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Abstract This paper presents two methods for approximating a proper subset of the entries of a
Hessian using only function evaluations. These approximations are obtained using the techniques
called generalized simplex Hessian and generalized centered simplex Hessian. We show how to
choose the matrices of directions involved in the computation of these two techniques depending
on the entries of the Hessian of interest. We discuss the number of function evaluations required
in each case and develop a general formula to approximate all order-P partial derivatives. Since
only function evaluations are required to compute the methods discussed in this paper, they are
suitable for use in derivative-free optimization methods.

Keywords Partial Hessian · Generalized simplex Hessian · Generalized centered simplex
Hessian · Approximating order-P partial derivatives · derivative-free optimization methods

1 Introduction

Approximating Hessians is a popular topic in numerical analysis and optimization. The Hessian
captures the curvature of a function, thus providing additional information that the gradient
does not have and aiding in the optimization process. There exist many approaches to approxi-
mate Hessians, including automatic differentiation [11], graph coloring approach [4,10], Lagrange
polynomials [6], Newton fundamental polynomials [6], regression nonlinear models or underdeter-
mined interpolating models [5]. Arguably, two of the most well-known methods to approximate
Hessian are forward-finite-difference approximation and centered-finite-difference approximation
[1, Section 4.6].

True Hessians and approximate Hessians are often used in optimization methods. One of the
most known optimization method using (true) Hessians is Newton’s Method [2, Section 4.3], which
boasts a quadratic rate of convergence [2, Theorem 4.3]. In derivative-free optimization (DFO)
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methods, it is assumed that derivative information is not directly available. For this reason,
true Hessians are not employed. Approximate Hessians have been used in DFO methods since
at least 1970 [30]. Researchers from the DFO community have previously explored methods to
approximate full Hessians or some of the entries of the Hessian. In [8], the authors outline an idea
for a simplex Hessian that is constructed via quadratic interpolation through (n+1)(n+2)/2 well-
poised sample points. They further posit that if only the diagonal entries are desired, then 2n+1
sample points are sufficient. These ideas are formalized in [5] through quadratic interpolation and
analyzed through the use of Lagrange polynomials. Obtaining an approximation of the diagonal
component of a Hessian is also discussed in [7,16], and in [14] it is shown that the diagonal entries
can be obtained for free (in terms of function evaluations) if the gradient has been previously
approximated via the (generalized) centered simplex gradient technique.

There are now many DFO algorithms that employ approximate Hessians to solve optimiza-
tion problems (see, for example, [9,18,19,20,21,22,23,24,25,29]). To develop strong convergence
results, a DFO algorithm uses numerical analysis techniques to approximate Hessians (and gradi-
ents) in a manner that has controllable error bounds. In [13,17], two techniques based on simple
matrix algebra to approximate a full Hessian called the generalized simplex Hessian (GSH) and
the generalized centered simplex Hessian (GCSH) are introduced. It is shown that the GSH is
an order-1 accurate approximation of the full Hessian and that the GCSH is an order-2 accurate
approximation of the full Hessian. The GSH can be viewed as a generalization of the simplex
Hessian discussed in [6,8]. The simplex Hessian requires (n+ 1)(n+ 2)/2 sample points poised
for quadratic interpolation. On the other hand, the GSH and the GCSH are well-defined as
long as the matrices of directions utilized are nonempty. Hence, they offer enough flexibility to
approximate only a proper subset of the entries of a Hessian.

The main goal of this paper is to investigate how to approximate a proper subset of the
entries of the Hessian with the GSH and the GCSH. Error bounds are provided, showing that
the GSH can provide order-1 accuracy of the appropriate subset of the entries of the Hessian.
Using the GCSG, error bounds show that we can obtain order-2 accuracy on the appropriate
subset of the entries of the Hessian. Secondary goals include to show how to obtain an order-2
accurate approximation of the full Hessian with a low number of function evaluations. Lastly, a
general recursive formula to approximate all order-P partial derivatives is provided.

This paper is organized as follows. Section 2 contains a description of the notation and
some needed definitions, including those of the generalized simplex gradient (GSG), the GSH
and the GCSH. In Section 3, we discuss how to obtain an order-2 accurate approximation of
the full Hessian with a low number of function evaluations. In Section 4, we investigate how to
approximate a proper subset of the entries of a Hessian. Diagonal entries and the relation between
the GSH and the centered simplex Hessian diagonal are discussed in Section 4 as well, with details
provided on how to approximate the off-diagonal entries of a Hessian and a column of a Hessian.
Error bounds are provided in each section. The properties of the matrices of directions, number
of function evaluations required, and error bounds are described. In Section 5, a formula to
approximate all order-P partial derivatives is introduced. Finally, Section 6 contains concluding
remarks and recommends areas of future research in this vein.

2 Preliminaries

Throughout this work, we use the standard notation found in [27]. The domain of a function f is
denoted by dom f . The transpose of matrix A is denoted by A⊤. We work in finite-dimensional
space Rn with inner product x⊤y =

∑n
i=1 xiyi and induced norm ∥x∥ =

√
x⊤x. The identity

matrix in Rn×n is denoted by Idn. We use ein ∈ Rn where i ∈ {1, 2, . . . , n}, to denote the
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standard unit basis vectors in Rn, i.e. the ith column of Idn . When there is no ambiguity about
the dimension, we may omit the subscript and simply write ei or Id . The zero vector in Rn is
denoted by 0n and the zero matrix in Rn×m is denoted by 0n×m. The entry in the ith row and
jth column of a matrix A ∈ Rn×m is denoted by Ai,j . If the matrix already involves a subscript,
say k, then we use the notation [Ak]i,j . The matrix D = Diag(v) = Diag[v1, . . . , vn] ∈ Rn×n,
where v ∈ Rn, represents a diagonal matrix with diagonal entries Dj,j = vj for all j ∈ {1, . . . , n}.
The linear span of a matrix A ∈ Rn×m, denoted by spanA, represents the set generated by all
linear combinations of the columns in A. The Minkowski sum of two sets of vectors A and B is
denoted by A⊕B and defined as follows:

A⊕B = {a+ b : a ∈ A, b ∈ B}.

Given a matrix A ∈ Rn×m, we use the induced matrix norm

∥A∥ = ∥A∥2 = max{∥Ax∥2 : ∥x∥2 = 1},

and the Frobenius norm

∥A∥F =

 n∑
i=1

m∑
j=1

A2
i,j

 1
2

.

We denote by Bn(x
0;∆) and Bn(x

0;∆) the open and closed balls, respectively, centered at
x0 ∈ Rn with radius ∆ > 0. We define a quadratic function Q : Rn → R to be a function of the
form Q(x) = α0+α⊤x+ 1

2x
⊤Hx where α0 ∈ R, α ∈ Rn and H = H⊤ ∈ Rn×n. An affine function

L : Rn → R is defined to be any function that can be written in the form L(x) = α0+α⊤x. Note
that affine functions and constant functions C(x) = α0 are also considered quadratic functions,
with H = 0n×n.

In order to introduce the definitions of the GSG, the GSH and the GCSH, we require the
Moore–Penrose pseudo-inverse of a matrix.

Definition 1 (Moore-Penrose pseudo-inverse) [28, Chapter 17]

Let A ∈ Rn×m. The unique matrix A† ∈ Rm×n that satisfies the following four equations is
called the Moore-Penrose pseudo-inverse of A:

(i) AA†A = A
(ii) A†AA† = A†

(iii) (AA†)⊤ = AA†

(iv) (A†A)⊤ = A†A.

The Moore–Penrose pseudoinverse A† is not always an inverse of A, but the following two
properties hold.

– If A has full column rank m, then A† is a left inverse of A. That is, A†A = Idm and

A† = (A⊤A)−1A⊤. (1)

– If A has full row rank n, then A† is a right inverse of A. That is, AA† = Idn and

A† = A⊤(AA⊤)−1. (2)
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Definition 2 (GSG) [12, Definition 2] Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be the
point of interest. Let S =

[
s1 s2 · · · sm

]
∈ Rn×m with x0 ⊕ S ⊆ dom f. The generalized simplex

gradient of f at x0 over S is denoted by ∇sf(x
0;S) and defined by

∇sf(x
0;S) = (S⊤)†δsf(x

0;S) ∈ Rn,

where

δsf(x
0;S) =

 f(x0 + s1)− f(x0)
...

f(x0 + sm)− f(x0)

 ∈ Rm.

In the next definition, we recall key notation used in the construction of the GSH and the
GCSH. Within, we write a set of vectors in matrix form, by which we mean that each column of
the matrix is a vector in the set.

Definition 3 (GSH and GCSH notation) Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be
the point of interest. Let

S =
[
s1 s2 · · · sm

]
∈ Rn×m and

Tj =
[
t1j t2j · · · tkj

]
∈ Rn×kj , j ∈ {1, . . . ,m},

be sets of directions contained in Rn, written in matrix form. Define

T1:m = {T1, . . . , Tm},

and
∆S = max

j ∈{1,...,m}
∥sj∥, ∆Tj

= max
ℓ∈{1,...,kj}

∥tℓj∥, ∆T = max
j∈{1,...,m}

∆Tj
.

The normalized matrices Ŝ and T̂j are respectively defined by

Ŝ =
1

∆S
S, T̂j =

Tj

∆Tj

, j ∈ {1, . . . , n}. (3)

In this paper, it is always assumed that the matrix S and all matrices Tj are non-empty and
have non-null rank. This ensures that the matrices in (3) are well-defined.

Definition 4 (Generalized simplex Hessian) [13, Definition 2.6] Let f : dom f ⊆ Rn → R
and let x0 ∈ dom f be the point of interest. Let S =

[
s1 s2 · · · sm

]
∈ Rn×m and Tj ∈ Rn×kj with

x0 ⊕ Tj , x
0 ⊕ S, x0 + sj ⊕ Tj contained in dom f for all j ∈ {1, . . . ,m}. The generalized simplex

Hessian of f at x0 over S and T1:m is denoted by ∇2
sf(x

0;S, T1:m) and defined by

∇2
sf(x

0;S, T1:m) = (S⊤)†δ2sf(x
0;S, T1:m),

where

δ2sf(x
0;S, T1:m) =


(∇sf(x

0 + s1;T1)−∇sf(x
0;T1))

⊤

(∇sf(x
0 + s2;T2)−∇sf(x

0;T2))
⊤

...
(∇sf(x

0 + sm;Tm)−∇sf(x
0;Tm))⊤

 ∈ Rm×n.

Note that the number of columns m in S can be any positive integer and each number of
columns kj in Tj can be any positive integer for all j ∈ {1, . . . ,m}.

In the case where all matrices Tj are equal, we define T = T1 = · · · = Tm ∈ Rn×k and write
∇2

sf(x
0;S, T ) to emphasize this special case.
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Definition 5 (Generalized centered simplex Hessian) [13, Definition 2.7] Let f : dom f ⊆
Rn → R and let x0 ∈ dom f be the point of interest. Let S =

[
s1 · · · sm

]
∈ Rn×m and Tj ∈

Rn×kj with x0 + sj ⊕ Tj , x
0 − sj ⊕ (−Tj), x

0 ⊕ (±S), and x0 ⊕ (±Tj) contained in dom f for all
j ∈ {1, . . . ,m}. The generalized centered simplex Hessian of f at x0 over S and T1:m is denoted
by ∇2

cf(x
0;S, T1:m) and defined by

∇2
cf(x

0;S, T1:m) =
1

2

(
∇2

sf(x
0;S, T1:m) +∇2

sf(x
0;−S,−T1:m)

)
. (4)

The relation between the GSH and the GCSH is investigated in [13]. It is shown that the
GCSH is a particular case of the GSH.

Proposition 6 Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be the point of interest. Let A =[
a1 a2 · · · a2m

]
=

[
S −S

]
∈ Rn×2m for some S =

[
s1 · · · sm

]
∈ Rn×m and let Bj = Tj ∈ Rn×kj ,

and Bm+j = −Tj for all j ∈ {1, . . . ,m}. Suppose that x0+sj⊕Tj , x
0+(−sj)⊕ (−Tj), x

0⊕ (±S),
and x0 ⊕ (±Tj) are contained in dom f for all j ∈ {1, . . . ,m}. Then

∇2
sf(x

0;A,B1:2m) = ∇2
cf(x

0;S, T1:m).

In [26], it is shown that the order of the sample points does not affect the value of the
generalized simplex gradient. We now provide a simpler proof of this statement. It shows that
the order of the columns in the matrices of directions used does not affect the value of the
generalized simplex gradient. Consequently, the order of the columns does not affect the value
of the GSH nor the GCSH.

Proposition 7 Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be the point of interest. Let
S =

[
s1 s2 · · · sm

]
∈ Rn×m with x0 ⊕ (±S) ⊆ dom f. Let P ∈ Rm×m be a permutation matrix.

Then

∇sf(x
0;SP ) = ∇sf(x

0;S).

Proof We have

∇sf(x
0;SP ) =

(
(SP )⊤

)†
δsf(x

0;SP )

= (P⊤S⊤)†P⊤δsf(x
0;S)

= (S⊤)†PP⊤δsf(x
0;S) (since P is an orthonormal matrix)

= (S⊤)† Id δsf(x
0;S) = ∇sf(x

0;S).

⊓⊔

Next, we recall the different cases to classify a GSH or a GCSH.

Definition 8 [13, Definition 2.9] Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be the point of
interest. Let S =

[
s1 s2 · · · sm

]
∈ Rn×m and Tj ∈ Rn×kj with x0 ⊕ sj ⊕Tj , x

0 − sj ⊕ (−Tj), x
0 ⊕

(±S), and x0 ⊕ (±Tj) contained in dom f for all j ∈ {1, . . . ,m}. Assume that all matrices are
non-null rank. We define the following four cases to characterize the matrix S ∈ Rn×m and the
set of matrices T1:m = {T1, . . . , Tm}.

– Underdetermined: the GSH (GCSH) is said to be S-underdetermined if S is non-square and
full column rank. We say that it is T1:m-underdetermined if all matrices in the set T1:m are
full column rank and at least one matrix is non-square.

– Determined: the GSH (GCSH) is said to be S-determined if S is square and full rank. It is
T1:m-determined if all matrices in the set T1:m are square and full rank.
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– Overdetermined: the GSH (GCSH) is said to be S-overdetermined if S is non-square and full
row rank. It is T1:m-overdetermined if all matrices in the set T1:m are full row rank and at
least one is non-square.

– Nondetermined: the GSH (GCSH) is said to be S-nondetermined if it is not in any of the
previous three cases. It is T1:m-nondetermined if the set T1:m is not in any of the previous
three cases.

In the special case where all matrices Tj are equal, we may write T - instead of T1:m-. Note that
the definition of an S-underdetermined GSH (GCSH) implies that spanS ̸= Rn, which is true if
and only if SS† ̸= Idn. Similarly, the definition of a T1:m-underdetermined GSH (GCSH) implies

that spanTj ̸= Rn for some j ∈ {1, . . . ,m}, which is true if and only if TjT
†
j ̸= Idn for some j.

It turns out that error bounds can be defined between the GSH (GCSH) and some of the
entries of the true Hessian. The appropriate entries of the true Hessian are obtained via a pro-
jection operator. The projection operator involves all matrices of directions utilized to compute
the GSH (GCSH).

Given matrices S ∈ Rn×m and Tj ∈ Rn×kj , the projection of the matrix H ∈ Rn×n onto S
and T1:m is denoted by ProjS,T1:m

H and defined by

ProjS,T1:m
H =

m∑
j=1

(S⊤)†ejm(ejm)⊤S⊤HTjT
†
j .

In the case where T1 = T2 = · · · = Tm = T , the projection of H onto S and T is denoted by
ProjS,T H, and reduces to

ProjS,T H =

m∑
j=1

(S⊤)†ejm(ejm)⊤S⊤HTT
†

= (S⊤)†

 m∑
j=1

ejm(ejm)⊤

S⊤HTT
†

= (S⊤)†IdmS⊤HTT
†

= (S⊤)†S⊤HTT
†
.

Note that ProjS,T1:m
is a linear operator. The following proposition demonstrates that in

certain situations, the projection of the GSH (GCSH) onto S and T1:m is equal to the GSH
(GCSH)

Proposition 9 [13, Proposition 4.1] Let f : dom f ⊆ Rn → R and x0 ∈ dom f. Let S =[
s1 · · · sm

]
∈ Rn×m, and Tj ∈ Rn×kj . Assume that x0 ⊕ (±S), x0 ⊕ (±Tj), and x0 ⊕ (±(S ⊕ Tj))

are contained in dom f for all j. Then the following hold.

(i) If S is full column rank or Tj is full row rank for all j ∈ {1, . . . ,m}, then

ProjS,T1:m
∇2

sf(x
0;S, T1:m) = ∇2

sf(x
0;S, T1:m)

and

ProjS,T1:m
∇2

cf(x
0;S, T1:m) = ∇2

cf(x
0;S, T1:m).
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The following error bounds for the GSH and the GCSH were introduced in [13]. In the
following theorem and the remainder of this paper, we use the notation

∆u = max{∆S , ∆T1
, . . . ,∆Tm

},
∆l = min{∆S , ∆T1

, . . . ,∆Tm
},

T̂ = T̂j such that
∥∥∥T̂ †

j

∥∥∥ is maximal, j ∈ {1, . . . ,m},

k = max{k1, . . . , km}.

Theorem 10 (Error bounds for the GSH) Let f : dom f ⊆ Rn → R be C3 on Bn(x
0;∆)

where x0 ∈ dom f is the point of interest and ∆ > 0. Denote by L∇2f ≥ 0 the Lipschitz constant

of ∇2f on Bn(x
0;∆). Let S =

[
s1 s2 · · · sm

]
∈ Rn×m and Tj =

[
t1j t2j · · · tkj

j

]
∈ Rn×kj for all

j ∈ {1, . . . ,m}. Assume that Bn(x
0;∆Tj

) ⊂ Bn(x
0;∆) and Bn(x

0 + sj ;∆Tj
) ⊂ Bn(x

0;∆) for all
j ∈ {1, . . .m}. Then the following hold.

(i) If S is full column rank or Tj is full row rank for all j ∈ {1, . . . ,m},, then

∥ProjS,T1:m
∇2

sf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)∥
= ∥∇2

sf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)∥

≤ 4m
√
kL∇2f∥(Ŝ⊤)†∥∥T̂ †∥

(
∆u

∆l

)2

∆u. (5)

(ii) If T1 = T2 = · · · = Tm = T , then

∥ProjS,T ∇2
s(x

0, S, T )− ProjS,T ∇2f(x0)∥

= ∥∇2
s(x

0, S, T )− ProjS,T ∇2f(x0)∥

≤ 4
√
mkL∇2f

∆u

∆l

∥∥∥(Ŝ⊤)†
∥∥∥∥∥∥∥T̂ †

∥∥∥∥∆u. (6)

Theorem 11 (Error bounds for the GCSH) Let f : dom f ⊆ Rn → R be C4 on Bn(x
0;∆)

where x0 ∈ dom f is the point of interest and ∆ > 0. Denote by L∇3f the Lipschitz constant of

∇3f on Bn(x
0;∆). Let S =

[
s1 s2 · · · sm

]
∈ Rn×m, Tj =

[
t1j t2j · · · tkj

j

]
∈ Rn×kj with the ball

Bn(x
0 + sj ;∆Tj

) ⊂ Bn(x
0;∆) for all j ∈ {1, . . . ,m}. Then the following hold.

(i) If S is full column rank or Tj is full row rank for all j ∈ {1, . . . ,m}, then

∥ProjS,T1:m
∇2

cf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)∥
= ∥∇2

cf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)∥

≤ 2m
√
kL∇3f

(
∆u

∆l

)2 ∥∥∥(Ŝ⊤)†
∥∥∥ ∥∥∥∥(T̂)†

∥∥∥∥∆2
u. (7)

(ii) If T1 = T2 = · · · = Tm = T ∈ Rn×k, then∥∥∥ProjS,T ∇2
c(x

0;S, T )− ProjS,T ∇2f(x0)
∥∥∥

=
∥∥∥∇2

c(x
0;S, T )− ProjS,T ∇2f(x0)

∥∥∥
≤ 2

√
mkL∇3f

∆u

∆l

∥∥∥(Ŝ⊤)†
∥∥∥∥∥∥∥(T̂)†

∥∥∥∥∆2
u. (8)
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We use the following definition to describe the order at which an approximation technique
converges.

Definition 12 [3, Definition 1.19] Let f : R+ → Rn×m and g : R+ → R. Suppose that
lim∆→0 g(∆) = 0 and lim∆→0 f(∆) = L ∈ Rn×m. If there exists a scalar κ ≥ 0 with

∥f(∆)− L∥ ≤ κ g(∆) for sufficiently small ∆,

then we say f(∆) is O(g(∆)), or f(∆) is a O(g(∆)) accurate approximation of L.

In this paper, g(∆) takes the form g(∆) = ∆N , where N ∈ N . If Definition 12 is satisfied, we
will say that f(∆) is an order-N accurate approximation of L where N is the greatest positive
integer satisfying Definition 12.

3 Minimal poised set for the GCSH

In this section, we investigate how to obtain an order-2 accurate approximation of the full Hessian
with a minimal number of function evaluations. We define a minimal poised set for the GCSH;
the following notation is used.

Ss(x
0;S, T ) : set of all distinct points utilized to compute ∇2

sf(x
0;S, T ),

Sc(x
0;S, T ) : set of all distinct points utilized to compute ∇2

cf(x
0;S, T ).

First, recall the definition of a minimal poised set for the GSH introduced in [13, Definition
5.2].

Definition 13 (Minimal poised set for the GSH) Let x0 ∈ Rn be the point of interest. We
say that Ss(x

0;S, T ) is a minimal poised set for the GSH at x0 if and only if it is S-determined,
T -determined and Ss(x

0;S, T ) contains exactly (n+ 1)(n+ 2)/2 distinct points.

Similar to the previous definition, we introduce the definition of a minimal poised set for the
GCSH.

Definition 14 (Minimal poised set for the GCSH) Let x0 ∈ Rn be the point of interest. We
say that Sc(x

0;S, T ) is a minimal poised set for the GCSH at x0 if and only if it is S-determined,
T -determined and Sc(x

0;S, T ) contains exactly n2 + n+ 1 distinct points.

Next, we provide a choice of matrices of directions that creates a minimal poised set for the
GCSH.

Proposition 15 Let S ∈ Rn×n be full rank and let T = −S. Then Sc(x
0;S, T ) is a minimal

poised set for the GCSH at x0.

Proof The matrices S and T are clearly full row rank. The set Sc(x
0;S, T ) contains the following

sample points:
x0 ⊕ S ⊕−S, x0 ⊕−S ⊕ S, x0 ⊕±S, x0.

Since the set x0 ⊕ S ⊕ −S is equal to to the set x0 ⊕ −S ⊕ S, we drop x0 ⊕ S ⊕ −S. The set
x0 ⊕±S contains 2n distinct sample points.
The set x0 ⊕ −S ⊕ S contains n2 − n + 1 distinct sample points and it contains the point x0.
Since S contains n linearly independent directions, it follows that a direction in x0 ⊕ −S ⊕ S
cannot be contained in x0 ⊕ S nor x0 ⊕−S. Hence, the number of distinct sample points is

2n+ (n2 − n+ 1) = n2 + n+ 1.

Therefore, Sc(x
0;S, T ) is a minimal poised set for the GCSH.

⊓⊔
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It seems that n2 + n + 1 sample points is the minimal amount of sample points to obtain
an order-2 accuracy of the full Hessian. However, a rigorous proof of this statement is a future
direction to investigate.

4 Approximating a proper subset of the entries of the Hessian

In this section, we provide details on how to choose the matrices of directions S and Tj when we
are interested in a proper subset of the entries of the Hessian. In particular, we investigate how
to approximate the diagonal entries, the off-diagonal entries and a column of the Hessian. The
number of function evaluations required is discussed and an error bound is provided in each case.
The relation between the centered simplex Hessian diagonal (CSHD) introduced in [16] and the
GCSH is discussed. We begin by presenting results on how to approximate some or all diagonal
entries of the Hessian.

4.1 Approximating the diagonal entries of the Hessian

An explicit formula to compute all the diagonal entries of the Hessian, which is well-defined
regardless of the number of sample points utilized, is discussed in [16]. The CSHD is an approxi-
mation technique that provides an order-2 accurate approximation of the diagonal entries of the
Hessian. We begin by showing that the CSHD is a specific case of the GCSH when the appropri-
ate matrices of directions S and Tj are employed. First, recall the definitions of the Hadamard
product and the CSHD.

Definition 16 [15] Let A ∈ Rn×m and B ∈ Rn×m. The Hadamard product of A and B, denoted
A ⊙ B is the component-wise product. That is [A ⊙ B]i,j = Ai,jBi,j for all i ∈ {1, . . . n} and
j ∈ {1, . . . ,m}.

Definition 17 (Centered simplex Hessian diagonal) [16] Let f : dom f ⊆ Rn → R, x0 ∈
dom f be the point of interest, S =

[
s1 s2 · · · sm

]
∈ Rn×m and W =

[
s1 ⊙ s1 · · · sm ⊙ sm

]
∈

Rn×m. Assume that x0 ⊕ (±S) ⊂ dom f. The centered simplex Hessian diagonal of f at x0 over
S, denoted by d∇2f(x0;S) is a vector in Rn given by

d∇2f(x0;S) = (W⊤)†εf(x0;S),

where

εf(x0;S) =

 f(x0 + s1) + f(x0 − s1)− 2f(x0)
...

f(x0 + sm) + f(x0 − sm)− 2f(x0)

 ∈ Rm.

Definition 18 (Partial diagonal matrix) Let M ∈ Rn×m,m ≤ n. We say that M is a
partial diagonal matrix if there exists a diagonal matrix D ∈ Rn×n such that for each column
Mej , j ∈ {1, . . .m}, there exists an index i ∈ {1, . . . , n} that yields Mej = Dei.

In other words, a partial diagonal matrix is a subset of the columns of a single diagonal
matrix. For example, the matrix

M =

1 0
0 0
0 2
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is a partial diagonal matrix, but

M̃ =

1 0 3
0 0 0
0 2 0


is not a partial diagonal matrix.

Note that a partial diagonal matrix is full column rank if and only if it does not contain a
column equal to the zero vector in Rn.

The following lemma provides details about the Moore–Penrose pseudo-inverse of a partial
diagonal matrix with full column rank.

Lemma 19 Let S =
[
s1 s2 · · · sm

]
∈ Rn×m where m ≤ n be a partial diagonal matrix with full

column rank. Then

S† =
[
(s1)†(s2)† · · · (sm)†

]⊤
.

Proof Let uj be the index in {1, . . . ,m} of the only non-zero entry in column sj . Since S is full
column rank, using (1), we have

S† = (S⊤S)−1S⊤

=
(
Diag

[
(s1u1

)2 · · · (smum
)2
])−1

S⊤

= Diag
[

1
(s1u1

)2 · · · 1
(smum

)2

]
S⊤

=
[

1
s1u1

eu1 · · · 1
smum

eum

]⊤
.

Since S is full column rank, using (1) we find (sj)† = 1

sjuj

(euj )⊤ for all j ∈ {1, . . . ,m}.

Therefore, S† =
[
(s1)† (s2)† · · · (sm)†

]⊤
. ⊓⊔

The following theorem provides a sufficient condition for the GCSH to return the same ap-
proximation of the diagonal entries of the Hessian as the CSHD.

Theorem 20 Let f : dom f ⊆ Rn → R, x0 ∈ dom f be the point of interest, S =
[
s1 s2 · · · sm

]
∈

Rn×m and Tj = −sj ∈ Rn for all j ∈ {1, . . . ,m}. Let z ∈ Rn be a vector containing the n
diagonal entries of ∇2

cf(x
0;S, T1:m). That is zi =

[
∇2

cf(x
0;S, T1:m)

]
i,i

for all i ∈ {1, . . . , n}. If
S is a partial diagonal matrix with full column rank, then z = d∇2f(x0;S).

Proof Let A =
[
S −S

]
∈ Rn×2m and Tm+j = sj for j ∈ {1, . . . ,m}. We have

∇2
cf(x

0;S, T1:m) = ∇2
sf(x

0;A, T1:2m) (by Proposition 6)

= (A⊤)†



(
∇sf(x

0 + s1;−s1)−∇sf(x
0;−s1)

)⊤
...(

∇sf(x
0 + sm;−sm)−∇sf(x

0;−sm)
)⊤(

∇sf(x
0 − s1; s1)−∇sf(x

0; s1)
)⊤

...(
∇sf(x

0 − sm; sm)−∇sf(x
0; sm)

)⊤


.
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Since (A⊤)† = 1
2

[
(S⊤)† −(S⊤)†

]
, and expanding each row of the form(

∇sf(x
0 ± sj ;∓sj)−∇sf(x

0;∓sj)
)⊤

,

we obtain

∇2
cf(x

0;S, T1:m) =
1

2

[
(S⊤)† −(S⊤)†

]


(−s1)†
(
−f(x0 + s1)− f(x0 − s1) + 2f(x0)

)
...

(−sm)†
(
−f(x0 + sm)− f(x0 − sm) + 2f(x0)

)
(s1)†

(
2f(x0)− f(x0 − s1)− f(x0 + s1)

)
...

(sm)†
(
2f(x0)− f(x0 − sm)− f(x0 + sm)

)


= (S†)⊤

 (s1)†
(
f(x0 − s1) + f(x0 + s1)− 2f(x0)

)
...

(sm)†
(
f(x0 − sm) + f(x0 + sm)− 2f(x0)

)


=
[
((s1)†)⊤ · · · ((sm)†)⊤

]  (s1)†
(
f(x0 − s1) + f(x0 + s1)− 2f(x0)

)
...

(sm)†
(
f(x0 − sm) + f(x0 + sm)− 2f(x0)

)


by Lemma 19. Let z ∈ Rn be the vector containing the n diagonal entries of the previous equation.
Then

z =
[
((s1)⊤)† ⊙ ((s1)⊤)† · · · ((sm)⊤)† ⊙ ((sm)⊤)†

]
εf(x0;S)

= (W⊤)†εf(x0;S) = d∇2f(x0;S).

By defining the sets Tj as in Theorem 20, the CSHD and the GCSH use the same set of sample
points. However, if S is not a partial diagonal matrix with full column rank, then the vector z
containing the diagonal entries of the GCSH is not necessarily equal to the CSHD. Moreover, the
GCSH is not necessarily a diagonal matrix. The following two examples illustrate these claims.

Example 21 Let

S =
[
s1 s2 s3

]
=

0.1 0 0
0 0.1 0.2
0 0 0

 .

Let Tj = −sj for all j ∈ {1, 2, 3}. Let f(x) = −2x4
1 + x4

2 + 10x4
3 and x0 =

[
2 −2 5

]⊤
. Note that

∇2f(x0) = Diag[−96 48 3000].

The GCSH is

∇2
cf(x

0;S, T1:3) = Diag[−96.04 48.068 0],

and the CSHD is

d∇2f(x0;S) =
[
−96.04 48.0765 0

]⊤
.

The next example shows that the GCSH is not necessarily a diagonal matrix, even when we
use the same set of sample points.
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Example 22 Let

S =
[
s1 s2

]
=

0.1 0.1
0 0.1
0 0

 .

Let Tj = −sj for all j ∈ {1, 2} Consider the same function and point of interest as in the previous

example. That is f(x) = −2x4
1 + x4

2 + 10x4
3 and x0 =

[
2 −2 5

]⊤
. Then the GCSH is

∇2
cf(x

0;S, T1:2) =

−96.04 0 0
72.03 −24.01 0
0 0 0

 ,

and the CSHD is
d∇2f(x0;S) =

[
−96.04 48.02 0

]⊤
.

The next theorem presents a general error bound when the matrices of directions Tj used
in the computation of the GCSH have the form Tj = −sj for all j ∈ {1, . . . ,m}. We begin by
introducing a result concerning the projection of a matrix over S and T1:m.

Proposition 23 Let M ∈ Rn×n. Let S =
[
s1 · · · sm

]
∈ Rn×m and let Tj = −sj for all j ∈

{1, . . . ,m}. If S is a partial diagonal matrix with full column rank, then

ProjS,T1:m
M = ProjS,T1:m

Diag
[
M1,1 · · · Mn,n

]
.

Moreover, if (ei)⊤S ̸= 0⊤
m for some i ∈ {1, . . . , n}, then[

ProjS,T1:m
M

]
i,i

= Mi,i.

If (ei)⊤S = 0⊤
m for some i ∈ {1, . . . , n}, then[

ProjS,T1:m
M

]
i,i

= 0.

Proof We have

m∑
j=1

(S⊤)†ej(ej)⊤S⊤MTjT
†
j =

m∑
j=1

((sj)⊤)†(sj)⊤M(−sj)(−sj)†

=

m∑
j=1

euj (euj )⊤Meuj (euj )⊤

where uj represents the index of the only nonzero entry in sj , uj ∈ {1, . . . n}, and j ∈ {1, . . . ,m}.
From the definition of a partial diagonal matrix, we know that uj ̸= uj̄ whenever j ̸= j̄, j and j̄

in {1, . . . ,m}. Noticing that euj (euj )⊤ = Diag(euj ), we get

m∑
j=1

(S⊤)†ej(ej)⊤S⊤MTjT
†
j =

m∑
j=1

Diag(euj )M Diag(euj )

=

m∑
j=1

Diag(euj ) ·Muj ,uj = ProjS,T1:m
Diag[M1,1 · · · Mn,n].

The rest of the proof follows immediately from the fact that m ≤ n, and uj ̸= uj̄ whenever j ̸= j̄,
j and j̄ in {1, . . . ,m}. ⊓⊔
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The notation D is now used to represent the diagonal matrix in Rn×n containing the diagonal
entries of the Hessian ∇2f(x0). That is Di,i = [∇2f(x0)]i,i for all i ∈ {1, . . . , n}. If S is a diagonal
matrix with full column rank and Tj = −sj for all j ∈ {1, . . . , n}, it follows from the previous
proposition that

ProjS,T1:m
∇2f(x0) = ProjS,T1:m

D.

In other words, the projection of the full true Hessian is a diagonal matrix that keeps intact all
diagonal entries of the true Hessian. In the case where S is a non-square partial diagonal matrix,
then it makes the (i, i) diagonal entry of the true Hessian equal to zero if S does not contain a
multiple of the identity column ei. Also, since S is full column rank, it follows from Propositions
23 and 9(ii) that ∇2

sf(x
0;S, T1:m) and ∇2

cf(x
0;S, T1:m) are diagonal matrices.

The next theorem presents an error bound when the GCSH is used to approximate some or
all diagonal entries of the true Hessian.

Theorem 24 (Error bound for the diagonal entries of the Hessian) Let f : dom f ⊆
Rn → R be C4 on an open domain containing Bn(x

0;∆S) where x
0 ∈ dom f is the point of interest

and ∆S > 0 is the radius of S =
[
s1 · · · sm

]
∈ Rn×m. Let Tj = −sj for all j ∈ {1, . . . ,m}. Denote

by L∇3f ≥ 0 the Lipschitz constant of ∇3f on Bn(x
0;∆S). If S is a partial diagonal matrix with

full column rank, then∥∥ProjS,T1:m
∇2

cf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)
∥∥

=
∥∥∇2

cf(x
0;S, T1:m)− ProjS,T1:m

D
∥∥ ≤ 1

12
L∇3f∆

2
S . (9)

Proof By Proposition 9(i) and Proposition 23, we get the equality. To make notation more
compact, let ε = εf(x0;S) ∈ Rm. We have∥∥∇2

cf(x
0;S, T1:m)− ProjS,T1:m

D
∥∥

=

∥∥∥∥∥
m∑
i=1

((si)⊤)†(si)⊤(S⊤)† Diag(ε)S†(−si)(−si)† −
m∑
i=1

((si)⊤)†(si)⊤Dsi(si)†

∥∥∥∥∥
≤ max

i=1,...,m

(
∥((si)⊤)†∥∥(si)†∥

∣∣(si)⊤(S⊤)† Diag(ϵ)S†si − (si)⊤Dsi
∣∣)

= max
j=1,...,m

(
1

∥sj∥2
∣∣εj − (sj)⊤Dsj

∣∣) .

By Taylor’s Theorem, using a similar process as in the proof in [16, Theorem 3.3], we obtain∥∥∇2
cf(x

0;S, T1:m)− ProjS,T1:m
D
∥∥ ≤ max

j=1,...,m

(
1

∥sj∥2
1

12
L∇3f∥sj∥4

)
= max

j=1,...,m

(
1

12
L∇3f∥sj∥2

)
≤ 1

12
L∇3f∆

2
S .

By defining S and Tj as in the previous theorem, the GCSH is S-underdetermined\determined
and T1:m-underdetermined. Hence, the general error bound proposed for the GCSG in Theorem
11(ii) is also valid. The previous proof utilized properties of partial diagonal matrices to obtain
a tighter error bound than the one proposed in Theorem 11(ii).

The previous theorem shows how to obtain an order-2 accurate approximation of some or all
diagonal entries of the Hessian. This requires 2n+1 function evaluations when S is square. If we
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are interested in approximating only one diagonal entry of a Hessian ∇2f(x0), say
[
∇2f(x0)

]
i,i

,

then the computational cost is three function evaluations. In this case, we can choose S = hei and
T1 = −hei. Each additional diagonal entry can be obtained for two more function evaluations.

Other matrices of directions S and Tj may be used to obtain an approximation of all diagonal
entries of a Hessian. For instance, the following matrices can be used:

S =
[
s1 · · · sn

]
= h Id, Tj = sj , for all j ∈ {1, . . . , n}, h ̸= 0.

In this case, S is diagonal with full column rank and it follows from Proposition 23 that
ProjS,T1:m

∇2f(x0) = ProjS,T1:m
D = D where D ∈ Rn×n is the diagonal matrix such that

Di,i = [∇2f(x0)]i,i for all i ∈ {1, . . . , n}. By Theorem 10(ii), this choice of matrices provides
an order-1 accurate approximation of all diagonal entries of the Hessian. The computation of
∇2

sf(x
0;S, T1:n) requires 2n + 1 function evaluations. Hence, it is preferable to choose the ma-

trices of directions S and Tj as in Theorem 24, since it provides a greater order of accuracy for
the same number of function evaluations.

In the next section, we investigate the approximation of some or all off-diagonal entries of
the Hessian.

4.2 Approximating the off-diagonal entries of the Hessian

In this section, how to approximate some or all off-diagonal entries of the Hessian is examined.
First, recall that the Hessian ∇2f(x0) is symmetric whenever f ∈ C2. Therefore, it is sufficient
to consider the off-diagonal entries [∇2f(x0)]i,j such that i < j. It is possible to approximate
some or all off-diagonal entries of the Hessian by setting the matrices of directions S and Tj in
the following way. Define

S̃ ∈ Rn×n−1 : a partial diagonal matrix with full column rank

such that the nth row is equal to 0⊤
n−1,

S =
[
s1 · · · sm

]
∈ Rn×m : a non-empty subset of the columns of S̃, (10)

T =
[
t1 · · · tn

]
∈ Rn×n : a diagonal matrix with full column rank,

T̃j =
[
tuj+1 · · · tn−1 tn

]
∈ Rn×n−ujwhere uj represents the index

of the non-zero entry in sj , j ∈ {1, . . . ,m},

Tj ∈ Rn×kj : a subset of directions contained in T̃j for all j ∈ {1, . . . ,m}. (11)

In the next theorem, the matrix U ∈ Rn×n denotes a strictly upper triangular matrix such that

Ui,j =

{[
∇2f(x0)

]
i,j
, if 1 ≤ i < j ≤ n,

0, otherwise.

Using a similar process to the one in Proposition 23, it can be shown that

ProjS,T1:m
∇2f(x0) = ProjS,T1:m

U

and that the GSH (GCSH) is a strictly upper triangular matrix whenever the matrices of direc-
tions S and Tj are defined as in (10) and (11).

The following two error bounds follow from Theorem 10(ii) and Theorem 11(ii), respectively.
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Corollary 25 (Error bound for the off-diagonal entries of the Hessian) Let f : dom f ⊆
Rn → R be C4 on Bn(x

0;∆) where x0 ∈ dom f is the point of interest and ∆ > 0. Denote by
L∇2f ≥ 0 and L∇3f ≥ 0 the Lipschitz constant of ∇2f and ∇3f on Bn(x

0;∆) respectively. Let
S =

[
s1 s2 · · · sm

]
∈ Rn×m and Tj ∈ Rn×kj be defined as in (10) and (11) respectively. Assume

that Bn(x
0 + sj ;∆Tj ) ⊂ Bn(x

0;∆) for all j ∈ {1, . . . ,m}. Then

(i) ∥∥ProjS,T1:m
∇2

sf(x
0;S, T1:m)− ProjS,T1:m

∇2f(x0)
∥∥

= ∥∇2
sf(x

0;S, T1:m)− ProjS,T1:m
U∥

≤ 4m
√
kL∇2f

(
∆u

∆l

)2

∥(Ŝ⊤)†∥∥T̂ †∥∆u,

and
(ii) ∥∥ProjS,T1:m

∇2
cf(x

0;S, T1:m)− ProjS,T1:m
∇2f(x0)

∥∥
=

∥∥∇2
cf(x

0;S, T1:m)− ProjS,T1:m
U
∥∥

≤ 2m
√
kL∇3f

(
∆u

∆l

)2

∥(Ŝ⊤)†∥∥T̂ †∥∆2
u.

A simple choice for S and Tj if all off-diagonal entries are of interest is to set

S = h
[
e1 · · · en−1

]
, (12)

Tj = h
[
ej+1 · · · en

]
, for all j ∈ {1, . . . , n− 1} (13)

where h ̸= 0. In this case, the GSH is an order-1 accurate approximation of all off-diagonal
entries of the Hessian. To compute this GSH, the function must be evaluated at the points
x0, x0 ⊕ S, x0 ⊕ Tj and x0 + sj ⊕ Tj for all j ∈ {1, . . . n − 1}. Hence, the number of distinct
function evaluations is

1 + (n− 1) + (n− 1) +
(n− 1)n

2
− (n− 2) = n+

(n− 1)n

2
=

n(n+ 1) + 2

2
.

In the previous equation, we subtracted (n− 2) since x0 ⊕h
[
e2 · · · en−1

]
appears in x0 ⊕Tj and

x0 ⊕ S.
Note that this number of function evaluations is smaller than (n+1)(n+2)/2 whenever n ≥ 1,

which is the number of function evaluations require to compute a GSH with a minimal poised
set for the GSH. Therefore, if we are only interested in the off-diagonal entries of a Hessian, it is
preferable to set the matrices S and Tj as described in this section, rather than using a minimal
poised set for GSH.

In the previous corollary, Item (ii) shows that the GCSH is an order-2 accurate approximation
of all off-diagonal entries of the Hessian. In this case, the sample points used are x0, x0⊕(±S), x0⊕
(±Tj), x

0⊕S⊕Tj , and x0⊕(−S)⊕(−Tj) for all j ∈ {1, . . . n−1}. The number of distinct function
evaluations is

1 + 2

(
n(n+ 1)

2

)
= n2 + n+ 1.

Notice that that this is the same amount of function evaluations utilized when using a minimal
poised set for the GCSH (Definition 14). Therefore, there is no advantage in terms of function
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evaluations to choose S and Tj as described in (10) and (11) over a minimal poised set for the
GCSH.

It does not seem to be possible to obtain an order-1 accurate approximation of all off-diagonal

entries of a Hessian with fewer than n(n+1)
2 + 1 function evaluations, nor an order-2 accurate

approximation with fewer than n2 + n + 1 function evaluations. An obvious future research
direction is to investigate this conjecture and mathematically prove or disprove it.

In the next section, we discuss how to approximate one row of the Hessian.

4.3 Approximating a row of the Hessian

In this section, we discuss how to approximate some or all entries of a row in the Hessian. Since the
Hessian is symmetric, approximating a row also provides an approximation of the corresponding
column.

Let M ∈ Rn×n. We denote by Ri ∈ Rn×n the square matrix such that Ri = Diag(ei)M for
all i ∈ {1, . . . , n}. We begin by introducing the following lemma.

Lemma 26 Let M ∈ Rn×n, S = hei ∈ Rn where h ̸= 0, and T ∈ Rn×k. Define Ri = Diag(ei)M
for all i ∈ {1, . . . , n}. Then for all i ∈ {1, . . . , n},

ProjS,T M = ProjS,T Ri.

Proof We have

ProjS,T M = ((hei)⊤)†(hei)⊤MTT
†

= ei(ei)⊤MTT
†

= RiTT
†

= (ei)(ei)⊤RiTT
†

= ((hei)⊤)†(hei)⊤RiTT
†
= ProjS,T Ri.

⊓⊔

In words, the previous result says that the projection onto S and T of a matrix M is equal to
the projection onto S and T of row i of this matrix whenever S = hei.

When S and T are defined as in the previous proposition, S is full column rank and it
follows from Proposition 9 (ii) that ∇2

s(x
0, S, T ) = Diag(ei)∇2

s(x
0, S, T ) and ∇2

c(x
0;S, T ) =

Diag(ei)∇2
c(x

0;S, T ). Moreover, the projection of the Hessian is

ProjS,T ∇2f(x0) = ProjS,T Diag(ei)∇2f(x0)

for all i ∈ {1, . . . , n}.
Next, we present two error bounds; one for the GSH and one for the GCSH. These error

bounds follow immediately from Theorems 10 (iii) and 11 (iii) respectively.

Corollary 27 (General error bounds for one row of a Hessian) Let f : dom f ⊆ Rn → R
be C4 on Bn(x

0;∆) where x0 ∈ dom f is the point of interest and ∆ > 0. Denote by L∇2f ≥ 0 and
L∇3f ≥ 0 the Lipschitz constant of ∇2f and ∇3f on Bn(x

0;∆) respectively. Let S = hei ∈ Rn

where h ̸= 0, and T ∈ Rn×k. Assume that Bn(x
0 + hei;∆T ) ⊂ Bn(x

0;∆). Then
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(i) ∥∥∥ProjS,T ∇2
sf(x

0;S, T )− ProjS,T ∇2f(x0)
∥∥∥ =

∥∥∥∇2
sf(x

0;S, T )− ProjS,T Diag(ej)∇2f(x0)
∥∥∥

≤ 4
√
kL∇2f

(
∆u

∆l

)
∥T̂

†
∥∆u,

and
(ii) ∥∥∥ProjS,T ∇2

c(x
0;S, T )− ProjS,T ∇2f(x0)

∥∥∥ =
∥∥∥∇2

c(x
0;S, T )− ProjS,T Diag(ei)∇2f(x0)

∥∥∥
≤ 2

√
kL∇3f

(
∆u

∆l

)
∥T̂

†
∥∆2

u.

Note that ∥(Ŝ⊤)†∥ does not appear in the previous error bounds since ∥(Ŝ⊤)†∥ = 1.

One simple choice to approximate all entries of the ith row is to choose

S = hei, T = hIdn

where h ̸= 0. In this case, ∇2
sf(x

0;S, T ) is an order-1 accurate approximation of the whole ith row
of the Hessian. This choice uses the set of sample points x0, x0+hei, x0⊕hIdn and x0+hei⊕hIdn.
In this case, the number of function evaluations is

1 + 1 + n+ n− 1 = 2n+ 1.

We subtract one in the previous equation since one point is reused: x0 +hei. Note that 2n+1 ≤
(n+ 1)(n+ 2)/2 for all n ∈ {1, 2, . . . }. Therefore, if we are only interested by the entries of row
i, setting S and T in this fashion saves function evaluations compared to using a minimal poised
set for the GSH.

To obtain an order-2 accurate approximation of the whole ith row of the Hessian, we may
choose once again

S = hei, T = hIdn,

where h ̸= 0. In this case, the set of sample points is x0, x0 ± hei, x0 ⊕ (±hIdn), x
0 + hei ⊕ hId,

and x0−hei⊕−Idn. Two sample points are reused: x0±hei. The number of function evaluations
is

1 + 2(2n) = 4n+ 1.

Note that 4n + 1 < n2 + n + 1 when n ≥ 4. Therefore, if n ∈ {1, 2, 3}, then using a minimal
poised set for GCSH is preferable since it uses fewer function evaluations.

It seems that the minimum number of function evaluations to obtain an order-1 accurate
approximation of a full row (column) in a Hessian is 2n + 1. To obtain an order-2 accurate
approximation of a full row, the minimum number seems to be n2+n+1 when n ∈ {1, 2, 3} and
4n + 1 when n ≥ 4. Future research could focus on mathematically proving or disproving this
claim.
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5 Approximating order-P derivatives

Now that we have a general method to approximate first-order derivatives called the generalized
simplex gradient and a general method to approximate second-order derivatives called the gen-
eralized simplex Hessian, we may develop a general method to approximate P -order derivatives.
The object containing all P -order derivatives can be viewed as a P -dimensional matrix. We begin
by providing a formula to approximate all third-order derivatives and then we propose a formula
to compute P -order derivatives.

We refer to ∇3f(x0) as the Tressian of f at x0. A Tressian can be viewed as a three-
dimensional matrix M in Rn×n×n where the third dimension represents the depth of M. In this
section, a three-dimensional matrix M ∈ Rr×c×p will be either thought as an object containing r
floors where each floor is a matrix in Rc×p or as an object containing p layers where each layer is
a matrix in Rr×c. A three-dimensional matrix M ∈ Rr×c×p is written by “floor” in the following
way:

M =


F1

F2

...
Fr


(r,·,·)

(14)

where Fi ∈ Rc×p for all i ∈ {1, 2, . . . , r} and [Mi]j,k = Mi,j,k for all i, j, k. The subscript in (14)
is used to make it clear that M is written by floor. The matrix M can also be written in terms
of layers:

M =


L1

L2

...
Lp


(·,·,p)

where [Lk]i,j = Mi,j,k for all i, j, k.

We are now ready to introduce the formula to approximate ∇3f(x0). The technique requires
one more set of matrices of directions than the generalized simplex Hessian. The letter U is used
to denote this new of set of matrices. This set of matrices associated could contain k1+k2+· · ·+km
different matrices. To keep things relatively simple, we provide the formula for the case where
all matrices Tj , are equal and all matrices Uk ∈ Rn×ℓk are equal. To emphasize this special case
where all matrices Uk are equal, we use the notation U ∈ Rn×ℓ. Hence, the three matrices of
directions involved in the computation of the approximation technique are S ∈ Rn×m, T ∈ Rn×k,
and U ∈ Rn×ℓ.

Before introducing the approximation technique, we define the multiplication of a two-dimensional
matrix with a three-dimensional matrix.

Let A ∈ Rn×m and let M ∈ Rm×n×p and let M be written as layers:

M =


L1

L2

...
Lp


(·,·,p)

∈ Rm×n×p,
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where [Lk]i,j = Mi,j,k. Then

A⊗M =


AL1

AL2

...
ALp


(·,·,p)

∈ Rn×n×p

Definition 28 (Generalized simplex Tressian) Let f : dom f ⊆ Rn → R and let x0 ∈ dom f
be the point of interest. Let S =

[
s1 s2 · · · sm

]
∈ Rn×m and T ∈ Rn×k, U ∈ Rn×ℓ with the set

of sample points S(x0;S, T , U) contained in dom f. The generalized simplex Tressian of f at x0

over S, T and U is denoted by ∇3
sf(x

0;S, T ,U) and defined by

∇3
sf(x

0;S, T ,U) = (S⊤)† ⊗ δ3s f(x
0;S, T ,U) ∈ Rn×n×n,

where

δ3s f(x
0;S, T ,U) =


(∇2

sf(x
0 + s1;T ,U)−∇2

sf(x
0;T ,U))⊤

(∇2
sf(x

0 + s2;T ,U)−∇2
sf(x

0;T ,U))⊤

...
(∇2

sf(x
0 + sm;T ,U)−∇sf(x

0;T ,U))⊤


(m,·,·)

∈ Rm×n×n.

Recursively, we may now define a simple formula to approximate order-P derivatives of a
function at a point of interest x0 ∈ Rn. Before introducing the formula, notation needs to be
slightly modified to make it easier to discuss general order-P derivatives. To approximate order-P
derivatives, we use a matrix S1 ∈ Rn×m1 , and set of matrices S2, S3, . . . , SP . To keep notation
relatively simple, we consider the case where all matrices of directions are the same in the sets
S2, . . . , SP . As before, we write Si to emphasize that all matrices of directions are identical in
each set Si, i ∈ {2, . . . , P}. A matrix in the set Si has dimensions n×mi, for i ∈ {2, 3, . . . , P}.

The transpose of a P -dimensional matrix M ∈ Rn×m1×···×mP−1 is denoted by M⊤ where the
entries of M⊤ are equal to

[M⊤]i,j1,...,jP−1
= MjP−1,jP−2,...,j1,i, i ∈ {1, . . . , n}, jk ∈ {1, 2, . . . ,mk}, k ∈ {1, 2, . . . , P − 1}.

Definition 29 (Order-P simplex derivative matrix) Let f : dom f ⊆ Rn → R and let
x0 ∈ dom f be the point of interest. Let S1 =

[
s1 s2 · · · sm

]
∈ Rn×m1 and Si ∈ Rn×mi for all i ∈

{2, 3, . . . , P} with the set of sample points S(x0;S1, S2, . . . , SP ) contained in dom f. The order-P
simplex derivative tensor of f at x0 over S1, S2, . . . , SP is denoted by ∇P

s f(x
0;S1, S2, . . . , SP )

and defined by

∇P
s f(x

0;S1, S2, . . . , SP ) = (S⊤
1 )† ⊗ δPs f(x

0;S1, S2, . . . , SP ) ∈ Rn×n×···×n,

where

δPs f(x
0;S1, S2, . . . , SP ) =


(∇P−1

s f(x0 + s1;S2, . . . , SP )−∇P−1
s f(x0;S2, . . . , SP ))

⊤

(∇P−1
s f(x0 + s2;S2, . . . , SP )−∇P−1

s f(x0;S2, . . . , SP ))
⊤

...
(∇P−1

s f(x0 + sm;S2, . . . , SP )−∇P−1
s f(x0;S2, . . . , SP ))

⊤


(m,·,...,·)

.
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6 Conclusion

We have defined minimal poised set for the GCSH, which demonstrates how to obtain an order-2
accurate approximation of the full Hessian with n2 + n + 1 distinct sample points. A future
research direction is to investigate if there exist choices other than T = −S that make the set
of sample points a minimal poised set for the GCSH. Furthermore, proving that n2 + n + 1 is
the minimal number of function evaluations to obtain an order-2 accurate approximation of the
full Hessian is an obvious future research direction. It remains to verify if an order-1 accurate
approximation of the main diagonal of a Tressian can be obtained for free in terms of function
evaluations, if an order-2 accurate approximation of the Hessian has been previously computed
with the GCSH.

In Section 4, we provided details on how to choose the matrices S and Tj when we are only
interested in a proper subset of the entries of the Hessian. In particular, we investigated how to
approximate the diagonal entries of a Hessian, the off-diagonal entries of a Hessian, and a row of
a Hessian. The number of function evaluations to obtain an order-1 accurate approximation, or
an order-2 accurate approximation of the entries of the Hessian of interest has been discussed.
The relation between the CSHD introduced in [16] and the GCSH is clarified. It is shown that
the CSHD is equal to the GCSH whenever S is a partial diagonal matrix with full column rank
and Tj = −sj for all j (Theorem 20).

In Section 5, the approximation technique is generalized to higher-order derivatives than
two. First, it is discussed how to obtain an approximation of the third-order derivatives. Then a
simple recursive formula is introduced to computer order-P derivatives of a function at a point
of interest. On a final note, an implementation in MATLAB of each approximation technique
discussed in this paper is available upon request.
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