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Abstract. Quadratic optimization (QO) has been studied extensively in the literature due to its applicability in many practical

problems. While practical, it is known that QO problems are generally NP-hard. So, researchers developed many approximation

methods to find good solutions. In this paper, we go beyond the norm and analyze QO problems using robust optimization tech-

niques. To this end, we first show that any QO problem can be reformulated as a disjoint bi-convex QO problem. Then, we provide

an equivalent adjustable robust optimization (ARO) reformulation and leverage the methods available in the literature on ARO to

approximate this reformulation. More specifically, we show that using a so-called decision rule technique to approximate the ARO

reformulation is interpreted as using a linearization-relaxation technique on its bi-convex reformulation problem. Additionally, we

design an algorithm that can find a close-to-optimal solution based on our new reformulations. Our numerical results demonstrate

the efficiency of our algorithm, particularly for large-sized instances, compared with the off-the-shelf solvers.
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1. Introduction
Various practical problems in different domains, including financial mathematics (Markowitz 1952),

machine learning (Cevikalp and Polikar 2008), resource allocation (Ibaraki and Katoh 1988), computer

vision (Bhanja et al. 2016), game theory (Bomze 2002), robotic systems (Khadivar et al. 2023), graph the-

ory (Gibbons et al. 1997), and image processing (Bulo et al. 2011), to mention few, can be formulated as

quadratic optimization problems. Thus, developing efficient techniques to solve general quadratic optimiza-

tion problems is of great importance.

Let us consider a quadratic optimization (QO) problem of the form:

min
x∈X

x⊤Qx+ c⊤x, (QO)

whereX ⊆Rnx is a nonempty convex set, Q∈Rnx×nx is a real matrix, and c∈Rnx is a real vector. Without

loss of generality, we assume that Q is a symmetric matrix. If Q is a positive semi-definite matrix, we

have a convex QO, which is solvable in polynomial time (Kozlov et al. 1980, Renegar 2001). In contrast,
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even when Q has only one negative eigenvalue, (QO) is NP-hard (Pardalos and Vavasis 1991). Besides,

identifying local minimizers of (QO) over a polyhedron is not simpler than finding global minimizers from

a complexity perspective (Ahmadi and Zhang 2022).

Due to the NP-hardness of indefinite QO problems, there has been a lot of research on constructing

upper bounds via finding “good” solutions (Bentobache et al. 2022, Cuong et al. 2022), and lower bounds

to identify the quality of a candidate solution, which are mainly based on linear or conic approximations

(Mitchell et al. 2014, Rostami et al. 2023, Zamani 2023). A customary way to approximate a QO problem

is by relaxing it into linear optimization problems, which is achieved through Reformulation-Linearization

Techniques (RLT) (Anstreicher 2009, Sherali and Tuncbilek 1995). For an overview of RLTs, we refer the

reader to the chapter (Sherali and Liberti 2009) and the references therein.

Among the conic relaxations, copositive relaxations have been considered the most powerful as it was

shown that they result in tight bounds (Bomze 2015, Burer 2009). In such relaxations, the primary com-

putational challenge shifts to deal with the copositive cone using tractable inner and outer approximations

(Bundfuss and Dur 2009, Gouveia et al. 2020, Kim et al. 2020), or use a KKT-based branch-and-bound

method (Chen and Burer 2012).

Another important conic relaxation for QO problems is the positive semi-definite relaxations. In the last

thirty years, the field of semi-definite optimization (SDO) has undergone significant and swift advance-

ment (Wolkowicz et al. 2012). Due to their efficiency, the SDO framework has led to many semi-definite

relaxations; these relaxations are reviewed and compared in (Bao et al. 2011, Wang and Kılınç-Karzan

2022, Zheng et al. 2011). Moreover, Burer and Vandenbussche (2008, 2009) develop branch-and-bound

approaches based on semi-definite relaxations to solve a QO problem.

In addition to directly approximating QOs, a research direction is to reformulate them into other well-

studied problems. Hu et al. (2012) and Xia et al. (2020) show how a QO problem is reformulated as a

mixed-integer linear optimization (MILO) problem. Moreover, since any quadratic function can be written

as the difference between two convex quadratic functions (see, e.g., Fampa et al. (2017) and Park (2016)

for different representations and their properties), a QO can be reformulated as a difference-of-convex (DC)

optimization problem.

Next to methods developed for general QO problems, there are techniques to solve or approximate spe-

cial classes. One class is when the matrix Q has a few negative eigenvalues. In Cen and Xia (2021), the

authors propose a solution scheme that involves solving a series of convex QO problems over the original

feasible region. Additionally, Luo et al. (2019) introduces an alternative direction-based method to solve

QO problems in this class.

Another class is standard QO problems, where the feasible region is the unit simplex. For more details

on lower bound approximations for this class of QO problems, we refer the reader to (Bomze and De Klerk



A. Khademi, and A. Marandi: Quadratic Optimization Through the Lens of Adjustable Robust Optimization
3

2002, Bomze et al. 2008, Bonami et al. 2019, Gökmen and Yıldırım 2022, Gondzio and Yıldırım 2021,

Selvi et al. 2023).

In this paper, we focus on the relation between QO problems and adjustable robust optimization problems.

The adjustable robust optimization (ARO) framework, initially introduced in Ben-Tal et al. (2004), has

gained significant attention among researchers due to its ability to handle decision-making problems in

the presence of uncertain parameters. This approach involves adaptive decision-making by considering two

types of decision variables: static and adjustable decisions. Static (or ‘here-and-now’) decisions are made

based on available information, while adjustable (or ‘wait-and-see’) decisions are made in response to the

actual values of uncertain parameters. In recent years, the ARO framework has been successfully applied

to tackle complex optimization problems such as convex maximization (Selvi et al. 2022) and bi-linear

optimization (Zhen et al. 2022).

To obtain an approximate solution for an ARO problem, various techniques, such as the finite scenario

approach (Hadjiyiannis et al. 2011), partitioning method (Bertsimas and Dunning 2016, Postek and Hertog

2016), Fourier-Motzkin elimination (Zhen et al. 2018), and decision rules (El Housni and Goyal 2021) can

be employed, particularly in the case of linear ARO problems. By using these methods, one can estimate the

optimal value or obtain an approximated solution for the original problem. For more information on ARO,

we refer to the tutorial by Delage and Iancu (2015) and the survey paper by Yanıkoğlu et al. (2019).

While there has been a lot of research in approximating linear ARO problems, the literature sparsely

covers non-linear ARO problems due to their inherent complexity. De Ruiter et al. (2023) shows a class of

non-linear ARO problems featuring a polyhedral uncertainty set that can be transformed into an equivalent

linear ARO problem, thereby enabling the application of the existing approximations techniques for linear

cases. In a recent study, Khademi et al. (2024) employed Fenchel’s duality to convert a non-linear ARO

problem into its dual formulation and introduce a cutting-plane algorithm to find locally robust solutions.

In this paper, we make a four-fold contribution to the literature to connect the two fields of quadratic

optimization and adjustable robust optimization. First, we show that any QO problem can be reformulated

as a disjoint bi-convex quadratic optimization problem. Using this new reformulation, we further show that

any QO problem can be reformulated as an ARO problem, where the objective functions and constraints

are convex quadratic on the decision variables and linear on the uncertain parameter. Moreover, the ARO

reformulation has right-hand-side uncertainty, implying that available ARO techniques are applicable to

approximate it.

Second, we show how one can interpret an approximation of the ARO reformulation on the original QO

problem. More specifically, we prove that applying a structured affine decision rule to approximate the ARO

formulation is equivalent to applying an RLT to approximate the disjoint bi-convex reformulation.

Third, we design an algorithm to construct a bound on the optimal value of (QO). More specifically, we

apply a decision-rule approximation to obtain a lower bound. Then, based on the solution and the structure
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of the ARO problem, we construct “good” feasible solutions. In the final step, we apply the mountain-

climbing procedure to improve the quality of the solution.

Finally, we conduct an extensive numerical experience to illustrate the efficiency of our algorithm. Based

on the numerical results, we see that the solution obtained from the algorithm is close to optimum and, in

most cases, has the optimality gap of 1%. Regarding speed, our algorithm is computationally efficient and

significantly outperforms the available off-the-self solvers.

The rest of the paper is structured as follows: in Section 1.1, we define the notation used throughout the

paper. Section 2 introduces the reformulation of a QO problem as a bi-convex optimization problem and

outlines its equivalent ARO problem. In Section 3, we approximate this problem using available techniques

and prove the equivalence to an RLT for the original QO problem. Subsequently, in Section 4, we design

an algorithm that provides a near-optimal solution for a QO problem using the ARO reformulation. Section

5 presents numerical results, demonstrating the efficiency of our ARO-based algorithm, particularly for

large-sized instances. Finally, in Section 6, we summarize our findings and present our conclusions.

1.1. Notation

In this section, we introduce notations used in the paper. For a symmetric matrix B, we use B ⪰ 0 (B ≻

0) to show B is positive semi-definite (positive definite), i.e., it has non-negative (positive) eigenvalues.

The smallest and largest eigenvalues of a symmetric matrix B are denoted by λmin(B) and λmax(B),

respectively. For a given matrix B, and integers i and j, we denote by Bi, Bj , and Bij , the i-th row, the

j-th column, and the ij-th entry of B, respectively. For a matrix B, vec(B) denotes the vector formed by

concatenating all of the rows of the matrix B. We use (·)⊤ to refer to the transpose operator for both matrices

and vectors. We denote the n×n identity matrix by In, the vector of all ones by e, and the i-th unit vector

by ei. To avoid overcomplicating notation, we do not specify the dimensions of e and ei but make sure they

are always evident from the context. We misuse the notation and denote the real number zero, the vector of

all zeroes, and the matrix of all zeroes by 0.

We use Rn to refer to the n-dimensional real-valued Euclidean space, where ∥ · ∥2 is the Euclidean norm.

The standard or unit simplex in Rn, given by {x∈Rn : e⊤x= 1, x≥ 0}, is denoted by ∆.

2. New Reformulations for Quadratic Optimization Problems
This section proposes two reformulations for a quadratic optimization problem (QO). We first show how

we can reformulate (QO) as a disjoint bi-convex quadratic optimization problem. Using this reformulation,

we further provide an equivalent adjustable robust optimization problem. So, we start with the following

theorem.

THEOREM 1. Let Q+,−Q− ⪰ 0, and X ⊆Rnx be an arbitrary set. Then,

min
x∈X

x⊤(Q+ +Q−)x+ c⊤x (1)
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is equivalent to

min
x,y∈Rnx

{
1
2
x⊤Q+x+ 1

2
y⊤Q+y+x⊤Q−y+ 1

2
c⊤x+ 1

2
c⊤y : x, y ∈X

}
. (Bi-QO)

Proof. It is clear that

min
x∈X

x⊤(Q+ +Q−)x+ c⊤x

= min
x,y∈Rnx

{
1
2
x⊤Q+x+ 1

2
y⊤Q+y+x⊤Q−y+ 1

2
c⊤x+ 1

2
c⊤y : x= y, x, y ∈X

}
≥ min

x,y∈Rnx

{
1
2
x⊤Q+x+ 1

2
y⊤Q+y+x⊤Q−y+ 1

2
c⊤x+ 1

2
c⊤y : x, y ∈X

}
,

where the inequality is due to the fact that the feasible region of the last optimization problem is contained

in the feasible region of the middle optimization problem.

To show “≤”, we use the negative semi-definiteness of Q−. Let x, y ∈Rnx be arbitrary. Because Q− ⪯ 0,

we have (x− y)⊤Q−(x− y) ≤ 0. Hence, x⊤Q−x+ y⊤Q−y ≤ 2x⊤Q−y. This implies that for any x, y ∈
Rnx ,

x⊤(Q+ +Q−)x+ y⊤(Q+ +Q−)y≤ x⊤Q+x+ y⊤Q+y+2x⊤Q−y.

So,

x⊤(Q+ +Q−)x+ y⊤(Q+ +Q−)y+ c⊤x+ c⊤y≤ x⊤Q+x+ y⊤Q+y+2x⊤Q−y+ c⊤x+ c⊤y.

Now, by taking the minimum over x, y ∈X , we have

min
x∈X

{
x⊤(Q+ +Q−)x+ c⊤x

}
+min

y∈X

{
y⊤(Q+ +Q−)y+ c⊤y

}
≤ min

x,y∈X

{
x⊤Q+x+ y⊤Q+y+2x⊤Q−y+ c⊤x+ c⊤y

}
.

The fact that

min
x∈X

{
x⊤(Q+ +Q−)x+ c⊤x

}
=min

y∈X

{
y⊤(Q+ +Q−)y+ c⊤y

}
,

completes the proof. □

It is worth noting that the proof of Theorem 1 does not rely on the specific structure of the feasible set

X . If X is convex, then the proposition asserts that any indefinite QO can be reformulated as a disjoint

bi-convex quadratic optimization problem, where the variables x and y are linked only in the objective

function.

REMARK 1. In (QO), we can assume, without loss of generality, that the matrix Q is symmetric; oth-

erwise, we can replace the objective function with x⊤(Q
⊤+Q
2

)x+ c⊤x. Now, for a symmetric matrix Q,

we know that the eigenvalues are real (O’Nan 1971). So, for an indefinite matrix Q, we can construct the

matrices in Theorem 1 in many ways including the following representations:

Representation 1:

Q+ :=Q− (λmin(Q)− ϵ)I, and Q− := (λmin(Q)− ϵ)I,
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Representation 2:

Q+ := (λmax(Q)+ ϵ)I, and Q− :=Q− (λmax(Q)+ ϵ)I,

where ϵ is a small positive constant chosen to ensure that Q+,−Q− ⪰ 0. Later, we discuss the effect of

choosing Q+ and Q− on the quality of the approximations. □

The next proposition aims to establish a relation between the optimal solutions of (QO) and (Bi-QO)

problems, showcasing how solutions from one problem can be used to obtain optimal solutions for the other.

PROPOSITION 1. Let Q=Q++Q− where Q∈Rnx×nx , and Q+,−Q− ≻ 0. If x∗ is an optimal solution

of (QO), then (x∗, x∗) is an optimal solution of (Bi-QO). Moreover, if (x̂, ŷ) is an optimal solution of

(Bi-QO), then x̂ and ŷ are both optimal solutions of (QO).

Proof. Suppose x∗ is an optimal solution to (QO). It is clear that (x∗, x∗) is also an optimal solution to

(Bi-QO). To prove the reverse direction, assume that (x̂, ŷ) is an optimal solution of (Bi-QO). Thus,

1
2

(
x̂⊤Q+x̂+ ŷ⊤Q+ŷ+ c⊤x̂+ c⊤ŷ

)
+ x̂⊤Q−ŷ≤ 1

2

(
x̂⊤Q+x̂+ x̂⊤Q+x̂+ c⊤x̂+ c⊤x̂

)
+ x̂⊤Q−x̂,

1
2

(
x̂⊤Q+x̂+ ŷ⊤Q+ŷ+ c⊤x̂+ c⊤ŷ

)
+ x̂⊤Q−ŷ≤ 1

2

(
ŷ⊤Q+ŷ+ ŷ⊤Q+ŷ+ c⊤ŷ+ c⊤ŷ

)
+ ŷ⊤Q−ŷ.

(2)

Summing these inequalities results in

2x̂⊤Q−ŷ≤ x̂⊤Q−x̂+ ŷ⊤Q−ŷ. (3)

Now, note that x̂⊤(−Q−)ŷ =

(
(−Q−)

1
2 x̂

)⊤(
(−Q−)

1
2 ŷ

)
, where (−Q−)

1
2 is the square roots of the

matrix (−Q−). Therefore, we can apply the Cauchy-Schwarz inequality, which implies that

2x̂⊤(−Q−)ŷ≤ 2

∥∥∥∥(−Q−)
1
2 x̂

∥∥∥∥ .∥∥∥∥(−Q−)
1
2 ŷ

∥∥∥∥
= 2
√

x̂⊤(−Q−)x̂
√

ŷ⊤(−Q−)ŷ

≤ x̂⊤(−Q−)x̂+ ŷ⊤(−Q−)ŷ,

(4)

where the reason for the last inequality is that, for any two non-negative scalars a and c, 2
√
ac≤ (a+ c).

Hence, we have

2x̂⊤Q−ŷ≥ x̂⊤Q−x̂+ ŷ⊤Q−ŷ. (5)

Thus, by (3) and (5), we obtain that

2x̂⊤Q−ŷ= x̂⊤Q−x̂+ ŷ⊤Q−ŷ, (6)

which is equivalent

(x̂− ŷ)⊤Q−(x̂− ŷ) = 0. (7)

From −Q− ≻ 0, we have x̂− ŷ= 0, i.e. x̂= ŷ. So, x̂ is an optimal solution of (QO). □
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A straightforward result, which follows from the proof of the above proposition, is that when (x̂, ŷ)

represents an optimal solution to problem (Bi-QO), x̂ and ŷ must be equal. The next corollary states this

fact.

COROLLARY 1. Let Q = Q+ +Q− where Q ∈ Rnx×nx , and Q+,−Q− ≻ 0. If (x∗, y∗) is an optimal

solution to problem (Bi-QO), then x∗ = y∗.

From now on, let us restrict the feasible region of (QO) to polytopes i.e., X = {x∈Rnx |Ax= b, x≥ 0}
for some A ∈ Rmx×nx and b ∈ Rmx , so that X is compact. In the next theorem, we show that we can

reformulate (QO) problem to an adjustable robust optimization problem.

THEOREM 2. Let Q = Q+ + Q− where Q ∈ Rnx×nx , and Q+,−Q− ⪰ 0. Assume that X =

{x∈Rnx |Ax= b, x≥ 0} is non-empty compact. Then, the optimal value of (QO) is equal to the optimal

value of the following problem:

max
τ∈R

τ

s.t. ∀x∈X , ∃(ux,wx) :

{
1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux ≤Q−x+ 1
2
c.

(ARO-QO)

Proof. Based on the assumption, we have that (QO) is equivalent to

min
x∈X

x⊤(Q+ +Q−)x+ c⊤x,

which is, using Theorem 1, equivalent to

min
x,y∈Rnx

{
1
2
x⊤Q+x+ 1

2
y⊤Q+y+x⊤Q−y+ 1

2
c⊤x+ 1

2
c⊤y : x, y ∈X

}
. (8)

We can write (8) as

min
x∈X

{
1
2
x⊤Q+x+ 1

2
c⊤x+min

y∈X
1
2
y⊤Q+y+x⊤Q−y+ 1

2
c⊤y

}
. (9)

We consider the inner minimization problem over y for a given x ∈ X . Since X non-empty compact, we

can apply Dorn duality (Dorn 1960), and rewrite (9) as follows:

min
x∈X

1
2
x⊤Q+x+ 1

2
c⊤x+max

ux,wx

− 1
2
u⊤
xQ

+ux + b⊤wx (10)

s.t. A⊤wx−Q+ux ≤Q−x+ 1
2
c.

Let x∈X . If the inner maximization is infeasible, its optimal value is−∞, implying that (10) is unbounded.

So, in this case, (QO) is unbounded, which contradicts the compactness of X . So, for any x ∈ X , there

is a feasible (ux,wx) for the inner maximization. Thus, using the epigraph reformulation of the objective

function, we can rewrite (10) as

max
τ

{
τ

∣∣∣∣∣ ∀x∈X , ∃(ux,wx) :

1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux ≤Q−x+ 1
2
c.

}
, (11)

which completes the proof. □
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Problem (ARO-QO) is a quadratic ARO problem with fixed recourse and right-hand-side uncertainty. In

this problem, τ is the static variable, x ∈ X is the uncertain parameter, and (ux,wx) is the adjustable vari-

able. The adjustable variables can be seen as functions of x, and are known as decision policies (Khademi

et al. 2024, Yanıkoğlu et al. 2019).

It is important to note that concave QO, i.e., when dealing with a negative semi-definite matrix Q, is

NP-hard. This complexity primarily arises from the crucial relationship between achieving optimality and

enumerating the extreme points within the feasible region (Pardalos and Schnitger 1988). Predominant

strategies for addressing concave QO problems typically involve cutting plane methods, branch and bound

approaches, or iterative computational techniques (Audet et al. 2005, Andrianova et al. 2016, Chinchuluun

et al. 2005, Phillips and Rosen 1988). Furthermore, recent studies in this area have focused on establishing

bounds from a robust optimization perspective (Selvi et al. 2022), and some have adopted approaches based

on gradient descent principles (Ben-Tal and Roos 2022); the application of these techniques has been instru-

mental in deriving high-quality bounds for the optimal solution. In the subsequent corollary, we present the

ARO reformulation for concave QO.

COROLLARY 2. Let Q be a negative semi-definite matrix. Assume that X = {x∈Rnx |Ax= b, x≥ 0}

is non-empty compact. Then, the optimal value of (QO) is equal to the optimal value of the following

problem:
max
τ∈R

τ

s.t. ∀x∈X , ∃wx :

{
1
2
c⊤x+ b⊤wx ≥ τ,

A⊤wx ≤Q−x+ 1
2
c.

(12)

Proof. From Theorem 2 by setting Q+ := 0 and Q− :=Q. □

Note that (12) is a linear adjustable robust optimization problem and all techniques in the literature can

be used to solve or approximate it.

REMARK 2. In Table 6 of Appendix B, we present the equivalent ARO formulations if the polytope X

is formulated in another form than canonical. □

To approximate (ARO-QO) problem, we can use customary techniques to deal with adjustable variables,

such as eliminating the adjustable variables via Fourier-Motzkin Elimination or using decision rules to

approximate the adjustable variables. In the next section, we focus on such approximation methods.

3. ARO Based Approximations

In this section, we show how the available techniques to approximate an ARO problem can be employed

and what their interpretations are concerning (QO).



A. Khademi, and A. Marandi: Quadratic Optimization Through the Lens of Adjustable Robust Optimization
9

3.1. Decision Rules

In (ARO-QO) problem, the adjustable variables ux and wx are, in essence, functions of the uncertain param-

eter x. One of the popular methods to approximate an ARO problem is by restricting the adjustable variables

to belong to a specific class of functions. For example, we can restrict them to be constants, resulting in a

static formulation, or to be affine, known as affine decision rule (ADR), which is a good approximation for

linear ARO problems (see, e.g., Bertsimas and Goyal (2012) and Bertsimas et al. (2015, 2010)).

Since (ARO-QO) contains a non-linear convex term u⊤
xQ

+ux, using ADR to approximate ux results in

an intractable approximation. Therefore, we apply a hybrid decision rule to have a tractable approximation.

More specifically, we restrict ux to be constant and wx to be affine:

ux := u and wx := z+Zx,

where u∈Rnx , z ∈Rmx , and Z ∈Rmx×nx are static variables. Using this decision rule in (ARO-QO) leads

to the following static robust counterpart, which gives a lower bound on the optimal value of (QO):

max
u,z,Z,τ

{
τ

∣∣∣∣∣
1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤Q+u+ b⊤(z+Zx)≥ τ, ∀x∈X

A⊤(z+Zx)−Q+u≤Q−x+ 1
2
c, ∀x∈X

}
, (13)

where u, z, and Z are simultaneously optimized together with the static decision variable τ .

In the previous section, we demonstrated that the (QO) problem is equivalent to both the (Bi-QO) and

(ARO-QO) problems. In the rest of this section, we show that (13) is equivalent to applying a reformulation-

linearization (RL) technique to (Bi-QO).

The literature has also considered RL techniques to approximate an ARO problem. More specifically, it

is shown in Ardestani-Jaafari and Delage (2021) that a linear ARO problem can be reformulated as a bi-

linear optimization problem using duality techniques. The authors then show that using an RL technique to

approximate the bi-linear optimization reformulation is equivalent to applying ADR to the original problem.

In Zhen et al. (2022), the same results are shown for disjoint bi-linear problems with convex feasible regions.

Considering (Bi-QO), using the RL technique proposed in Sherali and Alameddine (1992) and Sherali

and Tuncbilek (1995) results in the following linear optimization problem:

min
γ,x,y

1
2

(
x⊤Q+x+ y⊤Q+y+ c⊤x+ c⊤y

)
+

nx∑
i,j=1

Q−
ijγij

s.t. Ax= b,

Ay= b,

Aγ = by⊤,

Aγ⊤ = bx⊤,

x≥ 0, y≥ 0, γ ≥ 0.

(14)

In the next theorem, we show that (14) is the dual of the deterministic reformulation of the robust counterpart

(13).
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THEOREM 3. Assume that X is a non-empty compact set. Then, the optimal value of (13) is equal to

the optimal value of (14).

Proof. We can rewrite (13) as

max
u,z,Z,τ

τ

∣∣∣∣∣∣
min
x∈X

{
1
2
x⊤Q+x+( 1

2
c⊤ + b⊤Z)x

}
+ b⊤z− 1

2
u⊤Q+u≥ τ,

min
x∈X

{
(−A⊤Z +Q−)ix

}
+( 1

2
c+Q+u−A⊤z)i ≥ 0, i= 1, . . . , nx

 . (15)

Since X is a polytope, the inner minimizations are convex optimization problems. Since X is non-empty

and compact, strong duality holds (Boyd and Vandenberghe 2004, Dorn 1960). Therefore, (15) is equivalent

to

max
u,z,Z,τ

τ

s.t. max
α,β

{
b⊤β− 1

2
α⊤Q+α

∣∣ A⊤β−Q+α≤ (b⊤Z)⊤ + 1
2
c
}
+ b⊤z− 1

2
u⊤Q+u≥ τ,

max
θi

{
b⊤θi

∣∣∣A⊤θi ≤
(
(−A⊤Z +Q−)i

)⊤}
+( 1

2
c=Q+u−A⊤z)i ≥ 0, i= 1, . . . , nx.

(16)

We can omit the inner maximization operator in the above constraints. Thus, we have

max
u,z,Z,α,β,θ

b⊤β− 1
2
α⊤Q+α+ b⊤z− 1

2
u⊤Q+u

s.t. A⊤β−Q+α≤ (b⊤Z)⊤ + 1
2
c,

b⊤θi +( 1
2
c+Q+u−A⊤z)i ≥ 0, i= 1, . . . , nx,

A⊤θi ≤
(
(−A⊤Z +Q−)i

)⊤
, i= 1, . . . , nx.

(17)

Now, we show that (17) is the dual problem of (14). To do this, we first write (14) in the matrix form:

min
vec(γ),x,y

1
2

 x
y

vec(γ)

⊤Q+ 0 0
0 Q+ 0
0 0 0

 x
y

vec(γ)

+

 c
2
c
2

vec(Q−)

⊤ x
y

vec(γ)


s.t.

A 0 0
0 A 0
0 B C
B 0 D


 x

y
vec(γ)

=

b
b
0
0

 ,

 x
y

vec(γ)

≥ 0,

(18)
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where B :=−


b1Inx

b2Inx

...
bmxInx

, C :=

 A11Inx A12Inx . . . A1nnInx

...
...

. . .
...

Amx1Inx Amx2Inx . . . AmxnxInx

, and D :=



A1 . . . 0
...

. . .
...

0 . . . A1

...
...

Amx . . . 0
...

. . .
...

0 . . . Amx


. The

dual of (18) is

max
Y,W

− 1
2
Y ⊤

Q+ 0 0
0 Q+ 0
0 0 0

Y +

b
b
0
0


⊤

W

s.t. −

Q+ 0 0
0 Q+ 0
0 0 0

Y +

A 0 0
0 A 0
0 B C
B 0 D


⊤

W ≤

 c
2
c
2

vec(Q−)

 .

(19)

Setting

Y ≡

 α
u
Y 3

 , W ≡

 β
z

vec(θ)
vec(Z)

 ,

(19) is the matrix form of (17). Hence, (14) is the dual of the deterministic reformulation of (13). □

We have shown that applying the RL technique to the disjoint bi-convex reformulation (Bi-QO) is

equivalent to using a hybrid static-affine decision rule to approximate the adjustable robust reformulation

(ARO-QO). As mentioned, the ADR approximation is shown to be an efficient approximation for a class of

linear ARO problems. For example, the ADR approximation is tight for a linear ARO problem with a right-

hand-side uncertainty when the uncertainty set is simplex (Bertsimas and Bidkhori 2015). The translation

of this setting for the original problem (QO) is to have a concave quadratic objective function with X being

a simplex. Even though this class seems not to be interesting (we know that enumerating the nx number of

vertices provides us with the optimal value), it generates insights into the quality of (14).

As mentioned in Remark 1, we can have multiple representations of Q based on Q+ and Q−. Considering

Representation 1, we see that Q− is a diagonal matrix, but Q+ has a similar density as Q. Therefore, in

(ARO-QO), all entries of ux are linked together via Q+ux. However, in Representation 2, Q+ is a diagonal

matrix, implying that the entries of ux are only linked together via u⊤
xQ

+ux and not in the constraints. In

the numerical result section, we will use this representation.

3.2. Fourier–Motzkin Elimination

In linear ARO problems with fixed recourse, an adjustable variable may be eliminated by employing

Fourier-Motzkin elimination (EME). This approach effectively handles problems involving a limited num-

ber of adjustable variables (Zhen et al. 2018).
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Note that for a given x ∈ X , in (ARO-QO), we have the ability to eliminate the adjustable variable

wx ∈Rmx . We assume without loss of generality that b≥ 0. Let k ∈ {1, . . . ,mx}. To eliminate wxk , the k-th

component of the vector wx, we first isolate it in the constraints:
bkwxk ≥ τ − 1

2
x⊤Q+x− 1

2
c⊤x+ 1

2
u⊤
xQ

+ux−
mx∑
j=1
j ̸=k

bjwxj ,

Akiwxk ≤ (Q−x+ 1
2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajiwxj , i= 1, . . . ,mx.

(20)

Since X = {x| Ax= b, x≥ 0} is non-empty, so we cannot have bk > 0 and Aki ≤ 0 for any i= 1, . . . ,mx.

If Aki ̸= 0 and bk > 0, then both sides of their respective constraints can be divided by Aki and bk. This

yields an equivalent representation of the feasible region, involving the following constraints:

wxk ≥
1
bk
(τ − 1

2
x⊤Q+x− 1

2
c⊤x+ 1

2
u⊤
xQ

+ux−
mx∑
j=1
j ̸=k

bjwxj ) if bk > 0,

0≥ τ − 1
2
x⊤Q+x− 1

2
c⊤x+ 1

2
u⊤
xQ

+ux−
mx∑
j=1
j ̸=k

bjwxj if bk = 0,

wxk ≥
1

Aki
((Q−x+ 1

2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajiwxj ) for i= 1, . . . ,mx, where Aki < 0,

1
Akr

((Q−x+ 1
2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajrwxj )≥wxk for r= 1, . . . ,mx, where Akr > 0,

(Q−x+ 1
2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajswxj ≥ 0 for s= 1, . . . ,mx, where Aks = 0.

After the adjustable variable wxk is eliminated, the feasible set becomes:

1
Akr

((Q−x+ 1
2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajiwxj )≥

1
bk
(τ − 1

2
x⊤Q+x− 1

2
c⊤x+ 1

2
u⊤
xQ

+ux−
mx∑
j=1
j ̸=k

bjwxj )
r= 1, . . . ,mx,

where bk > 0 and Akr > 0,

0≥ τ − 1
2
x⊤Q+x− 1

2
c⊤x+ 1

2
u⊤
xQ

+ux−
mx∑
j=1
j ̸=k

bjwxj where bk = 0,

1
Akr

((Q−x+ 1
2
c+Q+ux)r−

mx∑
j=1
j ̸=k

Ajrwxj )≥

1
Aki

((Q−x+ 1
2
c+Q+ux)i−

mx∑
j=1
j ̸=k

Ajiwxj )
i, r= 1, . . . ,mx,

where Aki < 0 and Akr > 0,
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(Q−x+ 1
2
c+Q+ux)s−

mx∑
j=1
j ̸=k

Ajswxj ≥ 0 s= 1, . . . ,mx, where A⊤
sk = 0.

By continuing the process of FME, the adjustable variable wx (or some part of it) is eliminated, resulting in a

problem with fewer adjustable variables but potentially many more constraints. If the number of constraints

in (QO) is limited, then it is computationally efficient to eliminate wx.

4. Solution Method
In the previous section, we explained how to obtain a lower bound using the techniques from ARO literature.

This section provides an algorithm to obtain a feasible solution and construct an upper bound.

After solving the approximated problem (13), we use the obtained solution to extract worst-case scenarios

from each constraint of the robust counterpart problem (13). Among these scenarios, we select the one that

yields the best objective value for the original (QO) problem. After identifying the most favorable scenario,

our attention is redirected to the bi-convex reformulation of (QO) problem. Given the selected scenario, we

employ the mounting claiming algorithm (Algorithm 1) for (Bi-QO) to improve the quality of the solution.

This process ultimately leads us to an upper bound for (QO) problem.

Algorithm 1 Mountain Climbing Procedure
Input: Matrix Q and starting point x0.

Initialization: Decompose Q=Q+ +Q− such that Q+,−Q− ⪰ 0.

Repeat: Execute the following steps:

x(k+1)← argmin
x∈Rnx

{
1
2
x⊤Q+x+x⊤Q−x(k) + 1

2
c⊤x : x∈X

}
.

Until: No further improvement is possible.

Output: Solution candidate x(end).

By employing the ARO reformulation, bi-convex reformulation, and mounting claiming method, we can

efficiently explore and improve the solution space, thereby obtaining an upper bound that closely approaches

the optimal value. This approach allows us to make significant progress in refining the solution quality while

mitigating computational challenges often associated with large-scale optimization problems. Algorithm 2

presents the pseudo-code of the approach discussed above.

5. Numerical Experiments
In this section, we conduct a comprehensive numerical experiment to evaluate the efficacy of Algorithm 2,

which we call ARO-QO Algorithm. The efficiency of a particular bound on the optimal value of a mathe-

matical optimization problem is influenced by two key aspects: the precision of the generated bound and

the required computational time.
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Algorithm 2 ARO-Based Algorithm to Obtain an Upper Bound for QO
Input: Matrix Q, vector c, matrix A, and vector b.

Initialization: Decompose Q=Q+ +Q− such that Q+,−Q− ⪰ 0.

(Step 1) Lower Bound: Compute the lower bound for the approximated problem based on the ARO

formulation of the QO and hybrid decision rule (see Section 3).

(Step 2) Generation of Worst-Case Scenarios: Generate a finite set of worst-case scenarios by substi-

tuting the optimal decision rule into (13).

(Step 3) Set Initial Point: Select from these scenarios the one that yields the best objective value for

the original QO problem. Denote this point by x(0).

(Step 4) Improve the Initial Solution: Execute the mountain climbing algorithm starting with the

initial solution x(0):

x(k+1)←− argmin
{

1
2
x⊤Q+x+x⊤Q−x(k) + 1

2
c⊤x : x∈X

}
.

(Step 5) Termination: Continue (Step 4) until no further improvement is observed.

Output: Final solution candidate x∗ := x(end), and the corresponding upper-bound value UB :=

(x∗)⊤Qx∗ + c⊤x∗.

We implement the numerical experiments using MATLAB 2022a. The computations are executed on

a laptop equipped with an Intel(R) Core(TM) i5-3210M CPU at 2.50 GHz and 8 GB of RAM. We use

YALMIP to pass optimization problems to suitable solvers (Löfberg 2004).

We emphasize that the computational times reported in our experiments exclude the time required by

YALMIP to build the model and pass it to solvers, and we merely consider the time consumed by the

solvers themselves. In what follows, we present the numerical experiments, specifically focusing on concave

quadratic minimization and standard quadratic optimization. All the instances and the code are available at:

[Link].

We use state-of-the-art global solvers to solve the QO problems, namely Gurobi (Gurobi Optimization

2023, version 10.0) and CPLEX (IBM ILOG CPLEX 2019, version 12.9). Given that our bounds require

solving multiple linear optimization problems, we specifically employ Gurobi for this purpose. Moreover,

MOSEK (MOSEK ApS 2023, version 10.1.15) is used to solve second-order cone optimization problems.

5.1. Concave Quadratic Minimization

Let us consider a concave quadratic minimization over a polyhedron

min
x≥0

x⊤Qx+ c⊤x

s.t. Ax≥ b,
(21)

https://github.com/abbaskhademi/QO-via-ARO
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where Q ∈ Rnx×nx , and −Q ⪰ 0, c ∈ Rnx , A ∈ Rmx×nx , and b ∈ Rmx are given. From Corollary 2 and

Table 6 in Appendix B, we have the following linear ARO reformulation of (21):

max
τ∈R

τ

s.t. ∀x∈X , ∃wx :


1
2
c⊤x+ b⊤wx ≥ τ,

A⊤wx ≤Qx+ 1
2
c,

wx ≥ 0,

(22)

where X := {x∈Rnx |Ax≥ b, x≥ 0}. To obtain a lower bound, we consider the following decision rule:

wx :=

(
z+Zx

w

)
,

where for given r ∈ {1,2, . . . ,mx}, z ∈Rr, Z ∈Rr×nx , and w ∈R(mx−r) are static variables. It is important

to note that for r=mx, we obtain a full affine decision rule, while for r= 0, we have a static decision rule.

For other values, we have a partial affine decision rule. Each decision rule type has its own advantages and

disadvantages, which we will address later in this section.

In Selvi et al. (2022), the authors propose an approximation solution approach for solving a concave

minimization problem via ARO by providing upper and lower bounds, where the lower bound is formulated

as a second-order cone optimization problem.

In this section, we compare the quality of the solution obtained by ARO-QO Algorithm with Gurobi and

CPLEX, and Selvi et al. (2022) method. In all of our numerical experiments, we set a maximum time limit

of 3,000 seconds.

We analyze the performance of the upper and lower bound in terms of the optimality gap, which is

measured as follows:

Gap(%) =

(
UB−LB
|UB|+10−4

)
× 100,

where ‘LB’ is the lower bound and ‘UB’ is the upper bound for a given instance. Adding the small constant

10−4 in the denominator ensures the prevention of division by zero.

Problem Instances First, we consider the seven test instances from Section 4.3 of Selvi et al. (2022).

We undertake a detailed comparison of three versions of ARO-QO Algorithm (static, partial, and fully

affine), Selvi et al. (2022) method, and global solvers Gurobi and CPLEX. In the lower bound approximation

of the ARO-QO Algorithm, applying full static, partial affine (restricting the first r = [mx
7
] + 1 of wx to be

affine and the remaining mx − r to be constant), and full affine decision rules has distinct effects on the

optimality gaps. Table 1 illustrates that increasing the number of affine decision rules correlates with tighter

optimality gaps within the ARO-QO Algorithm. Particularly, the Affine ARO-QO Algorithm consistently

achieves the smallest optimality gaps among its variants. However, this precision incurs longer solver time,

notably in larger problems, such as Problem 5, which required 900.48 seconds, and Problems 6 and 7, where
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it exceeded the time limit. However, the Static and Partial ARO-QO Algorithms have the lowest optimality

gap in Problem 7 and do so within a reasonable time.

In addition, it is noteworthy that the Selvi et al. (2022) method typically leads to larger optimality gaps

compared to the ARO-QO algorithms, while the solver times for this method are longer than static ARO-

QO Algorithms. Gurobi and CPLEX achieve optimality for Problems 1-6. However, CPLEX often requires

more time, especially in larger problems. Both Gurobi and CPLEX reached their time limits on Problem 7,

highlighting the difficulty in solving large-size problems.

Table 1 Optimality gaps and solver times of concave minimization instances from Selvi et al. (2022).
Static ARO-QO Algorithm Partial ARO-QO Algorithm Affine ARO-QO Algorithm Selvi et al. (2022) method Gurobi CPLEX

Problem Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time
#1 (mx = 10, nx = 20) 30.38 0.08 27.97 0.15 0.02 1.05 77.85 0.17 0.00 0.11 0.00 0.12
#2 (mx = 10, nx = 20) 9.13 0.08 8.94 0.15 0.01 1.06 34.77 0.15 0.00 0.12 0.00 0.11
#3 (mx = 15, nx = 10) 0.42 0.04 0.29 0.06 0.00 0.12 1.68 0.15 0.00 0.03 0.00 0.06
#4 (mx = 62, nx = 50) 0.12 0.27 0.09 0.48 0.00 11.46 1.10 1.32 0.00 0.56 0.00 1.56
#5 (mx = 130, nx = 100) 0.08 1.28 0.07 4.81 0.00 900.48 2.15 8.27 0.00 12.03 0.00 43.64
#6 (mx = 240, nx = 200) 0.02 8.98 0.02 44.83 - 3000* 1.52 59.60 0.00 528.99 0.00 1165.38
#7 (mx = 280, nx = 240) 0.04 30.47 0.04 104.90 - 3000* 5.71 80.90 15.22 3000* 14.17 3000*

Notes. The first column in this table presents the problem numbers and their corresponding dimensions. The symbol “-” indicates

that it was not possible to determine the bound within 3,000 seconds.

Even though the static policy yields the highest optimality gap among the three decision rules, it stands

out for its minimal computation time required to derive both lower and upper bounds. As, the upper bound is

calculated independently of the solution of the lower bound. This independence is based on the structure of

problem (22). In Step 2 of the ARO-QO Algorithm, where worst-case scenarios are generated from problem

(22), an optimal decision rule is not required. Remarkably, in the seven instances, the calculated upper

bound aligns with the global optimal value, and is obtained quickly, as reported in Table 8 in Appendix C.

When compared with alternative approaches, such as applying partial or full affine decision rules or using

the Selvi et al. (2022) method (which also achieves optimal upper bounds), the full static decision rule

demonstrates a faster computation process to reach a candidate solution. This increased speed is attributed

to the fact that the mentioned method necessitates optimal solutions for the lower bound to determine the

upper bound, which inherently increases their computational demand as opposed to the more streamlined

process observed in the static policy.

After considering the seven test instances of Selvi et al. (2022), we randomly generate large-size

instances. For a meaningful comparison of the mentioned approaches, we evaluate the quality of the

bounds on the objective value of problem (21) using 15 groups of random instances, with the dimen-

sion nx taking value in {50,100, . . . ,600,700} and the number of constraints mx spanning a range in

{100,150, . . . ,750,800}. Each group contains five instances of the same size, which are generated similarly

to those created in Selvi et al. (2022).

For each group, ranging from #1 to #15, Table 2 lists the mean optimality gap and solver time, with

standard deviations included in brackets (details can be found in Table 9). We observe that our ARO-

QO Algorithm maintains a consistent performance level across different problem complexities. CPLEX
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demonstrates reasonable performance up to Group 6. Furthermore, the method by Selvi et al. (2022) displays

more consistent optimality gaps across all problem groups despite being significantly higher than those of

Gurobi and CPLEX in the initial groups. In particular, Gurobi achieved very low optimality gaps in Groups

1-3, showing an increasing trend in solver times with higher problem groups, often reaching the 3,000-

second limit. Gurobi for the instances in groups 14 and 15, and CPLEX for the instances in groups 8-15,

could not find a feasible solution within the time limit.

From a computation time perspective, in each group, the ARO-QO Algorithm demonstrates the lowest

time to reach the bounds compared to other methods. Overall, the ARO-QO Algorithm showcases effi-

ciency in computation time and maintains acceptable gaps in all groups. This underscores the ARO-QO

Algorithm’s proficiency in balancing time efficiency and gap management across these problems.

Table 2 Statistic of optimality gaps and solver times for randomly generated concave minimization

instances.
ARO-QO Algorithm Selvi et al. (2022) method Gurobi CPLEX

Group Gap Time Gap Time Gap Time Gap Time
#1 1.54 [0.35] 0.54 [0.01] 13.32 [0.94] 2.20 [0.28] 0.01 [0.00] 66.53 [44.43] 0.01 [0.00] 16.93 [2.14]
#2 1.49 [0.35] 2.77 [0.17] 13.81 [0.88] 9.00 [0.40] 0.01 [0.00] 776.08 [407.71] 0.02 [0.01] 382.64 [181.74]
#3 1.71 [0.36] 4.50 [0.13] 16.37 [0.97] 17.83 [1.46] 0.02 [0.02] 1602.76 [1035.26] 0.12 [0.15] 1285.16 [1256.08]
#4 1.40 [0.37] 15.31 [1.21] 14.71 [2.03] 51.25 [4.76] 10.69 [10.33] 3000* 0.22 [0.35] 2927.72 [161.62]
#5 1.33 [0.13] 24.66 [0.92] 17.02 [1.03] 101.50 [22.87] 25.93 [3.34] 3000* 0.43 [6.26] 3000*
#6 1.62 [0.19] 50.28 [9.55] 16.38 [1.18] 154.01 [10.49] 23.85 [3.49] 3000* 1365.22 [1636.18] 3000*
#7 1.53 [0.28] 76.88 [6.19] 18.83 [2.21] 256.42 [30.29] 37.02 [2.57] 3000* 4104.90 [236.04] 3000*
#8 1.70 [0.25] 95.42 [21.84] 16.21 [1.83] 295.57 [12.37] 118.90 [88.99] 3000* - 3000*
#9 1.89 [0.20] 164.98 [7.30] 19.38 [0.77] 556.61 [19.42] 171.95 [103.12] 3000* - 3000*

#10 1.79 [0.08] 143.81 [11.21] 16.92 [0.56] 256.74 [15.37] 2521.58 [5213.52] 3000* - 3000*
#11 1.64 [0.19] 362.73 [23.07] 19.24 [0.66] 504.47 [15.83] 5420.98 [4697.11] 3000* - 3000*
#12 1.57 [0.12] 263.61 [35.30] 17.17 [0.89] 424.63 [43.45] 8616.82 [5403.16] 3000* - 3000*
#13 1.48 [0.29] 617.78 [48.84] 18.89 [1.50] 821.51 [75.41] 10233.75 [1598.93] 3000* - 3000*
#14 1.79 [0.39] 343.31 [12.94] 17.33 [1.08] 503.12 [36.98] - 3000* - 3000*
#15 1.48 [0.21] 906.65 [80.47] 19.21 [1.47] 1164.43 [515.86] - 3000* - 3000*

Notes: This table categorizes problems into groups in the first column. The subsequent columns display “mean [standard

deviation]” values of each subgroup’s optimality gaps and solver time. The symbol “-” indicates that it was not possible to

determine upper bounds for all instances of the corresponding group within the maximum time limit.

5.2. Standard Quadratic Optimization

Let us consider a standard quadratic optimization problem

min
x∈∆

x⊤Q̃x+ c⊤x.

In general, a standard QO problem is NP-hard (Bomze and De Klerk 2002). We remark that the quadratic

function x⊤Q̃x+c⊤x over the unit-simplex can be described as a homogeneous quadratic function: x⊤Qx,

where Q := Q̃+ 1
2
ec⊤ + 1

2
ce⊤. Hence, without loss of generality, the standard QO problem can be repre-

sented as follows:

min
x∈∆

x⊤Qx. (StQO)
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Let Q ∈ Rnx×nx be an indefinite symmetric matrix. The (StQO) problem is equivalent to the following

problem

max
τ∈R

τ

s.t. ∀x∈∆, ∃(ux ∈Rnx ,wx ∈R) :

{
1
2
x⊤Q+x− 1

2
u⊤
xQ

+ux +wx ≥ τ,

−Q+ux + ewx ≤Q−x,

(ARO-StQO)

where τ is the static variable, x ∈∆ is the uncertain parameter, and (ux,wx) ∈ Rnx ×R is the adjustable

variable.

As mentioned in previous sections, we address two types of approximations of (ARO-StQO). First, the

following problem is an approximation of (ARO-StQO) by applying the hybrid static and affine decision

rule

max
z,u,z0,τ

{
τ

∣∣∣∣ 1
2
x⊤Q+x+(z0 + z⊤x)− 1

2
u⊤Q+u≥ τ, ∀x∈∆

−Q+u+ e(z0 + z⊤x)≤Q−x, ∀x∈∆

}
, (L1-StQO)

which is equivalent to the following deterministic convex quadratic optimization problem

max
z,u,z0,τ,α,β,θ

τ

∣∣∣∣∣∣∣∣∣
− 1

2
α⊤Q+α+β+ z0− 1

2
u⊤Q+u≥ τ,

eβ−Q+α≤ z,

Q+u+ θ− ez0 ≥ 0,

eθ⊤ ≤
(
−ez⊤ +Q−

)⊤
,

 . (23)

Second, using Fourier–Motzkin elimination on (ARO-StQO) to eliminate wx ∈R, we have

max
τ∈R

τ

s.t. ∀x∈∆, ∃ux :
1
2
x⊤Q+x− 1

2
u⊤
xQ

+ux +(Q−)ix+(Q+)iux ≥ τ, i= 1, . . . , nx.
(FME-StQO)

In (FME-StQO), applying a constant decision rule on ux (i.e., ux = u) result in

max
τ∈R,u∈Rnx

τ

s.t. 1
2
x⊤Q+x− 1

2
u⊤Q+u+(Q−)ix+(Q+)iu≥ τ. ∀x∈∆ i= 1, . . . , nx

(L2-StQO)

The lower bound obtained from problem (L2-StQO) is better than the one via (L1-StQO). It is imperative

to note, however, that the computational effort associated with this superior bound may be elevated due to

an augmented set of constraints.

We now offer a more detailed examination of the ARO-QO Algorithm employed for solving StQOs. Uti-

lizing decision rules, we have successfully approximated the original problem. The optimal values extracted

from each of these approximated problems serve as lower bounds. Subsequently, we discuss selected worst-

case scenarios, which are derived based on the optimal solutions of these lower-bound problems.

Scenario Based on L1-StQO. Let (z∗, v∗, z∗0 , τ
∗, α∗, β∗, θ∗) be an optimal solution for (23) which is the

deterministic reformulation of (L1-StQO). We select scenarios using the following optimization problems
x̄0 ∈ argmin

x∈∆

{
1
2
x⊤Q+x+ z∗⊤x

}
,

x̄i ∈ argmin
x∈∆

{
(−ez∗⊤ +Q−)ix

}
, i= 1, . . . , nx.

(24)
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Note that, we do not need to solve linear optimization problems in (24) to find {x̄i}nx
i=1, as we only need

to consider the extreme points of the unit-simplex set, i.e., {ei}nx
i=1. These points provide the natural upper

bound (i.e., ei⊤Qei =Qii), which exists in the literature, see (Gondzio and Yıldırım 2021, Lemma 2.1 part

(iv)). We choose the best scenario, and denote it by x∗1, as the one with the lowest objective value, i.e.,

x∗1 ∈ argmin
x

{
x⊤Qx

∣∣ x∈ {x̄i}nx
i=0

}
.

Scenario Based on L2-StQO. We can find scenarios from the uncertainty set ∆ according to (L2-StQO)

as follows

x̂i ∈ argmin
x∈∆

{
1
2
x⊤Q+x+Q−

i x
}
, i= 1, . . . , nx. (25)

We denote by x∗2 the scenario with the lowest objective value, i.e.,

x∗2 ∈ argmin
x

{
x⊤Qx

∣∣ x∈ {x̂i}nx
i=1

}
.

In this subsection, our method will be compared with the global solvers Gurobi and CPLEX, as well as

with the local solver IPOPT. It is worth noting that IPOPT, a local primal-dual-based interior point solver

(Wächter and Biegler 2006) is renowned for its time computational efficiency but functions exclusively as

a local solver.

To implement our ARO-based method on StQOs, we need to compute lower bounds on the optimal

objective value of StQO as discussed above. We consider two best scenarios, x∗1 and x∗2, obtained from the

lower bound approximations (L1-StQO) and (L2-StQO). By using these two initial points, we can improve

the initial solutions, and the best-obtained solution becomes the candidate solution, with its corresponding

objective value serving as an upper bound.

Problem Instances It is of paramount importance to note that with a high probability, global solutions

of randomly generated StQO instances are located either at vertices or edges of the standard simplex (Bomze

et al. 2018). In order to make a fair comparison, we do not generate naive random instances in our study, as

our upper-bound methodology would be optimal in these cases. Instead, we concentrate on using instances

from well-known datasets or employing their patterns to generate new instances, as outlined by Bonami

et al. (2019), Liuzzi et al. (2019), and Scozzari and Tardella (2008).

We analyze the performance of the upper bound in terms of the solution gap, which is measured as

follows:

SGap(%) =

(
UB−UB(best)

|UB|+10−4

)
× 100,

where UB(best) represents the best upper bound obtained from all approaches, and UB is the upper bound

for a given instance.
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Detailed Results We consider the upper bounds obtained from global solvers when setting their time

limit to the time taken by the ARO-QO Algorithm. We use SGap1 and Time1 to refer to this method’s gap

and solution time, respectively. We also set the time limit for the solvers to 3,000 seconds and refer to the

gap by SGap 2 and the solution time by Time2.

The statistic of solution gaps for two classes of test problems is presented in Table 3 and 4. Both classes

consist of 150 instances, with a dimension of nx = 30 for Class One and nx = 50 for Class Two.

Table 3 Statistic of solution gaps and solution times of (StQO) instances in Class One.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Class One SGap Time SGap1 Time1 SGap2 Time2 SGap1 Time1 SGap2 Time2 SGap Time
Mean 3.11 0.70 3.89 0.65 0.00 22.28 0.90 0.73 0.00 226.46 11.09 0.04
Standard deviation 6.12 0.60 10.22 0.45 0.00 111.73 1.94 0.61 0.04 714.40 20.78 0.02

Notes. Test instances from Bonami et al. (2019).

Table 4 Statistic of solution gaps and solution times of (StQO) instances in Class Two.

ARO-QO Algorithm Gurobi CPLEX IPOPT
Class Two SGap Time SGap1 Time1 SGap2 Time2 SGap1 Time1 SGap2 Time2 SGap Time
Mean 3.33 1.08 8.56 1.07 0.05 233.36 1.88 1.11 0.02 721.48 14.03 0.09
Standard deviation 6.36 0.96 15.34 0.97 0.32 743.15 4.14 0.98 0.10 1258.62 21.98 0.05

Notes. Test instances from Bonami et al. (2019).

In Tables 3 and 4, we observe that within the time taken by the ARO-QO Algorithm, CPLEX exhibits the

best performance, and our approach outperforms Gurobi. As the time limit extends to a maximum of 3,000

seconds for global solvers Gurobi and CPLEX, they demonstrate superior performance, particularly in these

two cases of small-sized instances, achieving the best solutions. While IPOPT shows the fastest solution

times, it presents significantly higher mean solution gap values in both classes. This situation reflects a

trade-off between speed and accuracy. It is apparent that global solvers are generally effective in handling

small problems.

The next step involves comparing instances of larger sizes. We consider 12 groups of instances with the

dimension nx taking values in {100,300,500,700}. Since the density of the matrices may also affect the

performance of the considered solution methods, we examine three density values for each dimension -

50%, 75%, and 90% - for the matrix Q in the objective function. For these test problems, some are sourced

from Liuzzi et al. (2019), while others are generated using the pattern described in Liuzzi et al. (2019) and

Scozzari and Tardella (2008).

Table 5 provides the average solution gaps for each instance group (the details can be found in Table 10).

Table 5 presents a detailed evaluation of the solution gap (SGap) percentages obtained by various algo-

rithms in multiple large-sized instances. The table outlines the mean and standard deviation of the SGap for

each algorithm, providing a clear perspective on their average effectiveness.
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Table 5 Statistic of solution gaps and solution times of generated large-sized (StQO) instances.
ARO-QO Algorithm Gurobi CPLEX IPOPT

Group SGap(%) Time SGap1 SGap2 SGap1 SGap2 SGap Time
#1 2.84 [4.36] 2.53 [0.94] 4.50 [5.17] 0.49 [0.60] 584.40 [92.30] 1.80 [2.13] 3.09 [2.73] 0.17 [0.02]
#2 3.46 [1.31] 3.24 [1.27] 4.27 [2.35] 4.04 [2.70] 582.33 [99.73] 0.00 [0.00] 3.46 [2.77] 0.21 [0.04]
#3 0.64 [1.43] 3.11 [0.98] 2.41 [3.34] 1.43 [1.96] 589.80 [119.47] 1.08 [2.40] 1.74 [2.49] 0.30 [0.09]
#4 3.33 [3.71] 12.83 [5.73] - 5.37 [3.62] 644.54 [81.70] 1.81 [3.50] 7.57 [4.71] 2.91 [0.64]
#5 1.56 [2.56] 11.37 [3.59] - 3.53 [2.60] 666.54 [80.77] 2.75 [2.52] 1.95 [1.99] 3.90 [1.58]
#6 0.48 [0.61] 8.22 [1.73] - 2.34 [2.97] 676.43 [82.21] 1.27 [2.50] 0.35 [0.55] 12.28 [3.92]
#7 0.06 [0.14] 34.01 [19.16] - 2.06 [1.61] 612.43 [65.44] 612.43 [65.44] 4.47 [3.78] 31.79 [16.97]
#8 1.08 [2.11] 17.78 [1.95] - 0.86 [1.91] 652.02 [71.03] 652.02 [71.03] 3.22 [2.79] 49.59 [17.47]
#9 1.06 [0.68] 18.14 [3.42] - 1.92 [2.21] 661.66 [74.03] 661.66 [74.03] 1.44 [1.38] 277.53 [165.23]

#10 2.43 [2.28] 47.26 [10.11] - 1.40 [2.08] 624.72 [152.55] 624.72 [152.55] 4.88 [1.89] 127.84 [17.81]
#11 2.35 [2.85] 29.85 [1.43] - 1.21 [1.69] 657.54 [157.00] 657.54 [157.00] 3.87 [2.21] 412.14 [149.47]
#12 0.38 [0.59] 31.76 [2.75] - 4.14 [1.82] 657.22 [162.33] 657.22 [162.33] 0.48 [0.98] 113.62 [19.52]

All Problems 1.64 [2.36] 18.34 [15.19] - 2.40 [2.52] 631.16 [105.36] 322.86 [333.58] 3.04 [3.07] 86.02 [140.14]
Notes. This table categorizes problems into groups in the first column. The subsequent columns display ‘mean [standard

deviation]’ values of the solution gaps for each sub-group. SGap1 represents the solution gap where the time limit is set to that

needed by the ARO-QO Algorithm, while SGap2 denotes the solution gap within the 3000-second time limit. Instances, where

Gurobi failed to find solutions within its allotted time, are marked with a “-”, indicating its inability to establish feasible solutions

(upper bounds) for all instances in the respective group.

The ARO-QO Algorithm consistently demonstrates low solution gap percentages in various large-sized

groups, especially notable in groups 3, 5, 7, and 12. Within a 3,000-second span, Gurobi shows commend-

able performance in groups 1, 8, 10, and 11, while CPLEX excels in groups 2 and 4. The local solver IPOPT

in class 6 has good performance. However, CPLEX exhibits less satisfactory performance in groups 7 to

12. Moreover, across all groups, the ARO-QO Algorithm significantly surpasses the global solvers in terms

of efficiency, considering its shorter time requirement. A minimal SGap is indicative of the algorithm’s

proficiency in approximating solutions that are closer to the optimal or best-known solutions, an essential

objective in optimization problems. Conclusively, the ARO-QO Algorithm stands out for having the lowest

mean gap percentage across all evaluated problems, highlighting its superior performance.

Even though our lower bounds were loose for small instances based on Table 10, it is evident that these

bounds surpass the lower bounds in groups 10, 11, and 12, thereby outperforming the global solvers CPLEX

and Gurobi overall.

6. Conclusions
We introduce a novel reformulation technique that enables the Quadratic Optimization problem (QO) to be

recast as an Adjustable Robust Optimization problem (ARO). This process begins by demonstrating that

any QO problem can be transformed into a disjoint bi-convex QO problem. Following this, we propose an

equivalent ARO reformulation. Specifically, we illustrate that employing a so-called decision rule technique

to approximate the ARO reformulation equates to using a linearization-relaxation technique on its bi-convex

form. The ARO reformulation offers a new approach to solving non-convex QO problems by transferring

the complexity from the original problem to its equivalent ARO counterpart. Specifically, in the concave QO

problem, our ARO model transforms into a linear ARO, whereas in the indefinite QO problem, it becomes
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a non-linear ARO. Moreover, we develop an algorithm capable of identifying near-optimal solutions using

our novel reformulations. We demonstrate the effectiveness of our ARO-based method in solving a class

of quadratic optimization problems through numerical experiments, showing that it can yield high-quality

solutions with reasonable computational costs. This established connection between QO and ARO provides

a new perspective on addressing the challenges of non-convex QO problems and opens up new possibilities

for further research in the field of mathematical optimization.
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Appendices

This appendix is divided into three sections. In the first section, we illustrate the relationship between the finite

scenario approach of ARO reformulation and the optimality in (QO). The second section summarizes all Adjustable

Robust Optimization (ARO) reformulations of QO problems based on their feasible regions. The final section contains

elaborated tables related to the numerical experiments.

A. Finite Scenario Approach

One of the approximation approaches for the ARO problem is the Finite Scenario Approach (FSA). In this approach,

we restrict ourselves to only finite scenarios in the uncertainty set, resulting in an upper bound to the optimal objective

value of the ARO problem. The (FSA) is computationally efficient because it only considers a finite number of scenar-

ios, rather than trying to optimize over all possible scenarios. This reduces the number of variables and constraints in

the optimization problem, making it easier to solve. By identifying a set of potential scenarios, we are able to utilize

this technique, which results in the following deterministic convex optimization problem:

max
{uk}k,{wk}k,τ

{
τ

∣∣∣∣ 1
2
(xk)⊤Q+xk + 1

2
c⊤xk + b⊤wk− 1

2
(uk)⊤Q+uk ≥ τ, k= 1, . . . , |W|

−Q+uk +A⊤wk ≤Q−xk + 1
2
c, k= 1, . . . , |W|

}
, (FSA-QO)

whereW = {x1, . . . , xr} is a finite sub-set of X .

The following proposition states that if the optimal value of (FSA-QO) for a finite subset of scenarios is identical to

the optimal value of (QO), then the optimal solution for (QO) must be included within that subset.

PROPOSITION 2. Let Q=Q+ +Q− where Q ∈ Rnx×nx , and Q+,−Q− ≻ 0. If the optimal value of (FSA-QO)

for a given finite subset of scenarios is equal to the optimal value of (QO), then the finite subset of scenarios contains

the optimal solution for (QO).

Proof. Let (τ̄ ,{ūk}k,{w̄k}k) be an optimal solution of problem (FSA-QO). Based on the definition of the opti-

mality, there exists xs ∈W ⊊X for which the following constraint of (FSA-QO) is binding:

1
2
(xs)⊤Q+xs + 1

2
c⊤xs + b⊤w̄s− 1

2
(ūs)⊤Q+ūs = τ̄ .
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We claim that xs is an optimal solution of (QO). To show this, we have

τ̄ = 1
2
(xs)⊤Q+xs + 1

2
c⊤xs +max

w,u

{
b⊤w− 1

2
u⊤Q+u :−Q+u+A⊤w≤Q−xs + 1

2
c
}

= 1
2
(xs)⊤Q+xs + 1

2
c⊤xs +min

z

{
1
2
z⊤Q+z+ 1

2
c⊤z+ z⊤Q−xs| z ∈X

}
,

(26)

The validity of the last equality follows from the fact that strong duality holds. If we denote the optimal solution of the

above minimization problem by zs, then we can conclude that (xs, zs) is optimal for (Bi-QO). Furthermore, according

to Corollary 1, we have xs = zs, and therefore xs is optimal for the original (QO) problem. □

B. Alternative Forms

A quadratic optimization problem can be expressed in different formulations, depending on how the feasible region is

formulated, leading to variations in its ARO reformulation. Table 6 summarizes some of these formulations.

Table 6 Other Classes of ARO Reformulations of Indefinite QO Problem.

Feasible Region Type ARO Problem
I

X = {x∈Rnx | Ax= b, x≥ 0}

max
τ∈R

τ

s.t. ∀x∈X , ∃(ux,wx) :

{
1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux ≤Q−x+ 1
2
c.

II

X = {x∈Rnx | Ax= b}

max
τ∈R

τ

s.t. ∀x∈X , ∃(ux,wx) :

{
1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux =Q−x+ 1
2
c.

III

X = {x∈Rnx |Ax≥ b, x≥ 0}

max
τ∈R

τ

s.t. ∀x∈X , ∃(ux,wx) :


1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux ≤Q−x+ 1
2
c,

wx ≥ 0.

IV

X = {x∈Rnx | Ax≥ b}

max
τ∈R

τ

s.t. ∀x∈X , ∃(ux,wx) :


1
2
x⊤Q+x+ 1

2
c⊤x− 1

2
u⊤
xQ

+ux + b⊤wx ≥ τ,

A⊤wx−Q+ux =Q−x+ 1
2
c,

wx ≥ 0.

C. Detailed Results of Numerical Experiments

This appendix presents the outcomes derived from the numerical experiments conducted in the respective sections. The

results showcased herein provide detailed insights into the findings obtained through various computational analyses

and experiments discussed throughout this paper.
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Table 7 Comparison result on concave quadratic minimization test instances from Selvi et al. (2022).
Static ARO-QO Algorithm Partial affine ARO-QO Algorithm Full affine ARO-QO Algorithm Selvi et al. (2022) method Gurobi CPLEX

Problem LB UB Gap LB UB Gap LB UB Gap LB UB Gap LB UB Gap LB UB Gap
#1 (mx = 10, nx = 20) -514.68 -394.75 30.38 -505.16 -394.75 27.97 -394.83 -394.75 0.02 -702.05 -394.75 77.85 -394.75 -394.75 0.00 -394.75 -394.75 0.00
#2 (mx = 10, nx = 20) -965.52 -884.75 9.13 -963.87 -884.75 8.94 -884.83 -884.75 0.01 -1192.05 -884.75 34.73 -884.75 -884.75 0.00 -884.75 -884.75 0.00
#3 (mx = 15, nx = 10) -4694.10 -4674.68 0.42 -4688.44 -4674.68 0.29 -4674.68 -4674.68 0.00 -4753.10 -4674.68 1.68 -4674.83 -4674.68 0.00 -4674.92 -4674.68 0.00
#4 (mx = 62, nx = 50) -175920.41 -175705.59 0.12 -175869.24 -175705.59 0.09 -175705.59 -175705.59 0.00 -177638.35 -175705.59 1.10 -175707.22 -175705.59 0.00 -175707.22 -175705.59 0.00
#5 (mx = 130, nx = 100) -693146.47 -692613.05 0.08 -693068.49 -692613.05 0.07 -692613.05 -692613.05 0.00 -707519.84 -692613.05 2.15 -692633.48 -692613.05 0.00 -692633.48 -692613.05 0.00
#6 (mx = 240, nx = 200) -6022194.41 -6020787.42 0.02 -6021978.92 -6020787.42 0.02 NA - - -6112433.52 -6020787.42 1.52 -6020887.35 -6020787.42 0.00 -6020887.35 -6020787.42 0.00
#7 (mx = 280, nx = 240) -1856557.05 -1855739.98 0.04 -1856443.10 -1855733.06 0.04 NA - - -1961723.39 -1855733.06 5.71 -1900962.70 -1649853.80 15.22 -2162137.04 -1855739.98 14.17

Notes. The first column in this table presents the problem numbers and their corresponding dimensions. For each problem, we

applied the ARO-QO Algorithm: one with a full static decision rule, another with a partial affine decision rule, and the last one

with a full affine decision rule on adjustable variables. In each approach, the ‘LB’ column represents the lower bound values, and

the ‘UB’ column displays the upper bounds.

Table 8 Time Results for concave quadratic minimization test instances from Selvi et al. (2022).
Static ARO-QO Partial affine ARO-QO Full affine ARO-QO Selvi et al. (2022) method Global Solver

Problem LB UB Time LB UB Time LB UB Time LB UB Time Gurobi CPLEX
#1 (mx = 10, nx = 20) 0.02 0.06 0.08 0.07 0.08 0.15 0.94 0.11 1.05 0.07 0.10 0.17 0.11 0.12
#2 (mx = 10, nx = 20) 0.02 0.06 0.08 0.07 0.08 0.15 0.95 0.11 1.06 0.05 0.10 0.15 0.12 0.11
#3 (mx = 15, nx = 10) 0.01 0.03 0.04 0.01 0.05 0.06 0.04 0.08 0.12 0.06 0.09 0.15 0.03 0.06
#4 (mx = 62, nx = 50) 0.11 0.16 0.27 0.26 0.22 0.48 11.06 0.40 11.46 0.89 0.43 1.32 0.56 1.56
#5 (mx = 130, nx = 100) 0.88 0.40 1.28 4.25 0.56 4.81 899.42 1.06 900.48 7.07 1.20 8.27 12.03 43.64
#6 (mx = 240, nx = 200) 7.49 1.49 8.98 43.15 1.68 44.83 3000* - 3000* 56.08 3.82 59.60 528.99 1165.38
#7 (mx = 280, nx = 240) 28.44 2.04 30.47 102.52 2.38 104.90 3000* - 3000* 76.44 4.46 80.90 3000* 3000*
Notes. In this table, the ‘LB’ column represents the lower bound time, the ‘UB’ column displays the upper bound time, and the

‘Time’ column indicates the total corresponding solver times. Additionally, the columns for global solvers also report the time

taken by Gurobi and CPLEX solvers to reach bounds.
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Table 9 Detailed result on concave quadratic minimization.
Problem (size) ARO-QO Algorithm Selvi et al. (2022) method Gurobi CPLEX

LB UB Time LB UB Time LB UB Time LB UB Time
# 1 (mx = 100, nx = 50) -21226.05 -20906.11 0.55 -23918.61 -20906.11 2.19 -20907.98 -20906.11 46.51 -20908.66 -20906.11 20.31
# 2 (mx = 100, nx = 50) -19999.47 -19801.12 0.54 -22281.13 -19801.12 2.21 -19801.12 -19801.12 142.38 -10803.73 -19801.12 16.31
# 3 (mx = 100, nx = 50) -21924.71 -21516.59 0.53 -24468.84 -21514.54 1.93 -21518.39 -21516.59 36.52 -21520.18 -21516.59 16.50
# 4 (mx = 100, nx = 50) -19796.92 -19504.56 0.55 -22192.55 -19504.56 2.01 -19505.00 -19504.46 37.70 -19508.39 -19504.56 14.43
# 5 (mx = 100, nx = 50) -19938.54 -19588.64 0.55 -22004.72 -19617.58 2.65 -19619.28 -19617.58 69.52 -19620.01 -19617.58 17.07
# 6 (mx = 150, nx = 100) -43503.68 -42817.73 2.90 -48917.86 -42817.73 8.97 -42821.91 -42817.73 398.47 -42824.07 -42817.73 421.30
# 7 (mx = 150, nx = 100) -44023.17 -43288.39 2.67 -49478.74 -43295.39 9.09 -43298.91 -43295.39 1138.38 -43304.86 -43295.39 523.09
# 8 (mx = 150, nx = 100) -44509.83 -43708.24 2.94 -50215.65 -43746.44 9.61 -43753.45 -43749.45 832.73 -43756.27 -43749.36 578.56
# 9 (mx = 150, nx = 100) -40043.22 -39464.10 2.53 -44570.54 -39479.17 8.72 -39479.86 -39477.46 1195.30 -39489.34 -39479.17 228.30
# 10 (mx = 150, nx = 100) -50419.80 -49987.08 2.79 -56409.90 -49987.08 8.59 -49991.33 -49987.08 315.52 -49992.08 -49987.08 161.97
# 11 (mx = 200, nx = 100) -36365.81 -35824.95 4.47 -41378.67 -35824.95 18.51 -35828.39 -35824.95 484.97 -35829.88 -35824.95 366.40
# 12 (mx = 200, nx = 100) -36273.69 -35835.66 4.32 -41252.42 -35828.10 18.44 -35839.10 -35835.66 726.90 -35841.34 -35835.67 501.42
# 13 (mx = 200, nx = 100) -34758.56 -34055.57 4.45 -39847.86 -34055.40 19.59 -34057.88 -34055.76 1636.05 -34135.30 -34055.76 301.26
# 14 (mx = 200, nx = 100) -35864.55 -35262.45 4.58 -41288.01 -35289.22 16.38 -35310.24 -35289.70 3,000* -35410.68 -35289.49 3,000*
# 15 (mx = 200, nx = 100) -39351.10 -38553.98 4.67 -45260.71 -38619.98 16.24 -38628.29 -38624.93 2165.88 -38631.30 -38624.93 2256.70
# 16 (mx = 250, nx = 200) -114818.87 -113258.29 14.88 -129138.55 -113258.34 48.23 -113269.93 -113258.34 3,000* -113282.68 -113258.34 3,000*
# 17 (mx = 250, nx = 200) -92364.54 -90802.03 13.38 -103508.71 -90833.68 47.94 -109407.37 -90185.44 3,000* -91059.89 -90848.24 3,000*
# 18 (mx = 250, nx = 200) -102592.36 -101763.08 16.13 -115061.49 -101763.08 48.82 -102331.34 -101763.08 3,000* -101797.00 -101763.08 2638.61
# 19 (mx = 250, nx = 200) -110848.56 -109342.56 16.27 -124919.22 -109342.56 52.02 -121382.85 -109342.56 3,000* -109354.94 -109342.56 3,000*
# 20 (mx = 250, nx = 200) -124939.05 -122854.09 15.89 -145278.15 -122854.09 59.25 -148108.59 -122854.09 3,000* -123861.93 -122854.09 3,000*
# 21 (mx = 300, nx = 200) -90379.80 -89076.48 24.68 -104968.70 -89054.41 83.60 -115882.61 -89076.79 3,000* -89728.32 -89076.86 3,000*
# 22 (mx = 300, nx = 200) -83366.49 -82259.34 26.20 -95965.30 -82256.29 97.87 -102793.52 -82259.34 3,000* -82661.52 -82259.34 3,000*
# 23 (mx = 300, nx = 200) -82027.18 -81016.91 24.37 -93726.28 -81008.71 138.95 -97987.79 -81016.91 3,000* -81178.61 -81016.91 3,000*
# 24 (mx = 300, nx = 200) -84667.10 -83459.67 24.30 -98686.53 -83457.97 102.20 -105898.98 -83459.67 3,000* -83953.38 -83459.67 3,000*
# 25 (mx = 300, nx = 200) -81894.50 -80966.99 23.75 -94430.77 -80966.99 82.63 -102639.56 -80966.99 3,000* -81059.07 -80966.99 3,000*
# 26 (mx = 350, nx = 300) -171137.64 -168437.60 50.91 -194844.52 -168438.92 170.15 -210038.17 -168194.52 3,000* -5605813.93 -168194.52 3,000*
# 27 (mx = 350, nx = 300) -164141.28 -161444.77 44.66 -186697.76 -161462.55 158.70 -205946.65 -161142.30 3,000* -5128394.30 -161463.49 3,000*
# 28 (mx = 350, nx = 300) -158477.21 -156089.67 59.39 -184476.06 -156064.84 146.55 -196949.54 -156089.67 3,000* -372519.82 -156089.67 3,000*
# 29 (mx = 350, nx = 300) -163020.17 -159968.26 37.23 -186943.98 -159857.19 149.84 -192162.18 -159559.82 3,000* -295635.77 -159985.69 3,000*
# 30 (mx = 350, nx = 300) -179027.10 -176570.47 59.21 -203873.39 -176564.79 144.81 -211848.25 -176570.47 3,000* -694837.69 -176570.47 3,000*
# 31 (mx = 400, nx = 300) -130525.34 -128324.26 80.92 -151936.50 -1238322.77 262.92 -171188.37 -128323.25 3,000* -5164971.42 -128310.81 3,000*
# 32 (mx = 400, nx = 300) -122185.75 -120302.84 71.80 -142516.23 -120310.31 230.07 -165499.48 -120287.00 3,000* -5232838.82 -120308.58 3,000*
# 33 (mx = 400, nx = 300) -120417.62 -118873.22 76.78 -139741.15 -118868.50 220.00 -163195.52 -118573.02 3,000* -5201602.88 -118873.22 3,000*
# 34 (mx = 400, nx = 300) -121135.65 -118904.01 70.01 -140455.45 -118869.00 281.14 -166977.00 -118898.47 3,000* -5223379.15 -118898.58 3,000*
# 35 (mx = 400, nx = 300) -135783.77 -134180.30 84.87 -157376.81 -134180.24 287.99 -182483.43 -134135.73 3,000* -5207186.87 -134180.24 3,000*
# 36 (mx = 450, nx = 400) -239708.24 -236691.08 69.61 -267620.18 -236691.08 292.47 -308141.60 -236632.22 3,000* -1.02268×109 NA 3,000*
# 37 (mx = 450, nx = 400) -219201.30 -215007.32 97.31 -252589.43 -215005.17 308.21 -401192.82 -213758.53 3,000* -1.02521×109 NA 3,000*
# 38 (mx = 450, nx = 400) -231523.46 -227609.94 94.57 -265032.88 -227619.86 307.32 -322874.67 -169857.26 3,000* -1.02639×109 NA 3,000*
# 39 (mx = 450, nx = 400) -225364.42 -221535.08 86.43 -258200.84 -221537.39 291.19 -623239.89 -169708.85 3,000* -1.02626×109 NA 3,000*
# 40 (mx = 450, nx = 400) -248061.41 -243641.36 129.44 -286303.36 -243639.15 278.68 -353455.02 -161208.64 3,000* -1.02815×109 NA 3,000*
# 41 (mx = 500, nx = 400) -162882.47 -160300.05 176.57 -191340.70 -160278.14 559.34 -604066.17 -159909.39 3,000* -1.02268×109 NA 3,000*
# 42 (mx = 500, nx = 400) -172886.97 -169806.25 164.70 -202411.67 -169805.29 586.96 -267361.99 -169267.40 3,000* -1.02521×109 NA 3,000*
# 43 (mx = 500, nx = 400) -161267.75 -158235.56 165.39 -187056.39 -158223.56 555.60 -425931.05 -110899.09 3,000* -1.02626×109 NA 3,000*
# 44 (mx = 500, nx = 400) -173508.69 -170210.36 156.92 -203828.67 -170199.68 534.90 -350152.46 -169666.30 3,000* -1.02626×109 NA 3,000*
# 45 (mx = 500, nx = 400) -177296.71 -173532.58 161.32 -208668.91 -173433.65 546.23 -404418.89 -173127.83 3,000* -1.02815×109 NA 3,000*
# 46 (mx = 550, nx = 500) -254620.02 -250228.59 140.01 -292466.45 -250227.15 269.22 -386062.82 -165730.74 3,000* -2.00381×109 NA 3,000*
# 47 (mx = 550, nx = 500) -283033.14 -278009.50 143.87 -326626.69 -277934.32 263.27 -13261942.44 -111018.29 3,000* -1.99773×109 NA 3,000*
# 48 (mx = 550, nx = 500) -267476.07 -262965.87 144.32 -305398.64 -262965.87 270.19 -738574.46 -153507.88 3,000* -2.00129×109 NA 3,000*
# 49 (mx = 550, nx = 500) -268766.57 -264084.34 160.95 -309881.77 -264016.01 244.89 -449419.26 -197858.04 3,000* -2.00369×109 NA 3,000*
# 50 (mx = 550, nx = 500) -293060.47 -287527.81 129.89 -335443.85 -287498.36 236.11 -423238.78 -191541.98 3,000* -2.00595×109 NA 3,000*
# 51 (mx = 600, nx = 500) -217416.92 -213705.89 366.84 -256282.73 -213683.16 515.61 -1127074.64 -166459.89 3,000* -2.00381×109 NA 3,000*
# 52 (mx = 600, nx = 500) -230918.43 -227145.96 336.32 -270398.12 -227144.69 514.71 -525624.12 -151916.19 3,000* -1.99773×109 NA 3,000*
# 53 (mx = 600, nx = 500) -211637.44 -207961.86 389.37 -247423.31 -207918.89 484.56 -11832043.00 -111613.71 3,000* -2.00129×109 NA 3,000*
# 54 (mx = 600, nx = 500) -240876.42 -236788.53 379.21 -283777.93 -236783.30 517.46 -8878852.73 -111854.65 3,000* -2.00369×109 NA 3,000*
# 55 (mx = 600, nx = 500) -220691.08 -217845.10 341.90 -257822.62 -217845.30 490.03 -8732517.01 -108571.64 3,000* -2.00595×109 NA 3,000*
# 56 (mx = 650, nx = 600) -391433.86 -384919.90 326.00 -455449.56 -384880.07 483.69 -4971784.16 -134292.50 3,000* -3.45702×109 NA 3,000*
# 57 (mx = 650, nx = 600) -403904.96 -398018.32 239.91 -463747.58 -398018.32 445.72 -14155023.89 -146383.96 3,000* -3.45533×109 NA 3,000*
# 58 (mx = 650, nx = 600) -329953.17 -324832.60 254.45 -381469.39 -324788.61 416.11 -3241488.76 -127909.30 3,000* -3.45744×109 NA 3,000*
# 59 (mx = 650, nx = 600) -344749.19 -339970.74 251.05 -394538.13 -339907.86 406.65 -18755129.41 -134434.84 3,000* -3.46041×109 NA 3,000*
# 60 (mx = 650, nx = 600) -344458.62 -338774.49 246.62 -397930.12 -338767.55 370.98 -20611553.36 -150155.61 3,000* -3.46327×109 NA 3,000*
# 61 (mx = 700, nx = 600) -282346.92 -278274.80 636.29 -332396.86 -278196.53 910.18 -12550163.40 -146157.71 3,000* -3.45702×109 NA 3,000*
# 62 (mx = 700, nx = 600) -255125.93 -252049.75 588.72 -297435.47 -252019.04 734.42 -13717479.02 -135118.87 3,000* -3.45533×109 NA 3,000*
# 63 (mx = 700, nx = 600) -268578.12 -265180.15 551.67 -310071.57 -265179.26 751.89 -17742893.76 -136924.49 3,000* -3.45744×109 NA 3,000*
# 64 (mx = 700, nx = 600) -271077.81 -265854.53 678.98 -321255.53 -265784.91 847.24 -13671678.23 -137967.52 3,000* -3.46041×109 NA 3,000*
# 65 (mx = 700, nx = 600) -265786.65 -261964.40 633.24 -312133.44 -261960.96 863.81 -13511151.74 -134274.22 3,000* -3.46327×109 NA 3,000*
# 66 (mx = 750, nx = 700) -453938.25 -445745.52 334.48 -522337.64 -445739.49 500.72 -30556778.77 NA 3,000* -5.49163×109 NA 3,000*
# 67 (mx = 750, nx = 700) -392258.28 -383657.82 362.86 -449380.91 -385644.74 455.94 -29261626.30 -161772.44 3,000* -548510×109 NA 3,000*
# 68 (mx = 750, nx = 700) -446958.57 -441833.49 350.21 -512918.35 -441818.13 559.76 -29099763.10 NA 3,000* -5.48474×109 NA 3,000*
# 69 (mx = 750, nx = 700) -437897.81 -430075.17 332.64 -507811.80 -429904.39 501.20 -28450230.87 NA 3,000* -5.48958×109 NA 3,000*
# 70 (mx = 750, nx = 700) -396137.17 -388867.26 336.34 -461346.54 -388657.60 497.99 -28394163.71 NA 3,000* -5.50234×109 NA 3,000*
# 71 (mx = 800, nx = 700) -311760.73 -306985.03 987.30 -366078.98 -306837.21 938.07 -28336162.67 NA 3,000* -5.49163×109 NA 3,000*
# 72 (mx = 800, nx = 700) -331384.65 -326264.31 972.63 -392327.23 -326243.53 950.99 -29520962.09 NA 3,000* -548510×109 NA 3,000*
# 73 (mx = 800, nx = 700) -302347.42 -297341.90 925.81 -358956.95 -297338.12 939.47 -28577654.37 NA 3,000* -5.48474×109 NA 3,000*
# 74 (mx = 800, nx = 700) -317298.48 -312825.99 802.18 -371677.77 -312807.92 2086.76 -29767062.12 NA 3,000* -5.48958×109 NA 3,000*
# 75 (mx = 800, nx = 700) -325810.25 -322123.47 845.32 -376710.09 -322132.66 906.84 -28979308.79 NA 3,000* -5.50234×109 NA 3,000*

Notes. In the table, we applied the ARO-QO Algorithm with a static decision rule in the lower bound approximation step. The

‘NA’ indicates that the solver could not find any feasible solution within the time limit, which was set at 3,000 seconds.
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Table 10 Detailed numerical results on standard quadratic optimization.
ARO-QO Algorithm Gurobi CPLEX IPOPT

Problem LB1 LB2 UB Time LB1 UB1 LB2 UB2 LB1 UB1 LB2 UB2 UB Time
#1 100(0.50) -141.3034 -70.4688 -6.1407 3.21 -8.3740 -6.0793 -6.8351 -6.1300 -19568.7553 1.4379 -9.4376 -5.8325 -6.0793 0.18
#2 100(0.50) -129.2121 -64.4946 -6.0452 1.41 -206.8990 -6.2006 -7.0153 -6.2006 -20689.9017 0.1291 -9.6186 -6.0611 -6.2006 0.17
#3 100(0.50) -128.5047 -64.1669 -5.9070 3.73 -93.9099 -5.9070 -7.1628 -5.9070 -20289.6140 1.9297 -9.2160 -5.9789 -5.7568 0.15
#4 100(0.50) -132.9374 -66.3307 -5.3757 2.34 -105.4804 -5.4065 -7.0147 -5.9348 -19603.0830 0.3966 -9.1551 -5.9122 -5.7282 0.19
#5 100(0.50) -132.0628 -65.9230 -6.1510 1.96 -208.1827 -5.5674 -7.1317 -6.0872 -20818.2732 1.4012 -9.4403 -6.0872 -5.7499 0.15
#6 100(0.75) -97.3824 -48.6858 -6.1247 4.13 -8.9226 -6.1421 -7.4236 -6.2123 -29864.6740 1.4379 -9.2783 -6.2409 -6.1421 0.22
#7 100(0.75) -97.9984 -49.0243 -6.2670 4.24 -150.9282 -6.2129 -8.0329 -6.2129 -30875.3437 0.1291 -9.4080 -6.4196 -6.2129 0.17
#8 100(0.75) -103.0299 -51.5410 -6.4087 4.13 -8.4681 -6.4087 -7.5404 -6.4087 -30985.4966 1.9297 -9.3935 -6.6311 -6.6184 0.27
#9 100(0.75) -97.5577 -48.7893 -6.2600 2.04 -151.9978 -6.2442 -7.4113 -6.2442 -29785.6185 0.3966 -9.5376 -6.5648 -6.2600 0.19
#10 100(0.75) -96.2869 -48.1865 -6.4669 1.68 -156.2187 -6.2761 -7.5161 -6.2761 -31184.9292 1.4012 -9.2898 -6.7674 -6.3080 0.20
#11 100(0.90) -79.3832 -39.8410 -6.9327 2.62 -180.1334 -6.9327 -7.6421 -6.9327 -36746.4932 0.1291 -9.2769 -6.9327 -6.9327 0.24
#12 100(0.90) -86.1553 -43.2040 -6.8661 1.97 -174.1012 -6.4303 -7.7573 -6.6220 -36937.4664 1.9297 -9.6367 -6.8661 -6.6465 0.42
#13 100(0.90) -82.2343 -41.2319 -6.7313 2.72 -9.3498 -6.3954 -7.6163 -6.5053 -35500.0261 0.3966 -9.5383 -6.7313 -6.7313 0.24
#14 100(0.90) -80.3149 -40.3119 -6.8193 4.33 -182.8205 -6.8193 -7.7276 -6.8193 -37305.5831 1.4012 -9.5492 -6.8193 -6.8193 0.22
#15 100(0.90) -83.1796 -41.7040 -6.5117 3.92 -8.6935 -6.7201 -7.6462 -6.7201 -36100.2716 1.7340 -9.3520 -6.3773 -6.3773 0.39
#16 300(0.50) -346.1800 -172.8466 -6.8268 20.93 -613.7949 -6.1414 -9.0272 -6.4021 -184138.4571 1.1983 -9.7702 -6.8268 -6.3178 2.07
#17 300(0.50) -363.1453 -181.2841 -6.4665 10.28 -602.3853 -6.2261 -9.0093 -6.2261 -180715.6028 0.4993 -9.7162 -6.8293 -6.2681 3.46
#18 300(0.50) -349.3163 -174.3961 -6.4054 8.44 -616.3506 -6.1621 -8.8538 -6.1621 -184905.1896 0.4407 -9.7923 -6.4981 -6.5653 2.43
#19 300(0.50) -341.5578 -170.5206 -6.6315 7.83 -607.0261 0.9849 -8.9102 -6.3765 -182107.8395 1.5055 -9.7605 -6.1386 -5.8708 3.07
#20 300(0.50) -345.3875 -172.4347 -6.1377 16.68 -184419.6908 NA -8.9316 -6.6613 -184419.6908 1.3906 -9.7736 -6.6613 -6.1736 3.53
#21 300(0.75) -176.3619 -88.1453 -6.8032 10.48 -921.1536 -6.9338 -9.0566 -6.9338 -276346.0771 1.1983 -9.7876 -6.8216 -6.8054 6.41
#22 300(0.75) -175.4038 -87.6363 -6.8759 8.76 -272391.0266 NA -8.9426 -6.4181 -272391.0266 0.4993 -9.8275 -6.7489 -6.8759 2.75
#23 300(0.75) -174.4136 -87.1647 -7.0573 7.89 -277034.1229 NA -9.1796 -6.7585 -277034.1229 0.4407 -9.8511 -7.0574 -6.7585 4.50
#24 300(0.75) -177.9974 -88.9396 -6.6903 16.78 -912.3190 -6.9003 -8.9031 -6.9003 -273695.7025 1.5055 -9.8216 -6.6438 -7.0843 2.63
#25 300(0.75) -175.5445 -87.7248 -6.9182 12.94 -921.0848 -6.6895 -8.9447 -6.6895 -276325.4527 1.3906 -9.8807 -6.6779 -6.6895 3.23
#26 300(0.90) -143.7195 -71.9071 -6.9269 8.22 -330123.7775 NA -9.0177 -6.9986 -330123.7775 1.1983 -1100.4094 -6.9986 -6.9986 8.11
#27 300(0.90) -144.6976 -72.3644 -7.0452 9.76 -327243.9761 NA -8.7635 -7.1325 -327243.9761 0.4993 -9.9144 -7.1256 -7.0452 12.17
#28 300(0.90) -145.0177 -72.5449 -7.0388 7.48 -330364.3039 NA -9.1546 -6.9562 -330364.3039 0.4407 -1101.2111 -7.0013 -7.0013 10.57
#29 300(0.90) -143.8378 -71.9478 -7.1740 5.74 -327262.3799 NA -9.0733 -6.9284 -327262.3799 1.5055 -1090.8714 -6.7852 -7.1740 11.89
#30 300(0.90) -143.0871 -71.5811 -7.0907 9.91 -329821.4820 NA -8.9564 -6.6353 -329821.4820 1.3906 -1099.4017 -7.0982 -7.0982 18.68
#31 500(0.50) -556.7245 -278.0625 -6.6145 67.67 -1020.2667 -6.3477 -191.4577 -6.3477 -510133.3318 1.2865 -510133.3318 1.2865 -6.5915 19.84
#32 500(0.50) -566.5476 -282.9713 -6.6280 31.42 -506289.0935 NA -9.0589 -6.6493 -506289.0935 0.3183 -506289.0935 0.3183 -6.5356 18.31
#33 500(0.50) -591.9429 -295.6179 -6.7359 23.70 -501373.7349 NA -8.8296 -6.6624 -510373.7349 1.2783 -510373.7349 1.2783 -6.2281 41.77
#34 500(0.50) -610.1031 -304.6871 -6.6229 25.60 -494369.5262 NA -275.1602 -6.4848 -494369.5259 1.6020 -494369.5259 1.6020 -6.0928 56.92
#35 500(0.50) -572.0808 -285.7164 -6.5621 21.67 -506389.7396 NA -180.8172 -6.3804 -506389.7396 1.2845 -506389.7396 1.2845 -6.3461 22.11
#36 500(0.75) -229.8191 -114.8414 -6.8795 18.03 -762239.6625 NA -8.9277 -7.2121 -762239.6625 1.2865 -762239.6625 1.2865 -6.7796 71.14
#37 500(0.75) -230.8269 -115.3499 -6.9959 20.02 -762805.0408 NA -9.0610 -7.0364 -762805.0408 0.3183 -762805.0408 0.3183 -6.9959 41.26
#38 500(0.75) -232.7850 -116.2777 -7.2736 17.02 -752040.9615 NA -8.8130 -7.2737 -752040.9615 1.2783 -752040.9615 1.2783 -7.2736 31.93
#39 500(0.75) -233.0709 -116.4148 -7.0284 18.91 -743920.3594 NA -9.0686 -7.0285 -743920.3594 1.6020 -743920.3594 1.6020 -6.7045 38.31
#40 500(0.75) -232.9520 -116.3886 -7.1457 14.91 -761558.1498 NA -9.0567 -6.8525 -761558.1498 1.2845 -761558.1498 1.2845 -6.8502 65.33
#41 500(0.90) -184.1009 -92.0577 -7.1770 16.11 -912849.6789 NA -8.9426 -7.2882 -912849.6789 1.2865 -912849.6789 1.2865 -7.0698 269.61
#42 500(0.90) -185.8445 -92.9335 -7.1591 20.84 -915735.5099 NA -8.9811 -7.2046 -915735.5099 0.3183 -915735.5099 0.3183 -7.2841 193.03
#43 500(0.90) -190.0275 -94.9696 -7.2765 22.76 -897979.1777 NA -9.0566 -7.0170 -897979.1777 1.2783 -897979.1777 1.2783 -7.1358 558.81
#44 500(0.90) -187.4554 -93.6838 -7.1644 15.61 -891704.7924 NA -8.8940 -7.2341 -891704.7924 1.6020 -891704.7924 1.6020 -7.0817 132.88
#45 500(0.90) -184.8534 -92.4199 -7.1304 15.40 -910365.1227 NA -9.0567 -6.8725 -910365.1227 1.2845 -910365.1227 1.2845 -7.2025 233.34
#46 700(0.50) -787.9514 -393.6440 -6.8559 49.49 -992790.3462 NA -581.7589 -7.0743 -992790.3462 1.9870 -992790.3462 1.9870 -6.6087 111.28
#47 700(0.50) -782.0549 -390.6996 -6.8288 59.65 -991913.5841 NA -687.3291 -6.5275 -991913.5841 0.8314 -991913.5841 0.8314 -6.6004 122.00
#48 700(0.50) -792.3280 -395.8237 -6.9251 53.28 -989990.5545 NA -688.0122 -7.2341 -989990.5545 0.0685 -989990.5545 0.0685 -6.7706 120.14
#49 700(0.50) -793.4050 -396.3786 -6.6120 37.83 -990734.2155 NA -582.0707 -6.4569 -990737.2155 0.4787 -990737.2155 0.4787 -6.3972 157.87
#50 700(0.50) -773.1635 -386.2475 -6.4638 36.06 -995054.2807 NA -699.3185 -6.7537 -995054.2807 1.8646 -995054.2807 1.8646 -6.5121 127.89
#51 700(0.75) -275.0992 -137.4745 -6.9744 29.52 -1485228.3068 NA -1449.6412 -7.4271 -1485228.3068 1.9870 -1485228.3068 1.9870 -7.0766 401.49
#52 700(0.75) -275.6102 -137.7144 -7.0034 27.70 -1491678.2390 NA -1270.8686 -7.2887 -1491678.2390 0.8314 -1491678.2390 0.8314 -7.0057 634.64
#53 700(0.75) -272.7944 -136.3043 -7.1935 30.72 -1484429.9024 NA -889.5585 -7.1530 -1484429.9024 0.0685 -1484429.9024 0.0685 -6.8480 263.00
#54 700(0.75) -276.2158 -138.0321 -7.1483 31.50 -1488303.0870 NA -1454.5193 -7.1306 -1488303.0870 0.4787 -1488303.0870 0.4787 -7.2318 468.92
#55 700(0.75) -273.1807 -136.5040 -7.5046 29.79 -1491721.6015 NA -703.8169 -7.2129 -1491721.6015 1.8546 -1491721.6015 1.8546 -7.1273 292.65
#56 700(0.90) -219.2574 -109.6259 -7.2968 29.91 -1780157.9382 NA -1199.5401 -6.8760 -1780157.9382 1.9870 -1780157.9382 1.9870 -7.3375 123.17
#57 700(0.90) -219.4832 -109.7182 -7.3353 32.24 -1792548.9534 NA -1208.4181 -7.0783 -1792548.9534 0.8314 -1792548.9534 0.8314 -7.3220 128.02
#58 700(0.90) -221.5076 -110.7260 -7.2549 34.67 -1778302.0147 NA -1044.4092 -7.1261 -1778302.0147 0.0685 -1778302.0147 0.0685 -7.0970 128.38
#59 700(0.90) -221.4515 -110.7163 -7.2375 33.91 -1784629.5061 NA -1068.3227 -6.8956 -1784629.0506 0.4787 -1784629.0506 0.4787 -7.2374 82.89
#60 700(0.90) -220.9667 -110.4617 -7.2504 28.08 -1785773.3406 NA -1053.8475 -7.0932 -1785773.3406 1.8546 -1785773.3406 1.8546 -7.3478 105.62

Notes. This table presents problem numbers, dimensions, and matrix densities in the first column. For the ARO-QO Algorithm,

‘LB1’, ‘LB2’, ‘UB’, and ‘Time’ represent the lower bounds with partial decision rules on the ARO version, the upper bound

values, and the computation times of all solvers, respectively. The results for Gurobi and CPLEX are divided into four

subcolumns: the first two show bounds within the time limit required by the ARO-QO Algorithm, while the last two display

bounds within a fixed 3,000-second limit. The IPOPT columns detail the upper bounds and the solver times achieved by IPOPT

solvers. The ‘NA’ indicates the absence of a feasible solution within the given time.
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