ D that is strictly smaller than D and has cmV (V ) ≥ 0.

Lemma 27 Let D ⊆ Rn be a nonempty set of nonzero vectors. If cmD(D) = 0, then there exists
a finite subset V ⊆ D such that 1 < |V | < |D| and cmV (V ) ≥ 0.
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Proof Let u∗ ∈ cVD(D). Define H = {v ∈ span(D) : (u∗)⊤v = 0} and V = D ∩ H. Since
cmD(D) = 0, by definition there exists at least one vector in V .

If |D| = |V |, then V = D, which implies (u∗)⊤d = 0 for all d ∈ D. This yields (u∗)⊤v = 0 for
all v ∈ span(D), which implies u∗ = 0n contradicting ∥u∗∥ = 1. Thus, |V | < |D|.

Finally, for eventual contradiction, suppose cmV (V ) < 0. This implies that there exists v∗ ∈
span(V ) such that (v∗)⊤d < 0 for all d ∈ V . For ϵ > 0, define

u′ = u∗ + ϵv∗ ∈ span(D).

Given any d ∈ V , we have

(u′)⊤d = (u∗ + ϵv∗)⊤d = (u∗)⊤d+ (ϵv∗)⊤d < 0,

as (u∗)⊤d = 0 and (ϵv∗)⊤d < 0. Given d ∈ D \ V , we have

(u′)⊤d = (u∗)⊤d+ (ϵv∗)⊤d ≤ max
d∈D\V

(
∥d∥ (u

∗)⊤d

∥d∥

)
+ (ϵv∗)⊤d.

Since u∗ ∈ cVD(D), we have

max
d∈D\V

(
∥d∥ (u

∗)⊤d

∥d∥

)
< 0.

Thus, for ϵ sufficiently small (u′)⊤d < 0 for all d ∈ D. The vector u′ contradicts cmD(D) = 0,
and therefore we must have cmV (V ) ≥ 0.

Finally, |V | > 1, as if |V | = 1, then cmV (V ) = −1. If V is not finite, then apply Theorem 14
to reduce to a finite subset. ⊓⊔

We now present the main result for this subsection.

Theorem 28 Let D ⊆ Rn be a nonempty set of nonzero vectors. Suppose pspan(D) ̸= span(D).
Then cmD(D) = 0 if and only if D contains a nonempty finite proper subset V such that
pspan(V ) = span(V ).

Proof First, note that pspan(D) ̸= span(D) implies cmD(D) ≤ 0.
(⇐) Suppose there exists a nonempty proper subset V ⊂ D such that pspan(V ) = span(V ).

Let u∗ ∈ cVD(D) and define u∗
V = PV u

∗ and u∗
V ⊥ = u∗ − u∗

V . Since u∗
V ⊥ is in the orthogonal

subspace to V , we have

sup
d∈V

(u∗)⊤v

∥v∥
= sup

d∈V

(u∗
V )

⊤v

∥v∥
≤ sup

d∈D

(u∗
V )

⊤d

∥d∥
= sup

d∈D

(u∗)⊤d

∥d∥
− sup

d∈D

(u∗
V ⊥)

⊤d

∥d∥
≤ cmD(D) ≤ 0. (6)

If u∗
V ̸= 0n, then Proposition 18 would imply the existence of v ∈ V with (u∗

V )
⊤v > 0, therefore

equation (6) implies that u∗
V = 0n. Substituting u∗

V = 0n in equation (6) shows cmD(D) = 0.
(⇒) Suppose cmD(D) = 0. Without loss of generality, we assume D is finite. (Indeed, if D

is not finite, then apply Theorem 14 to drop to a finite set.) Let m = |D|. Note that m ≥ 3, as
|D| = 1 implies cmD(D) = −1 and |D| = 2 implies cmD(D) = 1 or cmD(D) < 0.

By Lemma 27, there exists a nonempty proper subset D1 ⊆ D such that 1 < |D1| < m
and cmD1(D1) ≥ 0. If cmD1(D1) > 0, then V = D1 is our desired set. If cmD1(D1) = 0, then
|D1| > 2 and therefore we can repeat the procedure as necessary to generate a nonempty proper
subset Dk ⊂ Dk−1 such that 2 ≤ |Dk| < |Dk−1| ≤ m− k and cmDk

(Dk) ≥ 0. This process must
terminate before k = m− 1 or a contradiction is created. When the procedure is terminated we
have cmDk

(Dk) > 0, so V = Dk is our desired set. ⊓⊔
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The previous theorem can be adapted to the cosine measure of D or reformulated to discuss
dimensions of subspaces.

Corollary 29 Let D ⊆ Rn be a nonempty set of nonzero vectors.

(i) Suppose pspan(D) ̸= Rn. Then cm(D) = 0 if and only if D contains a nonempty proper
subset V such that pspan(V ) = span(V ).

(ii) Suppose pspan(D) ̸= span(D). Then cmD(D) = 0 if and only if D contains a positive basis
of a linear subspace L ⊂ span(D) with 1 ≤ dim(L) < dim(span(D)).

(iii) Suppose pspan(D) ̸= span(D). Then cmD(D) = 0 if and only if D contains a minimal
positive basis of a linear subspace L ⊂ span(D) with 1 ≤ dim(L) < dim(span(D)).

Proof Item (i) is immediate from Theorem 28. Item (ii) results from rephrasing Theorem 28 in
terms of positive bases. Item (iii) follows from [24, Theorem 1], where it is shown that a positive
basis of a linear subspace can be partitioned to minimal positive bases [24, Theorem 1]. ⊓⊔

4.3 Bounding the norm of the gradient in directional direct-search methods

Directional methods such as the Generalized Pattern Search (GPS) [25] and the Mesh Adaptive
Direct Search (MADS)[1] algorithms are foundational methods in derivative-free optimization
[3,6]. Their convergence rely on applying poll steps, evaluating f(xk + d), d ∈ D where D is a
positive basis for Rn, to seek improvement in the objective function. An important result is that
in the case of a failed poll step (i.e., f(xk) ≤ f(xk + d) for all d ∈ D), the cosine measure of D
combined with the radius of D provides an error bound on the gradient of f (assuming ∇f is
Lipschitz continuous). We provide a formal statement below from [6], but recommend seeing [8,
16] for alternate presentations.

Given the nature of directional direct-search algorithm, in this subsection we continue to
assume that 0n /∈ D.

Theorem 30 [6, Theorem 2.8] Let D ⊆ Rn be a nonempty finite subset of nonzero vectors with
radius ∆D. Let f : dom f ⊆ Rn → R and x0 ∈ dom f . Suppose D positively spans Rn and
f(x0) ≤ f(x0+d) for all d ∈ D. If ∇f is Lipschitz continuous with constant L∇f ≥ 0 in an open
set containing the ball Bn(x

0;∆D), then

∥∇f(x0)∥ ≤ 1

2
L∇f cm(D)−1∆D.

We next present two extensions of this result. Theorem 31(i) directly extends Theorem 30 to
allow for subspaces and infinite sets. (Setting L = Rn and D finite in Theorem 31(i) reproduces
Theorem 30.) Theorem 31(ii) presents a new result, demonstrating a stronger error bound in the
situation where the set D contains symmetry.

Theorem 31 Let D ⊆ Rn be a nonempty set of nonzero vectors. Suppose the radius of D
is finite (0 < ∆D < ∞). Let f : dom f ⊆ Rn → R and x0 ∈ dom f . In addition, suppose
pspan(D) = span(D) and f(x0) ≤ f(x0 + d) for all d ∈ D.

(i) If ∇f is Lipschitz continuous with constant L∇f ≥ 0 in an open set containing the ball
Bn(x

0;∆D), then

∥PD∇f(x0)∥ ≤ 1

2
L∇f cmD(D)−1∆D. (7)
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(ii) Suppose in addition that for each d ∈ D there exists αd > 0 such that −αdd ∈ D. If ∇2f is
Lipschitz continuous with constant L∇2f ≥ 0 in an open set containing the ball Bn(x

0;∆D),
then

∥PD∇f(x0)∥ ≤ 1

3
αmaxL∇2f cmD(D)−1∆2

D, (8)

where αmax = supd∈D{αd}.

Proof (i) Let v = −PD∇f(x0). If v ̸= 0n, then by definition, we have

cmD(D) ≤ sup
d∈D

v⊤d

∥v∥∥d∥

and therefore there exists a d ∈ D such that

cmD(D)∥v∥∥d∥ ≤ v⊤d.

If v = 0n, the above holds trivially. Therefore, there exists a vector d ∈ D such that

cmD(D)∥PD∇f(x0)∥∥d∥ ≤ −
(
PD∇f(x0)

)⊤
d. (9)

Applying Taylor’s Theorem and the assumption that f(x0) − f(x0 + d) ≤ 0 for all d ∈ D, we
have

−
(
PD∇f(x0)

)⊤
d = −∇f(x0)⊤d = f(x0)− f(x0 + d) +R1(x

0; d) ≤ R1(x
0; d) (10)

where R1 is the first-order remainder term. Combining equations (9) and (10), then noting that
|R1(x

0; d)| ≤ 1
2L∇f∥d∥2, yields

cmD(D)∥PD∇f(x0)∥∥d∥ ≤ R1(x
0; d) ≤ 1

2
L∇f∥d∥2.

Since span(D) = pspan(D), we know that cmD(D) > 0. Equation (7) follows using the fact
∥d∥ ≤ ∆D for all d ∈ D.

(ii) Suppose that for each d ∈ D there exists αd > 0 such that −αdd ∈ D and let αmax =
supd∈D{αd}. If αmax =∞, then the result holds trivially, so we assume αmax <∞.

Taylor’s Theorem and the assumption that f(x0)− f(x0 + d) ≤ 0 for all d ∈ D, yields

−∇f(x0)⊤d = f(x0)− f(x0 + d) +
1

2
d⊤∇2f(x0)d+R2(x

0; d),

−∇f(x0)⊤d ≤ 1

2
d⊤∇2f(x)d+R2(x

0; d) (11)

and similarly,

−∇f(x0)⊤(−αdd) ≤
α2
d

2
d⊤∇2f(x0)d+R2(x

0;−αdd), (12)

where R2 is the second-order remainder term. Multiplying (11) by α2 and subtracting (12), we
get

−(α2
d + αd)∇f(x0)⊤d = −(α2

d + αd)
(
PD∇f(x0)

)⊤
d ≤ α2

dR2(x
0; d)−R2(x

0;−αdd) (13)
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Therefore, combining equations (9) and (13), then noting that |R2(x
0; d)| ≤ 1

6L∇2f∥d∥3, we find

(α2
d + αd) cmD(D)∥PD∇f(x0)∥∥d∥ ≤ α2

dR2(x
0; d)−R2(x

0;−αdd)

≤ α2
d

L∇2f

6
∥d∥3 +

L∇2f

6
∥ − αdd∥3

≤ (α2
d + α3

d)
L∇2f

3
∥d∥3

Using the bounds ∥d∥ ≤ ∆D and αd ≤ αmax, we obtain (8). ⊓⊔

Theorem 31 could be used in directional direct-search methods in several different manners.
One obvious example would be to use it to generate a stopping condition, particularly in the
case where span(D) = pspan(D). In the case of reduced subspace methods where span(D) ̸=
pspan(D), Theorem 31 could be used to create flags indicating when it is time switch to a different
subspace.

While convergence of the directional direct-search methods requires the use of positive span-
ning sets, it is easy to conceive of an implementation that does not enforce positive spanning sets
at every iteration. The following corollary demonstrates how Theorem 31 might be used to help
determine next steps in the case of a failed poll step where D is not a positive spanning set.

Corollary 32 Let D ⊆ Rn be a nonempty set of nonzero vectors. Suppose the radius of D
is finite (0 < ∆D < ∞). Let f : dom f ⊆ Rn → R and x0 ∈ dom f . In addition, suppose
pspan(D) ̸= span(D) and f(x0) ≤ f(x0 + d) for all d ∈ D.

Let B = {d1, d2 . . . , dm} ⊆ D be a basis of span(D). Define

w = −∆D

∑m
j=1 dj

∥
∑m

j=1 dj∥
, D′ = D ∪ {w}, and D′′ = D ∪ −D.

(i) If ∇f is Lipschitz continuous with constant L∇f ≥ 0 in an open set containing the ball
Bn(x

0;∆D), then at least one of the following holds:

f(x0 + w) < f(x0) or ∥PD∇f(x0)∥ ≤ 1

2
L∇f cmD(D′)−1∆D. (14)

(ii) If ∇2f is Lipschitz continuous with constant L∇2f ≥ 0 in an open set containing the ball
Bn(x

0;∆D), then then at least one of the following holds

f(x0 − d) < f(x0) for some d ∈ D or ∥PD∇f(x0)∥ ≤ 1

3
L∇2f cmD(D′′)−1∆2

D. (15)

Proof (i) Suppose f(x0) ≤ f(x0 + w). By Proposition 16, D′ is a positive spanning set. The
result follows from Theorem 31(i), noting that the scaling of w makes ∆D′ = ∆D.
(ii) Suppose f(x0) ≤ f(x0 − d) for all d ∈ D. By Proposition 16, D′′ is a positive spanning set.
The result follows from Theorem 31, noting that ∆D′′ = ∆D and αd = 1 for all d ∈ D. ⊓⊔

5 Computing the cosine measure relative to a subspace

Section 4 established the value of the cosine measure relative to a subspace. In this section, we
investigate how to compute cmD(D) for a nonempty finite set of nonzero vectors. In Example 21,
we were able to compute the cosine measure relative to a subspace since the subspace considered
were either 1-dimensional or 2-dimensional. In this section, we provide a general deterministic
algorithm to compute the cosine measure relative to a subspace. Note that Algorithm 1 assumes
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D is finite and 0n /∈ D. Reasons for both are clear. If D is infinite, then we must confront the
challenge of how to express the set in a manner suitable for algorithmic use. If we allowed 0n ∈ D,
then the first step of the algorithm would simply become remove 0n from D.

Algorithm 1 is a modification of the algorithm in [10] to allow for subspaces and for the
case where D is not a positive spanning set. To allow for the scenario where D is not a positive
spanning set, Algorithm 1 begins by checking if pspan(D) = span(D). Recall that this can be
done by solving a linear program using Theorem 14(vii). Within the algorithm ps is used as a
flag to store whether D is a positive spanning set (ps = 1) or not (ps = -1). This flag is used in
line (2.1) to control whether γB is positive or negative. The notation G(B) represents the Gram
matrix of B. That is G(B) = B⊤B.

Algorithm 1: The cosine measure of a finite set D relative to span(D)

Given a nonempty finite set D of q nonzero vectors in Rn,
0. Normalize: set D ← {d/∥d∥ : d ∈ D}.
1. Determine if pspan(D) = span(D) and define

(1.1) ps =

{
1, if pspan(D) = span(D)
−1, if pspan(D) ̸= span(D).

2. Let m = dim(span(D)) ≥ 1. For all bases B of span(D) contained in D,
compute

(2.1) γB = (ps)
1√

1m⊤G(B)−11m

(pos. if pspan(D) = span(D), neg. otherwise),

(2.2) uB = γB
(
B⊤)† 1m (the unit vector associated to γB),

(2.3) pB =
[
[pB ]1 · · · [pB ]q

]
= (uB)

⊤D (the dot product vector),

(2.4) p̊B = max
1≤j≤q

[pB ]j (the maximum value in pB).

3. Return

(3.1) cmD(D) =


min
B⊆D

p̊B , if ps = 1 (pspan(D) = span(D)),

min

{
min
B⊆D

p̊B , 0

}
, if ps = −1 (pspan(D) ̸= span(D)).

(3.2) cVD(D) =

{
{uB : p̊B = cmD(D)}, if cmD(D) ̸= 0,

{u ∈ span(D) : D⊤u ≤ 0q, ∥u∥ = 1}, if cmD(D) = 0.

To prove that the algorithm returns the correct cosine measure and the cosine vector set, we
begin by introducing several results that can be viewed as a generalization of the results in [10,
19]. The following lemma is an adaptation of Lemma 1 in [19].

Lemma 33 Let B =
[
d1 · · · dm

]
be a basis of SB = span(B) in Rn written in matrix form where

1 ≤ m ≤ n and where each dj is a unit vector. Then there exist a unit vectors uB ∈ SB such that

(uB)
⊤d1 = · · · = (uB)

⊤dm = γB ,

and
((−1)uB)

⊤d1 = · · · = ((−1)uB)
⊤dm = (−1)γB .

where

γB =
1√

1⊤
mG(B)−11m

> 0. (16)

Moreover,

uB = γB(B
⊤)†1m. (17)
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The proof is essentially identical to the proof of [19, Lemma 1] by replacing Rn with SB .

Lemma 34 Let B = {d1, · · · , dm} be a basis of SB = span(B) in Rn and where each dj is a
unit vector. Suppose u is a unit vector in SB such that u⊤d1 = · · · = u⊤dm = α > 0. Then
α = γB , where γB is defined as in (16).

The previous lemma can be proved using a similar process than the proof of Lemma 13 in [10].
Next, we recall a lemma that will be useful to prove the key theorem of this section.

Lemma 35 [10, Lemma 16] Let ϵ ̸= 0 and let u and v be unit vectors in Rn. Then

(i) ∥u+ ϵv∥ = 1 if and only if ϵ = −2u⊤v, and
(ii) ∥u+ ϵv∥ < 1 implies ∥u− ϵv∥ > 1.
(iii) Assume ∥u± ϵv∥ ≠ 0. Then

u± ϵv

∥u± ϵv∥
= u ⇐⇒ v = ±u.

Theorem 36 Let D be a nonempty set of nonzero vectors in Rn with cmD(D) ̸= 0. Let uB ∈
cVD(D). Then

span(AD(D,uB)) = span(D).

Proof Without loss of generality, assume that all vectors d in D are unit vectors. Suppose that
span(AD(D,uB)) ̸= span(D), i.e., the rank of AD(D,uB) is strictly less than dim(span(D)).
This implies that the kernel of AD(D,uB) is nonempty. Let v ∈ span(D) be a unit vector in the
kernel of AD(D,uB). This means that d⊤v = 0 for all d in AD(D,uB).

Notice that, if d ∈ D \ AD(D,uB), then

d⊤uB < cmD(D).

Consider the vector uB + ϵv ∈ span(D). Since cmD(D) ̸= 0, it follows that uB ̸= ±v as u⊤
Bd ̸= 0

for all d ∈ AD(D,uB). Hence, using Lemma 35(iii), for sufficiently small ϵ > 0 and not equal to
| − 2u⊤

Bv|, we have

d⊤(uB ± ϵv)

∥uB ± ϵv∥
< cmD(D)

for all d ∈ D \ AD(D,uB). Moreover, since d⊤v = 0, it follows that

d⊤(uB ± ϵv)

∥uB ± ϵv∥
=

d⊤uB

∥uB ± ϵv∥
± 0 =

cmD(D)

∥uB ± ϵv∥

for all d ∈ AD(D,uB) and where cmD(D) ̸= 0 by assumption. By Lemma 35(i), ϵ ̸= −2u⊤
Bv

implies that ∥uB + ϵv∥ ≠ 1. By Lemma 35(ii), if ∥uB + ϵv∥ < 1, then ∥uB − ϵv∥ > 1. Select w in
{uB + ϵv, uB − ϵv} such that ∥w∥ > 1. Then

d⊤w

∥w∥
< cmD(D)

for all d ∈ D. This contradicts the definition of cosine measure.

Therefore, span(D) ⊆ span(AD(D,uB)) ⊆ span(D), and the result follows. ⊓⊔
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Theorem 36 can be viewed as an extension of Proposition 17 in [10] for the following two
reasons: the linear subspace span(D) is considered rather than the whole space Rn; and the
assumption that the set D considered is a positive spanning set is deleted and replaced by the
more general condition that cmD(D) ̸= 0.

The following corollary follows from Theorem 36 and the fact that a spanning set of a vector
space contains a basis of the vector space [4, Theorem 2.11].

Corollary 37 Let D be a nonempty set of nonzero vectors in Rn such that cmD(D) ̸= 0. Let
uB ∈ cV(D). Then AD(D,uB) contains a basis of span(D).

We are now ready to show that Algorithm 1 returns the desired values.

Theorem 38 Let D = {d1, . . . , dq} be a set of q ≥ 1 nonzero vectors in Rn. Then Algorithm 1
returns cmD(D) and cVD(D).

Proof Without loss of generality, assume that all vectors dj are unit vectors. Since q ≥ 1,
cVD(D) ̸= ∅. Let uB ∈ cVD(D). Define

ps =

{
1, if pspan(D) = span(D)
−1, if pspan(D) ̸= span(D).

Case (i) ps = 1. Suppose ps = 1. By Proposition 22, this implies cmD(D) > 0. Let uB ∈
cVD(D). By Corollary 37, AD(D,uB) contains a basis of span(D). Without loss of generality, let
this basis (written in matrix form) be B∗ =

[
d1 · · · dm

]
where m = dim(span(D)) ≥ 1. Hence,

cmD(D) = d⊤1 uB = · · · = d⊤muB > 0.

By Lemma 34,

cmD(D) = γB∗ = (1)
1√

1⊤
mG(B∗)−11m

Note that p̊B∗ = max1≤j≤q d
⊤
j uB = γB∗ since γB∗ = cmD(D). Therefore, we have

cmD(D) = min
B⊆D

p̊B = p̊B∗ .

Taking all the vectors uB associated to p̊B such that cmD(D) = p̊B in Step (3.2) returns the
complete set cVD(D).

Case (ii) ps = −1. Suppose ps = −1. Then either cmD(D) < 0 or cmD(D) = 0. When
cmD(D) < 0, using any uB ∈ cVD(D), Corollary 37 guarantees that the AD(D,uB) contains
a basis of span(D). A similar process than the previous case shows that the cosine measure is
equal to

cmD(D) = min
B⊆D

p̊B .

If cmD(D) = 0, then Corollary 37 does not apply, so minB⊆D p̊B can be 0 or strictly positive. (If
cmD(D) = 0, then cmD(D) ≤ minB⊆D p̊B implies that this value cannot be negative.) Therefore,

min

{
min
B⊆D

p̊B , 0

}
returns the exact cosine measure when ps = −1.

When cmD(D) < 0, then the first branch of Step (3.2) returns the complete vector set
cVD(D) by Theorem 36. When cmD(D) = 0, then finding all unit vectors u in span(D) such
that D⊤u ≤ 0q provides the complete vector set, which is the second branch in Step (3.2). ⊓⊔
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6 Conclusion

This paper introduces the definitions of the cosine measure relative to a subspace, and the related
cosine vector set relative to a subspace. These definitions not only generalize the cosine measure
and cosine vector set to allow for working in subspaces, but also generalize these ideas to work
for infinite sets.

Novel results demonstrate the value of these new definitions for working with sets that are
not positive spanning. Proposition 16 shows that any nonempty set of vectors can be extended
to positive spanning set of its span by adding at most one vector to the set. Section 4 provides
several properties of the cosine measure relative to a subspace. Theorem 24 shows that if the
cosine measure of a set D differs from the cosine measure relative to the span of D, then D is
a positive spanning set of its span and span(D) must be a proper subspace of Rn. Theorem 28
proves that the cosine measure relative to span(D) is equal to zero if and only if the set D
contains a positive spanning set of the span of a proper nonempty subset of D. Theorem 31 uses
the notion of cosine measure relative to a subspace to define two error bounds on the projected
gradient of a smooth function. In the case where the set is not a positive spanning set of its
span, Corollary 32 introduces results that could be valuable when the poll step of a derivative-
free algorithm fails. Lastly, a deterministic algorithm is proposed to compute the cosine measure
relative to its span. The algorithm is designed to accept a non-positive spanning set as an input.
Combined, these results demonstrate that the cosine measure relative to a subspace is a valuable
and practical tool to quantify the positive spanning properties of a set relative to a subspace.
On a final note, an implementation of Algorithm 1 in MATLAB is available upon request.
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