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Abstract

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling
the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although
our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step
for interior point methods since it can solve the problems more efficiently by using an approximate
optimal (interior feasible) solution. We also conduct numerical experiments to see the numerical per-
formance of the proposed algorithm when used as a post-processing step of the solvers implementing
interior point methods, using several instances where the symmetric cone is given by a direct product
of positive semidefinite cones. Numerical results show that our algorithm can obtain approximate
optimal solutions more accurately than the solvers. When at least one of the primal and dual prob-
lems did not have an interior feasible solution, the performance of our algorithm was slightly reduced
in terms of optimality. However, our algorithm stably returned more accurate solutions than the
solvers when the primal and dual problems had interior feasible solutions.

1 Introduction

Let E be a real-valued vector space with an inner product ⟨·, ·⟩. Consider the following symmetric cone
programs (SCPs):

(P) inf
x

⟨c, x⟩ s.t. Ax = b, x ∈ K,
(D) sup

(z,y)

b⊤y s.t. z = c−A∗y, (z, y) ∈ K∗ × Rm,

where K ⊆ E is a symmetric cone, K∗ is a dual cone of K, i.e., K∗ = {s ∈ E : ⟨s, x⟩ ≥ 0,∀x ∈ K},
A : E → Rm is a linear operator, b ∈ Rm, c ∈ E and A∗ : Rm → E is the adjoint operator of A, i.e.,
⟨Ax, y⟩ = ⟨x,A∗y⟩ for all x ∈ E and y ∈ Rm. Note that K∗ = K holds since K is a symmetric cone. If
we choose a positive semidefinite cone as a conic constraint, SCP results in semidefinite programming
(SDP). In this study, we are mainly interested in the case where K is a Cartesian product of p simple
positive semidefinite cones Sr1+ , . . . ,Srp+ , i.e., K = Sr1+ × · · · × Srp+ .

Interior point methods are among the most popular and practical algorithms to solve SCPs. In addition
to its practical performance, interior point methods have the theoretical strength of a polynomial-time
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algorithm and have been implemented in many solvers. Recently, projection and rescaling methods were
proposed as new polynomial-time algorithms for the special case of SCP by Lourenço et al. [15], and
Kanoh and Yoshise [12]. Their studies were motivated by a work by Chubanov [5]. A similar type
of algorithm, although not a polynomial-time algorithm, was proposed by Peña and Soheili [20]. The
numerical result of [12] showed that projection and rescaling algorithms solved ill-conditioned instances,
i.e., instances with feasible solutions only near the boundaries of the cone, more stably than the com-
mercial solver Mosek. It is well known that in iterations of interior point methods, the closer the current
solution moves to the optimal solution, the more difficult it becomes to compute the search direction
accurately. In other words, interior point methods cannot work stably near the boundaries of the cone.
Therefore, the numerical results of [12] motivated us to use projection and rescaling algorithms to solve
general SCPs more accurately.

In this study, we propose the algorithms to find approximate optimal solutions to (P) and (D) using
projection and rescaling algorithms as an inner procedure. Although the proposed methods can find
approximate optimal solutions to (P) and (D) by themselves, they can work more efficiently by using
an approximate optimal (interior feasible) solution. To take advantage of this feature, the proposed
algorithm is designed to be used as a post-processing step for interior point methods. We also conduct
numerical experiments to compare the performance of our algorithm with the solvers.

The main contribution of this study is to provide comprehensive numerical results showing whether
the projection and rescaling algorithms can be used to obtain accurate optimal solutions, which will
lead to the development of practical aspects of the projection and rescaling methods. We now mention
two studies [10, 11] focusing on accurately solving SDP. SDPA-GMP [10] is a very accurate SDP solver
that executes the primal-dual interior point method using multiple-precision arithmetic libraries. Using
multiple-precision arithmetic enhances the accuracy of the solution but, at the same time, increases
the computational time. In [11], Henrion, Naldi and Din proposed an algorithm that solves Linear
matrix inequality (LMI) problems in exact arithmetic, which means that their algorithm can be used
to check the feasibility of dual SDPs. Although their algorithm can accurately solve small LMI prob-
lems, it is unsuitable for moderate or large problems due to exact computations. This study differs
from these previous studies in that it focuses on the projection and rescaling methods. Furthermore,
this study differs from these studies in that it proposes an algorithm that can be used in a post-
processing step. Our algorithm is available on the website: https://github.com/Shinichi-K-4649/

Post-processing-using-projection-and-rescaling-methods.git

We developed our algorithm for SDP. The theoretical foundations of our algorithm discussed in Section
3 hold for SCP.

1.1 Motivation

The primary motivation for focusing on solving SDP accurately is to address the practical barriers
that prevent the implementation of the Facial Reduction Algorithm (FRA) [4, 3, 19, 32]. The FRA is
a regularization technique to address SDP that does not satisfy Slater’s condition and was developed
originally by Browein and Wolkowicz [4, 3].

We say that (P) satisfies Slater’s condition or (P) is strongly feasible if there exists a vector x ∈ intK
satisfying Ax = b, where intK is an interior of K. Similarly, Slater’s condition holds for (D) if there
exists z ∈ intK∗ satisfying c − A∗y = z. If (P) and/or (D) do not have the interior feasible solutions,
optimal solutions might not exist, and a duality gap might exist [28, 17, 30], which prevents interior
point methods from working stably.

The FRA transforms SDP with no interior feasible solution into SDP satisfying Slater’s condition or
detects its infeasibility, without changing the optimal value by iteratively projecting the cone into a
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specific subspace. Let us briefly see how the FRA works for (P) here. If (P) has no interior feasible
solution, then there exists a vector f ∈ Rm such that b⊤f ≥ 0 and −A∗f ∈ K∗ \ {0}, see Proposition 2.4
in Section 2.1. If b⊤f = 0 holds, f is called a reducing direction for (P). Otherwise, f is an infeasibility
certificate for (P). The FRA first finds such a vector. If a reducing direction is obtained, then the FRA
generates a new problem with a feasible region equivalent to the feasible region of (P) by replacing the
conic constraint K with K ∩ {−A∗f}⊥, where {−A∗f}⊥ is the space of elements orthogonal to −A∗f .
If a reducing direction exists for a new problem, the FRA tries to find it and generates a new reduced
problem again. The FRA repeats the above process until an infeasibility certificate for a reduced problem
or a strongly feasible problem whose feasible region is equivalent to the feasible region of (P). Thus, one
iteration of the FRA is equivalent to solving a certain SDP to find a reducing direction or an infeasibility
certificate. For example, implementation at the initial iteration of the FRA for (P) corresponds to
solving the following auxiliary system.

(AUX-P) find f ∈ Rm s.t. b⊤f ≥ 0, −A∗f ∈ K∗ \ {0}.

Therefore, what is required to implement the FRA is to solve the auxiliary systems exactly. However,
this requirement is inaccessible for the current solvers because the auxiliary systems rarely satisfy Slater’s
condition. Despite such a barrier to implementing the FRA, several studies have conducted the facial
reduction scheme for some problems that arise in applications [36, 33, 13, 31]. These studies directly
obtain reducing directions using the structure of the problem without solving the auxiliary systems
numerically.

While these approaches, recently, an implementation of the FRA for any SDP has been studied [22, 37,
21, 16]. Permenter and Parrilo [22], and Zhu, Pataki and Tran-Dinh [37] proposed a practical facial
reduction scheme. The common idea of these two studies is that instead of solving an auxiliary system,
we solve another problem whose feasible region is contained in the feasible region of the original auxiliary
system. Although their algorithms might not recover the interior feasible solutions or detect infeasibility,
we can easily implement them. The algorithms of [22] and [37] can be implemented using only LP solvers
and eigenvalue decomposition, respectively.

Permenter, Friberg and Andersen [21], and Lourenço, Muramatsu and Tsuchiya [16] proposed an algo-
rithm solving for arbitrary SDP based on a facial reduction scheme. Permenter, Friberg and Andersen
[21] showed that reducing directions for (P) and (D) can be obtained from relative interior feasible solu-
tions to a self-dual homogenous model of (P) and (D). In addition, based on this result, they proposed a
theoretical algorithm for solving arbitrary SDP. We remark that their algorithm finds reducing directions
only when needed, unlike the conventional FRA. Even if (P) and/or (D) do not satisfy Slater’s condition,
their algorithm directly obtains the optimal solution as long as a complementary solution for (P) and
(D) exists. However, their algorithm requires an oracle that returns relative interior feasible solutions
to the self-dual homogenous model of (P) and (D). Although such solutions are theoretically obtained
using an interior point method tracking a central path, the numerical experiments of [21] showed prac-
tical barriers. On the other hand, the algorithm of [16] requires only an oracle that returns the optimal
solution to (P) and (D) satisfying Slater’s condition, which is a milder requirement than [21]. In [16],
the authors showed that solving the auxiliary systems can be replaced by solving a certain SDP with
primal and dual interior feasible points. This study shows that the first step toward fully implementing
the FRA is to solve SDP with primal and dual interior feasible points as accurately as possible.

One might think this goal is already achievable with the current SDP solvers. However, the accuracy
of the solution that satisfies the termination tolerances specified by the solvers will not be sufficient for
a stable execution of the FRA. Furthermore, setting the value of the termination tolerances too small
can lead to numerical instability of interior point methods. Thus, it is worth studying how to solve SDP
more accurately than ever before.

To see practical barriers to implementing the FRA, let us consider a simple SDP:
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Example 1.1.

(Ex1.1) inf
x

〈1 0 0
0 1 0
0 0 1

 , x

〉
s.t

〈1 1 0
1 0 0
0 0 0

 , x

〉
= 1,

〈0 0 0
0 1 0
0 0 0

 , x

〉
= 0,

〈0 0 1
0 0 0
1 0 2

 , x

〉
= 0,

x ∈ S3+.

The optimal value of (Ex1.1) is 1. This problem is feasible but not strongly feasible. Indeed, any feasible
solution x ∈ S3+ to (Ex1.1) can be represented as

x =

 1 0 −t
0 0 0
−t 0 t

 ,

where t is a real value such that 0 ≤ t ≤ 1. Thus, using a reducing direction, we can reformulate (Ex1.1)
over a lower dimensional positive semidefinite cone. Any reducing direction f ∈ R3 for (Ex1.1) can be
represented as (0,−k, 0)⊤, where k > 0. Indeed, the following holds for such a vector f .

b⊤f = 1× 0 + 0× (−k) + 0× 0 = 0, and−A∗f =

0 0 0
0 k 0
0 0 0

 ∈ S3+.

Since −A∗f ∈ S3+, the region S3+ ∩ {−A∗f}⊥ can be represented as S3+ ∩ {−A∗f}⊥ = US3−r
+ U⊤, where

r is a rank of −A∗f and U ∈ R3×3−r is a matrix whose columns are the eigenvectors corresponding to
the zero eigenvalues of −A∗f . Suppose that U is given by

U =

1 0
0 0
0 1

 .

Then, we can generate a reduced problem with interior feasible points as follows:

inf
x̄

〈(
1 0
0 1

)
, x̄

〉
s.t

〈(
1 0
0 0

)
, x̄

〉
= 1,〈(

0 0
0 0

)
, x̄

〉
= 0,〈(

0 1
1 2

)
, x̄

〉
= 0,

x̄ ∈ S2+.

Let us apply the FRA to this problem using the commercial solver Mosek. First, we computed the
reducing direction with Mosek by using the formulation proposed in [16] (see Section 4.3.1). Then, the
following vectors were obtained.

fMosek =

 3.46e-09
-4.00e-00
-1.50e-08

 and −A∗fMosek =

-3.46e-09 -3.46e-09 1.50e-08
-3.46e-09 4.00e-00 0
1.50e-08 0 3.00e-08

 .
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Table 1: Comparison of the reduced problems

Thresholds S3+ ∩ {−A∗fMosek}⊥ Computed optimal value of the reduced problem

Tλ = 1e-7 US2+U⊤ 1
Tλ = 1e-8 US1+U⊤ infeasible

The eigenvalue decomposition of −A∗fMosek was computed as follows:

−A∗fMosek = PMosek

-9.20e-09 0 0
0 3.57e-08 0
0 0 4.00e-00

P⊤
Mosek,

where PMosek ∈ R3×3 is a matrix whose columns are the eigenvectors corresponding to the eigenvalues of
−A∗fMosek. Next, we generated a reduced problem. To identify S3+∩{−A∗fMosek}⊥, for each eigenvalue
of −A∗fMosek, we must correctly determine whether it is zero or not. In this example, we estimated
eigenvalues of −A∗fMosek are zero if they are less than a threshold Tλ. Table 1 shows that the computed
optimal value of the reduced problem is very sensitive to the value of Tλ. If the threshold Tλ is set to
1e-7, the rank of −A∗fMosek is 1, yielding a reduced problem with an optimal value very close to 1. On
the other hand, if the threshold Tλ is set to 1e-8, the rank of −A∗fMosek is 2. Then, solving this reduced
problem with Mosek, we obtained the infeasibility certificate.

Let us now compute the reducing direction using our algorithm proposed in Section 4 and the approxi-
mate optimal solution returned by Mosek. The computed reducing direction was as follows.

fPro =

 7.34e-14
-4.00e-00
-4.90e-14

 and −A∗fPro =

-7.34e-14 -7.34e-14 4.90e-14
-7.34e-14 4.00e-00 0
4.90e-14 0 9.80e-14

 .

The eigenvalue decomposition of −A∗fPro was computed as follows:

−A∗fPro = PPro

-8.67e-14 0 0
0 1.11e-13 0
0 0 4.00e-00

P⊤
Pro,

where PPro ∈ R3×3 is a matrix whose columns are the eigenvectors corresponding to the eigenvalues of
−A∗fPro. The proposed method found a more accurate solution to the formulation proposed in [16],
resulting in a higher accuracy of the computed reducing direction. The behavior of the FRA is more
stable if the reduced problem is generated using the vector fPro rather than the vector fMosek. From this
example, we can see that a more accurate method of solving SDP is very effective in obtaining accurate
reducing directions and that accurate reducing directions are essential for a stable execution of the FRA.

1.2 Structure of this paper

The remainder of this paper is organized as follows. Section 2 is devoted to some preliminaries and
notations. We review the feasibility statuses of SCP and the projection and rescaling algorithm proposed
by Kanoh and Yoshise [12]. Section 3 presents the theoretical foundations of our algorithm and explains
our algorithm. We also describe a practical version of our algorithm that employs some implementation
strategies. Section 4 presents numerical results showing that our algorithm stably obtains optimal
solutions with higher accuracy than the solvers. The conclusions are summarized in Section 5.
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2 Preliminaries and Notations

This section describes the preliminaries and notations used throughout this paper. Section 2.1 provides
an overview of SCP, focusing on the feasibility statuses. Section 2.2 briefly introduces Euclidean Jordan
algebras. Although our algorithm uploaded on the website is an algorithm for solving SDP, its theoretical
foundations can be extended to SCP without problems. The algorithm for SCP can be concisely described
using Euclidean Jordan algebras. Thus, we summarize the minimum knowledge of Euclidean Jordan
algebras required to understand this study. Section 2.3 briefly describes the projection and rescaling
algorithm proposed by [12], which is used in our algorithm. Our algorithm employed the algorithm of
[12] because the numerical results in [12] showed that their algorithm was superior to the other methods
in terms of computation time.

2.1 Feasibility classes of SCP

Let θp ∈ R ∪ {±∞} and θd ∈ R ∪ {±∞} be the primal and dual optimal values, respectively. If (P)
is infeasible, θp takes +∞ and if (D) is infeasible, θd takes −∞. By C⊥ ⊆ E, we denote the space of
elements orthogonal to a set C ⊆ E. Here, we review four different mutually exclusive feasibility classes
of SCP. These feasibility classes are defined in the field of conic linear programming. Therefore, in this
section, we purposely leave K∗ as it is. First, let us look at the definition of strong feasibility.

Definition 2.1 (Strongly feasible). We say that (P) is strongly feasible (or satisfies Slater’s condition)
if there exists x ∈ int K satisfying Ax = b. Similarly, we say that (D) is strongly feasible (or satisfies
Slater’s condition) if there exists y ∈ Rm satisfying c−A∗y ∈ int K∗.

If primal and dual problems are strongly feasible, θp = θd and the existence of optimal solutions to both
problems are guaranteed.

Proposition 2.2. 1. If (P) is strongly feasible, then θp = θd. In addition, if (D) is feasible, then
(D) has an optimal solution.

2. If (D) is strongly feasible, then θp = θd. In addition, if (P) is feasible, then (P) has an optimal
solution.

Proof. See Theorems 3.2.6 and 3.2.8 in [23].

We next see the characterization of strong infeasibility.

Definition 2.3 (Strongly infeasible). We say that (P) is strongly infeasible if there exists y ∈ Rm such
that −A∗y ∈ K∗ and b⊤y > 0. Similarly, we say that (D) is strongly infeasible if there exists x ∈ K such
that Ax = 0 and ⟨c, x⟩ < 0.

A vector y ∈ Rm satisfying −A∗y ∈ K∗ and b⊤y > 0 is called an improving ray of (D) because y makes
(D) unbounded, i.e., θd = +∞, if (D) is feasible. We also call x ∈ K an improving ray of (P) if Ax = 0
and ⟨c, x⟩ < 0. If there exists an improving ray of (P) (or (D)), then we can see that the hyperplane
{A∗y}⊥ (or {x}⊥) strictly separates the affine space of (P) (or (D)) and K (or K∗), which implies the
infeasibility of (P) (or (D)).

To define the remaining feasibility class, we introduce the following proposition.

Proposition 2.4. 1. (P) is not strongly feasible if and only if there exists y ∈ Rm such that −A∗y ∈
K∗, A∗y ̸= 0 and b⊤y ≥ 0.
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2. (D) is not strongly feasible if and only if there exists a nonzero x ∈ K such that Ax = 0 and
⟨c, x⟩ ≤ 0.

Proof. See Lemma 3.2 in [32] or Theorems 3.1.3 and 3.1.4 in [6].

Here, we define the following feasibility class.

Definition 2.5 (Weak status). We say that (P) is in weak status if there exists y ∈ Rm such that
−A∗y ∈ K∗, A∗y ̸= 0 and b⊤y = 0. Similarly, we say that (D) is in weak status if there exists a nonzero
x ∈ K such that Ax = 0 and ⟨c, x⟩ = 0.

We sometimes divide this class into two classes and call them weakly feasible and weakly infeasible,
respectively. It is understood that a problem is weakly feasible if it is feasible and does not have interior
feasible solutions. Similarly, it is understood that a problem is weakly infeasible if it is infeasible and its
dual does not have an improving ray. See [17] for more details.

A vector y ∈ Rm (or a vector −A∗y ∈ E) satisfying −A∗y ∈ K∗, A∗y ̸= 0 and b⊤y = 0 is called a
reducing direction for (P). We also call a nonzero x ∈ K a reducing direction for (D) if Ax = 0 and
⟨c, x⟩ = 0. As discussed in Section 1.1, reducing directions are used to regularize problems in the FRA.

2.2 Euclidean Jordan algebras and Symmetric cones

Let E be a real-valued vector space equipped with an inner product ⟨·, ·⟩ and a bilinear operation ◦ :
E × E → E, and e be the identity element, i.e.,x ◦ e = e ◦ x = x holds for any x ∈ E. (E, ◦) is called a
Euclidean Jordan algebra if it satisfies

x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩

for all x, y, z ∈ E and x2 := x ◦ x. We denote y ∈ E as x−1 if y satisfies x ◦ y = e. c ∈ E is called an
idempotent if it satisfies c ◦ c = c, and an idempotent c is called primitive if it can not be written as a
sum of two or more nonzero idempotents. A set of primitive idempotents c1, c2, . . . ck is called a Jordan
frame if c1, . . . ck satisfy

ci ◦ cj = 0 (i ̸= j), ci ◦ ci = ci (i = 1, . . . , k),

k∑
i=1

ci = e.

For x ∈ E, the degree of x is the smallest integer d such that the set {e, x, x2, . . . , xd} is linearly
independent. The rank of E is the maximum integer r of the degree of x over all x ∈ E. The following
properties are known.

Proposition 2.6 (Spectral theorem (cf. Theorem III.1.2 of [7])). Let (E, ◦) be a Euclidean Jordan
algebra having rank r. For any x ∈ E, there exist real numbers λ1, . . . , λr and a Jordan frame c1, . . . , cr
for which the following holds:

x =

r∑
i=1

λici.

The numbers λ1, . . . , λr are uniquely determined eigenvalues of x (with their multiplicities). Furthermore,
trace(x) :=

∑r
i=1 λi, det(x) :=

∏r
i=1 λi.

For any x, y ∈ E, we define the inner product ⟨·, ·⟩ and the norm ∥ · ∥ as ⟨x, y⟩ := trace(x ◦ y) and
∥x∥ :=

√
⟨x, x⟩, respectively. For any x ∈ E having spectral decomposition x =

∑r
i=1 λici as in

Proposition 2.6, we also define ∥x∥∞ := max{|λ1|, . . . , |λr|}.
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It is known that the set of squares K = {x2 : x ∈ E} is the symmetric cone of E (cf. Theorems III.2.1
and III.3.1 of [7]). The following properties can be derived from the results in [7], as in Corollary 2.3 of
[35]:

Proposition 2.7. Let x ∈ E and let
∑r

j=1 λjcj be a decomposition of x given by Propositoin 2.6. Then

(i) x ∈ K if and only if λj ≥ 0 (j = 1, 2, . . . , r),

(ii) x ∈ intK if and only if λj > 0 (j = 1, 2, . . . , r).

A Euclidean Jordan algebra (E, ◦) is called simple if it cannot be written as any Cartesian product of
non-zero Euclidean Jordan algebras. If the Euclidean Jordan algebra (E, ◦) associated with a symmetric
cone K is simple, then we say that K is simple. In this study, we will consider that K is given by a
Cartesian product of p simple positive semidefinite cones Srℓ+ , K := Sr1+ × · · · × Srp+ , whose rank and
identity element are rℓ and eℓ (ℓ = 1, . . . , p). The rank r and the identity element of K are given by

r =

p∑
ℓ=1

rℓ, e = (e1, . . . , ep).

Furthermore, for any x ∈ E1 × · · · × Ep, det(x) =
∏p

ℓ=1

∏rℓ
i=1 λi.

In what follows, xℓ stands for the ℓ-th block element of x ∈ E, i.e., x = (x1, . . . , xp) ∈ E1 × · · · × Ep.
For each ℓ = 1, · · · , p, we define λmin(xℓ) := min{λ1, · · · , λrℓ} and λmax(xℓ) := max{λ1, · · · , λrℓ} where
λ1, · · · , λrℓ are eigenvalues of xℓ. The minimum and maximum eigenvalues of x ∈ K are given by
λmin(x) = min{λmin(x1), · · · , λmin(xp)} and λmax(x) = max{λmax(x1), · · · , λmax(xp)}, respectively.

Next, we consider the quadratic representation Qv(x) defined by Qv(x) := 2v ◦ (v ◦ x)− v2 ◦ x. For the
Euclidean Jordan algebra (E, ◦) such as E = E1 × · · · ×Ep, the quadratic representation Qv(x) of x ∈ E
is denoted by Qv(x) =

(
Qv1(x1), . . . , Qvp(xp)

)
. Letting Iℓ be the identity operator of the Euclidean

Jordan algebra (Eℓ, ◦ℓ) associated with the cone Kℓ, we have Qeℓ = Iℓ for ℓ = 1, . . . , p. The following
properties can also be retrieved from the results in [7] as in Proposition 3 of [15]:

Proposition 2.8. For any v ∈ intK, Qv(K) = K.

More detailed descriptions, including concrete examples of symmetric cone optimization, can be found
in, e.g., [7, 8, 25]. Here, we will explain the bilinear operation, the identity element, the inner product,
the eigenvalues, the primitive idempotents, and the quadratic representation of the cone when the cone
is a positive semidefinite cone.

Example 2.9 (K is the semidefinite cone Sn+). Let Sn be the set of symmetric matrices of n × n.
The semidefinite cone Sn+ is given by Sn+ = {X ∈ Sn : X ⪰ O}. For any symmetric matrices

X,Y ∈ Sn, define the bilinear operation ◦ and inner product as X ◦ Y = XY+Y X
2 and ⟨X,Y ⟩ =

tr(XY ) =
∑n

i=1

∑n
j=1 XijYij , respectively. For any X ∈ Sn, perform the eigenvalue decomposi-

tion and let u1, . . . , un be the corresponding normalized eigenvectors for the eigenvalues λ1, . . . , λn:
X =

∑n
i=1 λiuiu

T
i . The eigenvalues of X in the Jordan algebra are λ1, . . . , λn and the primitive idem-

potents are c1 = u1u
T
1 , . . . , cn = unu

T
n , which implies that the rank of the semidefinite cone Sn+ is r = n.

The identity element is the identity matrix I. The quadratic representation of V ∈ Sn is given by
QV (X) = V XV .

2.3 Projection and rescaling algorithm

For two sets C1 and C2, we denote by FP(C1, C2) the feasibility problem

find x ∈ C1 ∩ C2.
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The projection and rescaling algorithms [20, 15, 12] solve FP(L, int K), where K ⊆ E is a symmetric
cone and L ⊆ E is a linear subspace. The feasibility of FP(L, int K) is closely related to the feasibility
of FP(L⊥,K \ {0}), where L⊥ is the orthogonal complement of L. The proof of Proposition 2.10 is
straightforward using Theorem 20.2 of [24] and therefore omitted.

Proposition 2.10. FP(L, int K) is infeasible if and only if FP(L⊥,K \ {0}) is feasible.

For any k > 0 and feasible solution x of FP(L, int K), since kx is a feasible solution of FP(L, int K), it
makes sense to consider the positive scaled version of FP(L, int K). In [12], they consider the following
feasibility problem. We will denote it by FPS∞(L, int K) in this study.

find x ∈ L ∩ int K s.t. ∥x∥∞ ≤ 1.

Proposition 2.11. FP(L, int K) is feasible if and only if FPS∞(L, int K) is feasible.

Proof. If FPS∞(L, int K) is feasible, it is clear that FP(L, int K) is feasible.

Let x be a feasible solution of FP(L, int K) and let λmax(x) and λmin(x) be a maximum eigenvalue and
a minimum eigenvalue of x, respectively. Since x ∈ int K, we can see that λmax(x) ≥ λmin(x) > 0 and
hence 1

λmax(x)
x ∈ int K. In addition, ∥ 1

λmax(x)
x∥∞ = 1 holds. Thus, 1

λmax(x)
x is a feasible solution of

FPS∞(L, int K).

The projection and rescaling algorithms consist of two ingredients: the “main algorithm” and the “basic
procedure.” The structure of the method is as follows: In the outer iteration, the main algorithm calls
the basic procedure with L and K. The basic procedure proposed in [12] generates a sequence in E
using projection to L and terminates in a finite number of iterations returning one of the following:
(i). a solution of problem FP(L, int K), (ii). a solution of problem FP(L⊥,K \ {0}), or (iii). a cut of
FPS∞(L, int K), i.e., a Jordan frame {c1, c2, . . . , cr} such that ⟨ci, x⟩ ≤ ξ holds for any feasible solution
x of problem FPS∞(L, int K) and for some i ∈ {1, 2, . . . , r}, where r is a rank of K and ξ is a parameter
specified by the user such that 0 < ξ < 1. If the result (i) or (ii) is returned by the basic procedure, then
the feasibility of problem FP(L, int K) can be determined, and the main procedure stops. If the result
(iii) is returned, then the main procedure scales the problem FPS∞(L, int K) as FPS∞(Qv(L), int K),
where v = 1√

ξ

∑
h∈H ch +

∑
h/∈H ch and H = {i : ⟨ci, x⟩ ≤ ξ}. Then, the main procedure calls the basic

procedure with Qv(L) and K. Noting that v ∈ intK and Proposition 2.8, the feasibility of FP(L, int K)
can be checked by solving FPS∞(Qv(L), int K). Thus, the projection and rescaling algorithm of [12]
checks the feasibility of FP(L, int K) by repeating the above procedures.

Their algorithm has a feature that the main algorithm works while keeping information about the
minimum eigenvalues of any feasible solution of FPS∞(L, int K). That is, their method can determine
whether there exists a feasible solution of FPS∞(L, int K) whose minimum eigenvalue is greater than ε,
where ε > 0 is a parameter specified by the user. In [12], a feasible solution of FPS∞(L, int K) whose
minimum eigenvalue is greater than or equal to ε is called an ε-feasible solution of FPS∞(L, int K).
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Algorithm 1 The projection and rescaling algorithm of [12]

1: Input: L, K, ε > 0 and a constant ξ such that 0 < ξ < 1.
2: Output: A solution to FP(L, int K) or FP(L⊥,K \ {0}) or a certificate that there is no ε feasible

solution to problem FPS∞(L, int K).
3: initialization: k ← 1, Lk ← L
4: Call the basic procedure with Lk, K and ξ.
5: if a solution to FP(Lk, int K) is obtained then
6: Rescale the obtained solution to the solution of FP(L, int K)
7: return the solution to FP(L, int K)
8: else if a solution to FP(Lk⊥,K \ {0}) is obtained then
9: Rescale the obtained solution to the solution of FP(L⊥,K \ {0})

10: return the solution to FP(L⊥,K \ {0})
11: else
12: Compute an upper bound for the minimum eigenvalue of any feasible solution of FPS∞(L, int K)
13: if the computed upper bound is less than ε then
14: stop Algorithm 1 (There is no ε feasible solution to FPS∞(L, int K).)
15: end if
16: Compute the vector v used to scale the problem
17: end if
18: Scale the linear subspace, i.e., Lk+1 ← Qv(Lk)
19: k ← k + 1. Go back to line 4.

3 Proposed algorithms

Since projection and rescaling algorithms can only solve the special case of SCP, i.e., FP(L, int K) for
a linear subspace L ⊆ E, we consider how to use projection and rescaling algorithms to obtain an
approximate optimal solution to (P) or (D). In Section 3.1, we introduce two types of formulations to
which projection and rescaling methods can be applied. These formulations require a real value θ ∈ R,
and their feasibilities depend on the value of θ. In Section 3.1.1, we introduce the formulation that gives
the interior feasible solution x of (P) such that ⟨c, x⟩ < θ when (P) is strongly feasible and θ > θp. In
Section 3.1.2, we introduce the formulation that gives the interior feasible solution (y, z) of (D) such
that b⊤y > θ when (D) is strongly feasible and θ < θd. Then, we present a basic idea of our algorithm
in Section 3.2. We also discuss some implementation strategies of our algorithm in Section 3.3. We then
develop a practical version of our algorithm in Section 3.4.

3.1 Theoretical foundations

3.1.1 Primal model

Let θ ∈ R. For θ, let us define the linear operator A(θ) as follows:

A(θ) =
(
A −b 0
c⊤ −θ 1

)
.

We define the symmetric cone K̄ = K × R2
+ and consider the feasibility problem FP(kerA(θ), int K̄).

Proposition 3.1. Suppose that FP(kerA(θ), int K̄) is feasible and (x, τ, ρ) is a feasible solution of it.
Then, 1

τ x is an interior feasible solution to (P), and ⟨c, 1
τ x⟩ < θ holds.
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Proof. Since (x, τ, ρ) is a feasible solution of FP(kerA(θ), int K̄), Ax − τb = 0 and ⟨c, x⟩ − τθ + ρ = 0
hold. Noting that τ > 0, we have A 1

τ x − b = 0 and ⟨c, 1
τ x⟩ − θ + ρ

τ = 0 and hence, 1
τ x is an interior

feasible solution of (P) such that ⟨c, 1
τ x⟩ < θ because x ∈ int K and ρ > 0.

From Proposition 3.1, if we obtain the feasible solution of FP(kerA(θ), int K̄), then we can construct the
interior feasible solution to (P) whose objective value is smaller than θ. The following proposition gives
us a necessary and sufficient condition for FP(kerA(θ), int K̄) to be feasible.

Proposition 3.2. FP(kerA(θ), int K̄) is feasible if and only if (P) is strongly feasible and θp < θ.

Proof. If FP(kerA(θ), int K̄) is feasible, then there exists a feasible solution (x, τ, ρ) to FP(kerA(θ), int K̄).
For x and τ , 1

τ x is an interior feasible solution to (P) satisfying ⟨c, 1
τ x⟩ < θ from Proposition 3.1, which

implies that (P) has an interior feasible solution and θp ≤ ⟨c, 1
τ x⟩ < θ.

Conversely, if (P) is stronlgy feasible and θp < θ, then there exists an interior feasible solution x
to (P) such that θp < ⟨c, x⟩ < θ. We can easily see that (x, 1, θ − ⟨c, x⟩) is a feasible solution for
FP(kerA(θ), int K̄).

Combining Proposition 3.2 with Proposition 2.10, we have a necessary and sufficient condition for alter-
native problem FP(rangeA(θ)∗, K̄ \ {0}) of FP(kerA(θ), int K̄) to be feasible.

Corollary 3.3. FP(rangeA(θ)∗, K̄ \ {0}) is feasible if and only if (P) is not strongly feasible or θp ≥ θ.

While feasible solutions of FP(kerA(θ), int K̄) give us interior feasible solutions to (P) whose objective
value is smaller than θ, feasible solutions of FP(rangeA(θ)∗, K̄ \ {0}) give us information about the
feasibility of (P) or a feasible solution to (D) whose objective value is greater than or equal to θ.

Proposition 3.4. Suppose that FP(rangeA(θ)∗, K̄ \ {0}) is feasible and (z, ω, κ) is a feasible solution of
FP(rangeA(θ)∗, K̄ \ {0}). Then, there exists y ∈ Rm such that z = A∗y + κc and ω = −b⊤y − κθ. For
(y, κ), one of the following three cases holds:

1. κ > 0 meaning that (− 1
κy, c − A

∗(−1
κ y)) is a feasible solution to (D) and its objective value is

greater than or equal to θ,

2. κ = 0 and ω > 0 meaning that −y is an improving ray of (D), i.e., −A∗(−y) ∈ K and b⊤(−y) > 0,
or

3. κ = ω = 0 meaning that −y is a reucing direction for (P), i.e., −A∗(−y) ∈ K\{0} and b⊤(−y) = 0.

Proof. Since (z, ω, κ) ∈ rangeA(θ)∗, there exists (y, γ) ∈ Rm+1 such thatz
ω
κ

 =

 A∗ c
−b⊤ −θ
0⊤ 1

(
y
γ

)
.

From this equation, we can easily see that κ = γ, and hence z = A∗y + κc and ω = −b⊤y − κθ hold for
(y, κ).

(1): If κ > 0, then −A∗(−1
κ y) + c ∈ K and b⊤(−1

κ y)− θ ≥ 0 hold since (z, ω, κ) ∈ K̄ \ {0}.
(2) & (3): If κ = 0, then z = −A∗(−y) ∈ K and ω = b⊤(−y) ≥ 0 hold for y since (z, ω, κ) ∈ K̄ \ {0}.

If ω > 0, y satisfies −A∗(−y) ∈ K and b⊤(−y) > 0 and hence, −y is an improving ray of (D).

If ω = 0, we can easily see that b⊤(−y) = 0. In addition, −A∗(−y) ∈ K \ {0} holds since (z, ω, κ) ̸=
(0, 0, 0). Thus, −y is a reducing direction for (P).
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Proposition 3.4 ensures that feasible solutions of FP(rangeA(θ)∗, K̄ \ {0}) give feasible solutions to (D)
if (P) is strongly feasible and (D) is feasible. By adding one more assumption, we can guarantee that
the feasible solution of FP(rangeA(θ)∗, K̄ \ {0}) gives the optimal solution of (D).

Corollary 3.5. Suppose that (P) is strongly feasible, (D) is feasible, and θ = θp. Then, FP(rangeA(θ)∗, K̄\
{0}) is feasible, i.e., there exists y ∈ Rm such that z = A∗y + κc and ω = −b⊤y − κθ for any feasible
solution (z, ω, κ) of FP(rangeA(θ)∗, K̄ \ {0}). Furthermore, (− 1

κy,
1
κz) is an optimal solution for (D).

Proof. Since θ = θp, FP(rangeA(θ)∗, K̄ \ {0}) is feasible by Corollary 3.3. In addition, for any feasible
solution (z, ω, κ) for FP(rangeA(θ)∗, K̄ \ {0}), there exists y ∈ Rm satisfying z = A∗y + κc and ω =
−b⊤y − κθ by Proposition 3.4.

Noting that (P) is strongly feasible and (D) is feasible, we can see that κ > 0 holds for any feasible
solution (z, ω, κ) for FP(rangeA(θ)∗, K̄\{0}) from Proposition 3.4. Thus, (− 1

κy, c−A
∗(−1

κ y)) is a feasible
solution for (D) and b⊤(−1

κ y) ≥ θp holds.

Since (P) is strongly feasible and (D) is feasible, by Proposition 2.2, (D) has an optimal solution and
θp = θd and hence, (− 1

κy, c−A
∗(−1

κ y)) is an optimal solution for (D).

3.1.2 Dual model

Let θ ∈ R. We define the linear operator A(θ) and the symmetric cone K̄ in the same way as defined in
Section 3.1.1. In this section, we consider the feasibility problem FP(rangeA(θ)∗, int K̄).

Proposition 3.6. Suppose that FP(rangeA(θ)∗, int K̄) is feasible and (z, ω, κ) is a feasible solution of it.
Then, there exists y ∈ Rm such that z = A∗y+κc and ω = −b⊤y−κθ. In addition, (− 1

κy, c−A
∗(−1

κ y))
is an interior feasible solution to (D), and b⊤(−1

κ y) > θ holds.

Proof. Since this proposition can be proved in the same way as the proof of Proposition 3.1, we omit
the proof.

Similar to Proposition 3.1, Proposition 3.6 implies that we can construct the interior feasible solution
of (D) whose objective value is greater than θ using the feasible solutions of FP(rangeA(θ)∗, int K̄)
The following proposition gives us a necessary and sufficient condition for FP(rangeA(θ)∗, int K̄) to be
feasible.

Proposition 3.7. FP(rangeA(θ)∗, int K̄) is feasible if and only if (D) is strongly feasible and θd > θ.

Proof. Since this proposition can be proved in the same way as the proof of Proposition 3.2, we omit
the proof.

Combining Proposition 3.7 with Proposition 2.10, we have a necessary and sufficient condition for alter-
native problem FP(kerA(θ), K̄ \ {0}) of FP(rangeA(θ)∗, int K̄) to be feasible.

Corollary 3.8. FP(kerA(θ), K̄ \ {0}) is feasible if and only if (D) is not strongly feasible or θd ≤ θ.

While feasible solutions for FP(rangeA(θ)∗, int K̄) give us interior feasible solutions to (D) whose ob-
jective value is greater than θ, feasible solutions for FP(kerA(θ), K̄ \ {0}) give us information about the
feasibility of (D) or a feasible solution to (P) whose objective value is smaller than or equal to θ.
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Proposition 3.9. Suppose that FP(kerA(θ), K̄ \ {0}) is feasible and (x, τ, ρ) is a feasible solution of
FP(kerA(θ), K̄ \ {0}). Then, for (x, τ, ρ), one of the following three cases holds:

1. τ > 0 meaning that 1
τ x is a feasible solution to (P) and its objective value is smaller than or equal

to θ,

2. τ = 0 and ρ > 0, meaning that x is an improving ray of (P), i.e., x ∈ K, Ax = 0 and ⟨c, x⟩ < 0,
or

3. τ = ρ = 0 meaning that x is a reucing direction for (D), i.e., x ∈ K \ {0}, Ax = 0 and ⟨c, x⟩ = 0.

Proof. Since this proposition can be proved in the same way as the proof of Proposition 3.4, we omit
the proof.

Proposition 3.9 ensures that feasible solutions for FP(kerA(θ), K̄ \ {0}) provide feasible solutions for (P)
if (D) is strongly feasible and (P) is feasible. Similar to Corollary 3.5, by adding one more assumption,
we can guarantee that the feasible solution of FP(kerA(θ), K̄ \ {0}) gives the optimal solution of (P).

Corollary 3.10. Suppose that (D) is strongly feasible, (P) is feasible, and θ = θd. Then, FP(kerA(θ), K̄\
{0}) is feasible. In addition, for any feasible solution (x, τ, ρ) for FP(kerA(θ), K̄ \{0}), 1

τ x is an optimal
solution for (P).

Proof. Since this proposition can be proved in the same way as the proof of Corollary 3.5, we omit the
proof.

3.2 Basic concept of the proposed algorithm

To briefly illustrate the concept of the proposed method, suppose that (P) is strongly feasible. Then,
the feasibility of FP(kerA(θ), int K̄) only depends on the value of θ by Proposition 3.2. If θ > θp,
FP(kerA(θ), int K̄) is feasible and its solution gives an interior feasible solution x to (P) such that
⟨c, x⟩ < θ by Proposition 3.1. If θ ≤ θp, FP(kerA(θ), int K̄) is infeasible and the infeasibility certificates
for FP(kerA(θ), int K̄), i.e., feasible solutions for FP(rangeA(θ)∗, K̄ \{0}), give the dual feasible solution
y such that b⊤y ≥ θ by Proposition 3.4. Therefore, the closer the value of θ is to the optimal value of
(P) and (D), the more accurate the approximate optimal solution of (P) and (D) obtained by solving
FP(kerA(θ), int K̄). In addition, we can know whether θ > θp or θ ≤ θp by solving FP(kerA(θ), int K̄).

We present our algorithm for finding an approximate optimal interior feasible solution to (P).

Algorithm 2 works as follows. First, Algorithm 2 chooses the input value θk ∈ (LB,UB) and exe-
cute a projection and rescaling algorithm with the corresponding problem FP(kerA(θk), int K̄). Next,
Algorithm 2 performs the operations according to the returned result, as follows:

1. If a solution to (P) is obtained, the current primal solution xtmp and UB are updated.

2. If a solution to (D) is obtained, the current dual solution ytmp and LB are updated.

3. If a reducing direction for (P) or an improving ray of (D) is obtained, then Algorithm 2 terminates.

4. If a projection and rescaling algorithm determines that the minimum eigenvalue of any feasible
solution of the input problem, i.e., FPS∞(ker A(θk), int K̄), is less than ε, then LB is updated.
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Algorithm 2 Projection and rescaling algorithm with the primal model

1: Input: A, b, c, K, and θacc > 0.
2: Output: A feasible solution to (P) or a vector that determines the feasibility status of (P).
3: initialization: k ← 0, LB ← −∞, UB ←∞, K̄ ← K × R2

+

4: Choose θk ∈ (LB,UB) and construct

A(θk) =
(
A −b 0
c⊤ −θk 1

)
.

5: Let ε be a sufficiently small positive value and ξ be a constant such that 0 < ξ < 1.
6: while UB − LB > θacc do
7: Call the projection and rescaling algorithm of [12] with kerA(θk), K̄, ε, and ξ.
8: if a solution (x, τ, ρ) to FP(kerA(θk), int K̄) is obtained then
9: xtmp ← 1

τ x, UB ← θk

10: else if a solution (z, ω, κ) to FP(rangeA(θk)∗, K̄ \ {0}) is obtained then
11: Compute (y, γ) ∈ Rm+1 such that z = A∗y + γc, ω = −b⊤y − γθ and κ = γ.
12: if −y is an improving ray of (D) or a reducing direction for (P) then
13: stop Algorithm 2 and return (−y,A∗y)
14: end if
15: ytmp ← −1

κ y, ztmp ← c−A∗ytmp, LB ← θk

16: else
17: LB ← θk

18: end if
19: Choose θk+1 ∈ (LB,UB), k ← k + 1
20: end while
21: return xtmp
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Algorithm 2 repeats the above operations until UB − LB > θacc holds. UB and LB play the role of
upper and lower bounds on θp, respectively. Thus, if θacc is sufficiently small, the output xtmp from
Algorithm 2 can be seen as an approximate optimal solution to (P).

Here, we note that Algorithm 2 updates LB on line 17. Suppose that Algorithm 2 reaches line 17 at
the k-th iteration. In this case, it can be inferred that the projection and rescaling algorithm terminates
with the same termination criteria with FPS∞(ker A(θ), int K̄) for any θ such that θ < θk, unless θk is
not too large compared to the maximum value of the objective function in (P). Noting that Algorithm
2 is used as a post-processing step, it is reasonable to update LB as on line 17. We also note that
Algorithm 2 can find an approximate optimal solution to (D). Suppose that Algorithm 2 reaches line
15 at the k-th iteration and θk is very close to the optimal value of (D). Then, (ytmp, ztmp) satisfies
b⊤ytmp ≥ θk and c − A∗ytmp = ztmp ∈ K by Proposition 3.4. However, even if FP(kerA(θk), int K̄) is
infeasible, the projection and rescaling algorithm does not necessarily return a solution to its alternative
problem. Thus, Algorithm 2 is just a method to find the approximate optimal interior feasible solution
of (P).

From the contents of Section 3.1.2, the algorithm for finding an approximate optimal interior feasible
solution to (D) can be considered similarly. (See Algorithm 3.)

Algorithm 3 Projection and rescaling algorithm with the dual model

1: Input: A, b, c, K, and θacc > 0.
2: Output: A feasible solution to (D) or a vector that determines the feasibility status of (D).
3: Same as lines 3-5 of Algorithm 2
4: while UB − LB > θacc do
5: Call the projection and rescaling algorithm of [12] with rangeA(θk)∗, K̄, ε, and ξ.
6: if a solution (z, ω, κ) to FP(rangeA(θk)∗, int K̄) is obtained then
7: Compute (y, γ) ∈ Rm+1 such that z = A∗y + γc, ω = −b⊤y − γθ and κ = γ.
8: ytmp ← −1

κ y, ztmp ← c−A∗ytmp, LB ← θk

9: else if a solution (x, τ, ρ) to FP(ker A(θk), K̄ \ {0}) is obtained then
10: if x is an improving ray of (P) or a reducing direction for (D) then
11: stop Algorithm 3 and return x
12: end if
13: xtmp ← 1

τ x, UB ← θk

14: else
15: UB ← θk

16: end if
17: Choose θk+1 ∈ (LB,UB), k ← k + 1
18: end while
19: return ytmp

3.3 Implementation strategies

Algorithms 2 and 3 can operate more efficiently by fully utilizing the information obtained at each
iteration. In this section, we modify Algorithm 2 to make it more practical. These modifications can
also be employed in Algorithm 3.
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3.3.1 Updating LB using a dual feasible solution

Algorithm 2 keeps LB as the lower bound on the θp. If a dual feasible solution (ytmp, ztmp) is obtained
at the k-th iteration of Algorithm 2, we update LB with θk. Here, we note that b⊤ytmp ≥ θk by
Proposition 3.4 and all dual feasible solutions give the lower bound on the θp. Therefore, LB can be
updated with b⊤ytmp instead of θk, which reduces the number of iterations of Algorithm 2. However,
Algorithm 2 obtains approximate feasible solutions in practice. That is, ztmp /∈ K or b⊤ytmp < θk might
hold. Considering that (ytmp, ztmp) might be an approximate dual feasible solution, we update LB as
follows:

LB :=

{
max{θk, b⊤ytmp} ztmp ∈ K
θk otherwise

. (1)

3.3.2 Keeping and updating a current dual feasible solution

The modification in this section has the same spirit as Section 3.3.1. That is, we update LB using
dual feasible solutions. In the previous section, we propose to update LB as in (1) only if (ytmp, ztmp)
is a feasible solution for (D). However, even if (ytmp, ztmp) is an approximate feasible solution, it can
be used to update LB as long as we have a dual feasible solution (ȳ, z̄). By considering the linear
combination of ytmp and ȳ, (ynew, znew) might be obtained such that znew = c − A∗ynew ∈ K and
b⊤ynew ≥ max{θk, b⊤ȳ}, which leads to reducing the number of iterations of Algorithm 2. In addition,
this modification allows Algorithm 2 to return the current dual feasible solution (ȳ, z̄).

Therefore, the following operations are added to Algorithm 2.

1. Initialize ȳ as ȳ ← ∅. ( If a dual feasible solution y is known in advance, initialize ȳ and LB as
ȳ ← y and LB ← b⊤y, respectively.)

2. Suppose that (ytmp, ztmp) is obtained at the k-th iteration. Then, we perform the following oper-
ations.

• If ztmp ∈ K and ȳ is empty, then ȳ = ytmp.

• If ȳ is not empty, compute ynew such that b⊤ynew ≥ b⊤ȳ and c − A∗ynew ∈ K, and then
update LB and ȳ as LB = max{θk, b⊤ynew} and ȳ = ynew, respectively.

3. Return ȳ on line 21 if ȳ is not empty.

In Algorithm 2, ȳ plays the role of the current dual feasible solution. If we have a dual feasible solution
before running Algorithm 2, it can be used to initialize ȳ. Since Algorithm 2 is used as a post-processing
step for the interior point method, ȳ can be initialized with the output of the interior point method.
The method for computing ynew is described in the Appendix A.

3.3.3 Use of scaling information from previous iterations

Algorithm 2 calls the projection and rescaling algorithm of [12] iteratively. It is natural to consider ways
to reduce the computational time of the projection and rescaling algorithm at the k+1-th iteration using
the information obtained by the k-th iteration. Recall that the projection and rescaling algorithm of [12]
solves the feasibility problem FPS∞(L, int K) by repeating two steps: (i). find a cut for FPS∞(L, int K),
(ii). scale the problem to an isomorphic problem equivalent to FPS∞(L, int K) such that the region
narrowed by the cut is efficiently explored. Therefore, in Algorithm 2, if the cuts obtained by a projection
and rescaling algorithm at the i(< k)-th iteration hold for any feasible solution of the feasibility problem
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considered at the k-th iteration, such cuts can be used to reduce the execution time of the projection
and rescaling algorithm at the k-th iteration. Proposition 3.11 provides the sufficient condition for a cut
to FPS∞(kerA(θ̄), int K̄) to be valid for FPS∞(kerA(θ), int K̄) for two real values θ̄ ∈ R and θ ∈ R.

Proposition 3.11. Suppose that (P) is strongly feasible and that θ̄ ∈ R satisfies θ̄ > θp and θ̄− θp ≤ 1.
Then, FPS∞(kerA(θ), int K̄) is feasible for any θ ∈ R such that θp < θ < θ̄. Furthermore, if ⟨v, x̄⟩ ≤ ξx,
τ̄ ≤ ξτ and ρ̄ ≤ ξρ hold for any feasible solution (x̄, τ̄ , ρ̄) of FPS∞(kerA(θ̄), int K̄) and for some ξx <
1, ξτ < 1, ξρ < 1 and v ∈ K, then, for any θ ∈ R such that θp < θ < θ̄ and for any feasible solution
(x, τ, ρ) of FPS∞(kerA(θ), int K̄), ⟨v, x⟩ ≤ ξx, τ ≤ ξτ and ρ ≤ ξρ hold.

Proof. For any θ ∈ R such that θp < θ < θ̄, FPS∞(kerA(θ), int K̄) is feasible from Proposition 3.2. Let
(x, τ, ρ) be a feasible solution for FPS∞(kerA(θ), int K̄). Then, we have

⟨c, x⟩ − τθ + ρ = 0. (2)

Noting that τ > 0, we have ⟨c, 1
τ x⟩+

1
τ ρ = θ. Since ρ > 0 and 1

τ x is an interior feasible solution for (P),
θp < ⟨c, 1

τ x⟩ < θ < θ̄. Thus, we find

θ̄ − ⟨c, 1
τ
x⟩ < θ̄ − θp. (3)

Let α = θ̄ − θ. By substituting θ = θ̄ − α into (2), we have

⟨c, x⟩ − τ θ̄ + τα+ ρ = 0. (4)

Since θ̄ − θp ≤ 1 holds from the assumption, we find

τα+ ρ = τ θ̄ − ⟨c, x⟩ (by (4))

< τ(θ̄ − θp) (by (3))

≤ τ ≤ 1.

Therefore, τα + ρ < 1 holds, and hence (x, τ, τα + ρ) is a feasible solution for FPS∞(kerA(θ̄), int K̄).
From the assumption, ⟨v, x⟩ ≤ ξx, τ ≤ ξτ and τα+ ρ ≤ ξρ hold, which completes the proof.

Based on Proposition 3.11, we add the following operations to Algorithm 2.

1. Initialize v̄ as v̄ ← (e, 1, 1).

2. Call the projection and rescaling algorithm withQv̄

(
kerA(θk)

)
and K̄ to solve FP(kerA(θk), int K̄).

• Suppose that the projection and rescaling algorithm returns the solution of the input prob-
lem by finding the solution of the scaled problem FPS∞(Qv

(
kerA(θk)

)
, int K̄), where v =

(v1, v2, v3) ∈ int K̄.
– After updating UB as UB ← θk, if UB − LB ≤ 1 holds, then preserve the scaling

information as v̄ ← v.

3.3.4 Use of approximate optimal solutions

Let us consider the indicator δ∞(L∩ int K) := maxx {det(x) | x ∈ L ∩ int K, ∥x∥∞ = 1}, which is equiv-
alent to the indicators used in [20] and Section 6.2 of [12]. If L ∩ int K ̸= ∅, then δ∞(L ∩ int K) ∈ (0, 1]
holds, and if e ∈ L ∩ int K, then δ∞(L ∩ int K) = 1 holds. The larger the value of the indicator
δ∞(L ∩ int K), the sooner projection and rescaling algorithms will find a solution for FP(L, int K).
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Therefore, scaling with v ∈ int K̄ such that δ∞(Qv(kerA(θ)) ∩ int K̄) ≥ δ∞(kerA(θ) ∩ int K̄) holds can
reduce the computational time of Algorithm 2.

Let us introduce Proposition 3.12, which gives us the basic idea of obtaining v ∈ int K̄ such that
δ∞(Qv(kerA(θ)) ∩ int K̄) ≥ δ∞(kerA(θ) ∩ int K̄).

Proposition 3.12. Suppose that (P) is strongly feasible and for a given θ ∈ R and an interior feasible

solution x ∈ E for (P), max{θp, θ − 1} < ⟨c, x⟩ < θ holds. Define v ∈ E× R2 as v := (x− 1
2 , 1, 1). Then,

the following inequality holds:

δ∞(Qv(kerA(θ)) ∩ int K̄) ≥ θ − ⟨c, x⟩.

Proof. It is obvious that (x, 1, θ−⟨c, x⟩) ∈ kerA(θ)∩ int K̄. Noting that Qv ((x, 1, θ − ⟨c, x⟩)) = (e, 1, θ−
⟨c, x⟩) ∈ Qv(kerA(θ)) ∩ int K̄ and θ − ⟨c, x⟩ < 1, we find δ∞(Qv(kerA(θ)) ∩ int K̄) ≥ det(e) × 1 × (θ −
⟨c, x⟩) = θ − ⟨c, x⟩.

The next corollary follows similarly to Proposition 3.12.

Corollary 3.13. Suppose that (P) is strongly feasible and for a given θ ∈ R, θp < θ− 1 holds. For any

interior feasible solution x ∈ E for (P) such that ⟨c, x⟩ = θ − 1, define v ∈ E × R2 as v := (x− 1
2 , 1, 1).

Then, δ∞(Qv(kerA(θ)) ∩ int K̄) = 1 holds.

Proposition 3.12 and Corollary 3.13 raise interest in whether the following assumption holds or not.

Assumption 3.14. Suppose that (P) is strongly feasible. Let x ∈ E and s ∈ E be interior feasible
solutions for (P) such that max{θp, θ − 1} < ⟨c, x⟩ < ⟨c, s⟩ < θ for a given θ ∈ R. Define vx ∈ E × R2

and vs ∈ E × R2 as vx := (x− 1
2 , 1, 1) and vs := (s−

1
2 , 1, 1), respectively. Then, the following relation

holds.
δ∞(Qvx(kerA(θ)) ∩ int K̄) > δ∞(Qvs

(kerA(θ)) ∩ int K̄).

Unfortunately, the authors could not prove whether Assumption 3.14 holds. What prevents us from
proving this assumption is revealed by the following proposition.

Proposition 3.15. Suppose that (P) is strongly feasible and that for a given θ ∈ R and an interior

feasible solution s ∈ E for (P), max{θp, θ − 1} < ⟨c, s⟩ < θ holds. Let vs := (s−
1
2 , 1, 1) and (s1, s2, s3)

be the point giving the maximum value of δ∞(Qvs(kerA(θ)) ∩ int K̄). If s1 = e, then for any interior
feasible solution x ∈ E for (P) such that max{θp, θ − 1} < ⟨c, x⟩ < ⟨c, s⟩,

δ∞(Qvx(kerA(θ)) ∩ int K̄) > δ∞(Qvs(kerA(θ)) ∩ int K̄)

holds, where vx := (x− 1
2 , 1, 1).

Proof. It is obvious that (e, 1, θ−⟨c, s⟩) ∈ Qvs(kerA(θ))∩ int K̄ and
(
Q

s
1
2
(s1), s2, s3

)
∈ kerA(θ)∩ int K̄

holds.

If s1 = e, then Q
s
1
2
(s1) = s holds. In addition, we can easily see that s2 = 1 and s3 = θ − ⟨c, s⟩ since s

is a feasible solution for (P) and (s, s2, s3) ∈ kerA(θ) ∩ int K̄. Thus, we have

δ∞(Qvs(kerA(θ)) ∩ int K̄) = det(e)× 1× (θ − ⟨c, s⟩) = θ − ⟨c, s⟩.

By Proposition 3.12, for any interior feasible solution x for (P) such that max{θp, θ − 1} < ⟨c, x⟩ <
⟨c, s⟩, we find δ∞(Qvx(kerA(θ)) ∩ int K̄) ≥ θ − ⟨c, x⟩, and hence we have δ∞(Qvx(kerA(θ)) ∩ int K̄) >
δ∞(Qvs(kerA(θ)) ∩ int K̄).
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As in the proof of Proposition 3.15, Assumption 3.14 holds in the case s1 = e. However, proving
whether Assumption 3.14 holds when s1 ̸= e is difficult. In this case, the specific value or upper bound
of δ∞(Qvs(kerA(θ)) ∩ int K̄) is challenging to obtain. Even if (s1, s2, s3) were obtained, it is unclear
how the existence of (s1, s2, s3) such that s1 ̸= e affects the value of δ∞(Qvx(kerA(θ)) ∩ int K̄) for any
interior feasible solution x satisfying max{θp, θ − 1} < ⟨c, x⟩ < ⟨c, s⟩. These obstacles prevent us from
proving Assumption 3.14.

So far, we have focused on scaling with an interior feasible solution x ∈ E such that max{θp, θ − 1} <
⟨c, x⟩ < θ. The critical concern for our algorithm is whether scaling with such x can reduce the execution
time of Algorithm 2. In other words, our algorithm needs to determine whether the following relation
holds for any interior feasible solution x satisfying max{θp, θ − 1} < ⟨c, x⟩ < θ and v = (x− 1

2 , 1, 1).

δ∞(Qv(kerA(θ)) ∩ int K̄) ≥ δ∞(kerA(θ) ∩ int K̄).

Unfortunately, the above relation does not always hold. The easiest counterexample is when e is a feasible
solution for (P) and ⟨c, e⟩ = θ − 1, i.e., δ∞(kerA(θ) ∩ int K̄) = 1. Even if e is not a feasible solution for
(P), for the same reason that it is challenging to prove Assumption 3.14, it is also difficult to ascertain
whether this relation holds. It isn’t easy to see whether this relation holds when x is an approximate
feasible solution. However, the authors believe that Assumption 3.14 holds and scaling with an arbitrary
interior feasible solution x such that max{θp, θ − 1} < ⟨c, x⟩ < θ can reduce the computational time of
Algorithm 2 based on the observation of a simple example discussed in Appendix B.

The observations in Appendix B imply that even if x is an approximate solution for (P), we can ex-
pect that the scaling with such x reduces the computational time of Algorithm 2, as long as ⟨c, x⟩ ≃
max{θp, θ− 1} and e is not an approximate or feasible solution for (P) such that ⟨c, e⟩ ≃ max{θp, θ− 1}.
Noting that Algorithm 2 will be used as a post-processing step of interior point methods, there is no
problem in supposing that we have an approximate optimal solution x ∈ int K and θ such that θ ≃ θp,
i.e., max{θp, θ − 1} = θp, before running Algorithm 2.

Thus, the following operations are added to Algorithm 2.

1. Initialize v̄ as v̄ ← (e, 1, 1). ( If an approximate primal solution x ∈ int K is known in advance,

initialize v̄ as v̄ ← (x− 1
2 , 1, 1).)

2. Call the projection and rescaling algorithm withQv̄

(
kerA(θk)

)
and K̄ to solve FP(kerA(θk), int K̄).

• Suppose that the projection and rescaling algorithm returns the solution of the input problem,
and we obtain the solution (x, τ, ρ) for FP(kerA(θk), int K̄).
– After updating UB as UB ← θk, if UB − LB > 1 holds, then update v̄ as v̄ ←

(( 1τ x)
− 1

2 , 1, 1).

Note that Algorithm 2 with this modification does not update v̄ in the item (2) above if UB −LB ≤ 1.
This is because the technique in Section 3.3.3 updates v̄ when UB − LB ≤ 1. This modification is
not theoretically guaranteed to work. Our numerical experiments in Section 4 confirm whether these
techniques work well.

3.3.5 Extracting a highly accurate solution

Algorithm 2 will obtain approximate solutions many times before they terminate. Such solutions can be
used to make the accuracy of the outputs from Algorithm 2 robust.

The following operations are added to Algorithm 2. Since our algorithm is intended to be used as a
post-processing step, it is assumed that an approximate optimal solution (x0, y0, z0) is known in advance.
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1. Initialize SolP and SolD as SolP ← x0 and SolD ← y0, respectively.

2. If xtmp is obtained at the k-th iteration, then we add xtmp to SolP.

3. If ytmp is obtained at the k-th iteration, then we add ytmp to SolD.

4. Choose y∗ as in (6) and then compute x∗ as in (5) using y∗ before line 21

5. Return x∗ instead of xtmp.

Since the set SolP will contain many approximate primal solutions, Algorithm 2 can extract the highly
accurate approximate optimal solution x∗ from this set as in

x∗ ← arg min
x∈SolP

f(x, y∗, c−A∗y∗), (5)

where

f(x, y, z) =
∥Ax− b∥2

1 + max
i=1,...,m

|bi|
+max

0,
−λmin(x)

1 + max
i=1,...,m

|bi|

+
|⟨c, x⟩ − b⊤y|

1 + |⟨c, x⟩|+ |b⊤y|
+

|⟨x, z⟩|
1 + |⟨c, x⟩|+ |b⊤y|

.

Each term of the function f(x, y, z) is based on the DIMACS Error [18], which is a measure of accuracy
as an optimal solution for (P) and (D). Note that a dual solution (y, z) is required to extract x∗ as in (5).
If the dual optimal solution were known, f(x, y, z) could be used to accurately evaluate the accuracy of
x as the primal optimal solution, but such cases would be sporadic. Thus, we choose y∗ from SolD and
use it as the approximate optimal dual solution to extract x∗. Algorithm 2 chooses y∗ as in

y∗ ← arg max
y∈Sol

b⊤y, (6)

where Sol :=
{
y ∈ SolD : λmin(c−A∗y) ≥ min{λmin(c−A∗y0), 0}

}
. With the modification of Algo-

rithm 2 proposed in Section 3.3.2, we can use a current dual solution (ȳ, c−A∗ȳ) to extract x∗ as long
as ȳ is not empty.

3.4 Practical versions of Algorithms 2 and 3

We now describe Algorithms 2 and 3 employing the modifications proposed in the previous section. Both
algorithms are designed to use the approximate optimal solutions (x0, y0, z0) of (P) and (D). Algorithms
4 and 5 are practical versions of Algorithms 2 and 3, respectively. These algorithms terminate when
UB−LB ≤ θacc holds or when a vector that determines the feasibility status of (P) or (D) is found. We
consider that a reducing direction for (P) is obtained when Algorithm 4 finds a vector (y, γ) such that

|γ| ≤ 1e-12, | − b⊤y| ≤ 1e-12, λmin(A∗y) ≥ -1e-12, and ∥A∗y∥ > 1e-12.

In addition, we consider that an improving ray of (D) is obtained when Algorithm 4 finds a vector (y, γ)
such that

|γ| ≤ 1e-12, −b⊤y > 1e-12, and
1

−b⊤y
λmin(A∗y) ≥ -1e-12.

Similarly, when Algorithm 5 finds a vector (x, τ, ρ) satisfying

|τ | ≤ 1e-12, |⟨c, x⟩| ≤ 1e-12, λmin(x) ≥ -1e-12, and ∥x∥ > 1e-12,

we consider that a reducing direction for (D) is obtained, and when Algorithm 5 finds a vector satisfying

|τ | ≤ 1e-12, ⟨c, x⟩ < -1e-12, and
1

−⟨c, x⟩
λmin(x) ≥ -1e-12,
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we consider that an improving ray of (P) is obtained.

Algorithm 4 Practical version of Algorithm 2

1: Input: A, b, c, K, (x0, y0, z0) and θacc > 0.
2: Output: A primal solution x (and a dual solution y) or a vector that determines the feasibility

status of (P).
3: initialization: k ← 0, LB ← −∞, UB ←∞, K̄ ← K×R2

+, ȳ ← ∅, v̄ ← (e, 1, 1), SolP ← x0, SolD ← y0

( If c−A∗y0 ∈ K, ȳ ← y0, LB ← b⊤ȳ. If x0 ∈ intK, x̄← x0, v̄ ← (x̄− 1
2 , 1, 1). )

4: Choose θk ∈ (LB,UB) and construct A(θk) =
(
A −b 0
c⊤ −θk 1

)
.

5: Let ε be a sufficiently small positive value and ξ be a constant such that 0 < ξ < 1.
6: while UB − LB > θacc do
7: Call the projection and rescaling algorithm of [12] with Qv̄(kerA(θk)), K̄, ε, and ξ

to solve FP(kerA(θk), int K̄) and then obtain the scaling information v = (v1, v2, v3).
8: if a solution (x, τ, ρ) to FP(kerA(θk), int K̄) is obtained then
9: xtmp ← 1

τ x, SolP ← SolP ∪ {xtmp}, UB ← θk

10: if UB − LB ≤ 1 then
11: v̄ ← (v1, v2, v3)
12: else
13: if xtmp ∈ intK then

14: v̄ ← (x
− 1

2
tmp, 1, 1)

15: end if
16: end if
17: else if a solution (z, ω, κ) to FP(rangeA(θk)∗, K̄ \ {0}) is obtained then
18: Compute (y, γ) ∈ Rm+1 such that z = A∗y + γc, ω = −b⊤y − γθ and κ = γ.
19: if −y is an improving ray of (D) or a reducing direction for (P) then
20: stop Algorithm 4 and return (−y,A∗y)
21: else
22: ytmp ← −1

κ y, ztmp ← c−A∗ytmp, SolD ← SolD ∪ {ytmp}, LB ← θk

23: if ȳ ̸= ∅ then
24: Compute ynew such that b⊤ynew ≥ b⊤ȳ and c−A∗ynew ∈ K using ȳ and ytmp.
25: ȳ ← ynew, LB ← max{θk, b⊤ȳ}
26: else
27: if ztmp ∈ K then
28: ȳ ← ytmp, LB ← max{θk, b⊤ȳ}
29: end if
30: end if
31: end if
32: else
33: LB ← θk

34: end if
35: Choose θk+1 ∈ (LB,UB), k ← k + 1
36: end while
37: Choose y∗ from SolD as in (6) // If ȳ = ∅, y∗ ← ȳ.
38: Choose x∗ from SolP as in (5)
39: return x∗ (and y∗)
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Algorithm 5 Practical version of Algorithm 3

1: Input: A, b, c, K, (x0, y0, z0) and θacc > 0.
2: Output: A dual solution y (and a primal solution x) or a vector that determines the feasibility

status of (D).
3: initialization: k ← 0, LB ← −∞, UB ←∞, K̄ ← K×R2

+, ȳ ← ∅, v̄ ← (e, 1, 1), SolP ← x0, SolD ← y0

( If c−A∗y0 ∈ K, ȳ ← y0, LB ← b⊤ȳ. If z0 ∈ intK, z̄ ← z0, v̄ ← (z̄−
1
2 , 1, 1). )

4: Choose θk ∈ (LB,UB) and construct A(θk) =
(
A −b 0
c⊤ −θk 1

)
.

5: Let ε be a sufficiently small positive value and ξ be a constant such that 0 < ξ < 1.
6: while UB − LB > θacc do
7: Call the projection and rescaling algorithm of [12] with Qv̄(rangeA(θk)

∗
), K̄, ε, and ξ

to solve FP(rangeA(θk)∗, int K̄) and then obtain the scaling information v = (v1, v2, v3).
8: if a solution (z, ω, κ) to FP(rangeA(θk)∗, int K̄) is obtained then
9: Compute (y, γ) ∈ Rm+1 such that z = A∗y + γc, ω = −b⊤y − γθ and κ = γ.

10: ytmp ← −1
κ y, ztmp ← c−A∗ytmp, SolD ← SolD ∪ {ytmp}, LB ← θk

11: if ȳ ̸= ∅ then
12: Compute ynew such that b⊤ynew ≥ b⊤ȳ and c−A∗ynew ∈ K using ȳ and ytmp.
13: ȳ ← ynew, LB ← max{θk, b⊤ȳ}
14: else
15: if ztmp ∈ K then
16: ȳ ← ytmp, LB ← max{θk, b⊤ȳ}
17: end if
18: end if
19: if UB − LB ≤ 1 then
20: v̄ ← (v1, v2, v3)
21: else
22: if ztmp ∈ intK then

23: v̄ ← (z
− 1

2
tmp, 1, 1)

24: end if
25: end if
26: else if a solution (x, τ, ρ) to FP(ker A(θk), K̄ \ {0}) is obtained then
27: if x is an improving ray of (P) or a reducing direction for (D) then
28: stop Algorithm 5 and return x
29: end if
30: xtmp ← 1

τ x, Sol← Sol ∪ {xtmp}, UB ← θk

31: else
32: UB ← θk

33: end if
34: Choose θk+1 ∈ (LB,UB), k ← k + 1
35: end while
36: Choose y∗ from SolD as in (6) // If ȳ = ∅, y∗ ← ȳ.
37: Choose x∗ from SolP as in (5)
38: return y∗ (and x∗)

4 Numerical results

In this section, we apply our algorithm to some instances to show the numerical performance of the
proposed methods. Figure 1 shows the flow of our numerical experiments. First, we solve the instances
with SDP solvers to obtain approximate optimal solutions (x0, y0, z0) to (P) and (D). SDPA [34], SDPT3
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[29], and Mosek [1] were used in our experiment. Next, we call Algorithm 6 with (x0, y0, z0). Algorithm
6 calls Algorithm 5 and Algorithm 4 in that order if λmin(z

0) >-1e-12. Algorithm 5 is called first to
take advantage of the modification in Section 3.3.2. Since Algorithm 5 can find an approximate optimal
interior feasible solution to (D), a highly accurate optimal dual solution y will likely be obtained after
running Algorithm 5. Such a vector y can reduce the execution time of Algorithm 4 via the modification
proposed in Section 3.3.2. In our experiment, SDPA and SPDT3 returned z0 such that λmin(z

0) >-
1e-14 for all instances. However, Mosek returned z0 such that λmin(z

0) <-1e-10 for some instances in
the experiment of Section 4.2. Algorithm 6 processed these problems in the order of Algorithm 4 and
Algorithm 5. This is because we preferred to use the modifications proposed in Section 3.3.4 rather than
find a highly accurate optimal dual solution before executing Algorithm 4. (The next section will show
the effect of the modifications proposed in Section 3.3.4.) Even if λmin(z

0) <-1e-12, we can generate an
interior point of the cone K by adding a slight perturbation to z0. However, the interior points obtained
in this way are not likely to be accurate dual feasible solutions. On the other hand, Algorithm 4 can take
advantage of the modifications proposed in Section 3.3.4 using x0. If Algorithm 4 can find a dual feasible
solution, then Algorithm 5, called after Algorithm 4, can also use the modifications proposed in Section
3.3.4 from the first iteration. We note that Mosek did not yield (x0, y0, z0) such that λmin(z

0) < -1e-12
and λmin(x

0) < -1e-12 for all instances in our experiment. Thus, Algorithm 6 did not reach step 30 in
our experiment. As long as (x0, y0, z0) is an approximate interior feasible solution, step 30 of Algorithm
6 is not reached.

We set the upper limit for the execution time of Algorithms 4 and 5 to 30 minutes and θacc = 1e-12.
In addition, we added practical termination conditions to Algorithms 4 and 5 to account for numerical
errors. (See Appendix C.1.) For detailed settings of our algorithm, see Appendix C.

Figure 1: Experiment flow

We conducted three types of numerical experiments. In Section 4.1, we verified whether the modification
proposed in Section 3.3.4 contributes to reducing the execution time of Algorithm 6. In Section 4.2, we
checked whether Algorithm 6 can obtain approximate optimal solutions with higher accuracy than the
SDP solvers. In Section 4.3, we tested whether Algorithm 6 detects the feasibility status of SDP more
accurately than the SDP solvers. All executions were performed using MATLAB R2022a on an Intel(R)
Core(TM) i9-10980XE CPU @ 3.00GHz machine with 128GB of RAM.

In Section 4.1 and Section 4.2, we measured the accuracy of the output solution (x, y, z) to (P) and (D)
using the DIMACS errors [18]. Letting d be the dimension of the Euclidean space E corresponding to
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Algorithm 6 Proposed Algorithm

1: Input: A, b, c, K, (x0, y0, z0) and θacc > 0.
2: Output: Solutions to (P) and (D) or a vector that determines the feasibility status of (P) or (D).
3: if λmin(z

0) ≥ −1e-12 then
4: (x∗, y∗, z∗)← (x0, y0, z0)
5: if z∗ /∈ intK then
6: z∗ ← z∗ + (−λmin(z

∗)+1e-15)e
7: end if
8: Call Algorithm 5 with A, b, c, K, (x∗, y∗, z∗) and θacc > 0.
9: if a solution (x, y) to (P) and (D) is obtained then

10: x∗ ← x, y∗ ← y, z∗ ← c−A∗y
11: else if x, a reducing direction for (D) or an improving ray of (P), is obtained then
12: stop Algorithm 6 and return x
13: end if
14: Call Algorithm 4 with A, b, c, K, (x∗, y∗, z∗) and θacc > 0.
15: if a solution (x, y) to (P) and (D) is obtained then
16: x∗ ← x, y∗ ← y, z∗ ← c−A∗y
17: else if (y, z), a reducing direction for (P) or an improving ray of (D), is obtained then
18: stop Algorithm 6 and return (y, z)
19: end if
20: else if λmin(x

0) ≥ −1e-12 then
21: (x∗, y∗, z∗)← (x0, y0, z0)
22: if x∗ /∈ intK then
23: x∗ ← x∗ + (−λmin(x

∗)+1e-15)e
24: end if
25: Call Algorithm 4 with A, b, c, K, (x∗, y∗, z∗) and θacc > 0.
26: Same as lines 15 - 19
27: Call Algorithm 5 with A, b, c, K, (x∗, y∗, z∗) and θacc > 0.
28: Same as lines 9 - 13
29: else
30: (x∗, y∗, z∗)← (x0, y0, z0)
31: Same as lines 8 - 19
32: end if
33: return (x∗, y∗, z∗)
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Table 2: Experimental results testing the effectiveness of the modification proposed in Section 3.3.4

Method err1 err2 err3 err4 err5 err6 time(s)

Naive 7.15e-14 0 0 0 3.89e-10 3.89e-10 13.36
Algorithm 4 1.50e-14 4.81e-17 0 0 1.81e-13 1.81e-13 2.66

K, the DIMACS errors consists of six measures as follows:

err1(x, y, z) =
∥Ax− b∥2

1 + max
i=1,...,m

|bi|
, err2(x, y, z) = max

0,
− λmin(x)

1 + max
i=1,...,m

|bi|

 ,

err3(x, y, z) =
∥c−A∗y − z∥J
1 + max

i=1,...,d
|ci|

, err4(x, y, z) = max

0,
− λmin(z)

1 + max
i=1,...,d

|ci|

 ,

err5(x, y, z) =
⟨c, x⟩ − b⊤y

1 + |⟨c, x⟩|+ |b⊤y|
, err6(x, y, z) =

⟨x, z⟩
1 + |⟨c, x⟩|+ |b⊤y|

.

Primal feasibility is measured by err1(x, y, z) and err2(x, y, z) and dual feasibility is measured by err3(x, y, z)
and err4(x, y, z). Optimality is measured by err5(x, y, z) and err6(x, y, z). We note that the values
of err5(x, y, z) and err6(x, y, z) might be negative as long as (x, y, z) is an approximate solution. If
err5(x, y, z) = −δ and δ > 0, then err5(x, y, z) corresponds to a “worse” solution than if err5(x, y, z) = δ.

4.1 The effectiveness of the modification in Section 3.3.4

The instances used in this experiment are picked from SDPLIB [2]. The feasibility status of SDPLIB
instances can be inferred based on Freund et al.’s study [9]. Since this experiment was only to evaluate the
modification in Section 3.3.4, we chose only small size instances where both the primal and dual problems
are strongly feasible, i.e., control1, control2, control3, truss1, truss3, and truss4. We first solved these
instances with Mosek to obtain an approximate optimal interior feasible solution (x0, y0, z0). However,
Mosek returned dual solutions (y0, z0) such that c−A∗y0 /∈ K and z0 /∈ K to truss1, truss3, and truss4.
Thus, we only checked for six instances how the computation time of Algorithm 4 changed with and
without the modification proposed in Section 3.3.4. In this section, we referred to Algorithm 4 without
the modification proposed in Section 3.3.4 as the “Naive” method.

Table 2 summarizes the results of our experiments. The “times(s)” column shows the average CPU time
of the corresponding method, and the other columns show the average value of the DIMACS errors.
Table 2 shows that the computational time of Algorithm 4 is significantly smaller than that of the
“Naive” method. Algorithm 4 scales the problem with an approximate optimal interior feasible solution
before executing the projection and rescaling algorithm. Such scaling reduced the number of iterations
of the projection and rescaling algorithm in this experiment. Thus, the computational time of Algorithm
4 is much smaller than that of the “Naive” method.

4.2 The effectiveness of our post-processing algorithm

The outline of our numerical experiment in this section is as follows:

1. Solve the instances with the SDP solvers using the default settings to obtain approximate optimal
solutions (xdef , ydef , zdef).
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Table 3: Solver setting in our numerical experiments

default tolerances tight tolerances
Solver ϵprimal ϵdual ϵgap ϵprimal ϵdual ϵgap

Mosek 1.0e-08
1.0e-12SDPT3 1.0e-08

SDPA 1.0e-07

2. Solve the instances using (xdef , ydef , zdef) and Algorithm 6 to obtain approximate optimal solutions
(xpro, ypro, zpro).

3. Solve the instances with the SDP solvers using the tight settings to obtain approximate optimal
solutions (xtight, ytight, ztight).

4. Compare the above three results regarding accuracy and computational time.

In this experiment, we used SDPA, SDPT3, and Mosek. These solvers have parameters that allow us
to tune the feasibility and the optimality tolerances. For example, SDPA terminates if an approximate
optimal solution (x, y, z) is obtained for parameters ϵprimal, ϵdual and ϵgap such that

max
i=1,...,m

|(Ax− b)i| ≤ ϵprimal, max
i=1,...,d

|(c−A∗y − z)i| ≤ ϵdual, and
|⟨c, x⟩ − b⊤y|

max {(|⟨c, x⟩|+ |b⊤y|) /2, 1}
≤ ϵgap

are satisfied. That is, the parameters ϵprimal, ϵdual and ϵgap are the tolerances for primal feasibility, dual
feasibility, and optimality measures, respectively. The definitions of feasibility and optimality measures
are slightly different for each solver, but the other solvers have parameters that play the same role. Table
3 summarizes the values of the parameters used in our experiment. The “default tolerances” column
shows the default values of the parameters for each solver. The “tight tolerances” column shows the
values of the parameters used as the tight setting in our experiment.

The instances of SDPLIB were used in this experiment. Note that the instances for which the SDP solver
using the default setting returned infeasibility criteria were excluded. In addition, we excluded some
instances due to memory limitations and then conducted numerical experiments with 57 instances in
total. To appropriately observe the results, we classified these instances into two groups, the well-posed
and the ill-posed groups, based on Freund et al.’s study [9]. The well-posed group includes 34 instances
where both the primal and dual problems are expected to be strongly feasible. On the other hand,
the ill-posed group includes 23 instances where either the primal or dual problem is not expected to
be strongly feasible. According to [9], SDPLIB does not include the instances whose primal problem is
strongly feasible, but the dual is not. Thus, the ill-posed group includes only instances where the dual
problem is expected to be strongly feasible, but the primal problem is not.

The numerical results for the well-posed group and ill-posed group are summarized in Figures 2-
4 and 5-7, respectively. Figures 2-7 summarize the values of DIMACS errors for (xdef , ydef , zdef),
(xtight, ytight, ztight) and (xpro, ypro, zpro). In this experiment, no output (xpro, ypro, zpro) was obtained
such that err2(xpro, ypro, zpro) >1e-11 or err4(xpro, ypro, zpro) > 0. Therefore, we omitted figures summa-
rizing the values of err2 and err4. In Figures 2-7, the black solid line, the blue circle and the inverted
orange triangle show the values of the DIMACS errors logarithmized by the base 10 for (xdef , ydef , zdef),
(xtight, ytight, ztight) and (xpro, ypro, zpro), respectively. It is not plotted if the corresponding DIMACS
error value is 0. We note that the values of log10 |err5(x, y, z)| and log10 |err6(x, y, z)| are plotted be-
cause the values of err5(x, y, z) and err6(x, y, z) can be negative. In addition, we plot the points where
the corresponding DIMACS error values are negative by filling them in. In each graph of Figures 2-7,
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the horizontal axis indicates the instances, sorted so that the corresponding DIMACS error values for
(xdef , ydef , zdef) are in ascending order.

First, let us compare the results for the well-posed group. From Figures 2-4, we can observe that Algo-
rithm 6 returned an approximate optimal solution (xpro, ypro, zpro) that was superior to the (xdef , ydef , zdef)
and (xtight, ytight, ztight) in terms of feasibility and optimality for almost all instances. Algorithm 6 re-
turns (xpro, ypro, zpro) such that zpro = c−A∗ypro, thus the value of err3(xpro, ypro, zpro) should be 0 for
all instances. However, in (b) of Figures 2-4, four inverted triangles representing the results for four in-
stances, theta1, theta2, theta3, and theta4, were plotted. This is probably due to slight numerical errors
in computing c−A∗ypro for these instances. Note that (xpro, ypro, zpro) satisfies ⟨c, xpro⟩–b⊤ypro > 0 for
almost all instances.

We can also see that the solvers with the tight setting tend to return more accurate approximate optimal
solutions (xtight, ytight, ztight) than (xdef , ydef , zdef). However, Mosek and SDPA, with the tight setting,
returned strange outputs for some instances. Mosek, with the default setting, determined the primal and
dual problems are expected to be feasible and returned an approximate optimal solution for all instances.
The error message “rescode = 100006” was returned for only one instance. This error message means
that “the optimizer is terminated due to slow progress”. On the other hand, when using Mosek with
the tight settings, it returned the error message “rescode = 100006” for 21 instances. Among these
instances, 4 instances were determined that their primal problems were expected to be infeasible, and
13 instances were not determined their feasibility. For the aforementioned 4 instances and 13 instances,
Mosek, with the tight setting, provided incorrect infeasibility certificates and inaccurate dual feasible
solutions, respectively. SDPA, with the default setting, determined the primal and/or dual problems
are feasible and returned an approximate optimal solution for all instances. However, when using SDPA
with tight settings, it was determined that at least one of the primal or dual problems was expected
to be infeasible for 13 instances, and incorrect primal solutions were returned for 11 instances of them.
A possible reason for these strange outputs is that tightening the tolerances might cause numerical
instability. Figure 4 shows that SDPT3 with the tight setting worked stably and obtained more accurate
approximate optimal solutions (xtight, ytight, ztight) than (xdef , ydef , zdef) for almost all instances. We also
solved all instances using SDPT3 with the tolerances ϵprimal, ϵdual and ϵgap set to 1e-13 and obtained
the same results as Figure 4.

Next, let us compare the results for the ill-posed group. Since Mosek, using the default setting, returned
the reducing direction for hinf12, Figure 5 excludes the plot representing the result for this instance.
On the other hand, Algorithm 6 did not find a reducing direction for (P) in this experiment. Thus,
Algorithm 6 terminated by returning an approximate optimal solution for all instances. From Figures
5-7, we can observe that Algorithm 6 returned an approximate optimal solution (xpro, ypro, zpro) that was
superior to the (xdef , ydef , zdef) and (xtight, ytight, ztight) in terms of feasibility for almost all instances.
In addition, we can see that the value of |err5(xpro, ypro, zpro)| or |err6(xpro, ypro, zpro)| was larger than
the value of |err5(xdef , ydef , zdef)| or |err6(xdef , ydef , zdef)| for some instances. However, this observation
does not imply that (xpro, ypro, zpro) was inferior to (xdef , ydef , zdef) and (xtight, ytight, ztight) in terms of
optimality.

Tables 4-6 compare the dual objective value of (xpro, ypro, zpro) with the primal or dual objective values
of (xdef , ydef , zdef) and (xtight, ytight, ztight). From Tables 4-6, we can see that

b⊤ypro > max{b⊤ydef , b⊤ytight}

holds for almost all instances of the ill-posed group. Noting that c − A∗ypro = zpro ∈ K holds for all
instances, (ypro, zpro) can be regarded as a more accurate optimal dual solution than (ydef , zdef) and
(ytight, ztight). Therefore, the reason why the value of |err5(xpro, ypro, zpro)| or |err6(xpro, ypro, zpro)| was
sometimes greater than the corresponding DIMACS error values for (xdef , ydef , zdef) and (xtight, ytight, ztight)
is that Algorithm 6 did not obtain a sufficient accurate primal solution xpro such that ⟨c, xpro⟩ ≃ b⊤ypro
for some instances. Here, we note that the primal problem of all instances in the ill-posed group is not
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Table 4: Comparison of the objective values of (xpro, ypro, zpro), (xdef , ydef , zdef) and (xtight, ytight, ztight)
for the ill-posed group : Mosek

instance b⊤ypro − ⟨c, xdef⟩ b⊤ypro − b⊤ydef b⊤ypro − ⟨c, xtight⟩ b⊤ypro − b⊤ytight

gpp100 7.38e-06 7.37e-06 7.38e-06 7.37e-06
gpp124-1 4.88e-06 4.86e-06 1.24e-06 1.23e-06
gpp124-2 5.75e-05 5.81e-05 5.75e-05 5.81e-05
gpp124-3 4.76e-05 4.94e-05 4.76e-05 4.94e-05
gpp124-4 5.10e-05 5.09e-05 5.10e-05 5.09e-05
hinf1 6.65e-07 6.01e-07 1.30e-06 1.18e-06
hinf3 3.79e-05 3.59e-05 3.85e-05 3.64e-05
hinf4 6.85e-05 6.61e-05 1.62e-05 1.53e-05
hinf5 8.33e+00 8.33e+00 8.33e+00 8.33e+00
hinf6 1.86e-03 1.75e-03 7.51e-03 7.21e-03
hinf7 7.17e+00 7.17e+00 7.17e+00 7.17e+00
hinf8 4.63e-03 4.46e-03 4.63e-03 4.46e-03
hinf10 7.17e-05 4.00e-05 3.09e-04 2.43e-04
hinf11 2.23e-04 1.93e-04 1.60e-03 1.48e-03
hinf13 3.40e-04 2.59e-04 3.40e-04 2.59e-04
hinf14 5.49e-04 5.25e-04 5.58e-04 5.34e-04
hinf15 8.12e-04 6.42e-04 2.24e-03 2.08e-03
qap5 1.29e-06 1.22e-06 1.90e-09 1.79e-09
qap6 4.38e-04 4.36e-04 2.68e-03 2.61e-03
qap7 4.81e-05 4.43e-05 8.71e-04 8.53e-04
qap8 5.26e-03 5.25e-03 4.50e-03 4.49e-03
qap9 1.14e-03 1.13e-03 4.89e-03 4.84e-03
qap10 1.56e-02 1.55e-02 1.56e-02 1.55e-02

expected to be strongly feasible, which might prevent the projection and rescaling methods in Algorithm
6 from working stably and obtaining accurate optimal primal solutions.

From the results of the solvers for the ill-posed group, we can observe the same thing as for the well-posed
group. When using SDPA and Mosek with the tight setting, they sometimes returned inaccurate primal
solutions and inaccurate dual solutions, respectively. In addition, SDPT3 with the tight setting returned
more accurate optimal solutions (xtight, ytight, ztight) than (xdef , ydef , zdef) for almost all instances. We
note that SDPT3 obtained the same results when ϵprimal = ϵdual = ϵgap = 1e-13 as when ϵprimal = ϵdual =
ϵgap = 1e-12.

Let us compare the results for the well-posed and ill-posed groups. Comparing Figures 2-4 and 5-7, we
can observe the following:

• Algorithm 6 did not consistently obtain an accurate optimal solution for the ill-posed group com-
pared to the results for the well-posed group.

• Algorithm 6 returned (xpro, ypro, zpro) such that |err5(xpro, ypro, zpro)| ≃ |err6(xpro, ypro, zpro)| for
almost all instances of the well-posed group, but such a relation did not hold for the ill-posed
group.

The first observation is evident in Figures 2-7, (c). To clarify the second observation, see Table
7. Table 7 summarizes the average value of ||err5(xpro, ypro, zpro)| − |err6(xpro, ypro, zpro)|| for each
group. Table 7 shows that for all combinations of Algorithm 6 and the solvers, the average value of
||err5(xpro, ypro, zpro)| − |err6(xpro, ypro, zpro)|| for the ill-posed group is greater than for the well-posed
group. From this table, we can see that the relation |err5(xpro, ypro, zpro)| ≃ |err6(xpro, ypro, zpro)| holds
for the well-posed group but not for the ill-posed group.
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Table 5: Comparison of the objective values of (xpro, ypro, zpro), (xdef , ydef , zdef) and (xtight, ytight, ztight)
for the ill-posed group : SDPA

instance b⊤ypro − ⟨c, xdef⟩ b⊤ypro − b⊤ydef b⊤ypro − ⟨c, xtight⟩ b⊤ypro − b⊤ytight

gpp100 -1.88e-07 2.07e-07 -1.55e-03 3.00e-05
gpp124-1 -1.29e-07 5.94e-08 -1.04e-03 1.28e-05
gpp124-2 -4.51e-06 1.03e-07 -1.21e-03 9.34e-06
gpp124-3 5.07e-05 6.27e-05 -2.05e-03 1.04e-04
gpp124-4 -3.14e-05 1.88e-06 -4.54e-03 1.03e-04
hinf1 1.18e-05 1.27e-05 -2.06e-04 1.09e-04
hinf3 -5.02e-03 9.78e-03 4.19e-03 5.67e-03
hinf4 3.46e-04 3.46e-04 5.96e-04 4.22e-04
hinf5 2.05e+01 2.00e+01 2.06e+01 2.01e+01
hinf6 4.65e-02 2.41e-02 2.86e-01 2.40e-01
hinf7 -3.08e+00 4.77e+00 -3.08e+00 4.77e+00
hinf8 1.69e-01 1.69e-01 1.68e-01 1.68e-01
hinf10 1.07e-01 5.37e-02 9.72e+00 6.91e+00
hinf11 1.25e-01 6.30e-02 3.11e+00 2.58e+00
hinf12 2.63e+01 3.21e+00 4.93e+01 4.17e+01
hinf13 4.39e+00 2.88e+00 4.39e+00 2.88e+00
hinf14 -2.90e-03 3.14e-03 -2.03e-02 1.84e-02
hinf15 3.63e+00 2.64e+00 3.63e+00 2.64e+00
qap5 -2.24e-02 3.36e-04 -1.60e-03 1.08e-04
qap6 -5.04e-02 1.21e-02 -1.93e-02 5.86e-03
qap7 -1.01e-01 2.34e-02 -4.57e-02 1.58e-02
qap8 -1.53e-01 2.11e-02 -4.95e-01 1.62e-01
qap9 -3.95e-01 8.01e-02 -3.01e-01 5.72e-02
qap10 -7.21e-01 8.16e-02 -6.57e-01 7.75e-02

Table 6: Comparison of the objective values of (xpro, ypro, zpro), (xdef , ydef , zdef) and (xtight, ytight, ztight)
for the ill-posed group : SDPT3

instance b⊤ypro − ⟨c, xdef⟩ b⊤ypro − b⊤ydef b⊤ypro − ⟨c, xtight⟩ b⊤ypro − b⊤ytight

gpp100 2.88e-06 1.88e-06 3.70e-06 1.84e-06
gpp124-1 9.15e-07 3.71e-07 9.20e-07 3.71e-07
gpp124-2 1.71e-06 1.11e-06 2.25e-06 1.09e-06
gpp124-3 4.48e-06 2.94e-06 5.65e-06 2.88e-06
gpp124-4 2.72e-05 1.20e-05 2.78e-05 1.20e-05
hinf1 1.03e-04 5.19e-05 1.03e-04 5.19e-05
hinf3 2.71e-02 1.36e-02 2.71e-02 1.36e-02
hinf4 1.92e-03 9.68e-04 1.92e-03 9.68e-04
hinf5 4.81e+00 4.47e+00 4.81e+00 4.47e+00
hinf6 1.60e-02 1.73e-02 2.89e-02 1.46e-02
hinf7 1.42e-02 7.48e-03 1.42e-02 7.48e-03
hinf8 4.06e-02 2.03e-02 4.06e-02 2.03e-02
hinf10 6.14e-02 5.28e-02 1.35e-01 6.73e-02
hinf11 7.37e-02 3.68e-02 7.37e-02 3.68e-02
hinf12 2.97e-05 1.45e-05 -8.09e-06 -1.29e-05
hinf13 1.03e-02 4.33e-03 6.81e-03 2.03e-03
hinf14 6.37e-05 8.15e-05 5.90e-05 3.54e-05
hinf15 1.80e-02 2.76e-02 1.80e-02 2.76e-02
qap5 -3.08e-07 8.53e-08 -4.55e-09 1.58e-09
qap6 4.52e-02 2.22e-02 4.52e-02 2.22e-02
qap7 3.15e-02 1.55e-02 3.15e-02 1.55e-02
qap8 1.13e-01 5.54e-02 1.13e-01 5.54e-02
qap9 2.19e-02 1.06e-02 2.19e-02 1.06e-02
qap10 5.11e-02 1.69e-02 5.11e-02 1.69e-02
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Table 7: Comparison of the average values of ||err5(xpro, ypro, zpro)| − |err6(xpro, ypro, zpro)||

Method Well-posed group Ill-posed group

Mosek + Algorithm 6 5.34e-11 3.45e-03
SDPA + Algorithm 6 1.93e-11 3.75e-03
SDPT3 + Algorithm 6 2.51e-12 3.51e-04

There are two reasons for this. The first one is Algorithm 6 did not obtain accurate optimal primal
solutions for some instances of the ill-posed group. As mentioned above, the projection and rescaling
methods might not work stably due to the feasibility status of the primal problem for the ill-posed group,
which results in the instability of Algorithm 6 in obtaining accurate optimal primal solutions. Therefore,
the relation |err5(xpro, ypro, zpro)| ≃ |err6(xpro, ypro, zpro)| did not hold for the ill-posed group compared
to the results for the well-posed group. The second one is the existence of a reducing direction for (P).
Recall that (f,−A∗f) ∈ Rm×E is called a reducing direction for (P) if (f,−A∗f) satisfies b⊤f = 0 and
−A∗f ∈ K \ {0}. Thus, if (D) has an optimal solution and a reducing direction for (P) exists, then the
optimal solution set of (D) is unbounded. Suppose that optimal dual solutions and reducing directions
for (P) exist for all instances of the ill-posed group. Then, for any optimal dual solution (y, z) and any
positive value k > 0, there exists a dual optima solution (yopt, zopt) and a reducing direction (f,−A∗f)
such that y = yopt + f and zopt + kA∗f /∈ K, and we have

err5(x, y, z) =
⟨c, x⟩ − b⊤(yopt + f)

1 + |⟨c, x⟩|+ |b⊤y|

=
⟨c, x⟩ − b⊤yopt

1 + |⟨c, x⟩|+ |b⊤y|
, (since b⊤f = 0)

and

err6(x, y, z) =
⟨x, c−A∗yopt −A∗f⟩
1 + |⟨c, x⟩|+ |b⊤y|

=
⟨x, c⟩ − (Ax)⊤yopt + ⟨x,−A∗f⟩

1 + |⟨c, x⟩|+ |b⊤y|
.

Therefore, even if ∥Axpro − b∥2 is sufficiently small, the value of ⟨xpro,−A∗f⟩ might not be negligibly
small as long as ypro ≃ yopt + f holds for some reducing direction (f,−A∗f) such that the value of
∥ − A∗f∥ is very large.

Table 8 summarizes the average values of f(z) = ∥z∥
1+ max

i
|ci|+max

i,j
|Aij |

for zdef and zpro by the well-

posed and the ill-posed groups, where A ∈ Rm×d is a matrix representation of the linear operator
A. Since Mosek and SDPA with the tight settings did not work stably in this experiment, the average
values of f(ztight) for each solver are omitted. In Table 8, the first, third, and fifth rows show the average
values of f(z) for zdef obtained from Mosek, SDPA, and SDPT3, respectively. The second, fourth, and
sixth rows show the average values of f(z) for zpro obtained from Algorithm 6 using (xdef , ydef , zdef)
returned from Mosek, SDPA, and SDPT3, respectively. We note that Algorithm 6 returned zpro such
that ∥zpro∥ >> ∥zdef∥ for hinf2. Since hinf2 is included in the well-posed group, in Table 8, the values
in rows 2, 4, and 6 of the “Well-posed group” column are significantly different from the values in rows
1, 3 and 5 of the same column, respectively. The average values of f(zdef) and f(zpro) for the well-posed
group, excluding hinf2, are summarized in the second column. From Table 8, we can see that the average
values of f(zdef) and f(zpro) in the third column are greater than in the second column. Thus, the dual
solutions zdef and zpro obtained by the solvers and Algorithm 6 for the ill-posed group are likely to
include a reducing direction (f,−A∗f) such that the value of ∥ − A∗f∥ is very large. Furthermore, we
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Table 8: Comparison of the average values of f(z) = ∥z∥
1+ max

i
|ci|+max

i,j
|Aij |

for zdef and zpro

Method Well-posed group Well-posed group excluding hinf2 Ill-posed group

Mosek 1.04e+03 6.85e+02 6.75e+05
Mosek + Algorithm 6 3.32e+03 6.85e+02 2.63e+10

SDPA 1.04e+03 6.85e+02 8.81e+04
SDPA + Algorithm 6 3.32e+03 6.85e+02 2.74e+11

SDPT3 6.70e+02 6.85e+02 4.66e+08
SDPT3 + Algorithm 6 3.33e+03 6.85e+02 7.87e+09

can expect that the dual optimal solution set of hinf2 includes solutions (ymin, zmin) and (ymax, zmax)
such that ∥zmin∥ << ∥zmax∥.

Finally, let us compare the execution time of Algorithm 6 for each instance. Figures 8, 9 and 10 show
the execution time of Algorithm 6 using (xdef , ydef , zdef) returned from Mosek, SDPA and SDPT3,
respectively. In these figures, the horizontal axis shows instances sorted in ascending order of problem
size. In this study, we defined the problem size as m × d, where m is the number of constraints and
d is the dimension of the Euclidean space E corresponding to K. The line graph shows the execution
time of Algorithm 6, and the bar graph shows the problem size. From Figures 8-10, we can observe the
following:

• As the problem size increases, the execution time of Algorithm 6 tends to increase.

• There was a variation in the execution time of Algorithm 6, even for instances of similar problem
size.

The above results were observed due to the structure of the projective rescaling method. The computa-
tional cost of the projection and rescaling algorithm proposed in [12] is

O
(
− r

log ξ
log

(
1

ε

)(
m3 +m2d+

1

ξ2
p2r2max

(
max

(
Csd,md

))))
(7)

where Csd is the computational cost of the spectral decomposition. In (7), the maximum number of
iterations of the main algorithm, the computational cost of the projection matrix, the maximum number
of iterations of the basic procedure and the computational cost per iteration of the basic procedure
corresponds to − r

log ξ log
(
1
ε

)
, m3 +m2d, 1

ξ2 p
2r2max and max

(
Csd,md

)
, respectively. Since the increase

in problem size will increase the time required to compute the projection matrix, the execution time of
Algorithm 6 in Figures 8-10 tends to increase monotonically. Here, we note that the main algorithm
and the basic procedure can be terminated in less than their maximum number of iterations. The main
algorithm (and the basic procedure) might terminate in a significantly different number of iterations for
problems with similar problem sizes. Therefore, there is expected to be some variation in the execution
time of Algorithm 6 for problems with similar problem sizes.
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 2: Numreical results for the well-posed group with Mosek
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 3: Numreical results for the well-posed group with SDPA
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 4: Numreical results for the well-posed group with SDPT3
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 5: Numreical results for the ill-posed group with Mosek
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 6: Numreical results for the ill-posed group with SDPA
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(a) The values of log10 err1(x, y, z) (b) The values of log10 err3(x, y, z)

(c) The values of log10 |err5(x, y, z)| (d) The values of log10 |err6(x, y, z)|

Figure 7: Numreical results for the ill-posed group with SDPT3
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Figure 8: Execution time of Algorithm 6 using (xdef , ydef , zdef) returned from Mosek

Figure 9: Execution time of Algorithm 6 using (xdef , ydef , zdef) returned from SDPA
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Figure 10: Execution time of Algorithm 6 using (xdef , ydef , zdef) returned from SDPT3

4.3 Experiments to determine feasibility status

The numerical results in the previous section showed that Algorithm 6 obtained more accurate approx-
imate optimal solutions for the well-posed group than the solvers. On the other hand, the numerical
results for the ill-posed group showed that Algorithm 6 failed to detect that the primal problem is in
weak status. Algorithm 6, theoretically, can obtain a reducing direction for (P) (or (D)) if (P) (or (D))
is in weak status, but Algorithm 6 returned not a reducing direction for (P) but an approximate interior
feasible solution to (P) for the instances of the ill-posed group. Detecting the feasibility status of (P)
and (D) and finding the reducing directions for (P) and (D) can be replaced by solving a certain SDP
whose primal and dual problems are strongly feasible, [16]. Thus, using the results of [16], we tested
whether Algorithm 6 can detect the feasibility status of SDP more accurately than the solvers. We
conducted this experiment with the ill-posed instances of SDPLIB and the weakly infeasible cases [14].
These instances have the primal problems in weak status.

4.3.1 Preparation to explain the flow of the experiment

Before going to the outline of our experiments, we derive the (PD
K ) and (DD

K ), which is closely related
to the feasibility status of (P), by using the following lemma.

Lemma 4.1 (Lemma 3.4 in [16]). For (P) and (D), consider the following pair of primal and dual
problems.

(PD
K ) infx,t,w t

sub.to −⟨c, x− te⟩+ t− w = 0
⟨ex⟩+ w = 1
Ax− tAe = 0
(x, t, w) ∈ K × R+ × R+
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(DD
K ) supy1,y2,y3

y2
sub.to cy1 − ey2 −A∗y3 ∈ K

1− y1(1 + ⟨c, e⟩) + ⟨e,A∗y3⟩ ≥ 0
y1 − y2 ≥ 0

The following properties hold.

1. (PD
K ) and (DD

K ) are strongly feasible.

Let (x∗, t∗, w∗) be an optimal solution to (PD
K ) and (y∗1 , y

∗
2 , y

∗
3) be an optimal solution to (DD

K ).

2. The optimal value is zero if and only if (D) is not strongly feasible. In this case, one of the two
alternatives below must hold:

(a) x∗ is an improving ray of (P), or

(b) x∗ is a reducing direction for (D).

3. The optimal value is positive if and only if (D) is strongly feasible.

Proof. See Lemma 3.4 in [16].

Note that [16] showed that Lemma 4.1 holds not only for the identity element e of K but also for any
interior point of K. Similar to Lemma 4.1, Proposition 4.2, which is not in [16], can be easily proved.

Proposition 4.2. For (P) and (D), consider the following pair of primal and dual problems.

(PP
K ) infy,z,t,w t

sub.to b⊤y + t− w = 0
⟨e, z⟩+ w = 1
−A∗y − z + te = 0
(y, s, t, w) ∈ Rm ×K × R+ × R+

(DP
K) supx1,x2,x3

x2

sub.to Ax3 − x1b = 0
1− x1 − ⟨e, x3⟩ ≥ 0
x1 − x2 ≥ 0
x3 − x2e ∈ K

The following properties hold.

1. Both (PP
K ) and (DP

K) are strongly feasible.

2. Let (y∗, z∗, t∗, w∗) be a primal optimal solution. The optimal value is zero if and only if (P) is not
strongly feasible. Moreover, if the optimal value is zero, (y∗, z∗) is an improving ray of (D) or a
reducing direction for (P).

3. Let (x∗
1, x

∗
2, x

∗
3) be a dual optimal solution. If the optimal value is positive, 1

x∗
1
x∗
3 is an interior

feasible solution to (P).

Proof. (1): Let (y0, z0, t0, w0) =
(
0, 1

⟨e,e⟩+1e,
1

⟨e,e⟩+1 ,
1

⟨e,e⟩+1

)
and (x0

1, x
0
2, x

0
3) = (0,−1, 0). Then (y0, z0, t0, w0)

and (x0
1, x

0
2, x

0
3) are interior feasible solutions to (PP

K ) and (DP
K), respectively.
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(2): If t∗ = 0, then b⊤y∗ = w∗ ≥ 0 and −A∗y∗ = z∗ ∈ K hold, which implies that (P) is not strongly
feasible by Proposition 2.4. Conversely, if (P) is not strongly feasible, there exists (y, z) ∈ Rm ×K such
that −A∗y = z, A∗y ̸= 0 and b⊤y ≥ 0 by Proposition 2.4. Let k = ⟨e, z⟩ + b⊤y. Since b⊤y ≥ 0, z ∈ K
and z ̸= 0 hold, k is positive. Letting (ȳ, z̄, t̄, w̄) = ( 1ky,

1
kz, 0,

1
k b

⊤y), we can easily see that (ȳ, z̄, t̄, w̄) is
an optimal solution for (PP

K ), which implies that the optimal value is zero.

Suppose that t∗ = 0. If b⊤y∗ = 0, then z∗ ̸= 0 holds since w∗ = 0 and hence, (y∗, z∗) is a reducing
direction for (P). If b⊤y∗ > 0, we can easily see that (y∗, z∗) is an improving ray of (D).

(3): If x∗
2 > 0, then x∗

1 > 0 and x∗
3 ∈ intK hold. Since x∗

1 and x∗
3 satisfy Ax∗

3 − x∗
1b = 0, 1

x∗
1
x∗
3 is an

interior feasible solution to (P).

With some modifications to (PP
K ) and (DP

K), we have optimization problems that Algorithm 6 can handle
well.

Proposition 4.3. For (P) and (D), consider the following pair of primal and dual problems.

(P
P

K) infα,β,γ,s α
sub.to −α+ β + γ + ⟨e, s⟩ = 0

α
1+⟨e,e⟩ (b−Ae)− γb+As = 1

1+⟨e,e⟩ (b−Ae)
(α, β, γ, s) ∈ R+ × R+ × R+ ×K

(D
P

K) supκ,f
1

1+⟨e,e⟩ (b−Ae)
⊤f

sub.to 1 + κ− 1
1+⟨e,e⟩ (b−Ae)

⊤f ≥ 0

−κ ≥ 0
−κ+ b⊤f ≥ 0
−κe−A∗f ∈ K

The following properties hold.

1. Both (P̄P
K ) and (D̄P

K) are strongly feasible.

2. The optimal value is smaller than or equal to 1.

3. Let (κ∗, f∗) be a dual optimal solution. If the optimal value is equal to 1, (f∗,−A∗f∗) is an
improving ray of (D) or a reducing direction for (P).

4. Let (α∗, β∗, γ∗, s∗) be a primal optimal solution. If the optimal value is smaller than 1, then

1 + ⟨e, e⟩
γ∗(1 + ⟨e, e⟩) + 1− α∗

(
s∗ +

1− α∗

1 + ⟨e, e⟩
e

)
is an interior feasible solution to (P).

Proof. (1): For any feasible solution (x1, x2, x3) to (DP
K), let

(α, β, γ, s) = (1− (1 + ⟨e, e⟩)x2, 1− x1 − ⟨e, x3⟩, x1 − x2, x3 − x2e) .

Then, (α, β, γ, s) is a feasible solution to (P
P

K). If (x1, x2, x3) is an interior feasible solution to (DP
K), we

can easily see that (α, β, γ, s) is an interior feasible solution to (P
P

K). Similarly, for any feasible solution

(y, z, t, w) to (PP
K ), let (κ, f) = (−t, y). Then, (κ, f) is a feasible solution to (D

P

K) because −κ+b⊤f = w
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and

1 + κ− 1

1 + ⟨e, e⟩
(b−Ae)⊤f =

⟨e, e⟩
1 + ⟨e, e⟩

+
1

1 + ⟨e, e⟩
(
1 + κ(1 + ⟨e, e⟩)− (b−Ae)⊤f

)
=

⟨e, e⟩
1 + ⟨e, e⟩

+
1

1 + ⟨e, e⟩
(
1 + ⟨e, κe+A∗f⟩+ κ− b⊤f

)
=

⟨e, e⟩
1 + ⟨e, e⟩

+ 1− ⟨e, z⟩ − w =
⟨e, e⟩

1 + ⟨e, e⟩

hold. Moreover if (y, z, t, w) is an interior feasible solution to (PP
K ), we cab easily see that (κ, f) is an

interior feasible solution to (D
P

K). Therefore (P
P

K) and (D
P

K) are strongly feasible.

(2): (DP
K) has an optimal solution (x∗

1, x
∗
2, x

∗
3) such that x∗

2 ≥ 0. Noting that

(α, β, γ, s) = (1− (1 + ⟨e, e⟩)x∗
2, 1− x∗

1 − ⟨e, x∗
3⟩, x∗

1 − x∗
2, x

∗
3 − x∗

2e)

is a feasible solution to (P
P

K), we can find that the optimal value of (P
P

K) is smaller than or equal to

1 − (1 + ⟨e, e⟩)x∗
2. Since (P

P

K) and (D
P

K) are strongly feasible and 1 + ⟨e, e⟩ > 0, the optimal values of

(P
P

K) and (D
P

K) are smaller than or equal to 1.

(3): If the optimal value is 1, we have

1 + κ∗ − 1

1 + ⟨e, e⟩
(b−Ae)⊤f∗ = κ∗ ≥ 0.

Since −κ∗ ≥ 0 holds, we find κ∗ = 0. Thus, f∗ satisfies b⊤f∗ ≥ 0, −A∗f∗ ∈ K and b⊤f∗+ ⟨e,−A∗f∗⟩ =
1 + ⟨e, e⟩. If b⊤f∗ = 0, then ⟨e,−A∗f∗⟩ = 1 + ⟨e, e⟩ holds, which implies that −A∗f∗ ̸= 0. Therefore,
(f∗,−A∗f∗) is a reducing direction for (P). If b⊤f∗ > 0, then we can easily see that (f∗,−A∗f∗) is an
improving ray of (D).

(4): Since (α∗, β∗, γ∗, s∗) is a feasible solution to (P
P

K), we find that

A
(
s∗ +

1− α∗

1 + ⟨e, e⟩
e

)
=

(
γ∗ +

1− α∗

1 + ⟨e, e⟩

)
b

holds. Let α∗ < 1. Noting that γ∗ ≥ 0 and s∗ ∈ K, we can easily see that

1 + ⟨e, e⟩
γ∗(1 + ⟨e, e⟩) + 1− α∗

(
s∗ +

1− α∗

1 + ⟨e, e⟩
e

)
is an interior feasible solution to (P).

4.3.2 Experimental flow and results

Now, let us explain the outline of our experiments to determine the feasibility status of SDPLIB
instances and the weakly infeasible instances from [14]. The flow of this experiment is almost the
same as that of Section 4.2. In other words, we obtained approximate optimal primal-dual solutions

(α∗, β∗, γ∗, s∗, κ∗, f∗) to (P
P

K) and (D
P

K) using the solvers with the default setting, the solvers with the
tight setting or Algorithm 6. Then, we compared these solutions in terms of accuracy and optimality.
While the accuracy and optimality of outputs were measured using DIMACS errors in Section 4.2, we
evaluated the outputs (α∗, β∗, γ∗, s∗, κ∗, f∗) by checking the values of 1 − α∗, 1 − 1

1+⟨e,e⟩ (b − Ae)
⊤f∗,

b⊤f∗ and λmin(−A∗f∗) in this experiment. In what follows, θ̄P and θ̄D denote the primal and dual

objective values of (P
P

K) and (D
P

K) for (α
∗, β∗, γ∗, s∗, κ∗, f∗), respectively.
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Table 9: Results of feasibility determination experiments for the ill-posed group instances from SDPLIB:
Mosek with the tight settings

Instance 1− θ̄P 1− θ̄D b⊤f∗ λmin(−A∗f∗) time(s)

gpp100 8.22e-15 8.33e-15 4.58e-16 -1.29e-14 4.26e-02
gpp124-1 2.95e-14 3.00e-14 7.31e-17 -2.76e-14 6.61e-02
gpp124-2 2.95e-14 3.00e-14 7.31e-17 -2.76e-14 6.40e-02
gpp124-3 2.95e-14 3.00e-14 7.31e-17 -2.76e-14 6.55e-02
gpp124-4 2.95e-14 3.00e-14 7.31e-17 -2.76e-14 6.52e-02
hinf1 4.22e-13 4.17e-13 -2.83e-13 -3.69e-13 8.78e-03
hinf3 2.22e-15 2.44e-15 -1.39e-15 -3.08e-15 8.45e-03
hinf4 4.04e-14 4.07e-14 -2.61e-14 -2.82e-14 8.88e-03
hinf5 1.39e-13 1.39e-13 -9.24e-14 -1.34e-13 1.02e-02
hinf6 3.47e-13 3.30e-13 -2.12e-13 -1.97e-13 8.48e-03
hinf7 1.84e-13 1.84e-13 -1.25e-13 -1.17e-13 9.54e-03
hinf8 5.98e-14 5.91e-14 -4.43e-14 -4.40e-14 9.56e-03
hinf10 1.62e-13 1.63e-13 -5.36e-14 -5.15e-14 1.13e-02
hinf11 5.38e-14 5.33e-14 -3.91e-14 -3.76e-14 1.22e-02
hinf12 4.44e-16 3.33e-16 1.30e-21 -1.30e-21 1.02e-02
hinf13 4.64e-14 4.65e-14 -1.99e-14 -3.16e-14 1.95e-02
hinf14 8.50e-14 8.48e-14 -4.53e-14 -6.84e-14 2.25e-02
hinf15 1.96e-13 1.96e-13 -1.53e-14 -1.19e-13 2.48e-02
qap5 1.00e-13 1.03e-13 -7.82e-14 -9.85e-14 1.03e-02
qap6 3.17e-13 3.07e-13 -3.55e-14 -1.03e-13 2.52e-02
qap7 2.16e-13 2.19e-13 -1.71e-13 -2.01e-13 3.40e-02
qap8 1.55e-15 1.78e-15 5.68e-14 -2.50e-15 8.68e-02
qap9 8.88e-16 6.66e-16 -5.68e-14 -6.36e-18 1.17e-01
qap10 1.55e-15 1.55e-15 -5.68e-14 -9.00e-15 2.86e-01

The first test cases are the ill-posed instances of SDPLIB defined in Section 4.2. When using the tight
tolerances, Mosek obtained approximate optimal solutions for these instances with such high accuracy
that there was no need to use Algorithm 6. Thus, we did not apply Algorithm 6 and just summarized
the results of Mosek for the ill-posed group in Table 9. From Table 9, we can see that Mosek, using
the tight setting, determined that the primal problem for the ill-posed instances was in weak status and
obtained highly accurate reduction directions.

The following test cases are the weakly infeasible instances of [14]. These instances are classified into four
sets, “clean-10-10”, “clean-20-10”, “messy-10-10” and “messy-20-10”. For example, the set “clean-10-10”
contains instances where m = 10 and r = 10, and the set “clean-20-10” contains instances where m = 20
and r = 10. The instance set labeled “messy” includes instances with a less obvious structure leading to
weak infeasibility than the set labeled “clean.” The results for the four instance sets are summarized in
Figures 11-13 and Table 10. Since each set contains 100 instances, we use box plots to report the values
of |1− θ̄P |, |1− θ̄D|, |b⊤f∗| and |min{λmin(−A∗f∗), 0}| logarithmized by the base 10. In these graphs,
“Val1”, “Val2”, “Val3”, and “Val4” represent |1 − θ̄P |, |1 − θ̄D|, |b⊤f∗| and |min{λmin(−A∗f∗), 0}|,
respectively. Blue objects represent the results obtained with the solver using the default setting; red
objects represent the results obtained with Algorithm 6, and yellow objects denote results obtained with
the solver using the tight settings. Table 10 summarizes the average execution time for each method.
Because the problem size was small, there was no significant difference in the execution time of each
method.
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Table 10: Average execution time for each method in the feasibility determination experiment

Method clean-10-10 clean-20-10 messy-10-10 messy-20-10

Mosek (default) 8.31e-03 9.88e-03 8.11e-03 9.05e-03
Algorithm 6 using Mosek 3.31e-01 1.27e+00 8.83e-01 1.13e+00

Mosek (tight) 1.07e-02 1.51e-02 1.31e-02 1.95e-02
SDPA (default) 1.99e+00 2.05e+00 2.02e+00 2.14e+00

Algorithm 6 using SDPA 1.62e-01 1.81e-01 2.52e-01 2.87e-01
SDPA (tight) 2.17e+00 2.90e+00 4.20e+00 3.51e+00

SDPT3 (default) 7.86e-02 8.52e-02 8.31e-02 9.77e-02
Algorithm 6 using SDPT3 1.99e-01 2.25e-01 3.05e-01 3.02e-01

SDPT3 (tight) 1.09e-01 1.21e-01 1.05e-01 1.15e-01

First, let us compare the results on the instances labeled “clean”. From Figures 11 and 13, we see
that Mosek and SDPT3, using the tight settings, obtained the approximate optimal values with such
high accuracy that there is no need to use Algorithm 6. For the SDPA using the tight tolerances,
the optimal values were obtained with roughly the same accuracy as when using the default settings.
Figures 11-13 also show that Algorithm 6 consistently obtained highly accurate optimal values regardless
of the solver used together. Next, let us compare the results on the instances labeled “messy”. Here,
we note that Mosek returned incorrect outputs for some instances when using the tight tolerances.
While Mosek with the default setting obtained approximate optimal solutions (α∗, β∗, γ∗, s∗, κ∗, f∗) for

all instances, Mosek with the tight setting returned incorrect infeasibility certificates to (P
P

K) for 23
instances of “messy-10-10” and 35 instances of “messy-20-10”. Figures 11-13 show that the accuracy
of the optimal values obtained by Mosek and SDPT3 was worse than the results for the instance sets
labeled “clean”. On the other hand, the accuracy of the dual optimal values θ̄D obtained by SDPA using
tight settings was better than the accuracy of the dual optimal values obtained for “clean” instances.
Algorithm 6 obtained optimal values for the instance sets labeled “messy” with the same accuracy as
for the instance sets labeled “clean.” In addition, Figures 11-13 show that the solvers and Algorithm 6
obtained approximate reducing directions for the weakly infeasible instances of [14], but their accuracy
was inferior to the results for the ill-posed instances of SDPLIB in Table 9.
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(a) The results on clean-10-10 (b) The results on clean-20-10

(c) The results on messy-10-10 (d) The results on messy-20-10

Figure 11: Numreical results for the weakly infeasible instances of [14] with Mosek
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(a) The results on clean-10-10 (b) The results on clean-20-10

(c) The results on messy-10-10 (d) The results on messy-20-10

Figure 12: Numreical results for the weakly infeasible instances of [14] with SDPA
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(a) The results on clean-10-10 (b) The results on clean-20-10

(c) The results on messy-10-10 (d) The results on messy-20-10

Figure 13: Numreical results for the weakly infeasible instances of [14] with SDPT3
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5 Concluding remarks

In this study, we proposed the algorithm for solving SCPs using projection and rescaling methods.
Although our algorithm can solve SCPs by itself, we proposed it intending to use it as a post-processing
step for the interior point method. In addition, we proposed some techniques to make our algorithm
more practical. We also conducted numerical experiments with SDPLIB instances and compared the
accuracy of the approximate optimal solution obtained from our method with that obtained from Mosek,
SDPA, and SDPT3. Our numerical results showed that

• For the well-posed group, i.e., the primal and dual problems are expected to be strongly feasible, our
algorithm consistently obtained a more accurate approximate optimal solution than that returned
from the solvers.

• For the ill-posed group, i.e., at least one of the primal or dual problems is expected not to be strongly
feasible, our algorithm obtained a more accurate feasible solution than the solvers. However, our
algorithm did not stably return a solution with good optimality for the ill-posed group compared
to the results for the well-posed group.

In addition, using the formulation in Proposition 4.3, we performed feasibility status determination
experiments on the ill-posed instances of SDPLIB and the weakly infeasible instances of [14]. For
the ill-posed instances of SDPLIB, the solver obtained approximate optimal solutions with such high
accuracy that there was no need to use our algorithm. However, for the instances of [14], our algorithm
obtained more accurate optimal values than the solvers, which implies that our algorithm can contribute
to detecting the feasibility status of SDP. The numerical results also indicated the difficulties related to
the execution time of our algorithm.

To overcome this problem, we have two future directions. The first one is to consider an efficient
computation of a projection matrix. If the problem size is large, the computation of the projection
matrix is expected to take much more time. Thus, efficient methods of computing projection matrices
will reduce the execution time of our algorithm. For example, using an approximate projection matrix
instead of an exact one might make our algorithm more practical, although the output solution may
be less accurate. The second is to process the operations of Algorithms 4 and 5 more efficiently using
parallel computation. Algorithms 4 and 5 choose the input value θ ∈ (LB,UB), call the projection and
rescaling algorithm with the corresponding feasibility problem, and update UB or LB with θ according
to the output from the projection and rescaling algorithm until UB − LB ≤ θacc, where θacc is an
accuracy parameter specified by the user. Therefore, if Algorithms 4 and 5 execute the projection and
rescaling algorithms in parallel for multiple input values, the execution time of these algorithms can be
reduced, which will reduce the execution time of Algorithm 6. In addition, we should consider why the
projection and rescaling methods could obtain feasible solutions with higher accuracy than the solvers.
To examine the differences between the projection and rescaling methods and interior point methods, it
might be a good idea first to explore the problem structure that the projection and rescaling methods
can solve more accurately than the solvers.
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A Details of the modification in Section 3.3.2

Algorithm 7 computes the direction d such that b⊤d > 0 using ytmp and ȳ, and then sets the value of
u as the upper bound on the step size α. After that, Algorithm 7 adjust the step size α and compute
y := ȳ + αd until c −A∗y ∈ K or b⊤(αd) ≤ 1e-16 holds. There is room for improvement in setting the
value of u and choosing the step size α. However, recall that Algorithms 2 and 3 are used in a post-
processing step. Since the approximate optimal value is known in advance, the projection and rescaling
algorithms in Algorithm 2 and 3 will return an approximate optimal solution from the first iteration.
Thus, we can expect α satisfying c −A∗(ȳ + αd) ∈ K to be small, which implies that further study on
how to choose u and α is not essential.

Algorithm 7 Update procedure for dual feasible solutions

1: Input: A, b, c, K, ytmp and ȳ such that c−A∗ȳ ∈ K.
2: Output: A feasible solution (y, z) to (D).
3: if b⊤ȳ = b⊤ytmp then
4: u← 0
5: else
6: if b⊤ȳ > b⊤ytmp then
7: d← ȳ − ytmp, u← 5
8: else
9: d← ytmp − ȳ

10: if c−A∗ytmp ∈ K then
11: ȳ ← ytmp, u← 5
12: else
13: u← 1
14: end if
15: end if
16: end if
17: if u > 0 then
18: α← u
19: while b⊤(αd) >1e-16 do
20: y ← ȳ + αd
21: if c−A∗y ∈ K then
22: stop Algorithm 7 and return (y, c−A∗y)
23: else
24: u← α, α ∈ (0, u)
25: end if
26: end while
27: return (ȳ, c−A∗ȳ)
28: else
29: return (ȳ, c−A∗ȳ)
30: end if

B Further discussion of the modification in Section 3.3.4

Let us consider the following simple minimization problem (Ex.B). The feasible region of (Ex.B) is
illustrated in Figure 14. The optimal solution x∗ is (1, 0)⊤ ∈ R2 and the optimal value θ∗ is 1.

(Ex.B) min
x

x1 s.t. 1
4x1 + x2 = 1, x =

(
x1

x2

)
∈ R2

++.
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Figure 14: Feasible region of (Ex.B)

Using the formulation in Section 3.1.1, the feasibility problem FPS∞(kerA(θ),R4
++) is obtained, where

θ ∈ R and

A(θ) =
(

1
4 1 −1 0
1 0 −θ 1

)
.

Here, let us define v ∈ R4
++ as v := ( 1√

α
, 1√

β,
1, 1)⊤ for any (α, β)⊤ ∈ R2

++ and consider the scaled

feasibility problem FPS∞(kerĀ(θ),R4
++) such that kerĀ(θ) = Qv(kerA(θ)).

FPS∞(kerĀ(θ),R4
++) : find


x1

x2

τ
ρ

 ∈ R4 s.t.

(
α
4 β −1 0
α 0 −θ 1

)
x1

x2

τ
ρ

 = 0,

0 < x1 ≤ 1, 0 < x2 ≤ 1,
0 < τ ≤ 1, 0 < ρ ≤ 1.

To know the value of δ∞(kerĀ(θ)∩R4
++), let us represent the feasible region of FPS∞(kerĀ(θ),R4

++) on

the τ -ρ plane. Noting that x1 = θ
ατ−

1
αρ and x2 = 4−θ

4β τ+ 1
4β ρ hold for any feasible solution (x1, x2, τ, ρ)

to FPS∞(kerĀ(θ),R4
++), the feasible region of FPS∞(kerĀ(θ),R4

++) is given by{(
θ

α
τ − 1

α
ρ,

4− θ

4β
τ +

1

4β
ρ, τ, ρ

)
: 0 < θτ − ρ ≤ α, 0 < (4− θ)τ + ρ ≤ 4β, 0 < τ, ρ ≤ 1

}
.

For example, if 0 < θ < 4, α+4β
4 < 4β

4−θ , θβ ≤ 1, and α+4β
4 ≤ 1 hold, the feasible region of

FPS∞(kerĀ(θ),R4
++) is as shown in Figure 15a. In this case, we can easily see that the point giv-

ing the maximum value of δ∞(kerĀ(θ)∩R4
++) lies in the red line segment in Figure 15a. Thus, the value

of δ∞(kerĀ(θ) ∩ R4
++) is represented as the optimal value of a maximization problem maxτ∈domT f(τ),

where f(τ) = 4
ατ(τ − β)(4β − (4 − θ)τ) and dom T = (β, α+4β

4 ]. This maximization problem can
be solved with derivatives and simple calculations. The function f(τ) is obtained by substituting
x1 = θ

ατ −
1
αρ, x2 = 1, and ρ = 4β − (4 − θ)τ into x1x2τρ. Next, let us consider a more complex case.

If 0 < θ < 4, α+4β
4 < 4β

4−θ , θβ ≤ 1, and β ≤ 1 < α+4β
4 hold, the feasible region of FPS∞(kerĀ(θ),R4

++)

is as shown in Figure 15b. The point giving the maximum value of δ∞(kerĀ(θ) ∩ R4
++) lies in the

red or blue line segment in Figure 15b. Thus, the value of δ∞(kerĀ(θ) ∩ R4
++) is represented as

the optimal value of max{maxτ∈domT f(τ),maxρ∈domR g(ρ)}, where f(τ) = 4
ατ(τ − β)(4β − (4 − θ)τ),

g(ρ) =
(
θ
α −

1
αρ

) (
4−θ
4β + 1

4β ρ
)
ρ, dom T = (β, 1], and dom R = [max{0, θ − α},−(4 − θ) + 4β]. The

function g(ρ) is obtained by substituting x1 = θ
ατ −

1
αρ, x2 = 4−θ

4β τ + 1
4β ρ, and τ = 1 into x1x2τρ.

Considering the other cases in the same way, the values of δ∞(kerĀ(θ)∩R4
++) are summarized in Tables

11-14. The columns in these tables show the relations that hold for α, β, and θ. For example, the
second column of Table 11 shows the case where 0 < θ < 4, α+4β

4 < 4β
4−θ , θβ < 1 and 1 ≤ β hold.

The “dom T” and “dom R” rows show the domain of τ and ρ, respectively. The “δ∞” row shows the
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(a) 0 < θ < 4, α+4β
4

< 4β
4−θ

, θβ ≤ 1, and α+4β
4

≤ 1

(b) 0 < θ < 4, α+4β
4

< 4β
4−θ

, θβ ≤ 1, and β ≤ 1 < α+4β
4

Figure 15: Feasible region of FPS∞(kerĀ(θ),R4
++)
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value of δ∞(kerĀ(θ) ∩ R4
++). Based on Tables 11-14, we computed the value of δ∞(kerĀ(θ) ∩ R4

++) by
substituting specific values into α, β, and θ, and then checked whether Assumption 3.14 holds and the
point (α, β)⊤ ∈ R2

++ such that δ∞(kerĀ(θ) ∩ R4
++) ≥ δ∞(kerA(θ) ∩ R4

++) can likely hold.

First, let us see whether Assumption 3.14 holds using Figure 16. Figure 16 shows a heatmap of the
value of δ∞(kerĀ(θ) ∩ R4

++) when β = 1 − α
4 , i.e., (α, β)

⊤ satisfies the linear constraint of (Ex.B). In
Figure 16, the horizontal axis represents the value of θ, the vertical axis represents the value of α, and
the cells show the values of δ∞(kerĀ(θ) ∩ R4

++) corresponding to θ and α. This figure provides us with
an intuitive understanding that Assumption 3.14 holds. We confirmed Assumption 3.14 holds for this
example by checking the values of all cells.

Next, let us see what α and β are most likely to satisfy δ∞(kerĀ(θ) ∩ R4
++) ≥ δ∞(kerA(θ) ∩ int K̄).

We computed the value of δ∞(kerĀ(θ) ∩ R4
++) for each θ ∈ {0.1, 0.2, . . . , 4.0}, α ∈ {0.1, 0.2, . . . , 4.2},

and β ∈ {0.1, 0.2, . . . , 1.3}, and then made Figure 17. In each graph in Figure 17, the horizontal axis
represents the value of α, the vertical axis represents the value of β, and the cells show the values of
δ∞(kerĀ(θ) ∩ R4

++) corresponding to θ, α, and β. We note that α = β = 1 implies kerĀ(θ) = kerA(θ).
From these figures, we can observe the following:

• When max{θp, θ − 1} = θ − 1, i.e., θ > 1, the closer the point (α, β)⊤ is to the interior feasible
solution (x1, x2) such that x1 = θ−1, i.e., (θ−1, 5−θ

4 )⊤ the more likely it seems that δ∞(kerĀ(θ)∩
R4

++) ≥ δ∞(kerA(θ) ∩ R4
++) holds unless e is an approximate feasible solution for (P) such that

⟨c, e⟩ ≃ θ − 1.

• When max{θp, θ − 1} = θp, i.e., 0 < θ < 1 the closer the point (α, β)⊤ is to the optimal solution
(0, 1)⊤, the more likely it seems that δ∞(kerĀ(θ) ∩ R4

++) ≥ δ∞(kerA(θ) ∩ R4
++) holds.

Figure 16: Heatmap of the value of δ∞(kerĀ(θ) ∩ R4
++) when (α, β) = (α, 1− α

4 )

54



(a) θ = 0.1 (b) θ = 0.5

(c) θ = 1 (d) θ = 2

(e) θ = 3 (f) θ = 4

Figure 17: The values of δ∞(kerĀ(θ) ∩ R4
++)
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Ā
(θ
)
∩
R

4 +
+
)
w
h
en

θ
=

4
a
n
d

α 4
≥

β
.

α 4
≥

β

1
≤

β
β
<

1
≤

1 4
α

1 4
α

<
1
≤

α
+
4
β

4
α
+
4
β

4
<

1

4
β
<

1
1
≤

4
β

4
β
<

1
1
≤

4
β

4
β
<

1
1
≤

4
β

4
−

α
<

1
1
≤

4
−

α

d
o
m
T

1
+
α

4
α
+
4
β

4
1
+
α

4
d
o
m
R

(0
,1

]
(0
,4

β
]

(0
,1

]
[4

−
α
,4

β
]

[4
−

α
,1

]
1

4
β

1

δ ∞
m
a
x

ρ
∈
d
o
m
R
g
(ρ
)

m
a
x

ρ
∈
d
o
m
R
g
(ρ
)

m
a
x

ρ
∈
d
o
m
R
g
(ρ
)

m
a
x

ρ
∈
d
o
m
R
g
(ρ
)

m
a
x

ρ
∈
d
o
m
R
g
(ρ
)

1
+
α

1
6
β

α
β
+

4
β
2

1
+
α

1
6
β

T
ab

le
1
4
:
T
h
e
va
lu
es

o
f
δ ∞

(k
er
Ā
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C Detailed settings of the proposed algorithm

C.1 Practical termination conditions

C.1.1 Termination condition to deal with cases suffering from numerically unstable out-
puts

The projection and rescaling algorithms can return incorrect outputs due to numerical errors caused by
scaling operations. Such outputs prevent Algorithms 4 and 5 from working correctly. Thus, we added
the practical termination conditions to our algorithms. In our numerical experiments, Algorithms 4 and
5 were set to terminate when 30 consecutive incorrect outputs were returned from the projection and
rescaling method. We defined Algorithms 4 and 5 as obtaining incorrect outputs from the projection
and rescaling method if they obtain any output except the following:

• a reducing direction for (P) or (D),

• an improving ray of (P) or (D),

• vectors (y, γ) that satisfies γ > 0 and λmin(c+A∗ 1
γ y) ≥ -1e-4,

• vectors (x, τ, ρ) that satisfies τ > 0, ∥A 1
τ x− b∥ ≤ 1e-4 and λmin(

1
τ x) ≥ -1e-4, or

• a certificate that there is no ε-feasible solution to the corresponding feasibility problem, i.e.,
FP(kerA(θk), intK̄) or FP(rangeA(θk)∗, intK̄).

C.1.2 Termination condition to deal with cases suffering from non-useful outputs

The projection and rescaling algorithms can return non-useful outputs for Algorithms 4 and 5. For
example, if the projection and rescaling method called in Algorithm 4 returns a certificate that there
is no ε-feasible solution to the input feasibility problem FP(kerA(θk), intK̄), all Algorithm 4 can do is
update the value of LB. Since such output is likely to be obtained when (P) is not strongly feasible,
we considered it prudent to terminate Algorithm 4 when the projection and rescaling method begin to
return such outputs in succession. Thus, in the numerical experiments, Algorithms 4 and 5 were set to
terminate when the projection and rescaling algorithms proved 30 consecutive times that there was no
ε-feasible solution to the corresponding feasibility problem. Note that in our experiments, Algorithms 4
and 5 did not terminate with this termination condition.

C.2 Implementation details of the projection and rescaling algorithm

Algorithm 6 used the projection and rescaling algorithm proposed in [12], which employs the smooth
perceptron scheme [26, 27] in the basic procedure. The reason for using this projection and rescaling
method is that the numerical experiments in [12] show that their method obtained accurate approximate
solutions in a shorter time than the other methods. We set the termination parameter as ξ = 1/4 in the
basic procedure for the same reasons stated in [12]. In addition, we set the accuracy parameter as ε =
1e-16 in the main algorithm, which allows the projection and rescaling algorithm to obtain approximate
optimal solutions for (P) and (D) near the boundaries of the cone K.

In Algorithm 6, the projections PkerA(θ) and PrangeA(θ)∗ were computed in the same way as described in
[12]. That is, we computed the projections PkerA(θ) and PrangeA(θ)∗ using the singular value decomposi-

tion. Let A ∈ Rm+1×d+2 be a matrix representing the linear operator A(θ) and I be the identity matrix.
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Suppose that the singular value decomposition of a matrix A is given by A = UΣV ⊤ = U
(
Σm+1 O

)
V ⊤

where U ∈ Rm+1×m+1 and V ∈ Rd+2×d+2 are orthogonal matrices, and Σm+1 ∈ Rm+1×m+1 is a diagonal
matrix with m + 1 singular values on the diagonal. Since the projections PkerA(θ) and PrangeA(θ)∗ are

given by PkerA(θ) = I − A⊤(AA⊤)−1A and PrangeA(θ)∗ = A⊤(AA⊤)−1A, respectively, we can compute
these projections as follows:

PrangeA(θ)∗ = A⊤(AA⊤)−1A

= A⊤(UΣΣ⊤U⊤)−1A

= A⊤U−⊤(Σ2
m+1)

−1U−1A

= V Σ⊤Σ−2
m+1ΣV

⊤ = V

(
Im+1 O
O O

)
V ⊤ = V:,1:m+1V

⊤
:,1:m+1,

and PkerA(θ) = I − PrangeA(θ)∗ = I − V:,1:m+1V
⊤
:,1:m+1, where V:,1:m+1 represents the submatrix from

column 1 to column m+ 1 of V .

C.3 How to compute (y, γ) from (z, ω, κ) ∈ rangeA(θ)∗ ∩ K̄

If a nonzero point (z, ω, κ) ∈ rangeA(θ)∗ ∩ K̄ is obtained from the projection and rescaling methods in
Algorithms 4 and 5, we compute (y, γ) ∈ Rm+1 such that z = A∗y+ γc, ω = −b⊤y− γθ and κ = γ. The
matrices U , Σ, and V described in the previous section are also used to compute such a (y, γ). Suppose
that A ∈ Rm+1×d+2 is a matrix representation of the linear operator A(θ) and A is decomposed into
A = UΣV ⊤ by the singular value decomposition. Then, we findz

ω
κ

 = A⊤
(
y
γ

)
= V

(
Σm+1 O

)⊤
U⊤

(
y
γ

)
.

Since U and V are orthogonal matrices, we have

(
y
γ

)
= U

(
Σ−1

m+1 O
)
V ⊤

z
ω
κ

 .

C.4 Modification of the basic procedure

The basic procedure of [12] requires a constant ξ ∈ R such that 0 < ξ < 1 as an input. This procedure
finds a Jordan frame {c1, c2, . . . , cr} such that ⟨ci, x⟩ ≤ ξ holds for any feasible solution x of the input

problem FPS∞(L, int K) and for some i ∈ {1, 2, . . . , r} in at most
p2r2max

ξ2 iterations, where K is a

Cartesian product of p simple symmetric cones K1, . . . ,Kp, r =
∑p

i=1 ri is a rank of K and rmax =
max{r1, . . . , rp}. Whether ⟨ci, x⟩ ≤ ξ is valid is determined by calculating the upper bound ui of ⟨ci, x⟩.
If such a Jordan frame {c1, c2, . . . , cr} is obtained, the basic procedure terminates and returns the sets
C := {c1, c2, . . . , cr} and H := {i : ui ≤ ξ} to the main algorithm. Then, the main algorithm scales
the problem FPS∞(L, int K) as FPS∞(Qv(L), int K), where v = 1√

ξ

∑
h∈H ch +

∑
h/∈H ch. In this case,

however, the main algorithm can scale the problem more efficiently using v =
∑

h∈H
1√
uh

ch +
∑

h/∈H ch,

which will reduce the computational time of Algorithms 4 and 5. Furthermore, if the same constant
ξ is used for all feasibility problems, Algorithms 4 and 5 might encounter problems where the basic

procedure requires many iterations, close to the maximum number of iterations
p2r2max

ξ2 . Therefore, we

modified the projection and rescaling algorithm of [12] called in Algorithms 4 and 5 as follows:
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• Modification of the basic procedure

– Let k be the number of iterations of the basic procedure. The termination condition varies
depending on the value of k.

1. If k ≤ 100, the basic procedure terminates when a Jordan frame {c1, c2, . . . , cr} such that
⟨ci, x⟩ ≤ ui ≤ ξ holds for any feasible solution x of the input problem FPS∞(L, int K) and
for some i ∈ {1, 2, . . . , r} is obtained. Then, return C := {c1, c2, . . . , cr}, H := {i : ui ≤ ξ}
and U := {ui : ui ≤ ξ} to the main algorithm.

2. If k > 100, the basic procedure terminates when a Jordan frame {c1, c2, . . . , cr} such that
⟨ci, x⟩ ≤ ui < 1 holds for any feasible solution x of the input problem FPS∞(L, int K) and
for some i ∈ {1, 2, . . . , r} is obtained. Then, return C := {c1, c2, . . . , cr}, H := {i : ui < 1}
and U := {ui : ui < 1} to the main algorithm.

• Modification of the main algorithm

1. Suppose that the basic procedure returns the sets C, H and U at the k-th iteration of
the main algorithm. Then, scale the linear subspace Lk as Lk+1 ← Qv(L

k), where v =∑
h∈H

1√
uh

ch +
∑

h/∈H ch.

D Computational results on SDPLIB

The detailed results of the experiments conducted in Section 4.2 are summarized in Tables 15-32. Please
refer to the respective solver’s documentation for the meaning of the messages returned by each solver
in Tables 15-26. Tables 27-32 summarize the results of Algorithm 6. The columns “Algorithm 5” and
“Algorithm 4” in Tables 27-32 summarize the execution time of each algorithm and what termination
conditions they met to finish. “Complete” means that the algorithm terminated because UB−LB ≤ θacc
was satisfied, “Time Over” means that the algorithm terminated because its execution time exceeded 30
minutes, and “Numerical Error” means that the algorithm terminated because the termination condition
defined in Appendix C.1 was met.
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