
ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC
PARAMETERS FOR MULTI-TASK NEURAL NETWORKS

STEFANIA BELLAVIA∗, FRANCESCO DELLA SANTA† , AND ALESSANDRA PAPINI∗

Abstract. This paper introduces novel alternate training procedures for hard-parameter sharing
Multi-Task Neural Networks (MTNNs). Traditional MTNN training faces challenges in managing
conflicting loss gradients, often yielding sub-optimal performance. The proposed alternate training
method updates shared and task-specific weights alternately, exploiting the multi-head architecture
of the model. This approach reduces computational costs, enhances training regularization, and
improves generalization. Convergence properties similar to those of the classical stochastic gradient
method are established. Empirical experiments demonstrate delayed overfitting, improved predic-
tion, and reduced computational demands. In summary, our alternate training procedures offer a
promising advancement for the training of hard-parameter sharing MTNNs.

Key words. Stochastic Gradient, Multi-Task Learning, Neural Networks, Deep Learning.

MSC codes. 49M37, 65K05, 68T05, 68W40, 90C15.

1. Introduction. Multi-Task Learning (MTL) consists of jointly learning mul-
tiple tasks rather than individually, in such a way that the knowledge obtained by
learning a task can be exploited for learning other tasks, hopefully improving the
generalization performance of all the tasks at hand [27]. For the case of Neural
Networks (NNs), MTL is approached by building NN architectures characterized by
multiple output layers, one for each task, connected to (at least) one shared input
layer; then, Multi-Task NNs (MTNNs) are characterized by an inherent layer sharing
property and, historically, can be divided into hard-parameter sharing MTNNs and
soft-parameter sharing MTNNs [26]. In this work, we focus on the hard-parameter
sharing case, i.e., on MTNNs characterized by a so-called multi-head design architec-
ture, where a first block of shared layers connects the inputs to multiple task-specific
blocks of layers (see Figure 2.1). Summarizing, the idea behind these MTNNs is to
build a shared encoder that branches out into multiple task-specific decoders [26] (e.g.,
see [13, 25, 11, 12, 5]).

The NN model is generally trained to simultaneously make predictions for the all
tasks, where the loss is a weighted sum of all the task-specific loss functions (aggregate
loss function) [27]. This approach presents several difficulties. Descent directions of
different loss functions at the current iterate may conflict and the direction used to
update the NN parameters may produce an increase of a single loss despite the aggre-
gate loss function decreases. Then, this approach often yields lower performance than
its corresponding single-task counterparts [22]. Different approaches have been pro-
posed by researchers to overcome these difficulties and obtain more robust procedures.
These approaches can be divided into two main types: i) modify the training proce-
dure by considering also the gradients of the task-specific losses, and/or by training
all or a subset of the weights with respect to single tasks, e.g. see [24, 19, 22, 21, 17].
ii) adaptively choose a good setting of the weights in the aggregate loss function for a
good balance of the magnitudes of the task-specific losses, e.g. see [8, 6, 9, 15, 16, 20];
among these, papers [15, 20] deal with a general multiobjective problem, of which the

∗Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Florence, Italy (stefa-
nia.bellavia@unifi.it, alessandra.papini@unifi.it).
†Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy

(francesco.dellasanta@polito.it).

1

mailto:stefania.bellavia@unifi.it
mailto:stefania.bellavia@unifi.it
mailto:alessandra.papini@unifi.it
mailto:francesco.dellasanta@polito.it

2 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

MTNN training is a special case, and aim at approximating the entire Pareto front.
In order to adaptively compute the aggregate loss weights these approaches require
the solution of a minimization subproblem at each iteration.

Further, we also recall the Block Coordinate Descent (BCD) method, where the
parameters of the MTL model are partitioned and updated with respect to the cor-
responding subproblems (see [27] and the references there-in); especially in non-Deep
Learning MTL problems, such a kind of approach is useful to reduce the complexity
of the optimization learning problem (e.g., see [14]).

1.1. Contribution. In this paper we propose a novel approach for training a
generic hard-parameter sharing MTNN. Though inspired both by the approaches
based on task-specific gradients and by the BCD method, it is distinguished by the
following characteristics.

• We always aim at reducing the aggregate loss function, but rather than al-
ternating among stochastic gradient steps for a single task as in [17, 22, 21]
we alternate stochastic estimators of the gradient with respect to the shared
NN parameters and stochastic estimators of the gradient with respect to the
task-specific NN parameters. The shared and task-specific parameters are
then updated alternately; in this way, when the task-specific weights are up-
dated, all specific-task losses are reduced simultaneously. This important
property depends on the multi-head architecture that characterizes the type
of MTNN we consider in this work.

• The alternate training we present is a new stochastic gradient training pro-
cedure for hard-parameter sharing MTNNs, that compared with the classical
stochastic gradient approach both reduces memory requirements and compu-
tational costs, and improves the training regularization and the generalization
abilities of the model. These properties are illustrated through numerical ex-
periments.

• We stress that our approach is theoretically well founded. We consider the
case of nonconvex, differentiable functions, with Lipschitz continuous gradi-
ents, and analyze both the case where shared and specific-task parameters
are alternately updated at each iteration, and the case where we keep to up-
date the shared (task specific) parameters of the NN for one or more epochs,
and then alternate. We show that the convergence properties of the classical
stochastic gradient method are mantained under standard sets of conditions
related to the choice of the step size sequence.

• One of our objectives was to devise easy to apply procedures, and to provide
a ready-to-use version of our proposed training routine for MTNNs (see Ap-
pendix A), implementable within the most used Deep Learning frameworks
in literature (e.g., see [7, 2]). In this regard we stress that we do not need to
solve optimization subproblems as in the multi-gradient method in [15, 20].

The content of this work is organized as follows. We start by introducing the
MTNNs and analyzing the properties of gradients computed with respect to shared
or task-specific weights (Section 2). Then, we describe the new alternate training
method, and discuss its convergence properties (Section 3). After that, a section of
numerical experiments (Section 4) illustrates a comparison between MTNNs trained
classically and trained using the proposed alternate training. Finally, conclusions
about advantages and properties of the proposed method are summarized (Section 5).

2. Multiple-Task Neural Networks. A hard-parameter sharing MTNN for a
MTL problem made of K ∈ N tasks is a NN model with an architecture character-

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 3

ized by: one main block of layers, called trunk, connected to the input layer(s); K
independent blocks of layers, called branches, connected to the last layer of the trunk.
The last layer of the k-th branch is the output layer of the MTNN for the k-th task,
for each k = 1, . . . ,K.

The main idea behind this type of architecture (see Figure 2.1), is that the trunk
encodes the inputs, learning the new representation characterized by features im-
portant for all the K tasks. Then, each branch reads this representation (i.e., the
output of the last trunk’s layer) and decodes it independently from other branches,
learning its task. In other words, we can interpret the output of a hard-parameter
sharing MTNN as a concatenation of K independent decoding operations applied to
an encoding operation applied to the same input signals.

In the following, we formalize the definition of hard-parameter sharing MTNN and
the observation about the outputs of a MTNN. From now on, for simplicity, we take
for granted that when we talk about MTNNs we are considering a hard-parameter
sharing MTNN as in the next definition.

Definition 2.1 (Hard Parameter Sharing Multi-Task Neural Network). Let

N be a NN with characterizing function F̂ : Rn × Rp → Rm1 × · · · × RmK , where
the domain Rn × Rp represents the Cartesian product between the space of the NN
inputs (Rn) and the space of the NN trainable parameters (Rp). Then, N is a hard
parameter sharing multi-task NN (MTNN) with respect to K tasks in Rm1 , . . . ,RmK ,
respectively, if N’s architecture is characterized by K + 1 smaller NNs, N0, . . . ,NK,
such that:

1. the characterizing function of N0 is a function F̂ 0 : Rn × Rp0 → Rm0 ;
2. the characterizing function of Nk is a function F̂ k : Rm0 × Rpk → Rmk , for

each k = 1, . . . ,K;
3. N is obtained by connecting the output layer of N0 to the first layers of

N1, ... ,NK .
In particular, we define N0 as the architecture’s block shared by the K tasks, while Nk

is defined as the architecture’s block specific of task k, for each k = 1, . . . ,K.
Let wk ∈ Rpk be the vector of trainable parameters (i.e., weights and biases) of

Nk, for each k = 0, . . . ,K: the parameters in w0 are defined as shared parameters
of N, while the parameters in wk of Nk are defined as task-specific parameters of N
with respect to task k, for each k = 1, . . . ,K. Then,

∑K
k=0 pk = p and F̂ is such that

F̂ (x;w) =

 F̂ 1(F̂ 0(x;w0);w1)
...

F̂K(F̂ 0(x;w0);wK)

for each x ∈ Rn, where w = (wT

0 , . . . ,w
T
K)T ∈ Rp.

2.1. Loss Differentiation and Multiple Tasks. In MTL, the loss function
of a model typically is a weighted sum of different losses, evaluated with respect to
each task. In Notation 2.2 below, we introduce the symbols and the formalization we
use to describe the aggregated loss and the task-specific losses of a MTNN, as well as
the batches of corresponding input-output pairs. In this work, we always assume that
the task-specific loss functions of the MTNN, and hence the aggregated loss also, are
differentiable functions with respect to all the NN parameters.

Notation 2.2 (Aggregated and task-specific batches and losses). Let N be a
MTNN as in Definition 2.1 and let B ⊂ Rn×Rm be a batch of input-output pairs for

4 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

Fig. 2.1. Example of MTNN with 2 tasks. On the left half of the figure there is N0 (with input
layer in green); on the right half of the figure there are N1 and N2 (with output layers in red).

N, where m =
∑K
k=1mk; a batch is always assumed finite and non-empty. Then, we

introduce the following notations:
1. we denote by Bk ⊂ Rn × Rmk the batch of input-output pairs related to the
kth task of N obtained from the batch B; i.e.:

Bk := {(x,yk) ∈ Rn × Rmk | (x,y) ∈ B} , k = 1, . . . ,K,

where yk = (y
(k)
1 , . . . , y

(k)
mk)T and y = (yT1 , . . . ,y

T
K)T ∈ Rm;

2. we denote by `k : P∗(Rn × Rmk) × Rp0+pk → R a loss function defined for
the task k of N, for each k = 1, . . . ,K, where P∗(A) denotes the set of finite
and non-empty subsets of A, for each set A. For example, assuming `k as the
Mean Square Error (MSE), we have that

`k(Bk;w0,wk) =
1

|Bk|
∑

(x,yk)∈Bk

(
F̂ k(F̂ 0(x;w0);wk)− yk

)2

,

for each batch Bk ⊂ Rn × Rmk ;
3. we denote by ` : P∗(Rn × Rm) × Rp → R the aggregated loss function of N,

such that ` is a linear combination with positive coefficients of the task-specific
losses `1, . . . , `K :

(2.1) `(B;w) :=

K∑
k=1

λk`k(Bk;w0,wk) , with λ1, . . . , λk ∈ R+.

Our alternate training method takes inspiration both from the BCD method and
from those methods based on exploiting the task-specific gradients (see Section 1). In-
deed, it is easily seen that the gradient of ` with respect to the task-specific parameters
of task k is equal to the gradient of λk`k, i.e.:

∇wk
`(B;w) = λk∇wk

`k(Bk;w0,wk) ,

for each k = 1, . . . ,K, and for any batch B ∈ P∗(Rn×Rm). Then, once observed this
characteristic, it is almost immediate to notice also that the gradient of `(B;w) with
respect to all the task-specific parameters is just a concatenation of the K gradients
of the task-specific losses with respect to their own task-specific parameters (and
multiplied by the coefficients), namely:

∇wts
`(B;w) =

 λ1∇w1`1(B1;w0,w1)
...

λK∇wK
`K(BK ;w0,wK)

 ,

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 5

for each B ∈ P(Rn ×Rm), where wts ∈ Rpts is the vector denoting the concatenation
of all the task-specific parameters; i.e.:

wts := (wT
1 , . . . ,w

T
K)T ∈ Rpts , with pts =

K∑
k=1

pk.

As a consequence of these results, we see in Proposition 2.3 that for any batch B
the two anti-gradients of ` with respect to the shared parameters and the task-specific
parameters, respectively, identify two descent directions for `(B;w) at w that update
only the corresponding subset of NN weights; moreover, the direction based on the
task-specific gradient is a descent direction for all the task-specific losses too. The
proof of the proposition is omitted, since it is trivial.

Proposition 2.3 (Gradients and Descent Directions).
Let N be a MTNN as in Definition 2.1 and let `, `1, . . . , `K be the losses in (2.1).

Let w ∈ Rp be the vector of trainable parameters of N; specifically, w is the concate-
nation of the shared parameters w0 ∈ Rp0 and the task-specific parameters wts ∈ Rpts :

w =

[
w0

wts

]
.

Then, for each fixed batch B the vectors

(2.2)

[
−∇w0

`(B;w)
0

]
,

[
0

−∇wts`(B;w)

]
∈ Rp

are descent directions for the loss `(B;w) at w, if ∇w0`(B;w) 6= 0 ∈ Rp0 and
∇wts`(B;w) 6= 0 ∈ Rpts , respectively. Moreover, (0,−∇wk

`k(Bk;w0,wk)) (subvector
of the first vector in (2.2)) is also a descent direction for `k(Bk;w0,wk), for each
k = 1, . . . ,K.

We conclude this section remarking the different implications of the two descent
directions (2.2):

• w0-based direction: it is a descent direction for `(B;w) that update the shared
parameters only. It allows to reduce the loss with respect to the weights that
affects all the tasks, then there are no guarantees of reducing all the task-
specific losses too;

• wts-based direction: is a descent direction for `(B;w) but also for all the task-
specific losses `1, . . . , `K , and it updates the task-specific parameters only. It
allows to reduce both the main loss and the task-specific losses with respect
to the weights w1, . . . ,wK that affect only the losses `1, . . . , `K , respectively
(i.e., only the corresponding tasks).

Starting from these properties, in the next section we formulate new alternate
training procedures (both deterministic and stochastic), proving for convergence prop-
erties for each one.

3. Alternate Training. Proposition 2.3 defines two alternative descent direc-
tions for the loss function. Devising a training procedure based on the alternate usage
of these directions or their stochastic estimators may yield the following practical ad-
vantages.

1. Alternate training for reduced memory usage and computational costs. The
advantage of the alternate training concerning memory is almost evident.
Indeed, at each step, an alternate procedure requires the storage of a gradient

6 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

∇w0
with dimension p0 or a gradient ∇wts

with dimension pts; in both cases,
the gradient has dimension smaller than the “global” gradient computed with
respect to all the NN’s weights (i.e., with dimension p = p0+pts). Nonetheless,
this property might be not that important if p0 ≈ p and pts ≈ 0 (or vice-versa)
and/or if the hardware is powerful enough to handle the global gradient of
the MTNN without difficulties.
We further observe that the computation of ∇wts

is cheaper than the com-
putation of both ∇w0

and ∇w, since only the task-specific layers of the NN
are involved; then, the cost of one epoch of training is lower with an alternate
procedure than with a classic one.

2. Alternate training for better generalization abilities of MTNNs. Another ad-
vantage of a training procedure characterized by some steps performed only
with respect to wts (i.e., with respect to the K tasks independently) may
be that of improving the generalization abilities and the performance of the
trained MTNN. Indeed, relying on the wts-based direction, this approach par-
tially reduces the typical difficulty of MTL models about selecting a direction
that is not a descent direction for all the tasks, and therefore reduces the
possibility of having an increase of some losses despite the overall objective
function decreases (see Section 1). This interesting regularization property is
illustrated in the numerical experiments of Section 4.

The idea of an alternate training can be realized in many different ways. In
this work, we define alternate training methods which are modifications of a classical
Stochastic Gradient (SG) procedure. They can be extended also to other optimization
procedures, but we deserve these generalizations to future work.

In the next subsections we define and analyze a couple of alternate training strate-
gies. For the convergence analyses, we will use several times the following well known
inequality (e.g., see the Descent Lemma in [3, Proposition A.24]):

(3.1) `(· ; w + ηd) ≤ `(· ; w) + η∇`(· ; w)Td +
L

2
η2 ‖d‖2,

which holds for differentiable functions satisfying the Lipschitz continuity condition

‖∇`(· ; w)−∇`(· ; z)‖ ≤ L‖w − z‖.

Where not explicitly specified, as above, gradients are taken with respect to all the
parameters w.

3.1. Simple Alternate Training. The Simple Alternate Training (SAT) me-
thod is a two steps iterative process that alternately updates w0 and wts in a MTNN.
The variable w0 is updated at each iteration using a stochastic estimator of ∇w0`,
while wts is updated using a stochastic estimator of ∇wts

`. In what follows we denote
the training set as T . We name SAT-SG this procedure in order to emphasize the
relationship with SG, and we describe one iteration in Algorithm 3.1.

We prove the convergence properties of SAT-SG in both cases, deterministic (The-
orem 3.3) and stochastic (Theorem 3.5). We consider constant learning rates and
diminishing learning rates satisfying the following conditions:

(3.2) a)

∞∑
i=0

ηi =∞ , b)

∞∑
i=0

η2
i <∞ .

Starting with the deterministic case, we first see in Lemma 3.1 that, using any fixed
batch of data B1 = B2 of size B, Algorithm 3.1 reduces the value of the loss function

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 7

Algorithm 3.1 SAT-SG - Simple Alternate Training for MTNNs with SG

Data: (w0,wts) = w(i) (current iterate for the trainable parameters), T (training
set), B (mini-batch size), ηi (learning rate), ` (loss function defined in (2.1)).

Iteration i:

1: Sample randomly a batch B1 from T s.t. |B1| = B
2: w0 ← w0 − ηi∇w0`(B1;w(i))
3: z(i) ← (w0,wts)
4: Sample randomly a batch B2 from T s.t. |B2| = B
5: wts ← wts − ηi∇wts

`(B2; z(i))
6: w(i+1) ← (w0,wts)
7: return w(i+1) (updated iterate for MTNN’s weights)

`(B;w) for sufficiently small learning rates ηi. Then, in Theorem 3.3 we exploit
this result to prove the convergence of SAT-SG in the full sample case, i.e. setting
B1 ≡ B2 ≡ T .

Lemma 3.1. Given w(i) ∈ Rp, let z(i) and w(i+1), be the two vectors computed
by Algorithm 3.1 with B1 ≡ B2 ≡ B and |B| = B. Then, if ∇`(· ;w) is Lipschitz
continuous with Lipschitz constant L, and 0 < ηi < 2 (1 − µ)/L with µ ∈ (0, 1), the
vector d = (w(i+1) −w(i))/ηi satisfies

(3.3) −∇`(B;w(i))Td > µ ‖∇`(B;w(i))‖2

and

(3.4) ‖d‖ ≤ (1 + ηiL) ‖∇`(B;w(i))‖.

Further, for sufficiently small values of ηi, e.g. 0 < ηi < 2 min {µ/9 , 1 − µ}/L, the
following descent property holds:

(3.5) `(B;w(i+1)) = `(B;w(i) + ηid) ≤ `(B;w(i)) − ηi Ci ‖∇`(B;w(i))‖2

with

Ci = µ− L

2
ηi (1 + ηiL)2 > 0 .

Proof. To simplify the writing of the proof we set z(i) := z, w(i) := w, w(i+1) :=
wnew. Then,
[i.] shared parameters update:

z =

[
z0

zts

]
= w + ηi

[
−∇w0`(B;w)

0

]
=

[
w0 − ηi∇w0`(B;w)

wts

]
,

[ii.] task-specific parameters update:

wnew = z + ηi

[
0

−∇wts
`(B; z)

]
=

[
w0 − ηi∇w0

`(B;w)
wts − ηi∇wts

`(B; z)

]
= w + ηi

[
−∇w0

`(B;w)
−∇wts

`(B; z)

]
.

Rewriting d as:

d =

[
−∇w0

`(B;w)
−∇wts

`(B; z)

]
±
[

0
−∇wts

`(B;w)

]
= −∇`(B;w)+

[
0

∇wts
`(B;w)−∇wts

`(B; z)

]
,

8 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

it follows that

−∇`(B;w)Td = ‖∇`(B;w)‖2 −∇wts`(B;w)T (∇wts`(B;w)−∇wts`(B;z))

≥ ‖∇`(B;w)‖2 − L ‖∇wts`(B;w)‖ ‖w − z‖

= ‖∇`(B;w)‖2 − ηiL ‖∇wts`(B;w)‖ ‖∇w0`(B;w)‖

= ‖∇w0`(B;w)‖2 + ‖∇wts`(B;w)‖2 − ηiL ‖∇wts`(B;w)‖ ‖∇w0`(B;w)‖

> ‖∇w0`(B;w)‖2 + ‖∇wts`(B;w)‖2 − 2(1− µ) ‖∇wts`(B;w)‖ ‖∇w0`(B;w)‖

= µ (‖∇w0`(B;w)‖2 + ‖∇wts`(B;w)‖2)+

(1− µ) (‖∇wts`(B;w)‖ − ‖∇w0`(B;w)‖)2

≥ µ
(
‖∇w0`(B;w)‖2 + ‖∇wts`(B;w)‖2

)
,

where in the last inequalities we used the assumptions µ ∈ (0, 1) and 0 < ηiL <
2(1− µ). This complete the proof of (3.3).

To obtain (3.4) we proceed as follows:

‖d‖2 = ‖∇`(B;w)‖2 + ‖∇wts`(B;w)−∇wts`(B; z) ‖2 +

2∇wts
`(B;w)T (∇wts

`(B; z)−∇wts
`(B;w))

≤ ‖∇`(B;w)‖2 + L2‖w − z‖2 + 2L ‖∇`(B;w)‖ ‖w − z‖

= (‖∇`(B;w)‖ + L ‖w − z‖)
2

= (‖∇`(B;w)‖ + ηiL ‖∇w0`(B;w)‖)
2

≤ (1 + ηiL)2 ‖∇`(B;w)‖2.

Finally, the descent property (3.5) is easily obtained by recalling inequality (3.1)
and using (3.3) and (3.4) in it:

`(B;w + ηid)− `(B;w) ≤ ηi∇`(B;w)Td +
L

2
η2
i ‖d‖2

≤ − ηi µ ‖∇`(B;w)‖2 +
L

2
η2
i (1 + ηiL)2 ‖∇`(B;w)‖2

= − ηi
(
µ− L

2
ηi (1 + ηiL)2

)
‖∇`(B;w)‖2.

To conclude the proof we observe that the constants Ci = µ − L
2 ηi (1 + ηiL)2 are

positive for sufficiently small values of ηi. For example, recalling that by assumption
µ ∈ (0, 1) and 0 < ηi L < 2(1− µ) < 2, we also have (1 + ηiL)2 < 9. Then the claim
is surely true if 0 < ηi < 2 min {µ/9 , 1− µ}/L.

Notation 3.2. From now on, to shorten the notation, we will omit to explicitly
indicate the dependence of the loss function from the batch of data when this coincides
with the whole training set (i.e., B ≡ T), namely we will write `(w) for `(T ;w), and
∇`(w) for ∇`(T ;w).

Theorem 3.3 (SAT-SG Convergence - Deterministic). Given w(0) ∈ Rp and
a bounded below loss function `, with lower bound `low, let {w(i)}i≥0 ⊂ Rp be the
sequence generated by the SAT-SG method with B = |T |, i.e. B1 ≡ B2 ≡ T for all i
and

w(i+1) = w(i) − ηi
[
∇w0`(w

(i))
∇wts

`(z(i))

]
, i ≥ 0,

with

z(i) = w(i) − ηi
[
∇w0

`(w(i))
0

]
.

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 9

Then, under the assumptions of Lemma 3.1, and for learning rates satisfying condition
(3.2.a), any limit point of {w(i)}i≥0 is stationary for `.

Proof. The thesis holds trivially if ∇`(w(̄i)) = 0 for some finite index ī, yielding
w(i) = w(̄i) for all i ≥ ī. So we consider the more general case in which ∇`(w(i)) 6= 0
for all i ≥ 0. Now, let us observe that Lemma 3.1 holds with B = T , and therefore

(3.6) `(w(i+1)) − `(w(i)) ≤ − ηi Ci ‖∇`(w(i))‖2 < 0, i = 0, 1, 2, . . .

Then, using (3.6) and the boundedness from below of `, the sequence {`(w(i))}i≥0

results to be decreasing and convergent. Further, summing up for i = 0 to infinity
both sides of the first inequality in (3.6), we easily attain

∞∑
i=0

Ciηi‖∇`(w(i))‖2 ≤ `(w(0))− `low , with Ci = µ− L

2
ηi (1 + ηiL)2 > 0 .

Under the assumptions of Lemma 3.1 Ci is bounded away from zero, then the previous
inequality and the first condition in (3.2) ensure that ‖∇`(w(i))‖ → 0. Finally, by
continuity, at any limit point w̄ of {w(i)}i≥0 it must be ∇`(w̄) = 0.

We remark that since
∑∞
i=0 η = ∞, the case of fixed learning rates is included in

Theorem 3.3.
Now, we study the convergence properties of SAT-SG in the fully stochastic case;

i.e., with B < |T | and B1 6= B2.

Lemma 3.4 (SAT-SG - Stochastic). Let {w(i)}i≥0, {z(i)}i≥0 ⊂ Rp be two se-
quences generated by the SAT-SG method, and {ηi}i≥0 be the sequence of used learn-
ing rates. Let Ai denote the σ-algebra induced by w(0), z(0), w(1), z(1), ..., w(i), and
Ai+ 1

2
the σ-algebra induced by w(0), z(0), w(1), z(1), ..., w(i), z(i).

Assume that the batches B1 and B2 are sampled randomly and uniformly, that there
exist two positive constants M1 and M2 such that

E[‖∇w0
`(B;w(i))‖2|Ai] ≤M2 ‖∇w0

`(w(i))‖2 +M1(3.7)

E[‖∇wts
`(B; z(i))‖2|Ai+ 1

2
] ≤M2 ‖∇wts

`(z(i))‖2 +M1(3.8)

for any batch of data B, and that ∇`(· ;w) is Lipschitz continuous with Lipschitz
constant L.

Then for sufficiently small values of ηi, e.g. 0 < ηi <
1
L min {1, 2

M2
} for any i ≥ 0,

the following property holds:

(3.9) E[`(w(i+1))|Ai] ≤ `(w(i))− ηi (1− Lηi)Gi ‖∇`(w(i))‖2 + η2
iLM1

with Gi = 1− L
2 ηiM2 > 0 .

Proof. First, we consider the updating of the shared parameters w0 (see steps 2
and 3 of Algorithm 3.1), and use inequality (3.1) to obtain

`(z(i)) ≤ `(w(i)) + ηi∇`(w(i))T
[
−∇w0`(B1;w(i))

0

]
+
L

2
η2
i ‖∇w0

`(B1;w(i))‖2.

Then, taking the conditioned expected value on both sides, exploiting assumption
(3.7) and the fact that the subsampled gradient ∇w0

`(B1;w(i)) is an unbiased esti-

10 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

mator, we have:

E[`(z(i))|Ai] ≤ `(w(i))− ηi∇w0`(w
(i))TE[∇w0`(B1;w(i))|Ai] +

L

2
η2
i E[‖∇w0`(B1;w(i))‖2 |Ai]

≤ `(w(i))− ηi ‖∇w0
`(w(i))‖2 +

L

2
η2
i (M2 ‖∇w0

`(w(i))‖2 +M1),

which, by setting Gi = 1− L
2 ηiM2, can be re-written as

(3.10) E[`(z(i))|Ai] ≤ `(w(i))− ηiGi ‖∇w0
`(w(i))‖2 +

L

2
η2
i M1,

with Gi > 0 for sufficiently small values of ηi.
Similarly, after updating the task-specific parameters wts we have that

`(w(i+1)) ≤ `(z(i)) + ηi∇`(z(i))T
[

0
−∇wts

`(B2; z(i))

]
+
L

2
η2
i ‖∇wts

`(B2; z(i))‖2.

Further, proceeding as before in conditioned expected values and using assumption
(3.8), we get

(3.11) E[`(w(i+1))|Ai+ 1
2
] ≤ `(z(i))− ηiGi ‖∇wts`(z

(i))‖2 +
L

2
η2
i M1.

Now we observe that

‖∇wts
`(z(i))‖2 = ‖∇wts

`(w(i)) +∇wts
`(z(i))−∇wts

`(w(i)) ‖2

= ‖∇wts
`(w(i))‖2 + ‖∇wts

`(z(i))−∇wts
`(w(i)) ‖2+

2∇wts
`(w(i))T

(
∇wts

`(z(i))−∇wts
`(w(i))

)
≥ ‖∇wts

`(w(i))‖2 − 2 ‖∇wts
`(w(i))‖ ‖∇wts

`(w(i))−∇wts
`(z(i)) ‖

≥ ‖∇wts`(w
(i))‖2 − 2Lηi ‖∇wts`(w

(i))‖ ‖∇w0`(w
(i))‖;

then using this last inequality in (3.11) we have

E[`(w(i+1))|Ai+ 1
2
] ≤ `(z(i))− ηiGi ‖∇wts

`(w(i))‖2+

2Lη2
iGi ‖∇wts

`(w(i))‖ ‖∇w0
`(w(i))‖+

L

2
η2
i M1.

(3.12)

Finally, recalling that

E[`(w(i+1))|Ai] = E[E[`(w(i+1))|Ai+ 1
2
] | Ai],

and combining (3.10) and (3.12) we have

E[`(w(i+1))|Ai] ≤ E[`(z(i))|Ai]− ηiGi ‖∇wts`(w
(i))‖2+

2Lη2iGi ‖∇wts`(w
(i))‖ ‖∇w0`(w

(i))‖+
L

2
η2i M1

≤ `(w(i))− ηiGi ‖∇w0`(w
(i))‖2 +

L

2
η2i M1 − ηiGi ‖∇wts`(w

(i))‖2 +

2Lη2iGi ‖∇wts`(w
(i))‖ ‖∇w0`(w

(i))‖+
L

2
η2i M1

= `(w(i))− ηiGi ‖∇`(w(i))‖2 + Lη2i M1 +

2Lη2iGi ‖∇wts`(w
(i))‖ ‖∇w0`(w

(i))‖

≤ `(w(i))− ηiGi(1− Lηi) ‖∇`(w(i))‖2 + Lη2i M1,

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 11

where the last inequality follows easily from the relation 2ab ≤ a2 + b2.

Inequality (3.9) in Lemma 3.4 paths the way for the following standard result on the
convergence of stochastic gradient methods (see also Theorems 4.8 and 4.10 in [4]).

Theorem 3.5 (SAT-SG convergence - Stochastic). Assume that the hypotheses
in Lemma 3.4 hold and that the loss function ` is bounded below. Let `low be the lower
bound, and {w(i)}i≥0 be the sequence of iterates generated by Algorithm 3.1. Then,

i) for fixed learning rates ηi = η such that 0 < η < 1
L min {1, 2

M2
}, the average-

squared gradients of ` satisfy the following inequality at any iteration J ∈ N:

E[
1

J + 1

J∑
i=0

‖∇`(w(i))‖2] ≤ ηLM1

(1− Lη)G
+

`(w(0))− `low
(J + 1)η(1− Lη)G

(3.13)

J→∞−−−−→ ηLM1

(1− Lη)G
,(3.14)

with G = 1− L
2 ηM2 > 0 ;

ii) for diminishing learning rates satisfying (3.2), the weighted average-squared gra-
dients of ` satisfies:

(3.15) lim
J→∞

E
[1∑J

i=0 ηi

J∑
i=0

ηi‖∇`(w(i))‖2
]

= 0.

Proof. Taking the total expectation of (3.9) we get

E[`(w(i+1))]− E[`(w(i))] ≤ − ηi (1− Lηi)Gi E[‖∇`(w(i))‖2] + η2
iLM1,

where Gi = 1− L
2 ηiM2. Then summing up for i = 0 to i = J and recalling that ` is

bounded from below by `low we obtain

`low − `(w(0)) ≤ E[`(w(J+1))|]− `(w(0))

≤ −
J∑
i=0

ηi (1− Lηi)GiE[‖∇`(w(i))‖2] + LM1

J∑
i=0

η2
i .

Now in case i), since ηi = η and Gi = G = 1 − L
2 ηM2 for all i, by rearranging the

previous inequality we have

E[

J∑
i=0

‖∇`(w(i))‖2] ≤ (J + 1)
ηLM1

(1− Lη)G
+
`(w(0))− `low
η(1− Lη)G

,

from which (3.13) follows by dividing for J + 1.
In case ii), assuming that 0 < ηi <

1
L min { 1

2 ,
1
M2
}, we get (1− Lηi)Gi > 1

4 and

J∑
i=0

ηiE[‖∇`(w(i))‖2] ≤ 4(`(w(0))− `low) + 4LM1

J∑
i=0

η2
i .

Then, the second condition in (3.2) implies that the right hand side of the above
inequality is bounded when J goes to∞, and (3.15) follows by using condition (3.2.a).

12 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

Comparing (3.13) with the corresponding result for the SG method [4, Th. 4.8], we
have in the right hand side the additional factor 1/G > 1. Then, we expect a slower
decrease of the average gradients than that obtained by SG. Instead, regarding the
optimality gap (3.14) the matter is questionable, as the constant M1 in (3.7)-(3.8) is
expected to be smaller than the corresponding constant used to bound the expected
value of ‖∇`(w)‖2 with SG.

3.2. Alternate training through the epochs. From the practical point of
view, it can be more effective to alternate the training procedure through the epochs,
since within each epoch it is assumed that the model sees all the available training
samples; moreover, concerning compatibility with Deep Learning frameworks, it is
easier to develop a training procedure that alternatively switches the trainable weights
(w0 and wts) at given epochs instead at each mini-batch.

With an alternate training through the epochs, the weights of the NN are alter-
natively updated for some epochs with respect to w0, and for some other epochs with
respect to wts. We can outline the procedure as follows:

• train the MTNN with SG for E0 ∈ N epochs, with respect to the shared
parameters w0;

• train the MTNN with SG for Ets ∈ N epochs, with respect to the task-specific
parameters wts;

• repeat until convergence (or a stopping criterion is satisfied).
So a complete cycle of alternate training (see Algorithm 3.2) consists of E0 + Ets

epochs and t · (E0 + Ets) updating iterations, where t ∈ N is the number of used
batches per epoch, tipically the integer part of |T |/B for a given batch size B. We
name Alternate Through the Epochs with SG (ATE-SG) this procedure. In the rest of
this section, we denote by e the cycle counter and by i the step (or iteration) counter,
namely each cycle e starts at the iterate w(its) with its = (E0 + Ets) e t.

To analyze the convergence properties of ATE-SG it is convenient to split the set
of iteration indexes into two subsets, I0 and Its, corresponding to the shared phase
and to the task-specific phase, respectively. In other words, gradients with respect to
the shared (task-specific) parameters are evaluated at iterate w(i) when i ∈ I0 (Its).
We will also make use of the following theorem [23].

Theorem 3.6 (Robbins-Sigmund 1971 [23]). Let Ui, βi, ξi, ρi be nonnegative Ai-
measurable random variables such that

E[Ui+1|Ai] ≤ (1 + βi)Ui + ξi − ρi i = 0, 1, 2

Then, on the set {
∑
i βi < ∞,

∑
i ξi < ∞}, Ui converges almost surely to a random

variable U and
∑
i ρi <∞ almost surely.

We now prove the almost sure convergence of ATE-SG assuming to use diminishing
learning rates.

Lemma 3.7 (ATE-SG - Stochastic). Given w(0) ∈ Rp, let {w(i)}i≥0 ⊂ Rp be the
sequence generated by iterating ATE-SG Algorithm 3.2, with a diminishing sequence
of learning rates {ηi}i≥0 such that (3.2) holds. Assume that the loss function ` is
bounded below by `low, and there exist two positive constants M1 and M2 such that
for any batch of data B

E[‖∇w0`(B;w(i))‖2|Ai] ≤M2 ‖∇w0`(w
(i))‖2 +M1, for i ∈ I0,

E[‖∇wts`(B;w(i))‖2|Ai] ≤M2 ‖∇wts`(w
(i))‖2 +M1, for i ∈ Its,

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 13

Algorithm 3.2 ATE-SG - Alternate Training through Epochs for MTNNs with SG

Data: (w
(its)
0 ,w

(its)
ts) = w(its) (current iterate for the trainable parameters), T (train-

ing set), B (mini-batch size), t (number of mini-batches per epoch), E0, Ets

(number of epochs for alternate training), {ηi, i = its, . . . , its+(E0+Ets)t−1}
(learning rates), ` (loss function as in Notation 2.2).

Cycle e:

1: i← its (iteration counter, here i = (E0 + Ets) e t)
2: for e0 = 1, 2, . . . , E0 (epochs counter, shared phase) do
3: for τ = 1, 2, . . . , t do
4: Sample randomly and uniformly a batch Bτ from T s.t. |Bτ | = B

5: w
(i+1)
0 ← w

(i)
0 − ηi∇w0

`(Bτ ;w(i))
6: i← i+ 1
7: w(i) ← (w

(i)
0 ,w

(its)
ts)

8: end for
9: end for

10: i0 ← i (here i = its + tE0)
11: for ets = 1, 2, . . . , Ets (epochs counter, task-specific phase) do
12: for τ = 1, 2, . . . , t do
13: Sample randomly and uniformly a batch Bτ from T s.t. |Bτ | = B

14: w
(i+1)
ts ← w

(i)
ts − ηi∇wts`(Bτ ;w(i))

15: i← i+ 1
16: w(i) ← (w

(i0)
0 ,w

(i)
ts)

17: end for
18: end for
19: its ← i (here i = i0 + tEts)
20: return w(its) (updated iterate after E0 + Ets epochs)

where Ai denotes the σ-algebra induced by w(0),..., w(i), and I0 and Its are the sets
of iteration indexes corresponding to the shared phase and to the task-specific phase,
respectively. Then

lim inf
i∈I0
||∇w0`(z

(i))||2 = lim inf
i∈Its
||∇wts`(z

(i))||2 = 0 a.s.

Proof. As in the proof of Lemma 3.4, we start by considering the updating of the
shared parameters w0 and the inequality:

`(w(i+1)) ≤ `(w(i)) + ηi∇`(w(i))T
[
−∇w0

`(Bτ ;w(i))
0

]
+
L

2
η2
i ‖∇w0

`(Bτ ;w(i))‖2,

which holds for i ∈ I0, and in conditioned expected values becomes

E[`(w(i+1))|Ai] ≤ `(w(i))− ηi ‖∇w0`(w
(i))‖2 +

L

2
η2
i (M2 ‖∇w0`(w

(i))‖2 +M1)

= `(w(i))− ηiGi ‖∇w0
`(w(i))‖2 +

L

2
η2
i M1,

with Gi = 1 − L
2 ηiM2 > 0 for sufficiently small values of ηi. Similarly, in the task-

specific case, that is when i ∈ Its, we have

E[`(w(i+1))|Ai] ≤ `(w(i))− ηiGi ‖∇wts`(z
(i))‖2 +

L

2
η2
i M1.

14 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

Then, using Theorem 3.6 with Ui = `(w(i))− `low > 0, βi = 0 and ξi = L
2 η

2
i M1 for

any i ≥ 0, ρi = ηiGi‖∇wts
`(w(i))‖2 for i ∈ Its, and ρi = ηiGi‖∇w0

`(w(i))‖2 for
i ∈ I0, we have that

(3.16)

∞∑
i=0

ρi =
∑
i∈Its

ηiGi‖∇wts
`(w(i))‖2 +

∑
i∈I0

ηiGi‖∇w0
`(w(i))‖2 <∞,

and the sequence {`(w(i))} is convergent almost surely.
Recall now that 0 < G0 = 1 − L

2 η0M2 ≤ Gi = 1 − L
2 ηiM2 < 1 for η0 sufficiently

small, hence from (3.16) it also holds

(3.17)
∑
i∈Its

ηi‖∇wts`(w
(i))‖2 +

∑
i∈I0

ηi‖∇w0`(w
(i))‖2 <∞ a.s.

Since
∑
ηi =∞ the thesis follows.

Theorem 3.8 (ATE-SG convergence - Stochastic). Under the assumptions of
Lemma 3.7, and using the same notations, let us further assume that there exists
M > 0 such that

(3.18) ‖∇`(B;w(i))‖2 ≤M for any B ⊂ T .

Then

(3.19) lim inf
i→∞

||∇`(w(i))||2 = 0 a.s.

Proof. Reasoning as in Lemma 3.7, we are going to show that

∞∑
i=0

ηi‖∇`(w(i))‖2 <∞ a.s.

from which the thesis follows. To this aim, we first rewrite the above series as

∞∑
i=0

ηi‖∇`(w(i))‖2 =
∑
i∈Its

ηi‖∇wts
`(w(i))‖2 +

∑
i∈I0

ηi‖∇w0
`(w(i))‖2+

∑
i∈Its

ηi‖∇w0`(w
(i))‖2 +

∑
i∈I0

ηi‖∇wts`(w
(i))‖2.

(3.20)

Now, recalling (3.17) we only need to show that the last two terms in (3.20) are
bounded. Both terms can be treated in a very similar way, hence we will prove the
result in details only for the last one. Moreover, for simplicity’s sake we consider the
case E0 = Ets = 1, where one cycle of ATE-SG consists of t SG steps taken first
with respect to the shared parameters w0, and then with respect to the task-specific
parameters wts. This allows us to write down and exploit the following representations
of the sets I0 and Its:

I0 = [0 : t− 1] ∪ [2 t : 3 t− 1] ∪ · · · =
∞⋃
e=0

[2 e t : (2 e+ 1) t− 1](3.21)

Its = [t : 2 t− 1] ∪ [3 t : 4 t− 1] ∪ · · · =
∞⋃
e=1

[(2 e− 1) t : 2et− 1].(3.22)

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 15

Nonetheless, we remark that with a bit more technicalities the proof can be extended
to the general case E0 ≥ 1 and Ets ≥ 1.

So, let us consider the last term in (3.20), which by using (3.21) can be rewritten
as follows:

∑
i∈I0

ηi‖∇wts`(w
(i))‖2 =

∞∑
e=0

t−1∑
τ=0

η2et+τ‖∇wts`(w
(2et+τ))‖2

=

t−1∑
τ=0

ητ‖∇wts`(w
(τ))‖2 +

∞∑
e=1

t−1∑
τ=0

η2et+τ‖∇wts`(w
(2et+τ))‖2,

(3.23)

where, for any e ≥ 1 and τ = 0, 1, . . . , t− 1,

‖∇wts`(w
(2et+τ))‖ ≤ ‖∇wts`(w

(2et+τ))−∇wts`(w
(2et−1))‖+ ‖∇wts`(w

(2et−1))‖
≤ L‖w(2et+τ) −w(2et−1)‖+ ‖∇wts

`(w(2et−1))‖

= L ‖η2et−1∇wts`(Bt;w(2et−1)) +

τ−1∑
k=0

η2et+k∇w0`(Bk;w(2et+k)) ‖

+ ‖∇wts`(w
(2et−1))‖.

The idea of the proof is that, when damped by the learning rates, gradient norms can
be bounded by assumption (3.18). Instead, to tackle the norm of ∇wts

`(w(2et−1)) we
can resort to Lemma 3.7, since by (3.22) it is easily seen that 2et − 1 ∈ Its for any

e ≥ 1. Then ‖∇wts
`(w(2et+τ))‖ ≤ LM

∑τ−1
k=−1 η2et+k + ‖∇wts

`(w(2et−1))‖ , and

‖∇wts
`(w(2et+τ))‖2 ≤ L2M2 (

τ−1∑
k=−1

η2et+k)2+

2LM2(

τ−1∑
k=−1

η2et+k) + ‖∇wts`(w
(2et−1))‖2.

(3.24)

Now using (3.18) and (3.24) in (3.23) we have

∑
i∈I0

ηi‖∇wts
`(w(i))‖2 ≤M2

t−1∑
τ=0

ητ + L2M2
∞∑
e=1

t−1∑
τ=0

η2et+τ (

τ−1∑
k=−1

η2et+k)2

+ 2LM2
∞∑
e=1

t−1∑
τ=0

η2et+τ (

τ−1∑
k=−1

η2et+k)

+

∞∑
e=1

t−1∑
τ=0

η2et+τ‖∇wts`(w
(2et−1))‖2.

(3.25)

So the last term in (3.25) can be bounded almost surely by exploiting (3.17) as follows:

∞∑
e=1

t−1∑
τ=0

η2et+τ‖∇wts
`(w(2et−1))‖2 < t

∞∑
e=1

η2et−1‖∇wts
`(w(2et−1))‖2

< t
∑
i∈Its

ηi‖∇wts`(w
(i))‖2 <∞.

16 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

The other terms can be bounded using the properties of the sequence {ηi}i≥0, which
is positive, decreasing, convergent to 0, and such that

∑∞
i=0 η

2
i < ∞. Indeed, since

η2et+j ≤ η2et−1 for all j ≥ −1, we have

∞∑
e=1

t−1∑
τ=0

η2et+τ (

τ−1∑
k=−1

η2et+k) < t2
∞∑
e=1

η2
2et−1 <∞,

and

∞∑
e=1

t−1∑
τ=0

η2et+τ (

τ−1∑
k=−1

η2et+k)2 < t3
∞∑
e=1

η3
2et−1 <∞.

Remark 3.9. It is worth to observe that assumption (3.18) in Theorem 3.8 can
be relaxed. Indeed, letting

M2et−1 = max{‖∇wts
`(Bt;w(2et−1))‖, max

k=0,1,...,t−1
‖∇w0

`(Bk;w(2et+k))‖},

and

M(2e+1)t−1 = max{‖∇w0
`(Bt;w((2e+1)t−1))‖, max

k=0,1,...,t−1
‖∇wts

`(Bk;w((2e+1)t+k))‖},

to prove that the last two terms in (3.20) are bounded, it is sufficient to assume that

∞∑
e=1

η2
2et−1M

2
2et−1 <∞ and

∞∑
e=1

η2
(2e+1)t−1M

2
(2e+1)t−1 <∞.

These conditions are clearly weaker than (3.18), and can be satisfied for example
whenever {ηi} = { 1

i }, M2et−1 ≤ (2et − 1)p, and M(2e+1)t−1 ≤ (2(e + 1)t − 1)p, with
p ∈ (0, 1/2).

4. Numerical Experiments. In this section, we report the results of two nu-
merical experiments. Both the experiments study and compare the performance of
a MTNN trained with a standard stochastic gradient procedure and by using alter-
nate training procedures. The first experiment takes into account a synthetic dataset
representing a 4-classes classification task and a binary classification task for a set of
points in R2; the second experiment is based on a real-world dataset, where signals
must be classified with respect to two different multiclass classification tasks. In both
cases, the used loss function is a weighted sum of the task-specific losses where the
weights are fixed and equal to one (i.e., λ1 = λ2 = 1, see (2.1)). Indeed, we want to
analyze the effects of our method without any balancing of the task-specific losses nor
emphasizing the action of a task with respect to the other.

The alternate procedure used for the experiments of this section is illustrated in
Algorithm A.1 of Appendix A: we call it implemented ATE-SG method. The main
difference between this implemented version and ATE-SG (see Algorithm 3.2) lies in
the way mini-batches are generated. Indeed, for theoretical purposes, in ATE-SG the
mini-batches are randomly sampled from the training set T , instead of being obtained
through a random split of T as in Algorithm A.1. This modification is necessary for
optimal compatibility with the Deep Learning frameworks Keras [7] and TensorFlow
[2] used in the experiments.

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 17

We carried out the experiments with a double purpose: i) to verify the poten-
tial advantages supposed for our alternate training method (see items 1 and 2, p.5)
which motivated this work; ii) to investigate how the performance of the new train-
ing procedures depend on the number of alternate updating epochs, E0 and Ets. As
we will see in the rest of this section, the results we obtained are promising, and
E0 = Ets = 1 seems to be the best choice; on the other hand, the larger E0 and Ets

are, the more ATE-SG behaves similarly to the classic SG training. Focusing on the
case E0 = Ets = 1, though the method is slightly slower than SG, it reaches smaller
values of the training and validation losses and appears more stable. More precisely,
it is slightly slower than SG in the first phase, until SG is not able to further reduce
the training loss. After that, ATE-SG is still able to push the loss toward a minimum
and it reaches smaller values of both the training and validation loss. Focusing on
the first phase, we can observe that the two approaches reaches the same value of
the training loss in almost the same number of epochs, so we can conclude that our
method results less expensive.

4.1. Experiments on Synthetic Data. We consider a dataset D made of
N = 10 000 points uniformly sampled in the square D = [−2, 2]2 ⊆ R2 and labeled
with respect to two different criteria: 1) to belong to one of the four quadrants of R2

(4-classes classification task); 2) to be inside or outside the unitary circle centered in
the origin (binary classification task). For simplicity, we denote these tasks by task 1
and task 2, respectively.

Then, the dataset D is made of samples (xi, (qi, ci)) such that xi ∈ D = [−2, 2]2,
qi ∈ {0, . . . , 3}, and ci ∈ {0, 1}, for each i = 1, . . . , N (see Figure 4.1), where qi and
ci denote the quadrant-label and the circle-label of xi, respectively.

Fig. 4.1. The synthetic dataset D with respect to its two tasks. Task 1 on the left, task 2 on
the right. Different colors denote different labels for the points.

We split D randomly, so that the training set T , the validation set V, and the
test set P are made of T = 5 600 samples, V = 1 400 samples, and P = 3 000 samples,
respectively. Then, we build a MTNN with architecture as described in Table 4.1
and, both for the classic SG and the implemented ATE-SG procedures, we train it
according to the following options:

• Preprocessing: standard scaler for inputs (based on training data only);
• Losses: categorical cross-entropy for task 1, binary cross-entropy (from logits)

for task 2, sum of the two losses for the training procedure;
• Optimization hyper-parameters: starting learning rate 0.01, mini-batch size

256, maximum number of epochs 5000;
• Regularization: early stopping (patience 350, restore best weights), reduce

learning rate on plateaus (patience 50, factor 0.75, min-delta 0.0001);

18 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

• Alternate training sub-epochs: E0 = Ets = 1, 10, 100, 250 (for alternate train-
ing procedures only).

Layer Name Layer Type (Keras) Output Shape Param. # Param. # (Grouped) Connected to

input InputLayer (None, 2) 0 - -
trunk 01 Dense (relu) (None, 512) 1 536 (w0-param.s) input
trunk 02 Dense (relu) (None, 512) 262 656 526 848 trunk 01
trunk 03 Dense (relu) (None, 512) 262 656 trunk 02
quad 01 Dense (relu) (None, 512) 262 656 (wts-param.s, task 1) trunk 03
quad 02 Dense (relu) (None, 512) 262 656 527 364 quad 01
quad out Dense (softmax) (None, 4) 2 052 quad 02
circ 01 Dense (relu) (None, 512) 262 656 (wts-param.s, task 2) trunk 03
circ 02 Dense (relu) (None, 512) 262 656 525 825 circ 01
circ out Dense (linear) (None, 1) 513 circ 02

Table 4.1
Synthetic dataset. Keras [7, 2] architecture of the MTNN.

To compare the performance of the different training procedures we first look at
the behaviour of the loss functions during the epochs (see Figures 4.2 and 4.3), and
to the learning rate decay (see Figure 4.4). In particular, we observe what follows.

Case E0 = Ets = 1. The alternate training procedure appears to have regular-
ization effects on the training in general, which with respect to the classic SG lead
to a larger decrease of the loss function and to a marked reduction of its oscillations,
on both the training set and the validation set. Such a “smoother” behavior of the
validation loss allows to delay the upcoming of the overfitting effect and to improve
the generalization abilities of the NN.

Case E0 = Ets = 10. In this case, we see a particular phenomenon: the training
results in large, periodic, oscillations for the loss function (both on the training set
and the validation set); specifically, these oscillations have a period E0 = Ets and are
characterized by a range of values much larger than the one of the typical fluctuations
characterizing the loss of a classic MTNN training. Nonetheless, the loss on the
validation set is still generally decreasing with the epochs; then, also in this case we
can observe a phenomenon of “overfitting delay”. In the end, these oscillations tend
to disappear when decreasing the learning rate (compare Figures 4.2 and 4.3 with
Figure 4.4).

Case E0 = Ets = 100, 250. Here, the implemented ATE-SG returns training
behaviors very similar to classic SG.

Given the observations above, we believe that the implemented ATE-SG method
with E0 = Ets = 1 is a good choice for training a MTNN, because the training
procedure results to be more regularized and more efficient (see item 1, p.5).

However, from the point of view of the test set performance, for this synthetic
dataset we do not observe significant differences between classic or alternate training
(see Table 4.2). Since we are learning classification tasks, performance is measured
now through the weighted average precision (in our case equivalent to the accuracy),
the weighted average recall, and the weighted average F1-score [1]. For more details,
see the remark below.

Remark 4.1 (Precision, recall and F1-score). For the reader convenience, we
report a brief description of the quantities: precision, recall, and F1-score, for each
class C of a general classification problem (see [18]). The precision is the percentage of
correct predictions among all the elements predicted as C; the recall is the percentage
of elements predicted as C among all the C elements in the set; the F1-score is defined

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 19

Fig. 4.2. Synthetic dataset. Loss function on the training set (logarithmic scale) during the
epochs.

Fig. 4.3. Synthetic dataset. Loss function on the validation set (logarithmic scale) during the
epochs.

Fig. 4.4. Synthetic dataset. Learning rate decay (logarithmic scale) during the epochs.

as the weighted harmonic mean of precision and recall. Then, the weighted average

20 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

precision/recall/F1-score is the weighted average of these quantities with respect to
the cardinalities of each class in the set. For this reason we have that the weighted
average precision is equivalent to the accuracy.

Accuracy Recall F1-score
Training Type task1 task 2 task1 task 2 task1 task 2

ATE-SG (E0 = Ets = 1) 0.999667 0.996997 0.999667 0.997000 0.999667 0.996997
ATE-SG (E0 = Ets = 10) 1.000000 0.997665 1.000000 0.997667 1.000000 0.997664
ATE-SG (E0 = Ets = 100) 0.999000 0.997666 0.999000 0.997667 0.999000 0.997666
ATE-SG (E0 = Ets = 250) 0.999000 0.997666 0.999000 0.997667 0.999000 0.997666

Classic SG 0.999000 0.997999 0.999000 0.998000 0.999000 0.997999

Table 4.2
Synthetic dataset. Performance of the MTNNs on the test set P.

4.2. Experiments on Real-World Data. For the experiment on real-world
data, we report the results obtained on a dataset used for wireless signal recognition
tasks [10]. Typically, signal recognition is segmented into sub-tasks like the modula-
tion recognition or the wireless technology (i.e., signal type); nonetheless, in [11, 12]
the authors suggest an approach to the problem that exploits a multi-task setting for
classifying at the same time both the modulation and the signal type of a wireless
signal.

Here we focus on signals characterized by 0dB Signal-to-Noise Ratio (SNR). The
dataset D is made of N = 63 000 signals, each one represented as a vector si ∈ R256

obtained from 128 complex samples of the original signal. In the dataset, associated
to each signal si, we have a label µi ∈ {0, . . . , 5} for the corresponding modulation
(task 1) and a label σi ∈ {0, . . . , 7} for the corresponding signal type (task 2). For
more details about the data, see [10, 11, 12].

We split D randomly, so that the training set T , the validation set V, and the test
set P are made of T = 35 280 samples, V = 8 820 samples, and P = 18 900 samples,
respectively (i.e., same ratios used for the synthetic data in Subsection 4.1). Then, we
build a MTNN with architecture as described in Table 4.3 and, both for the classic
SG and the implemented ATE-SG procedures, we train it according to the following
options:

• Preprocessing: standard scaler for inputs (based on training data only);
• Losses: categorical cross-entropy for both tasks, sum of the two losses for the

training procedure;
• Optimization hyper-parameters: starting learning rate 0.001, mini-batch size

512, maximum number of epochs 10000;
• Regularization: early stopping (patience 350, restore best weights), reduce

learning rate on plateaus (patience 50, factor 0.75, min-delta 0.0001);
• Alternate training sub-epochs: E0 = Ets = 1, 100 (for alternate training

procedures only).
Due to the larger size of the dataset and the more complex nature of the problem,

we decide to reduce the choice for E0 and Ets to the set of two values {1, 100}. In
particular, we keep the case E0 = Ets = 1 because of the good results observed in
the previous experiment; then, we select also E0 = Ets = 100 because it is a large
value but sufficiently small, with respect to the the training set cardinality and the
mini-batch size, to maintain the characteristics of the alternate training observed in
the previous experiment.

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 21

Remark 4.2 (MTNN architecture and hyper-parameters). Since the aim of the
experiment is to study how the training performance of a MTNN change when using
an alternate training procedure, we do not focus on hyper-parameter and/or archi-
tecture optimization for obtaining the best predictions. Then, for simplicity, in this
experiment we choose a simple but efficient architecture (see Table 4.3) based on 1-
dimensional convolutional layers, after a brief, manual hyper-parameter tuning. The
1-dimensional convolutional layers are useful to exploit the signals reshaped as 128
complex signals (see layer trunk 00 in Table 4.3), keeping the NN relatively small.

Layer Name Layer Type (Keras) Output Shape Param. # Param. # (Grouped) Connected to

input InputLayer (None, 256) 0 - -
trunk 00 Reshape (None, 128, 2) 0 input
trunk 01 Conv1D (relu) (None, 128, 64) 576 (w0-param.s) trunk 00
trunk 02 Conv1D (relu) (None, 128, 32) 8 224 12 928 trunk 01
trunk 03 Conv1D (relu) (None, 128, 32) 4 128 trunk 02
trunk end GlobalMaxPooling1D (None, 32) 0 trunk 03
mod 01 Dense (relu) (None, 64) 2 112 (wts-param.s, task 1) trunk end
mod 02 Dense (relu) (None, 64) 4 160 6 662 mod 01
mod out Dense (softmax) (None, 6) 390 mod 02

sig 01 Dense (relu) (None, 64) 2 112 (wts-param.s, task 2) trunk end
sig 02 Dense (relu) (None, 64) 4 160 6 792 sig 01
sig out Dense (softmax) (None, 8) 520 sig 02

Table 4.3
Real-world dataset. Keras [7, 2] architecture of the MTNN.

As we can see from Figures 4.5-4.7 and Table 4.4, the behavior observed in Sub-
section 4.1 is somehow preserved and the prediction performance improves evidently
for the case E0 = Ets = 1. In particular, we observe the following.

Case E0 = Ets = 1. The regularization effect of this alternate training procedure
is much more evident than in the case of Subsection 4.1, both for the training loss
and the validation loss (Figures 4.5-4.6). In particular, we see that the upcoming
of the overfitting is delayed considerably, without needing to reduce the learning
rate for thousands of epochs (Figure 4.7). We finally stress that, in addition to
delay overfitting and then producing a better and more precise training, the alternate
procedure with E0 = Ets = 1 provides better prediction performance than training
the MTNN with the other two methods (see Table 4.4), in particular concerning the
recall of task1. From another point of view, we can infer that the choice E0 = Ets = 1
yields better training performance than SG or ATE-SG with E0 = Ets = 100, also
when using the same, fixed, learning rate.

Case E0 = Ets = 100. In this situation, the alternate training procedure has a
behavior similar to both the cases E0 = Ets = 10 and E0 = Ets = 100 of Subsec-
tion 4.1; i.e., it is characterized by large and periodic oscillations of the loss functions,
returning a trained NN with approximately the same prediction abilities of the MTNN
trained classically. This behavior probably depends on the larger cardinality of both
the training set and the mini-batches.
Hence the advantages observed in Subsection 4.1 about training a MTNN by an
alternate training procedure with E0 = Ets = 1 are confirmed, showing practical and
concrete advantages both from the computational point of view and from the learning
point of view (see items 1 and 2, p.5).

5. Conclusion. In this work we presented new alternate training procedures for
hard-parameter sharing MTNNs. We started illustrating the properties of the task-

22 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

Fig. 4.5. Real-world dataset. Loss function on the training set (logarithmic scale) during the
epochs.

Fig. 4.6. Real-world dataset. Loss function on the validation set (logarithmic scale) during the
epochs.

Fig. 4.7. Real-world dataset. Learning rate decay (logarithmic scale) during the epochs.

specific gradients of the loss function of a MTNN, and explaining the motivations
behind the proposed alternate method. Then, in Section 3, we introduced a first
formulation of alternate training called Simple Alternate Training (SAT) and a sec-
ond one called Alternate Training through the Epochs (ATE); both formulations are
based on the Stochastic Gradient (SG). For these methods we provided a stochastic

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 23

Accuracy Recall F1-score
Training Type task1 task 2 task1 task 2 task1 task 2

ATE-SG (E0 = Ets = 1) 0.914577 0.960432 0.909471 0.960476 0.909919 0.959814
ATE-SG (E0 = Ets = 100) 0.898932 0.949671 0.861429 0.944656 0.857611 0.940939

Classic SG 0.896005 0.948133 0.855450 0.943862 0.847870 0.940265

Table 4.4
Real-world dataset. Performance of the MTNNs on the test set P.

convergence analysis (only for SAT, also a deterministic one). We concluded the work
illustrating the results of two numerical experiments, where the prediction abilities
of a MTNN trained using the implemented ATE-SG algorithm are compared with
the prediction abilities of the same MTNN trained using the SG. The experiments
show very interesting properties of training the network using the implemented ATE-
SG; in particular, we observe a delay in the upcoming of the overfitting, a general
improvement of the prediction abilities, and a reduction of the computational costs.

In conclusion, the alternate training procedures presented in this work proved
to be a novel and useful approach for training MTNNs. In future work, we will
analyze how the procedures may change by replacing the stochastic gradient with
other optimization methods.

Appendix A. Implemented ATE-SG. The pseudo-code of the implemented
ATE-SG method is given in Algorithm A.1. For simplicity, we consider the total
number of epochs as the only stopping criterion. For a ready-to-use version of this
algorithm, see https://github.com/Fra0013To/ATEforMTNN.

Acknowledgements. F.D.S. acknowledges that this study was carried out
within the FAIR - Future Artificial Intelligence Research and received funding from
the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RE-
SILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D.
1555 11/10/2022, PE00000013). This manuscript reflects only the authors’ views and
opinions, neither the European Union nor the European Commission can be consid-
ered responsible for them. S.B. acknowledges the support from the Italian PRIN
project “Numerical Optimization with Adaptive accuracy and applications to machine
learning”, CUP E53D23007690006, Progetti di Ricerca di Interesse nazionale 2022.
The authors acknowledge support from INdAM-GNCS Group Projects 2023, CUP
E53C22001930001.

REFERENCES

[1] Scikit-learn. https://scikit-learn.org. Accessed on: 2023-09-09.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.
tensorflow.org/. Software available from tensorflow.org.

[3] D. Bertsekas, Nonlinear Programming, Athena scientific optimization and computation series,
Athena Scientific, 1999, https://books.google.it/books?id=TgMpAQAAMAAJ.

[4] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale
machine learning, SIAM Review, 60 (2018), pp. 223–311, https://doi.org/10.1137/

https://github.com/Fra0013To/ATEforMTNN
https://scikit-learn.org
https://www.tensorflow.org/
https://www.tensorflow.org/
https://books.google.it/books?id=TgMpAQAAMAAJ
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173

24 S. BELLAVIA, F. DELLA SANTA, A. PAPINI

Algorithm A.1 Implemented ATE-SG

Data: (w0,wts) = w (initial guesses for the trainable parameters), T (training set), B
(mini-batch size), {ηi, i ≥ 0} (learning rates), ` (loss function), E0, Ets (number of
epochs for alternate training), E (total number of epochs).

Procedure:

1: w(0) ← (w0,wts)
2: e← 0 (epochs counter, total)
3: i← 0 (iteration counter)
4: while e ≤ E do
5: e0 ← 0 (epochs counter, shared phase)
6: while e0 ≤ E0 and e ≤ E (alternate training, shared phase) do
7: {B1, . . . ,Bt} ← random split of T into mini-batches w.r.t. B
8: for τ = 1, 2, . . . , t do
9: w0 ← w0 − ηi∇w0`(Bτ ;w(i))

10: i← i+ 1
11: w(i) ← (w0,wts)
12: end for
13: e0 ← e0 + 1 and e← e+ 1
14: end while
15: ets ← 0 (epochs counter, task-specific phase)
16: while ets ≤ Ets and e ≤ E (alternate training, task-specific phase) do
17: {B1, . . . ,Bt} ← random split of T into mini-batches w.r.t. B
18: for τ = 1, 2, . . . , t do
19: wts ← wts − ηi∇wts`(Bτ ;w(i))
20: i← i+ 1
21: w(i) ← (w0,wts)
22: end for
23: ets ← ets + 1 and e← e+ 1
24: end while
25: end while
26: return w(i) (final MTNN’s weights)

16M1080173, https://doi.org/10.1137/16M1080173, https://arxiv.org/abs/https://doi.
org/10.1137/16M1080173.

[5] F. Bragman, R. Tanno, S. Ourselin, D. Alexander, and J. Cardoso, Stochastic filter
groups for multi-task cnns: Learning specialist and generalist convolution kernels, in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1385–1394,
https://doi.org/10.1109/ICCV.2019.00147.

[6] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, GradNorm: Gradient nor-
malization for adaptive loss balancing in deep multitask networks, in Proceedings of the
35th International Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80
of Proceedings of Machine Learning Research, PMLR, 10–15 Jul 2018, pp. 794–803,
https://proceedings.mlr.press/v80/chen18a.html.

[7] F. Chollet et al., Keras. https://keras.io, 2015.
[8] R. Cipolla, Y. Gal, and A. Kendall, Multi-task learning using uncertainty to weigh losses

for scene geometry and semantics, in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7482–7491, https://doi.org/10.1109/CVPR.2018.00781.

[9] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, Dynamic task prioritization
for multitask learning, in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Smin-
chisescu, and Y. Weiss, eds., Cham, 2018, Springer International Publishing, pp. 282–299.

[10] A. Jagannath and J. Jagannath, Dataset for modulation classification and signal
type classification for multi-task and single task learning, Computer Networks, 199
(2021), p. 108441, https://doi.org/10.1016/j.comnet.2021.108441, https://doi.org/10.
1016/j.comnet.2021.108441.

[11] A. Jagannath and J. Jagannath, Multi-task Learning Approach for Automatic Modulation

https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://arxiv.org/abs/https://doi.org/10.1137/16M1080173
https://arxiv.org/abs/https://doi.org/10.1137/16M1080173
https://doi.org/10.1109/ICCV.2019.00147
https://proceedings.mlr.press/v80/chen18a.html
https://keras.io
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1016/j.comnet.2021.108441
https://doi.org/10.1016/j.comnet.2021.108441
https://doi.org/10.1016/j.comnet.2021.108441

ALTERNATE TRAINING OF SHARED AND TASK-SPECIFIC PARAM.S FOR MTNNS 25

and Wireless Signal Classification, in Proc. of IEEE International Conference on Commu-
nications (ICC), Montreal, Canada, June 2021.

[12] A. Jagannath and J. Jagannath, Multi-task Learning Approach for Automatic Modula-
tion and Wireless Signal Classification, IEEE International Conference on Communi-
cations, (2021), https://doi.org/10.1109/ICC42927.2021.9500447, https://arxiv.org/abs/
2101.10254.

[13] I. Kokkinos, Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[14] H. Liu, M. Palatucci, and J. Zhang, Blockwise coordinate descent procedures for the multi-
task lasso, with applications to neural semantic basis discovery, in Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09, New York, NY, USA,
2009, Association for Computing Machinery, p. 649–656, https://doi.org/10.1145/1553374.
1553458, https://doi.org/10.1145/1553374.1553458.

[15] S. Liu and L. Vicente, The stochastic multi-gradient algorithm for multi-objective op-
timization and its application to supervised machine learning, Annals of Operations
Research, (2021), https://doi.org/10.1007/s10479-021-04033-z, https://doi.org/10.1007/
s10479-021-04033-z.

[16] S. Liu and L. Vicente, Accuracy and fairness trade-offs in machine learning:
a stochastic multi-objective approach, Computational Management Science, 19
(2022), pp. 513–537, https://doi.org/10.1007/s10287-022-00425-z, https://doi.org/10.
1007/s10287-022-00425-z.

[17] S. Liu and L. Vicente, Convergence Rates of the Stochastic Alternating Algorithm for
Bi-Objective Optimization, Journal of Optimization Theory and Applications, 198
(2023), pp. 165–186, https://doi.org/10.1007/s10957-023-02253-w, https://doi.org/10.
1007/s10957-023-02253-w.

[18] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, Performance measures for
information extraction, in Proceedings of DARPA Broadcast News Workshop, 1999.

[19] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, Attentive single-tasking of multiple tasks,
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 1851–1860, https://doi.org/10.1109/CVPR.2019.00195.

[20] Q. Mercier, F. Poirion, and J. Désidéri, A stochastic multiple gradient descent algorithm,
European Journal of Operational Research, 271 (2018), pp. 808–817, https://doi.org/https:
//doi.org/10.1016/j.ejor.2018.05.064, https://www.sciencedirect.com/science/article/pii/
S0377221718304831.

[21] A. Navon, A. Shamsian, I. Achituve, H. Maron, K. Kawaguchi, G. Chechik, and E. Fe-
taya, Multi-Task Learning as a Bargaining Game, in Proceedings of the 39th International
Conference on Machine Learning, vol. 162, 2022, https://doi.org/https://doi.org/10.48550/
arXiv.2202.01017.

[22] L. Pascal, P. Michiardi, X. Bost, B. Huet, and M. A. Zuluaga, Improved optimization
strategies for deep Multi-Task Networks, arXiv preprint, (2021), https://doi.org/https:
//doi.org/10.48550/arXiv.2109.11678.

[23] H. Robbins and D. Siegmund, A Convergence Theorem for Non Negative Almost Su-
permartingales and some Applications, in Optimizing Methods in Statistics, J. S.
Rustagi, ed., Academic Press, 1971, pp. 233–257, https://doi.org/https://doi.org/
10.1016/B978-0-12-604550-5.50015-8, https://www.sciencedirect.com/science/article/pii/
B9780126045505500158.

[24] G. Strezoski, N. v. Noord, and M. Worring, Many task learning with task routing, in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

[25] M. Teichmann, M. Weber, M. Zollner, R. Cipolla, and R. Urtasun, Multinet: Real-time
joint semantic reasoning for autonomous driving, (2018), https://doi.org/10.17863/CAM.
26778, https://www.repository.cam.ac.uk/handle/1810/279403.

[26] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, and
L. Van Gool, Multi-task learning for dense prediction tasks: A survey, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 44 (2022), pp. 3614–3633, https:
//doi.org/10.1109/TPAMI.2021.3054719.

[27] Y. Zhang and Q. Yang, A survey on multi-task learning, IEEE Transactions on Knowledge
and Data Engineering, 34 (2022), pp. 5586–5609, https://doi.org/10.1109/TKDE.2021.
3070203.

https://doi.org/10.1109/ICC42927.2021.9500447
https://arxiv.org/abs/2101.10254
https://arxiv.org/abs/2101.10254
https://doi.org/10.1145/1553374.1553458
https://doi.org/10.1145/1553374.1553458
https://doi.org/10.1145/1553374.1553458
https://doi.org/10.1007/s10479-021-04033-z
https://doi.org/10.1007/s10479-021-04033-z
https://doi.org/10.1007/s10479-021-04033-z
https://doi.org/10.1007/s10287-022-00425-z
https://doi.org/10.1007/s10287-022-00425-z
https://doi.org/10.1007/s10287-022-00425-z
https://doi.org/10.1007/s10957-023-02253-w
https://doi.org/10.1007/s10957-023-02253-w
https://doi.org/10.1007/s10957-023-02253-w
https://doi.org/10.1109/CVPR.2019.00195
https://doi.org/https://doi.org/10.1016/j.ejor.2018.05.064
https://doi.org/https://doi.org/10.1016/j.ejor.2018.05.064
https://www.sciencedirect.com/science/article/pii/S0377221718304831
https://www.sciencedirect.com/science/article/pii/S0377221718304831
https://doi.org/https://doi.org/10.48550/arXiv.2202.01017
https://doi.org/https://doi.org/10.48550/arXiv.2202.01017
https://doi.org/https://doi.org/10.48550/arXiv.2109.11678
https://doi.org/https://doi.org/10.48550/arXiv.2109.11678
https://doi.org/https://doi.org/10.1016/B978-0-12-604550-5.50015-8
https://doi.org/https://doi.org/10.1016/B978-0-12-604550-5.50015-8
https://www.sciencedirect.com/science/article/pii/B9780126045505500158
https://www.sciencedirect.com/science/article/pii/B9780126045505500158
https://doi.org/10.17863/CAM.26778
https://doi.org/10.17863/CAM.26778
https://www.repository.cam.ac.uk/handle/1810/279403
https://doi.org/10.1109/TPAMI.2021.3054719
https://doi.org/10.1109/TPAMI.2021.3054719
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203

	Introduction
	Contribution

	Multiple-Task Neural Networks
	Loss Differentiation and Multiple Tasks

	Alternate Training
	Simple Alternate Training
	Alternate training through the epochs

	Numerical Experiments
	Experiments on Synthetic Data
	Experiments on Real-World Data

	Conclusion
	Appendix A. Implemented ATE-SG
	Acknowledgements
	References

