
Exploiting Symmetries in Optimal Quantum Circuit Design

Frank de Meijer ∗ Dion Gijswijt † Renata Sotirov ‡

Abstract

A physical limitation in quantum circuit design is the fact that gates in a quantum system
can only act on qubits that are physically adjacent in the architecture. To overcome this
problem, SWAP gates need to be inserted to make the circuit physically realizable. The nearest
neighbour compliance problem (NNCP) asks for an optimal embedding of qubits in a given
architecture such that the total number of SWAP gates to be inserted is minimized. In this
paper we study the NNCP on general quantum architectures. Building upon an existing linear
programming formulation, we show how the model can be reduced by exploiting the symmetries
of the graph underlying the formulation. The resulting model is equivalent to a generalized
network flow problem and follows from an in-depth analysis of the automorphism group of
specific Cayley graphs. As a byproduct of our approach, we show that the NNCP is polynomial
time solvable for several classes of symmetric quantum architectures. Numerical tests on various
architectures indicate that the reduction in the number of variables and constraints is on average
at least 90%. In particular, NNCP instances on the star architecture can be solved for quantum
circuits up to 100 qubits and more than 1000 quantum gates within a very short computation
time. These results are far beyond the computational capacity when solving the instances
without the exploitation of symmetries.

Keywords: Quantum computing, nearest neighbour constraints, symmetry reduction, Cayley graphs,
fixed point subspace, generalized network flow problem

1 Introduction

The most commonly used model for quantum computation is that of the gated quantum computer,
where a calculation is performed by executing so-called quantum circuits. A quantum circuit acts
on multiple quantum bits, i.e., qubits, which are the physical particles embedded in a quantum
system. Whereas classical bits exclusively take the Boolean values zero or one, qubits can be in
a superposition state, which upon measurement are displayed as zero or one with a certain prob-
ability. A quantum circuit sequentially acts on the qubits via quantum gates, which are unitary
transformations that sequentially adjust the state of one or more qubits to perform an operation.
Quantum circuits extend on the gate model for classical computing, and hence, a quantum com-
puter can perform any computation that a classical computer can perform [50]. However, based on
quantum phenomena such as superposition and entanglement, a quantum system is able to perform
a much broader spectrum of operations. For an extensive overview of the advances and applications
of quantum computing, see e.g., [47].

Given the current state of technology, most physical implementations of quantum gates operate
on only one or two qubits at a time [28, 50, 54]. In this setting, gates that act on more than two qubits
therefore need to be realized as a sequence of gates of size at most two, which, fortunately, is possible
for any quantum gate [50]. For instance, the set of one-qubit gates and two-qubit controlled-NOT
gates is universal [4], meaning that this set is sufficient to perform any quantum computation.

∗Corresponding author. Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands,
f.j.j.demeijer@tudelft.nl

†Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands,
d.c.gijswijt@tudelft.nl

‡CentER, Department of Econometrics and OR, Tilburg University, The Netherlands, r.sotirov@uvt.nl

1

The qubits in a quantum system are physically embedded in a certain design, i.e., the quantum
architecture. This architecture is commonly represented as a coupling graph, where the vertices
represent the qubits and an edge is drawn between two qubits whenever the qubits can communicate
in the quantum system. With “communicate”, we refer to the possibility to apply a gate to the
two qubits and consequently affect their simultaneous state. Among the special coupling graphs
considered in the literature are the linear array, see e.g., [6, 9, 30, 35, 49], the two-dimensional grid,
see e.g., [1, 5, 10], the three-dimensional grid [16], the IBM QX architecture, see e.g., [65], but also
general coupling graphs [7, 58, 63, 40, 11, 32].

A physical limitation of the architecture is that two-qubit gates can only be applied when the
qubits are physically adjacent to each other in the coupling graph. These restrictions are known
as nearest neighbour constraints and have been subject of interest in the design of quantum real-
izations of specific circuits, see e.g., [18], or the design of quantum architectures itself, see [49] and
the references therein. Instead of research on quantum realizations that comply with the nearest
neighbour constraints, we can also disregard these constraints at first and alter existing quantum
circuits to make them feasible, which will be the followed approach in this paper.

A quantum circuit can be made compliant with respect to the nearest neighbour constraints by
the insertion of SWAP gates. A SWAP gate acts on two adjacent qubits by interchanging their
location in the coupling graph1. If the coupling graph is connected, any quantum circuit can be
made compliant by the insertion of a finite number of SWAP gates and there are often many ways to
do so. However, due to a qubit’s interaction with its environment [13], quantum systems currently
still suffer from physical instability of qubit states after some period of time. This raises the desire
for quantum circuits with as few gates as possible. We therefore prefer to add the minimum number
of SWAP gates in order to make a circuit compliant.

Given a quantum circuit and a coupling graph, the nearest neighbour compliance problem
(NNCP) asks for an optimal sequential allocation of the qubits over the quantum architecture such
that the total number of SWAP gates to be inserted is minimized. With “sequential”, we refer to the
decision variables to not only concern the initial allocation, but also the actual SWAP operations
that take place over time. The NNCP was proven to be NP-hard via a reduction from the token
swapping problem [58].

Most research on the NNCP has been on heuristic methods, such as greedy methods [1, 30],
harmony search [1], optimal linear arrangement [52] and receding horizon methods [30, 35, 55, 67].
Exact approaches to tackle the NNCP include exhaustive search [12, 30], explicit cost enumera-
tion [68] and linear programming (LP) based methods on the adjacent transposition graph [46, 48].
All these methods embrace an implicit factorial scaling in the number of qubits, due to the inherited
total number of possible assignments of the qubits. Recently, also polynomial sized models have
been considered that are based on mixed-integer linear programming [49, 62]. The construction
considered in [49] is based on the linear array coupling graph, while the models in [62] consider
ordering problems for distributed quantum computing. Other research focuses on a related version
of the NNCP, where an initial qubit ordering has to be realized that minimizes the (approximated)
number of SWAP operations, without actually considering the exact insertions into the quantum
circuit, see [56, 37, 36].

Building upon the LP formulation considered in [46, 48], a main feature of our approach con-
cerns the exploitation of symmetries in the model. The literature on symmetry reduction methods
in mathematical optimization is extensive, and we refer the reader to [41, 45] for comprehensive
overviews in this direction. It is well-known that symmetries in integer linear programming (ILP)
problems lead to poor behaviour of numerical algorithms, due to the costly duplication of com-
putational effort in branching approaches. To reduce this negative effect, symmetries need to be
broken, e.g., by perturbation, symmetry-breaking inequalities (e.g., [44]) or specialized branching
techniques (e.g., [57]). The literature on symmetry reduction for integer linear programs (ILPs) can
be distinguished between problem-based approaches, whose symmetry groups are known a priori
(see e.g., [39]), or generic techniques. The latter class on one hand contains methods based on

1Strictly speaking, a SWAP gate does only interchange the state of the involved qubits, while the actual hardware
entities remain unchanged in the architecture.

2

branching tree reductions, such as isomorphism pruning [42, 43] and orbital branching [51]. Alter-
native methods mainly consider symmetry-handling constraints to restrict the feasible region of an
optimization problem by eliminating symmetric solutions. Two well-known streams in this direction
are the utilization of orbitopes [34] and fundamental domains [21]. Branching tree reductions and
symmetry-handling constraints can also be combined, see e.g., [14].

When considering symmetry reduction methods for linear programs, a major research line con-
siders the study of symmetric polyhedra, see [45, Section 6] and the references therein. Another
research line considers the exploitation of symmetries in the simplex algorithm [60, 61]. Bödi et
al. [8] consider the exploitation of symmetries in linear programs by restricting to the subspace of
fixed points under a linear map induced by the symmetries in the program. This approach can be
generalized to convex programs and is closely related to the invariant-based symmetry reduction
approaches applied to conic and semidefinite programs, see e.g., Gatermann and Parrilo [26], to
which our reduction method also belongs.

Main results and outline

In this paper we consider the nearest neighbour compliance problem on general coupling graphs.
Following the linear programming (LP) formulation derived in [46], we analyse the group symmetry
of the underlying graph, which is a sequence of connected Cayley graphs. By exploiting these
symmetries, we reduce the LP model in the number of variables and constraints, leading to a
symmetry-reduced formulation for solving the NNCP. We show the theoretical and practical strength
of our approach for several classes of symmetric coupling graphs for which the reduction is most
significant, namely the graphs that embrace a large automorphism group.

The LP formulation of [46] can be viewed as a single-pair shortest path problem on a directed
graph that we refer to as the graph X = (V,A). As a first step in our approach, we consider the
automorphism group of the subgraphs of X. Each subgraph is a Cayley graph of the symmetric
group Sn generated by the edges in the coupling graph of the quantum architecture. We derive the full
automorphism group of such Cayley graphs in the case that it is normal, and review some conditions
on the coupling graph under which normality holds. Afterwards, we extend these automorphism
results of the subgraphs to derive the automorphism group of X. In particular, we derive an explicit
group description of a subgroup GX of the automorphism group ofX, which is the full automorphism
group of X when normality holds. We also study the orbit and orbital structure of the group action
of GX on X. The results on the group structure of these Cayley graphs are in itself interesting, as
such graphs are of main importance in interconnection networks [25, 29].

By averaging over each orbital of the action of GX on X via the Reynolds operator, we show how
the LP formulation can be reduced following the approach of [8]. We show that the resulting reduced
LP formulation is equivalent to a generalized network flow problem on an auxiliary graph following
from our construction. For symmetric coupling graphs, this reduced LP formulation is significantly
smaller in size. As a byproduct of our approach, we show that the NNCP is polynomial time solvable
for coupling graph whose automorphism group scales factorially in the number of qubits, e.g., the
star graph or complete bipartite graphs with one of the sizes fixed. The construction of the reduced
LP formulation follows completely from the algebraic analysis of X and does not rely on the use of
any external algebraic software.

Although the ingredients of our approach are presented generally, we explicitly show how the
reduced LP can be constructed for three special graph types: the cycle graph, the star graph and
the biclique graph. For each of these classes, we show how the orbital structure unfolds by analyzing
a specific subgroup of the automorphism group of the coupling graphs.

Finally, we test our symmetry-reduced formulation on real and randomly generated quantum
circuits defined on the above-mentioned coupling graphs. Our numerical tests confirm that the
effort spent in the algebraic analysis pays off, as computation times to solve an instance are several
orders of magnitude smaller compared to the nonreduced model. Whereas the model from [46] can
only solve instances up to 8 qubits, the largest instances we solve contain up to 100 (resp. 40) qubits
and several hundreds of quantum gates on the star (resp. biclique) coupling graph. Observe that
such instances are far out of reach for the nonreduced model, as this would require the use of at

3

least 100! ≈ 9.33 · 10157 constraints and even more variables.

This paper is structured as follows. Section 2 formally introduces the NNCP and reviews the
shortest path formulation of [46]. In Section 3 we analyse the automorphism group of the graph
underlying the formulation, as well as its orbit and orbital structure. These algebraic properties are
exploited in Section 4, where we present our symmetry-reduced NNCP formulation. In Section 5 we
apply our approach to several specific types of coupling graphs. Computational results are discussed
in Section 6.

Notation

A directed graph is given by a pair (V,A), where V is a vertex set and A ⊆ V × V an arc set.
For i ∈ V and A′ ⊆ A, we let δ+(i, A′) (resp. δ−(i, A′)) denote the set of arcs in A′ that leave
(resp. enter) vertex i. In case A′ = A, we just write δ+(i) (resp. δ−(i)).

The set of integers {1, . . . , k} is denoted by [k]. For a subset S of a finite set T , we denote
by 1S ∈ {0, 1}T the indicator vector of S in T .

For a group G, we denote by idG (or simply id) its identity element. When G acts on a set X,
we denote by Orb(x) := {g(x) : g ∈ G} ⊆ X the orbit of x ∈ X under the action of G. The set of
orbits of X under G is denoted by the quotient X/G. For any g ∈ G, we let Xg := {x : g(x) = x}
be the set of fixed points of g.

The symmetric group on a finite set Y is denoted by Sym(Y). When Y = [n], its symmetric
group is shortened to Sn. A permutation τ ∈ Sn can be written in one-line notation, i.e., as
an ordered array (τ(1), τ(2), . . . , τ(n)) of images of {1, . . . , n} under τ . Alternatively, τ can be
written in the usual cycle notation of permutations. Permutations that only consist of a 2-cycle
are called transpositions. For S ⊆ [n] and τ ∈ Sn, we define the sets τ(S) := {τ(s) : s ∈ S}
and τ−1(S) := {τ−1(s) : s ∈ S}. Moreover, we let Sn(S) := {τ ∈ Sn : τ(S) = S} denote the
setwise stabilizer of S under Sn.

2 Nearest neighbour compliance problem

A given quantum circuit can be made feasible with respect to the adjacent interaction constraints
by inserting SWAP gates. Although these do not interfere with the functionality of the quantum
circuit, the total number of gates is favoured to be as small as possible. The nearest neighbour
compliance problem (NNCP) aims at finding an embedding of the qubits over a given architecture
such that the number of SWAP gates needed to make the final circuit feasible with respect to the
adjacent interaction constraints is minimized.

In this section we formally introduce the nearest neighbour compliance problem as a shortest
path problem.

2.1 Mathematical formulation of the NNCP

We make two model assumptions about the quantum circuits under consideration. First, quantum
gates that act on a single qubit always comply with the adjacent interaction constraints and are
therefore not taken into consideration. Second, it only makes sense to talk about adjacency in the
context of two-qubit quantum gates. If a quantum gate acts on more than two qubits, we first
decompose it into two-qubit gates. This is always possible [50] and there exist a large variety of
ways for doing this. Throughout this paper, we assume without loss of generality that quantum
circuits consist of a sequence of two-qubit gates.

Let Q = [n] denote the set of qubits of the quantum system. The qubits need to be embedded
in a certain topology, that we refer to as the architecture of the quantum system. This architecture
is fixed and can be modeled as a graph (L,E). Here L = [n] denotes a set of physical locations
and E ⊆ L(2) is the adjacency structure of the architecture. That is, if {i, j} ∈ E, then locations i
and j are physically adjacent to each another and can therefore directly share information. The
graph is denoted as the coupling graph of the quantum system and denoted by Coup(E) := (L,E).

4

We assume that (L,E) is connected, which implies that all pairs of locations can indirectly share
information.

Each qubit in Q needs to be assigned to a physical location in L. A bijection τ : L→ Q is called
a qubit order. To present a qubit order, we use one-line notation with respect to the images in Q.
For example, the order

τ = (τ(1), τ(2), τ(3), τ(4)) = (2, 3, 1, 4)

corresponds to the assignment where qubit 2 is on location 1, qubit 3 on location 2, qubit 1 on
location 3 and qubit 4 on location 4. The set of all qubit orders on n qubits is equal to Sn.

A SWAP gate interchanges the qubits on two locations in the embedding. It can also be modeled
as an element σ ∈ Sn, where σ is a transposition. Using cycle notation, the SWAP gate σ = (i j)
applied on the qubit order τ interchanges the qubits τ(i) and τ(j). Applying this SWAP gate can
be seen as a right action of σ on Sn, i.e.,

τ ◦ σ = (τ(1), τ(2), . . . , τ(i), . . . , τ(j), . . . , τ(n)) ◦ (i j)
= (τ(1), τ(2), . . . , τ(j), . . . , τ(i), . . . , τ(n)),

for all τ ∈ Sn. To simplify notation, we omit the ◦ in group actions and just write τσ in the sequel.

Remark 2.1. Although both elements of Sn, τ represents a qubit order, while σ represents a SWAP
gate. To discriminate between these objects, we always use one-line notation for qubit orders and
cycle notation for SWAP gates throughout the paper.

A SWAP gate can only be applied to qubits on locations that are adjacent in Coup(E). Whenever
there is an edge {i, j} ∈ E, the SWAP gate (i j) acts on adjacent locations. Let

T := {(i j) ∈ Sn : {i, j} ∈ E} (1)

denote the set of transpositions that correspond to a SWAP gate in the quantum system.
Given two qubit orders τ1, τ2 ∈ Sn, we are interested in the minimum number of SWAP gates

that need to be applied to τ1 to obtain τ2 by only using SWAP gates from T . Let JT : Sn × Sn → Z+

be defined as

JT (τ1, τ2) := min{k : τ2 = τ1σ1σ2 . . . σk, σ1, . . . , σk ∈ T},

which forms a metric on all qubit orders and depends on the quantum architecture T . Observe that
this metric is left-invariant, i.e., JT (τ1, τ2) = JT (πτ1, πτ2) for all π ∈ Sn, implying that JT (τ1, τ2)
equals the length of the shortest sequence of transpositions of T needed to generate τ−1

2 τ1. It is
known that finding such minimum-length sequence is in general PSPACE -complete [33]. For special
types of coupling graphs, however, the metric JT is computationally tractable, e.g., when Coup(E)
is a path or the complete graph. For these cases, JT coincides with the Kendall tau distance and
the Cayley distance, respectively.

Let i, j ∈ Q be two qubits such that i ̸= j. Then the unordered pair gij = {i, j} is a two-qubit
quantum gate that acts on qubits i and j. Whenever the specific qubits on which the gate acts are ir-
relevant, we sometimes omit the subscripts. A finite sequence C = (g1, . . . , gm) of gates g1, . . . , gm is
called a gate sequence of sizem. Given a set of qubits Q and a gate sequence C, the tuple Γ = (Q,C)
is called a quantum circuit.

We say that a qubit order τ complies with a gate gij if qubits i and j are adjacent in τ with
respect to the coupling graph Coup(E), i.e., if τ−1(gij) = {τ−1(i), τ−1(j)} ∈ E. We now formulate
the NNCP.

Definition 2.2 (NNCP). Let Γ = (Q,C) be a quantum circuit with n qubits and m gates, and let
Coup(E) = (L,E) be the coupling graph of the underlying architecture. Then, the nearest neighbor
compliance problem asks for a sequence of qubit orders τk, k ∈ [m], each one corresponding to an

order prior to applying a gate of C, such that
∑m−1

k=1 JT (τ
k, τk+1) is minimized and such that τk

complies with gk for all k ∈ [m].

5

The NNCP as presented in Definition 2.2 is known to be NP-hard in general [58].
We end this section by introducing the notion of the so-called gate graph, which captures the

underlying qubit dependencies imposed by the gates in the circuit.

Definition 2.3. Let Γ = (Q,C) be a quantum circuit. The gate graph (Q,U) is an undirected graph
that has vertex set Q and edge set U = {g : g ∈ C}.

The gate graph (Q,U) will be exploited in Section 3.2.

2.2 The NNCP as a shortest path problem

In this section we show how the NNCP can be modeled as a shortest path problem in a directed
graph following the construction of [46, 48].

Let an instance of the NNCP as defined in Section 2.1 be given. Of key importance in the
reduction to a shortest problem is the notion of a Cayley graph.

Definition 2.4 (Cayley graph). Let G be a finite group and let S be a subset of G such that idG /∈ S
and S = S−1 := {s−1 : s ∈ S}. The Cayley graph Cay(G,S) on G with respect to S is defined as
the (directed) graph with vertex set G and arc set {(g, gs) : g ∈ G, s ∈ S}.

Observe that Cay(G,S) as in Definition 2.4 contains an arc if and only if it also contains the
reversed arc. Although this suggests that any Cay(G,S) is undirected, we stick to the setting of
two reversed directed arcs, since we will employ the Cayley graphs as subgraphs of a larger directed
graph.

Let H := Cay(Sn, T), where T is given by (1). More precisely, the vertex and arc set of H are
given by V (H) := Sn and A(H) := {(τ, τσ) : τ ∈ Sn, σ ∈ T}, respectively. Each vertex in V (H)
represents a qubit order, while an arc in A(H) represents a SWAP gate that translates a qubit order
into another qubit order with respect to the coupling graph. Now, we define the subgraphs Hk

for k ∈ [m] as disjoint copies of H, one for each gate in the circuit.
The m subgraphs Hk are merged to obtain a graph X = (V,A). The vertex set V of X consists

of the union of all V k, k ∈ [m], as well as a source s and sink t, i.e., V = {s} ∪ V 1 ∪ · · · ∪ V m ∪ {t}.
Since the subgraphs H1, . . . ,Hm are identical, we use superscripts to indicate to which subgraph
a vertex belongs. For example, τk and τk+1 correspond to the same qubit order in subgraph k
and k + 1, respectively.

The arc set A of X contains the union of all Ak, k ∈ [m]. Moreover, the arcs between different
subgraphs are introduced by the following sets:

D0 := {(s, τ1) : τ1 ∈ V 1}
Dk := {(τk, τk+1) : τk ∈ V k, τk+1 ∈ V k+1, (τk)−1(gk) ∈ E}, k ∈ [m− 1]

Dm := {(τm, t) : τm ∈ V m, (τm)−1(gm) ∈ E}.
(2)

These sets can be interpreted as follows. The set D0 contains an arc from s to all nodes in H1.
For all k ∈ [m − 1], Dk contains the connecting arcs from Hk to Hk+1. Suppose the gate gk

acts on qubits i and j. Then we include an arc from a qubit order τk in Hk to the same qubit
order τk+1 in Hk+1 if and only if i and j are adjacent in τk with respect to Coup(E). That is,
whenever (τk)−1(gk) = {(τk)−1(i), (τk)−1(j)} ∈ E. Similarly, Dm contains all arcs from τm with
this property to the sink node t. Now, the arc set A of X is given by

A = A1 ∪ · · · ∪Am ∪D0 ∪D1 ∪ · · · ∪Dm.

We set the cost of each arc in Ak, k ∈ [m], equal to one, as traversing these arcs corresponds to
applying one SWAP gate. The cost of the arcs in Dk, k = 0, . . . ,m, is equal to zero, as no SWAP
gates are applied when moving from a subgraph to the next.

This construction implies the following result.

Theorem 2.5 ([48]). Any (s, t)-path in X corresponds to a sequence (τ1, . . . , τm) of qubit orders
that all comply with the adjacent interaction constraints. A shortest (s, t)-path in X corresponds to
an optimal solution of the NNCP.

6

There are many algorithms in the literature for solving the shortest path instance, e.g., Dijkstra’s
algorithm with Fibonacci heaps [20]. Alternatively, we can solve it as a linear programming (LP)
problem. For all k ∈ [m] and e ∈ Ak, let xe denote a variable that is one if arc e is used on a path,
and zero otherwise. Similarly, for all k ∈ {0} ∪ [m] and e ∈ Dk, let ye denote a variable that is one
if arc e is used on a path, and zero otherwise. Then the shortest (s, t)-path in X can be found by
solving the following LP:

min

m∑
k=1

∑
e∈Ak

xe

s.t.
∑
e∈D0

ye = 1,
∑

e∈Dm

ye = 1

∑
e∈δ−(τ,Dk−1)

ye +
∑

e∈δ−(τ,Ak)

xe =
∑

e∈δ+(τ,Dk)

ye +
∑

e∈δ+(τ,Ak)

xe ∀τ ∈ V k, k ∈ [m]

0 ≤ xe ≤ 1 ∀e ∈ Ak, k ∈ [m],

0 ≤ ye ≤ 1 ∀e ∈ Dk, k ∈ {0} ∪ [m].

(SPP)

3 Symmetries in X = (V,A)

The graph X constructed in Section 2.2 contains Θ(mn!) vertices and Θ(|E|mn!) arcs. The bot-
tleneck in solving the NNCP to optimality is clearly the factorial scaling in the number of qubits.
Fortunately, for many structured quantum system architectures, the problem can be reduced by
exploiting the symmetries in X. In this section we study these symmetries in terms of the automor-
phism group of X.

In Section 3.1 and 3.2 we study the automorphism group of Cayley graphs generated by transpo-
sitions and the automorphism group of X, respectively. In Section 3.3 we study the orbit and orbital
structure induced by this group action on X. The results in this section are the key ingredients of
the symmetry reduction explained in Section 4.

3.1 Automorphism group of Aut(Cay(Sn, T))

For a directed graph X with vertex set V and arc set A, a permutation ρ ∈ Sym(V) is called an
automorphism of X if (ρ(i), ρ(j)) ∈ A if and only if (i, j) ∈ A. We also say that such ρ acts on X.
The automorphism group of X is the group of all automorphisms of X and is denoted by Aut(X).

In order to determine the automorphism group of the graph X introduced in Section 2.2, we
start by considering the automorphism group of the subgraphs Hk, k ∈ [m]. Recall that all Hk are
identical and equal to Cay(Sn, T), where T is a set of transpositions, see (1). Hence, the goal of this
subsection is to study Aut(Cay(Sn, T)).

There exist several works in the literature on the automorphism group of Cayley graphs generated
by transpositions. As indicated by Feng [17], we can show that Sn acts on Cay(Sn, T) by left
multiplication. That is, for any a ∈ Sn the mapping τ 7→ aτ defines an automorphism of Cay(Sn, T).
All such automorphisms form a subgroup of Aut(Cay(Sn, T)). We can also show that the group
Aut(Coup(E)) acts on Cay(Sn, T) by right multiplication via the mapping τ 7→ τb−1, which is
an automorphism of Cay(Sn, T) for all b ∈ Aut(Coup(E)). To verify this, let (τ1, τ2) be an arc
in Cay(Sn, T). Then τ2 = τ1σ1 for some σ1 ∈ T . The image of this arc under the action of an
element b ∈ Aut(Coup(E)) is

(τ1b
−1, τ2b

−1) = (τ1b
−1, τ1σ1b

−1) = (τ1b
−1, τ1b

−1bσ1b
−1).

It is well-known that if a permutation maps i to j, then the conjugate of this permutation by b
maps b(i) to b(j). Therefore, if σ1 = (i j), then σ2 := bσ1b

−1 = (b(i) b(j)). Since b is an auto-
morphism of Coup(E), σ2 ∈ T , which implies that (τ1b

−1, τ2b
−1) is again an arc of Cay(Sn, T).

7

Since τ 7→ τb−1 is bijective, it follows that Aut(Coup(E)) indeed acts on Cay(Sn, T) by right mul-
tiplication.

We now show how both group actions are combined in order to obtain a subgroup of Aut(Cay(Sn, T)).
Let us define the mapping θ : Sn ×Aut(Coup(E)) → Aut(Cay(Sn, T)) given by

θ(a, b) := (τ 7→ aτb−1). (3)

Indeed, θ(a, b) is the composition of an action by left multiplication by an element a ∈ Sn and a
right multiplication by an element b ∈ Aut(Coup(E)) (in arbitrary order). So, for all (a, b) in its
domain, θ(a, b) is indeed an automorphism of Cay(Sn, T). We can show that the map θ is a group
homomorphism that is injective.

Theorem 3.1. For n ≥ 3, the mapping θ is a group homomorphism from Sn × Aut(Coup(E)) to
Aut(Cay(Sn, T)) that is injective.

Proof. We start by showing that θ is indeed a group homomorphism. Let (a1, b1), (a2, b2) ∈ Sn ×
Aut(Coup(E)). Then, for all τ ∈ Sn:

θ ((a1, b1)(a2, b2)) (τ) = θ ((a1a2, b1b2)) (τ) = a1a2τ(b1b2)
−1 = a1a2τb

−1
2 b−1

1

θ((a1, b1))θ((a2, b2))(τ) = θ(a1, b1)(a2τb
−1
2) = a1a2τb

−1
2 b−1

1 .

Hence, θ is a group homomorphism. To prove injectivity, assume that (a1, b1), (a2, b2) ∈ Sn ×
Aut(Coup(E)) are such that θ((a1, b1)) = θ((a2, b2)). Then, a1τb

−1
1 = a2τb

−1
2 for all τ ∈ Sn. In par-

ticular, this must hold for τ = id, from which it follows that a1b
−1
1 = a2b

−1
2 , and hence, a2 = a1b

−1
1 b2.

Substituting this into a1τb
−1
1 = a2τb

−1
2 , yields

a1τb
−1
1 = a1b

−1
1 b2τb

−1
2 ∀τ ∈ Sn, or equivalently, τb−1

1 b2 = b−1
1 b2τ ∀τ ∈ Sn.

This implies that b−1
1 b2 ∈ Z(Sn) := {g ∈ Sn : gh = hg ∀h ∈ Sn}. It is well-known that the

center Z(Sn) is trivial for n ≥ 3, hence b1 = b2. From this, it simply follows that also a1 = a2,
hence θ is injective.

Theorem 3.1 shows that the image of Sn×Aut(Coup(E)) under θ is a subgroup of Aut(Cay(Sn, T)),
which is isomorphic to Sn ×Aut(Coup(E)) by the injectivity of θ.

The map θ is in general not a bijection, which means that Sn × Aut(Coup(E)) is not the full
automorphism group of Cay(Sn, T). However, in many of the cases that are interesting for our
application, the subgroup turns out to be the full automorphism group. We now present a series of
sufficient conditions for this to be true.

We call the Cayley graph Cay(Sn, T) normal if the subgroup of all automorphisms by left mul-
tiplication by elements of Sn, i.e., {(τ 7→ aτ) : a ∈ Sn}, is a normal subgroup of Aut(Cay(Sn, T)).

Theorem 3.2 ([24]). The graph Cay(Sn, T) is normal if and only if Aut(Cay(Sn, T)) ∼= Sn ×
Aut(Coup(E)).

The following theorem states some known sufficient conditions for Cay(Sn, T) to be (non)normal.
Recall that the girth of a graph is the length of its shortest cycle. Trees have infinite girth.

Theorem 3.3 ([22, 23]). The graph Cay(Sn, T) is normal if Coup(E) is a graph with girth at least 5.
The graph Cay(Sn, T) is nonnormal if Coup(E) is the 4-cycle C4 or the complete graph Kn.

Proof. The first part of the statement was proven by Ganesan [22], although normality in case
Coup(E) is a tree was first shown by Feng [17]. The nonnormality results implied by Coup(E)
being C4 or Kn are obtained by Ganesan [22] and Ganesan [23], respectively.

In [25] it is conjectured that the two latter cases from Theorem 3.3 are the only connected coupling
graphs for which its corresponding Cayley graph Cay(Sn, T) is nonnormal. If this conjecture is true,
it follows from Theorem 3.2 that Sn ×Aut(Coup(E)) is the full automorphism group for almost all
quantum architectures. In case Coup(E) is C4 or Kn, the automorphism group of Cay(Sn, T) is
known, see [22, Section 3] and [23, Theorem 1.1], respectively.

8

3.2 Automorphism group of X

Now that we established either the full automorphism group of Cay(Sn, T) or a subgroup of it,
we focus on the automorphism group of the entire graph X. Indeed, we need to take the arc
structure in-between the subgraphs Hk into account. We start by showing how these arcs restrict
the automorphism group of a single subgraph, after which we combine these results to obtain Aut(X).

Each Hk corresponds to a gate gk acting on two qubits in Q. The set of outgoing arcs Dk

consists of arcs leaving qubit orders τ where τ−1(gk) ∈ E, see (2). Since this arc structure needs
to be preserved, the automorphisms of interest must setwise fix the qubit orders with this property.
For all k ∈ [m], let

F k := {τ ∈ Sn : τ−1(gk) ∈ E}. (4)

Instead of the automorphism group of Cay(Sn, T), we are only interested in its subgroup that setwise
fixes F k. That is,

Aut(Cay(Sn, T), F k) :=
{
ρ ∈ Aut(Cay(Sn, T)) : ρ(F k) = F k

}
.

For each S ⊆ [n], let Sn(S) = {τ ∈ Sn : τ(S) = S}, which is clearly a subgroup of Sn. Now, if
Coup(E) = Kn, it follows that F

k = Sn and Aut(Cay(Sn, T), F k) = Aut(Cay(Sn, T)). The following
results establish a characterization of Aut(Cay(Sn, T), F k) when Coup(E) ̸= Kn.

Theorem 3.4. Let Coup(E) be connected. Aut(Cay(Sn, T), F k) has a subgroup that is isomorphic
to Sn(gk)×Aut(Coup(E)). If Cay(Sn, T) is normal, then this subgroup equals Aut(Cay(Sn, T), F k).

Proof. Let θ be the group homomorphism defined in (3). We now consider its restriction to the sub-
group Sn(gk)×Aut(Coup(E)), which we denote by θr. Then its image θr(Sn(gk)×Aut(Coup(E)))
is clearly a subgroup of Aut(Cay(Sn, T)). Since θ is injective by Theorem 3.1, so is θr, and
thus θr(Sn(gk)×Aut(Coup(E))) is isomorphic to Sn(gk)×Aut(Coup(E)).

We now prove that the set θr(Sn(gk) × Aut(Coup(E))) is a subgroup of Aut(Cay(Sn, T), F k).
Let a ∈ Sn(gk) and b ∈ Aut(Coup(E)). Then θr(a, b) is the mapping τ 7→ aτb−1. Now, let τ ∈ F k,
i.e., τ−1(gk) ∈ E. Using the fact that a(gk) = gk and b maps pairs in E to pairs in E, we obtain

(aτb−1)−1(gk) = (bτ−1a−1)(gk) ∈ E,

which implies aτb−1 ∈ F k. So, θr(a, b) ∈ Aut(Cay(Sn, T), F k), from where it follows that θr(Sn(gk)×
Aut(Coup(E))) is a subgroup of Aut(Cay(Sn, T), F k).

Next, we show that if Cay(Sn, T) is normal, then it is actually the full automorphism group. It
suffices to show that any element in Aut(Cay(Sn, T), F k) is of the form θr(a, b) for some a ∈ Sn(gk)
and b ∈ Aut(Coup(E)). Let ρ ∈ Aut(Cay(Sn, T), F k). By Theorem 3.1, we know that ρ : τ 7→ aτb−1

for some a ∈ Sn, b ∈ Aut(Coup(E)). Suppose a /∈ Sn(gk). Let gk be the pair {i, j}. Then there
exist k1, k2 such that a(k1) = i and a(k2) = j, with {k1, k2} ≠ {i, j}. Now, we select two pairs of
vertices e ∈ E and f /∈ E as follows. If |{k1, k2, i, j}| = 3, take e and f such that they share one
vertex, otherwise take e and f disjoint. The only cases in which such selection is not possible, is
when the subgraph induced by any three distinct vertices is a clique or for each edge in E the graph
resulting from deleting the edge is a clique. The only connected coupling graphs that satisfy either
of these properties are C4 and Kn. However, by Theorem 3.3, Coup(E) cannot be these graphs due
to the normality of the Cayley graph.

Now, take any τ̂ ∈ Sn such that

τ̂(e) = {i, j} and τ̂(f) = {k1, k2}.

As τ̂−1({i, j}) = e ∈ E, it follows that τ̂ ∈ F k. However,

ρ(τ̂)−1({i, j}) = (aτ̂b−1)−1({i, j}) = bτ̂−1a−1({i, j}) = bτ̂−1({k1, k2}) = b(f) /∈ E,

since bmaps non-edges to non-edges in Coup(E). We conclude that ρ(τ̂) /∈ F k, which implies that ρ /∈
Aut(Cay(Sn, T), F k). Since this is a contradiction, each automorphism in Aut(Cay(Sn, T), F k) is
in θr(Sn(gk)×Aut(Coup(E))).

9

LetGk
sub denote the subgroup of Aut(Cay(Sn, T), F k) that is isomorphic to Sn(gk)×Aut(Coup(E)).

Suppose X consists of one subgraph. Then, X has vertex set {s} ∪ V 1 ∪ {t}. One can verify that in
that case id{s} ×G1

sub × id{t} is a subgroup of Aut(X), which is the entire automorphism group in
case Cay(Sn, T) is normal. Now, suppose X has two subgraphs. Then, H1 corresponds to gate g1

and H2 corresponds to a possibly different gate g2. In the sequel, we study how this affects the
automorphism group of X.

To that end, we need two intermediate results. For a set S ⊆ [n], let C(Sn(S)) denote the
centralizer subgroup of Sn(S) which is defined as

C(Sn(S)) = {τ ∈ Sn : τπ = πτ for all π ∈ Sn(S)} . (5)

When n ≤ 2, we know that Sn is abelian and thus C(Sn(S)) = Sn. Otherwise, we show that the
centralizer subgroup is contained in Sn(S).

Lemma 3.5. Let n ≥ 3. Then, we have C(Sn(S)) ⊆ Sn(S) for all S ⊆ [n].

Proof. Since Sn(S) = Sn([n]\S), we may assume that |S| ≥ 2. Now, let τ ∈ C(Sn(S)) and assume for
the sake of contradiction that τ /∈ Sn(S). Then there exist distinct i, j ∈ S such that τ(i) /∈ S. Now,
consider the transposition (i j). We have (i j)τ(i) = τ(i), while τ(i j)(i) = τ(j). Hence, τ and (i j)
do not commute, while (i j) ∈ Sn(S). Therefore, τ /∈ C(Sn(S)), which is a contradiction.

Exploiting Lemma 3.5, we can show the following result for general sets F of the form (4).

Theorem 3.6. Let i, j ∈ [n], n ≥ 3, and let F = {τ ∈ Sn : {τ−1(i), τ−1(j)} ∈ E}. Let a, b ∈ Sn
and suppose that aτb−1 = τ for all τ ∈ F . Then a = b = id.

Proof. Observe that for all τ1, τ2 ∈ F we have:

τ1bτ
−1
1 = a = τ2bτ

−1
2 .

Now, let us fix an edge e ∈ E. We can write any element π ∈ Sn(e) in the form π = τ−1τ ′ for
some τ, τ ′ ∈ F . To verify this, observe that since e ∈ E there exist elements in F that map e
to {i, j}. By combining two such elements τ and τ ′, the composition τ−1τ ′ always maps e back to e.
On the complement [n] \ e we find all possible permutations in F , so we can always find τ, τ ′ ∈ F
such that τ−1τ ′ acts like π on the set [n] \ e.

Let τ1, τ2 ∈ F be such that π = τ−1
1 τ2. Then we know τ1bτ

−1
1 = τ2bτ

−1
2 , which can be rewritten

as π−1bπ = b. As π ∈ Sn(e) was chosen arbitrarily, it follows that π−1bπ = b for all π ∈ Sn(e), and
thus b ∈ C(Sn(e)). We now apply Lemma 3.5 with S = e. Since n ≥ 3, it follows that b ∈ Sn(e).

By repeating this argument for all e ∈ E, it follows that b ∈
⋂

e∈E Sn(e). As Coup(E) is
connected, we conclude that b = id, from which it immediately follows that a = id as well.

Let ρ ∈ Aut(X) where X consists of two subgraphs. The case n ≤ 2 leads to a trivial NNCP
instance. Therefore, we may assume that n ≥ 3. Then the restriction of ρ to H1 is an element
of G1

sub. In particular, each τ1 ∈ F 1 is mapped to ρ(τ1) (here the superscript 1 is added to indicate
that τ1 is a vertex of H1). In order to maintain the arc structure of D1, it follows that the restriction
of ρ to H2 should not only be an element of G2

sub, it should also pointwise fix the elements ρ(τ2)
for all τ2 ∈ F 1. Applying the result of Theorem 3.6, the restriction of ρ to H2 should be the same
automorphism as the restriction to H1. On top of that, this restriction must also be in G2

sub. Thus, ρ
is of the form (id{s}, π, π, id{t}) with π ∈ G1

sub ∩ G2
sub. Extending this argument to larger k, let us

define the following groups:

Gsub :=

m⋂
k=1

Gk
sub

∼=
m⋂

k=1

Sn(gk)×Aut(Coup(E)), (6)

GX :=

{
(id{s}, ρ, . . . , ρ, id{t}) ∈ id{s} ×

m∏
k=1

Aut(Hk)× id{t} : ρ ∈ Gsub

}
. (7)

10

By construction, GX is a subgroup of Aut(X). If follows from the results above that it is the full
automorphism group whenever Cay(Sn, T) is normal.

To get rid of of the intersection in the definition of Gsub, we exploit the notion of the gate
graph (Q,U) of a quantum circuit Γ, see Definition 2.3. If gk1 is in C with gk1 = {i, j}, this implies
that the set {i, j} must be setwise fixed by all permutations in the group Sn(gk1). If also gk2 ∈ C
with gk2 = {j, ℓ}, there is no other option than fixing i, j and ℓ elementwise in the group intersec-
tion Sn(gk1) ∩ Sn(gk2). From this observation, we can partition all qubits in Q based on whether
they belong to a connected component of size one, two or at least three in the gate graph (Q,U).
This leads to the introduction of the fixing pattern of Γ.

Definition 3.7. Let Γ = (Q,C) be a quantum circuit on n qubits. We define the fixing pattern of Γ
as the partition F := {S1, . . . , Sl} of Q such that each Si is either:

• a single qubit contained in a connected component of the gate graph (Q,U) of size at least 3;

• a pair of qubits {i, j} that forms a connected component in the gate graph (Q,U);

• the set of all singletons in the gate graph (Q,U), which we denote by the free set in F .

Moreover, we define f as the size of the free set, p as the number of pairs and c (= n − 2p− f) to
be the number of qubits in a connected component of size at least 3 in (Q,U).

Observe that F can be easily constructed by a scan of the connected components of (Q,U).
The extreme cases are F = {Q} if Γ contains no gates, whereas F = {{1}, . . . , {n}} if (Q,U) is
connected. The group ∩m

k=1Sn(gk) consists of all permutations that setwise fix the elements in F .
To simplify notation, we define

Sn(F) := {a ∈ Sn : a(Si) = Si for all i ∈ [l]}.

We know that Gsub
∼= Sn(F)×Aut(Coup(E)), which implies that

GX
∼= Sn(F)×Aut(Coup(E)). (8)

It follows from a simple counting argument that |Sn(F)| = 2pf !.

3.3 Orbit and orbital structure of group action on X

The elements of GX act on the vertices and arcs of X. In this section we study this group action
in terms of its induced orbit and orbital structure, which will become of key importance in the
symmetry reduction explained in Section 4.

Each automorphism in GX maps the vertex set of X to itself. Given a vertex τ ∈ V , the orbit
of τ is the set of vertices to which τ is mapped to by the elements in GX , i.e., all vertices ρ(τ)
with ρ ∈ GX . The set of orbits forms a partition of V , which is written as the quotient V/GX .

Similarly, GX acts on the arc set A by ρ((τ1, τ2)) = (ρ(τ1), ρ(τ2)) for all ρ ∈ GX . We denote the
set of orbitals by A/GX . Note that arcs in the same orbital have their initial vertices in the same
orbit. It is therefore natural to first understand the orbit structure of the action of GX on V .

Let Orb(τ) denote the orbit of vertex τ ∈ V . It follows from the construction of GX that
Orb(s) = {s} and Orb(t) = {t}. Moreover, the subgraphs Hk, k ∈ [m], are invariant under the
action of GX on X. For that reason, we can restrict ourselves to identifying the orbits within each
subgraph Hk under the action of Gsub. Since all subgraphs are identical, this provides the orbit
description for the entire graph GX .

Similar as before, we use τ to denote a vertex, as each vertex represents a qubit order in Sn. For
all k ∈ [m] and all τ ∈ V k, we obtain

Orb(τ) = {ρ(τ) : ρ ∈ Gsub} =
{
aτb−1 : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
. (9)

11

We also define the stabilizer subgroup with respect to τ under the action of Gsub as

Stab(τ) := {ρ ∈ Gsub : ρ(τ) = τ}
∼=

{
(a, b) ∈ Sn(F)×Aut(Coup(E)) : aτb−1 = τ

}
.

(10)

The condition given in (10) for (a, b) to act as a stabilizer can be rewritten as a = τbτ−1. Thus, a
pair (a, b) ∈ Sn(F)×Aut(Coup(E)) corresponds to an element in Stab(τ) if and only if the permuta-
tion τbτ−1 is in Sn(F) and a = τbτ−1. This implies that for all Si ∈ F we must have τbτ−1(Si) = Si,
or equivalently, b(τ−1(Si)) = τ−1(Si). Hence, b setwise fixes the inverse fixing pattern in F with
respect to τ . Let us define the subgroup Bτ of Aut(Coup(E)) that consists of all such elements, i.e.,

Bτ :=
{
b ∈ Aut(Coup(E)) : b

(
τ−1(Si)

)
= τ−1(Si) ∀i ∈ [l]

}
. (11)

Since for each b ∈ Bτ , there exists exactly one element a ∈ Sn(F) such that aτb−1 = τ , we know

Stab(τ) ∼= {(a, b) : b ∈ Bτ , a = τbτ−1}, (12)

in particular, we have |Stab(τ)| = |Bτ |.
As Bτ is a subgroup of Aut(Coup(E)), it acts on the edge set of Coup(E). The orbital of an

edge {i, j} ∈ E under this group action is the set of all edges {b(i), b(j)} with b ∈ Bτ . We denote
by the quotient E/Bτ the set of orbitals under this group action.

We can show that if τ1 and τ2 belong to the same orbit, then the subgroups Bτ1 and Bτ2 are
conjugate subgroups. Moreover, the quotients of their actions on E have the same cardinality.

Lemma 3.8. Let τ1 and τ2 be two qubit orders with τ2 = aτ1b
−1 for some a ∈ Sn(F) and b ∈

Aut(Coup(E)). Then,

(i) Bτ2 = bBτ1b
−1;

(ii) there exists a bijection from E/Bτ1 to E/Bτ2 given by left multiplication with b.

Proof. (i) Exploiting the fact that a−1(Si) = Si for all i ∈ [l], we obtain

Bτ2 =
{
b2 ∈ Aut(Coup(E)) : b2

(
τ−1
2 (Si)

)
= τ−1

2 (Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b2

(
(aτ1b

−1)−1(Si)
)
= (aτ1b

−1)−1(Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b2bτ

−1
1 a−1(Si) = bτ−1

1 a−1(Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b−1b2b

(
τ−1
1 (Si)

)
= τ−1

1 (Si) ∀i ∈ [l]
}

=
{
bb1b

−1 ∈ Aut(Coup(E)) : b1
(
τ−1
1 (Si)

)
= τ−1

1 (Si) ∀i ∈ [l]
}

= bBτ1b
−1.

(ii) This fact follows directly from (i), by observing that

b OrbBτ1
(i) =

{
bb1b

−1(b(i)) : b1 ∈ Bτ1

}
= {b2(b(i)) : b2 ∈ Bτ2} = OrbBτ2

(b(i)).

One easily verifies that left multiplication by b gives a bijection.

As a consequence of the well-known orbit-stabilizer theorem, we establish the following relation
between Orb(τ) and Stab(τ):

|Orb(τ)| = |Gsub|
|Stab(τ)|

=
2pf ! · |Aut(Coup(E))|

|Bτ |
. (13)

Of course, Orb(τ) does not depend on the particular choice of the representative τ in the orbit.

12

To increase our understanding of Orb(τ), we rewrite (9) as follows:

Orb(τ) = Sn(F)τAut(Coup(E)) =
⋃

τ̃∈Sn(F)τ

τ̃Aut(Coup(E)). (14)

In other words, if Sn(F) is trivial, then the orbit partition of V k is given by the left cosets of
Aut(Coup(E)) in Gsub. Otherwise, each orbit is the union of several left cosets of Aut(Coup(E))
in Gsub, where the union is determined by the elements in the right cosets of Sn(F) in Gsub.

Of particular importance in the symmetry reduction is the number of orbits in each subgraph.
We let V k/GX denote the set of orbits of vertices in V k under the action of GX , although we
formally refer to the action of GX restricted to V k. We allow for this slight abuse of notation, in
order to simplify the terminology in Section 4.

Theorem 3.9. The number of orbits of V k under GX is |V k/GX | =
∑

τ∈Sn |Bτ |
2pf ! · |Aut(Coup(E))|

.

Proof. Let (V k)ρ denote the set of vertices in V k that are (pointwise) fixed by ρ ∈ GX . Then,

Burnside’s lemma implies that |V k/GX | =
∑

ρ∈GX
|(V k)ρ|

|GX | . The sum in the numerator counts for

every group element the number of vertices that are fixed. Alternatively, we can also sum over all
vertices and count the number of group elements that stabilize the vertex. This leads to

|V k/GX | =
∑

τ∈Sn |Stab(τ)|
|Sn(F)×Aut(Coup(E))|

=

∑
τ∈Sn |Bτ |

2pf ! · |Aut(Coup(E))|
.

We now shift our focus to the analysis of the orbital structure of the arcs of X under the action
of GX . Recall that A consists of two types of arcs: arcs within a subgraph (the sets Ak, k ∈ [m]) and
the arcs between the subgraphs (the sets Dk, k ∈ {0} ∪ [m]). Since the sets A1, . . . , Ak are identical
and each set is invariant under the group action GX , we can restrict our focus to the action of Gsub

on a single subgraph. The orbital of an arc (τ, τσ) ∈ Ak corresponding to transposition σ = (i j) ∈ T
is given by

Orb((τ, τσ)) := {(ρ(τ), ρ(τσ)) : ρ ∈ Gsub}
=

{
(aτb−1, aτσb−1 : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
=

{
(aτb−1, aτb−1(b(i) b(j)) : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
,

where the last line follows from the fact that b(i j)b−1 = (b(i) b(j)). This expression of Orb((τ, τσ))
implies that all arcs within the same orbital start at vertices within the same orbit and end at vertices
within the same orbit (where the start- and end-orbits can differ). Moreover, the transpositions to
which the arcs in Orb((τ, τσ)) correspond are related via Aut(Coup(E)), as the following lemma
illustrates.

Lemma 3.10. Let τ ∈ Sn. There exists a bijection between the orbitals starting from Orb(τ) and
the orbitals in E/Bτ .

Proof. It suffices to consider the orbital partition of the arcs leaving τ , i.e., δ+(τ,Ak). If Bτ is
trivial, the stabilizer subgroup of τ in Gsub is trivial, implying that no two arcs in δ+(τ,Ak) belong
to the same orbital. In that case, E/Bτ is just the partition of E under the identity map. If Bτ is
nontrivial and b ∈ Bτ maps the edge corresponding to σ1 to a different edge corresponding to σ2,
then the distinct arcs (τ, τσ1) and (τ, τσ2) belong to the same orbital under Gsub. If b ∈ Bτ maps
the edge corresponding to σ1 to itself, then the orbital containing (τ, τσ1) has a smaller cardinality.
These three cases are depicted in Figure 1. We conclude that the arcs (τ, τσ1) and (τ, τσ2) belong
to the same orbital if and only if the edges corresponding to σ1 and σ2 in Coup(E) belong to the
same orbital in E/Bτ .

13

τ1

τ2

τ3

τ4

τ1σ1

τ1σ2

τ1σ3

τ1σ4 τ1

τ2

τ1σ1

τ1σ2

τ1σ3

τ1σ4

τ1

τ2

τ1σ1

τ1σ2

τ1σ3

τ1σ4

Orb(τ1)Orb(τ1)

Orb(τ1)

Figure 1: Graphical overview of orbital structure within a subgraph Hk. Each line type (solid,
dotted, dashed and curled) corresponds to another orbital. Case I (left): Bτ1 is trivial. Case II
(middle): Bτ1 is nontrivial and the orbital of σ1 under Bτ1 contains σ2. Case III (right): Bτ1 is
nontrivial, but the orbital of σ1 under Bτ1 only consists of σ1.

The following result regards the cardinality of the set of orbitals of Ak under the action of GX

restricted to Ak. By slight abuse of notation, we again denote this set by the quotient Ak/GX .

Theorem 3.11. The number of orbitals of Ak under GX is |Ak/GX | =
∑

τ∈Sn |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

.

Proof. Since the arcs belonging to an orbital all start from vertices in the same orbit, it suffices
to enumerate over all orbits and count the number of orbitals starting from that orbit. It follows
from Lemma 3.10 that the number of distinct orbitals starting from Orb(τ) is |E/Bτ |, where the
choice of τ to represent Orb(τ) does not affect this quantity, see Lemma 3.8. We now sum over all
Orb(τ) ∈ V k/GX :

|Ak/GX | =
∑

Orb(τ)∈V k/GX

|E/Bτ |

=
∑

Orb(τ)∈V k/GX

2pf ! · |Aut(Coup(E))|
|Bτ |

· |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

=
∑

Orb(τ)∈V k/GX

|Orb(τ)| · |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

=

∑
τ∈Sn |Bτ | · |E/Bτ |

2pf ! · |Aut(Coup(E))|
.

In the third equality we used (13), as well as the fact that the sum of |Orb(τ)| · |Bτ | · |E/Bτ | over
all orbits equals the sum of |Bτ | · |E/Bτ | over all vertices, since |Bτ | · |E/Bτ | is constant for all τ
within an orbit, see Lemma 3.8.

To study the orbital representation of Dk under the action of GX , we distinguish between the
case k = 0 and k ∈ [m]. For k = 0, Dk contains all arcs between s and V 1. Therefore, each orbital
of D0 under GX consists of all arcs starting from s and ending at vertices in an orbit of V 1. The
arcs in Dk, k ∈ [m], correspond to ordered pairs (τk, τk+1), where τ represents the same qubit order
in Hk and Hk+1. Such an arc exists in Dk whenever τk ∈ F k, see (4). The orbital of (τk, τk+1) is
the set

Orb((τk, τk+1)) = {(ρ(τk), ρ(τk+1) : ρ ∈ Gsub}
= {(aτkb−1, aτk+1b−1) : a ∈ Sn(F), b ∈ Aut(Coup(E))}.

Let Dk/GX denote the set of orbitals of the group action of GX restricted to Dk. Since τk and τk+1

represent the same qubit orders in Hk and Hk+1, respectively, all arcs within Orb((τk, τk+1)) start
and end at vertices in the same orbit. This leads to the following result.

14

Theorem 3.12. The number of orbitals of D0 under GX is |D0/GX | =
∑

τ∈Sn |Bτ |
2pf ! · |Aut(Coup(E))|

. For

k ̸= 0, the number of orbitals of Dk under GX is |Dk/GX | =
∑

τ∈Fk |Bτ |
2pf ! · |Aut(Coup(E))|

.

Proof. The first part follows directly from Theorem 3.9. For the second part, observe that we
have Dk = {(τk, τk+1) : τk ∈ V k, τk+1 ∈ V k+1, τk ∈ F k}, where F k is defined in (4). The
cardinality of Dk/GX is equal to the number of orbits of F k under the action of GX restricted to
the vertices in F k. The cardinality of F k/GX can be derived similarly as in the proof of Theorem 3.9,
leading to

|Dk/GX | = |F k/GX | =
∑

τ∈Fk |Bτ |
2pf ! · |Aut(Coup(E))|

.

The results of Theorems 3.9, 3.11 and 3.12 are summarized in Table 1. Moreover, we simplify
the cardinalities of the quotients for the special case where Bτ is trivial for all τ ∈ Sn.

Quotient Order
Order when Bτ is

trivial for all τ ∈ Sn

V k/GX , k ∈ [m]

∑
τ∈Sn |Bτ |

2pf ! · |Aut(Coup(E))|
n!

2pf ! · |Aut(Coup(E))|

Ak/GX , k ∈ [m]

∑
τ∈Sn |Bτ | · |E/Bτ |

2pf ! · |Aut(Coup(E))|
n! · |E|

2pf ! · |Aut(Coup(E))|

D0/GX

∑
τ∈Sn |Bτ |

2pf ! · |Aut(Coup(E))|
n!

2pf ! · |Aut(Coup(E))|

Dk/GX , k ∈ [m]

∑
τ∈Fk |Bτ |

2pf ! · |Aut(Coup(E))|
2|E|(n− 2)!

2pf ! · |Aut(Coup(E))|

Table 1: Overview of the orders of quotients V k/GX , Ak/GX and Dk/GX in terms of the cardinality
of Bτ .

4 Symmetry reduction for the NNCP

In this section we show how the automorphism results derived in Section 3 can be exploited to reduce
the size of the NNCP introduced in Section 2.2.

In Section 4.1 we exploit the subgroup GX , see (8), in order to reduce the linear programming for-
mulation (SPP) in terms of the number of variables and constraints. In Section 4.2 we show how this
reduced LP can be rewritten as a generalized network flow problem. The backward reconstruction
of optimal qubit orders from the reduced model is the topic of Section 4.3.

4.1 Reduced LP formulation

The elements in GX act on the vertex and arc set of G. For any arc e ∈ A and any ρ ∈ GX ,
let ρ(e) denote the ordered pair to which e is mapped to by ρ, which is again in A since ρ is an

automorphism. Now, let x ∈
∏m

k=1 RAk

and y ∈
∏m

k=0 RDk

be feasible for (SPP). We define the
Reynolds operator ψ that maps x (resp. y) to the average of the images of x (resp. y) under the
action of GX on A. That is,

ψ(x) :=
1

|GX |
∑

ρ∈GX

xρ and ψ(y) :=
1

|GX |
∑

ρ∈GX

yρ, (15)

15

where xρ and yρ are defined as xρe = xρ(e) and y
ρ
e = yρ(e) for all arcs e. As Ak for all k ∈ [m] and Dk

for all k ∈ {0} ∪ [m] are invariant under the action of GX on A, it follows that ψ(x) ∈
∏m

k=1 RAk

and ψ(y) ∈
∏m

k=0 RDk

. We can now prove the following result, which was proven for general linear
programs by Bödi et al. [8].

Theorem 4.1. Let (x, y) ∈
∏m

k=1 RAk ×
∏m

k=0 RDk

be feasible (resp. optimal) for (SPP). Then,
(ψ(x), ψ(y)) is also feasible (resp. optimal) for (SPP).

Proof. As the flow conservation constraints hold for (x, y) and ρ preserves the arc structure of X,
the pair (xρ, yρ) also satisfies these constraints for all ρ ∈ GX . It follows that (xρ, yρ) is feasible for
(SPP) for all ρ ∈ GX . Observe that the pair (ψ(x), ψ(y)) is a convex combination of (xρ, yρ) over
the elements of GX . Because the feasible set of (SPP) is convex, it follows that (ψ(x), ψ(y)) is also
feasible for (SPP).

The objective function of (SPP) can be written as f(x, y) :=
∑

e∈A xe. Since arcs are mapped
to arcs by all ρ ∈ GX , we have f(xρ, yρ) = f(x, y). We then obtain:

f(ψ(x), ψ(y)) =
∑
e∈A

ψ(x)e =
1

|GX |
∑

ρ∈GX

∑
e∈A

xρe =
1

|GX |
|GX |

∑
e∈A

xe = f(x, y).

Thus, if (x, y) is optimal for (SPP), then so is (ψ(x), ψ(y)).

An implication of Theorem 4.1 is that we may restrict the feasible set of (SPP) to the subspace

HGX
:=

{
(ψ(x), ψ(y)) : (x, y) ∈

m∏
k=1

RAk

×
m∏

k=0

RDk

}
, (16)

which is also denoted as the fixed point subspace in [8]. By construction of the Reynolds opera-
tor (15), the entries in ψ(x) belonging to the same orbital are equal. Therefore, the subspace HGX

is spanned by the incidence vectors of orbitals of X. In Section 3.3 we derived the orbital structure
of the action of GX on X. Recall that Ak/GX denotes (the index set of) the collection of orbitals
of Ak under the action of GX . Now, if we denote the ith orbital of Ak by W k

i , we obtain

Ak =
⊔

i∈Ak/GX

W k
i for all k ∈ [m]. (17)

In a similar fashion, the arc sets Dk, k ∈ {0} ∪ [m] can be partitioned into its collection of orbitals.
If Zk

i denotes the ith orbital of Dk, then

Dk =
⊔

i∈Dk/GX

Zk
i for all k ∈ {0} ∪ [m]. (18)

Now, the subspace HGX
can be rewritten as:

HGX
=

m∏
k=1

(
Span{1Wk

i
: i ∈ Ak/GX}

)
×

m∏
k=0

(
Span{1Zk

i
: i ∈ Dk/GX}

)
, (19)

which implies that the characteristic vectors of the orbitals form a basis for HGX
.

Also the orbits of each of the vertex sets V k under the action of GX induce a partition of V k.
Let V k/GX denote (the index set of) the collection of orbits of V k under GX . The uth orbit of V k

is denoted by Ok
u, with u ∈ V k/GX . Then,

V k =
⊔

u∈V k/GX

Ok
u ∀k ∈ [m]. (20)

16

To write the symmetry-reduced equivalent of (SPP) explicitly, we need some further terminology.
Let the out-degree d+(τ,W k

i) (resp. in-degree d
−(τ,W k

i)) denote the number of arcs in orbital W k
i

that start (resp. end) at vertex τ , i.e.,

d+(τ,W k
i) :=

∣∣{(τ, τσ) ∈W k
i : σ ∈ T

}∣∣ and d−(τ,W k
i) :=

∣∣{(τσ, τ) ∈W k
i : σ ∈ T

}∣∣ ,
for all i ∈ Ak/GX and k ∈ [m]. Since d+(τ1,W

k
i) = d+(τ2,W

k
i) for all orbitals i when τ1 and τ2

belong to the same orbit, it makes sense to define d+(W k
i) (:= d+(τ,W k

i) for any (τ, τσ) ∈ W i
k) as

the orbital out-degree in W k
i . In a similar fashion we define d−(W k

i).
From Lemma 3.10 we know that there is a single case in which d+(τ,W k

i) > 1. Namely, two
distinct arcs (τ, τσ1) and (τ, τσ2) with σ1 = (i j) are both in the same orbital W k

i if and only if
there exists a b ∈ Bτ such that σ2 = (b(i) b(j)). This corresponds to case II in Figure 1. Hence, we
have

d+(τ,W k
i) = |{b({i, j}) : b ∈ Bτ}| for some (τ, τ(i j)) ∈W k

i ,

d−(τ,W k
i) = |{b({i, j}) : b ∈ Bτ}| for some (τ(i j), τ) ∈W k

i .

Indeed, these equal the number of elements in an orbital of Coup(E) under the action of Bτ . More-
over, we also define d+(Z0

i) (resp. d
−(Zm

i)) as the number of arcs in orbital Z0
i (resp. Zm

i) starting
from s (resp. ending at t). For these degrees one can verify that d+(Z0

i) = |Z0
i | and d−(Zm

i) = |Zm
i |.

For any vertex τ , we let δ+(τ,Ak/GX) (resp. δ−(τ,Ak/GX)) denote the set of orbitals that
contain an arc starting (resp. ending) at vertex τ . That is,

δ+(τ,Ak/GX) :=
{
i ∈ Ak/GX : (τ, τσ) ∈W k

i for some σ ∈ T
}
,

δ−(τ,Ak/GX) :=
{
i ∈ Ak/GX : (τσ, τ) ∈W k

i for some σ ∈ T
}
.

Similar definitions hold for δ+(τ,Dk/GX) and δ−(τ,Dk/GX). Again, observe that if τ1 and τ2
belong to the same orbit Ok

u, then δ
+(τ1, A

k/GX) = δ+(τ2, A
k/GX). For that reason, it makes sense

to define δ+(Ok
u, A

k/GX), which is equal to δ+(τ,Ak/GX) for any τ ∈ Ok
u. In a similar fashion, we

define δ−(Ok
u, A

k/GX), δ+(Ok
u, D

k/GX) and δ−(Ok
u, D

k/GX) for all u ∈ V k/GX and k ∈ [m].

The symmetry reduced equivalent formulation of (SPP) is obtained by replacing every variable xe
in Hk by a variable λki corresponding to the orbitalW k

i to which arc e belongs. Similarly, we replace
every variable ye in Dk by a variable θki corresponding to the orbital Zk

i to which arc e belongs. As
a consequence, the flow conservation constraint corresponding to vertices that belong to the same
orbit becomes equivalent, hence we only keep one per orbit. The remaining linear programming
problem we denote by (RSPP) and is given by

min

m∑
k=1

∑
i∈Ak/GX

|W k
i |λki

s.t.
∑

i∈D0/GX

d+(Z0
i)θ

0
i = 1,

∑
i∈Dm/GX

d−(Zm
i)θmi = 1

∑
i∈δ−(Ok

u,

Dk−1/GX)

θk−1
i +

∑
i∈δ−(Ok

u,

Ak/GX)

d−(W k
i)λ

k
i =

∑
i∈δ+(Ok

u,

Dk/GX)

θki +
∑

i∈δ+(Ok
u,

Ak/GX)

d+(W k
i)λ

k
i ∀u ∈ V k/GX , k ∈ [m]

0 ≤ λki ≤ 1 ∀i ∈ Ak/GX , k ∈ [m]

0 ≤ θki ≤ 1 ∀i ∈ Dk/GX , k ∈ {0} ∪ [m].

(RSPP)

Observe that |W k
i |, d+(Z0

i) and d
−(Zm

i) for all appropriate k and i are proportional to the size of an
orbit in one of the subgraphs, which is in turn proportional to |Aut(Coup(E))|, see (13). For highly

17

symmetric coupling graphs, the order of this automorphism group becomes very large, leading to
extreme coefficient values in (RSPP). This may lead to numerical instability when solving such
program.

To improve practical performance, we apply a scaling operation prior to solving the program. We
first multiply both sides of the flow conservation constraints by |Aut(Coup(E))| for all u ∈ V k/GX

and k ∈ [m]. After that, we apply the following substitution:

λ
k

i := |Aut(Coup(E))|λki for all i ∈ Ak/GX , k ∈ [m],

θ
k

i := |Aut(Coup(E))|θki for all i ∈ Dk/GX , k ∈ {0} ∪ [m].

This leads to the equivalent linear program (RSPP′). Observe that the new upper bounds on λ
k

i

and θ
k

i are omitted in this program. Indeed, the out-degree of s and in-degree of t needs to be 1,

which implicitly enforces an upper bound of 1 on all θ
0

i and θ
m

i . Since all variables and coefficient
values are nonnegative and flow conservation holds throughout the program, we can without loss of
generality omit the upper bounds on the variables. Hence, the coefficients of this program no longer
depend on |Aut(Coup(E))|.

min

m∑
k=1

∑
i∈Ak/GX

|Wk
i |

|Aut(Coup(E))|
λ
k

i

s.t.
∑

i∈D0/GX

d+(Z0
i)

|Aut(Coup(E))|
θ
0

i = 1,
∑

i∈Dm/GX

d−(Zm
i)

|Aut(Coup(E))|
θ
m

i = 1

∑
i∈δ−(Ok

u,

Dk−1/GX)

θ
k−1

i +
∑

i∈δ−(Ok
u,

Ak/GX)

d−(W k
i)λ

k

i =

∑
i∈δ+(Ok

u,

Dk/GX)

θ
k

i +
∑

i∈δ+(Ok
u,

Ak/GX)

d+(W k
i)λ

k

i ∀u ∈ V k/GX , k ∈ [m]

0 ≤ λ
k

i ∀i ∈ Ak/GX , k ∈ [m]

0 ≤ θ
k

i ∀i ∈ Dk/GX , k ∈ {0} ∪ [m]

(RSPP′)

Recall that the NNCP is in general NP-hard [58]. Based on the LP formulation (RSPP′), we are
able to unfold some special cases where the problem turns out to be polynomial time solvable. The
condition that provides the key to this complexity result is the order of the automorphism group of
the coupling graph.

Since all permutations in Bτ should setwise stabilize the sets τ−1(Si) for all i ∈ [l], it follows
that Bτ is a subgroup of Sn(G), where G := {τ−1(S1), . . . , τ

−1(Sl)}. The order of Sn(G) is 2pf !,
which implies that |Bτ | ≤ 2pf !. This leads to the following complexity result.

Theorem 4.2. The NNCP is polynomial time solvable on coupling graphs with automorphism groups
of order Ω((n − b)!), where n is the number of vertices in the coupling graph and b is a constant
independent of n.

Proof. The number of variables in (RSPP) equals m|A1/GX | + |D0/GX | +m|D1/GX |. Based on
Table 1 and the inequalities |Bτ | ≤ 2pf !, |E/Bτ | ≤ |E| and |F k| ≤ 2|E|(n− 2)! for all τ ∈ Sn
and k ∈ [m], we have

m
∑

τ∈Sn |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

+

∑
τ∈Sn |Bτ |

2pf ! · |Aut(Coup(E))|
+

m
∑

τ∈F 1 |Bτ |
2pf ! · |Aut(Coup(E))|

≤ m 2pf !|E|n!
2pf ! · |Aut(Coup(E))|

+
2pf !n!

2pf ! · |Aut(Coup(E))|
+

m 2|E|(n− 2)!2pf !

2pf ! · |Aut(Coup(E))|

18

= O

(
m |E| n!

|Aut(Coup(E))|

)
.

Whenever |Aut(Coup(E))| = Ω((n− b)!), the number of variables in (RSPP) is O
(
m|E|nb

)
. Since b

does not depend on the input, the number of variables in the reduced instance is polynomial in n, m
and |E|.

The implication of Theorem 4.2 does not solely restrict to trivial NNCP classes, such as the ones
with a coupling graph that is complete. An example of a less trivial class of coupling graphs having
a sufficiently large automorphism group are the bicliques, i.e., the complete bipartite graphs.

Corollary 4.3. The NNCP is polynomial time solvable on the biclique KN,M with N of fixed size.
In particular, the NNCP on the star K1,N is polynomial time solvable.

4.2 Reduced combinatorial formulation

Similar to (SPP) being an LP formulation of a shortest path problem, we show in this section
that (RSPP) and (RSPP′) also have a combinatorial interpretation. Such combinatorial approaches
often have the potential to induce efficient algorithms that are favoured over solving their LP formu-
lation. In order to simplify notation, we work with (RSPP) in this section, although the construction
for (RSPP′) is similar.

To view (RSPP) as a combinatorial problem, we consider the so-called quotient graph of X
under the action of GX . In its most general form, a quotient graph of a graph X is induced by an
equivalence relation on the vertices of X. We below provide the formal definition for the particular
case where the equivalence relation is induced by an automorphism group of X.

Definition 4.4 (Quotient graph implied by automorphisms). Let X = (V,A) be a directed graph
and let G be a subgroup of Aut(X). Then the quotient graph of X under G is the graph X = (V,A)
with V := V/G and A := A/G ⊆ V × V.

Since all arcs within an orbital of X start at vertices in the same orbit and end at vertices in the
same orbit, the quotient graph is well-defined. Observe that X can contain loops and multi-arcs,
even if X is simple.

Let X = (V,A) be the quotient graph of X under GX . Since the source vertex s and the sink
vertex t are in isolated orbits, the vertices s and t are again in V. By abuse of notation, we again
denote these vertices as s, t ∈ V. Since the constraints and variables in (RSPP) correspond to orbits
and orbitals of X under GX , respectively, the problem (RSPP) is an optimization problem on the
quotient graph X . Now, for all (j, ℓ) ∈ A we define the following flow variable fjℓ:

fjℓ :=

d+(Z0

i)θ
0
i if (j, ℓ) corresponds to Z0

i ,

θki if (j, ℓ) corresponds to Zk
i , k ∈ [m],

d+(W k
i)λ

k
i if (j, ℓ) corresponds to W k

i , k ∈ [m].

(21)

Moreover, we define for all (j, ℓ) ∈ A a cost vector

wjℓ :=

{
|Wk

i |
d+(Wk

i)
if (j, ℓ) corresponds to W k

i , k ∈ [m],

0 otherwise,
(22)

and an upper bound vector

ujℓ :=

d+(Z0

i) if (j, ℓ) corresponds to Z0
i ,

1 if (j, ℓ) corresponds to Zk
i , k ∈ [m],

d+(W k
i) if (j, ℓ) corresponds to W k

i , k ∈ [m].

(23)

19

Finally, for all (j, ℓ) ∈ A we define a multiplier pjℓ:

pjℓ :=

d−(Wk

i)

d+(Wk
i)

if (j, ℓ) corresponds to W k
i , k ∈ [m],

d−(Zm
i) if (j, ℓ) corresponds to Zm

i ,

1 otherwise.

(24)

We now substitute fjℓ, wjℓ and pjℓ for all orbitals (j, ℓ) ∈ A into (RSPP). This yields an equivalent
linear programming problem that has the structure of a minimum cost generalized network flow
problem:

min
∑

(j,ℓ)∈A

wjℓfjℓ

s.t.
∑

(j,ℓ)∈δ+(s)

fjℓ = 1,
∑

(j,ℓ)∈δ−(t)

pjℓfjℓ = 1

∑
(j,ℓ)∈δ+(v)

fjℓ =
∑

(j,ℓ)∈δ−(v)

pjℓfjℓ ∀v ∈ V \ {s, t}

0 ≤ fjℓ ≤ ujℓ ∀(i, j) ∈ A.

(GNFP)

A generalized flow is a flow starting from a sink s, conserving the flow at each vertex and ending at a
source t, where along each arc (j, ℓ) only a fraction of pjℓ of flow is moved from j to ℓ. This fraction,
called the multiplier, can also be larger than one, which means that the flow is increased along the
arc. The problem (GNFP) aims to send a generalized flow of one from s to t that has a minimal cost
with respect to the cost vector w. The minimum cost generalized network flow problem is solvable
in weakly polynomial time by the algorithm of Wayne [64]. This is the only known combinatorial
algorithm for this problem in the literature.

In the special case where Bτ is trivial for all τ ∈ Sn, the problem (GNFP) can be solved more
efficiently. In that case we have d+(W k

i) = d−(W k
i) = 1 for all orbitals W k

i , hence pjℓ = 1 for
all W k

i . Now, for all (j, ℓ) ∈ δ−(t) we replace pjℓfjℓ by a new variable, say gjℓ, that is upper-
bounded by d−(Zm

i). After these modifications, the resulting problem equals the LP formulation of
a shortest path problem, for which strongly-polynomial time algorithms exist [20].

4.3 Backward reconstruction of optimal solutions

By construction, solving (RSPP) or (GNFP) provides the optimal cost of a shortest path in X.
However, because of the reduction, the solutions of (RSPP) or (GNFP) do no longer correspond
itself to paths. Let (λ, θ) be an optimal solution to (RSPP) (in case of solving (GNFP), we can

obtain (λ, θ) from the flow variable f by (21)). Now, we define (x, y) ∈
∏m

k=1 RAk ×
∏m

k=0 RDk

as
follows:

x :=

 ∑
i∈Ak/GX

λki 1Wk
i

m

k=1

and y :=

 ∑
i∈Dk/GX

θki 1Zk
i

m

k=1

. (25)

It follows from the construction that the pair (x, y) corresponds to an optimal solution of (SPP).
Hence, it is a convex combination of characteristic vectors of (s, t)-paths in X. Let Xsup denote
the subgraph of X induced by the support of (x, y). Then, Xsup is an acyclic graph. Namely, if
there would exist a cycle in Xsup, due to the orientation of the arcs in X, it can only consist of arcs
within one subgraph. Since these arcs all have a positive cost, the solution (x, y) can be improved
by excluding the cycle from it. By a similar argument, it follows that any (s, t)-path in Xsup must
be optimal. Namely, if there is an (s, t)-path in the support with a strictly larger cost than the
optimum, we can improve the solution (x, y) by excluding this path from it.

These observations imply that any (s, t)-path in Xsup is optimal. Finding such path can be
done without actually constructing Xsup. Starting from s, we select an arbitrary arc from an

20

orbital in D0/GX that is in the support of θ0. This arc leads to a new vertex τ . From the orbit
where τ belongs to, we again select an orbital leaving this orbit that has a support in the optimal
solution (λ, θ). Within this orbital, there is at least one arc starting from τ and we select such an
arc arbitrarily if there are multiple. We continue doing this, which will eventually lead to the sink
vertex t. It follows from the discussion above that this (s, t)-path provides an optimal qubit ordering
for the NNCP.

5 Special coupling graphs

Of key importance in the formulation discussed in Section 4 are the orbit and orbital representation
of the subgraphs, which rely on the subgroups Bτ . These objects heavily depend on the specific
coupling graph. In this section we demonstrate how these objects are obtained for three specific
structured coupling graphs: the cycle graph, the biclique graph and the star graph.

Table 2 provides an overview of certain important characteristics of each of the considered cou-
pling graphs. Details are provided in the subsections below.

Architecture n |E| Graph
structure

Aut(Coup(E)) |Bτ |

Cycle CN N N

Example of C6

D2n
1 (unless the NNCP instance

is trivial, see Theorem 5.1)

Biclique KM,N M +N MN

Example of K2,3

SM × SN
(if M ̸= N)

2p−p̂f1!f2!, where p̂, f1 and f2
follow from Theorem 5.2

Star K1,N N + 1 N

Example of K1,6

Sn−1
2p−p̂f1!f2!, where p̂, f1 and f2
follow from Theorem 5.2

Table 2: Summary of NNCP symmetry reduction characteristics for a set of special coupling graphs.

5.1 Cycle graph CN

Let CN = (L,E) be the cycle onN vertices, i.e., L = [N] and E = {{i, i+ 1} : i ∈ [N − 1]} ∪ {N, 1}.
Then n = |L| = N . It is well-known that the automorphism group of CN is given by D2n, the di-
hedral group of order 2n, see e.g., Godsil and Royle [27]. This group consists of all reflections and
rotations of the regular polygon of order n. It follows from Theorem 3.3 that Cay(Sn, T) is normal
when N ≥ 5 and, as a consequence, its full automorphism group is isomorphic to Sn × D2n. The
Cayley graph Aut(Cay(Sn, T)) with T induced by CN is in the literature known as the modified
bubble-sort graph, see e.g., [38].

The first step in studying the orbit and orbital structure of X under GX is the identification
of Bτ . It can be proven that Bτ is trivial under a very mild condition. Recall that c is the number
of qubits in a connected component of size at least three in (Q,U), see Definition 3.7.

Theorem 5.1. Suppose c ≥ 3. Then Bτ is trivial for all τ ∈ Sn.

21

Proof. Let τ ∈ Sn. If the gate graph (Q,U) contains a connected component of size at least three,
then the fixing pattern F contains at least three single-element sets, say {i}, {j} and {ℓ}. Since Bτ is
the subgroup of D2n that setwise stabilizes the sets τ−1(S1), . . . , τ

−1(Sl), it follows that any b ∈ Bτ

must pointwise fix τ−1(i), τ−1(j) and τ−1(ℓ). However, the only element in D2n that fixes more
than two elements is the identity element. Thus, Bτ is trivial.

Observe that the condition of Theorem 5.1 is not restrictive. Namely, when c < 3, the quantum
circuit does not have overlapping quantum gates. This implies that a trivial qubit assignment is
possible without the need of any inserted SWAP gates, making the NNCP instance trivial.

5.2 Biclique graph KM,N and star graph K1,N

The biclique graph KM,N is given by L = [M] ⊔ [N] and E = {{i, j} : i ∈ [M], j ∈ [N]}. The in-
duced partition of the vertex set L we denote by the sets LM and LN . We assume here thatM < N .
Any independent setwise permutation of vertices in LM and LN forms an automorphism of the graph,
hence Aut(Coup(E)) ∼= SM × SN . The corresponding Cayley graph Cay(Sn, T) is in the literature
known as the generalized star graph, see e.g., [25]. With respect to the structure of the subgroups Bτ ,
we prove the following result.

Theorem 5.2. Let τ ∈ Sn. Let F ′ denote the fixing pattern obtained from F by replacing any S ∈ F
with |S| ≥ 2 by

S1 = {i ∈ S : τ−1(i) ∈ LM} and S2 = {i ∈ S : τ−1(i) ∈ LN}.

Then Bτ
∼= Sn(F ′). Moreover, let p̂ denote the number of pairs {i, j} for which τ−1(i) ∈ LM

and τ−1(j) ∈ LN , let f1 denote the number of elements in the free set that are mapped to LM

by τ−1, and let f2 = f − f1. Then,

|Bτ | = 2p−p̂f1!f2!.

Proof. Let G := {τ−1(S1), . . . , τ
−1(Sl)} be the partition of [n] defined by F shifted over τ−1.

Then, Bτ is the subgroup of Sn(G) which are also automorphisms of KM,N . Since any automorphism
of KM,N setwise fix the vertices in LM and LN , we obtain Bτ by splitting each set of G into its
subset in LM and its subset in LN , leading to the partition G′. The partition F ′ is exactly G′ shifted
over τ , leading to Bτ

∼= Sn(F ′). The second part of the statement follows from counting the number
of elements in Sn(F ′).

The special case where M = 1 is commonly known as the star graph K1,N . Its induced Cayley
graph is studied in [38]. Since we consider this coupling graph extensively in the numerical results
of Section 6, we add this case explicitly to Table 2.

6 Computational results

In this section we test our symmetry-reduced NNCP formulation on a set of instances for the
coupling graphs discussed in Section 5. We compare the result against the nonreduced shortest path
formulation (SPP).

We first describe the design of our numerical tests in Section 6.1, after which we discuss the
results on real and random instances in Section 6.2 and 6.3, respectively.

6.1 Design of computational experiments

For our experiments we consider both realistic as well as randomly generated quantum circuits on
different coupling graphs. As described in Section 2, we are justified to make two assumptions on the
quantum circuits under consideration, imposing a preprocessing strategy in case these assumptions
are not met:

22

1. Single-qubit gates can be ignored for the NNCP, since these do always comply with the adjacent
interaction constraints. Without loss of generality, we therefore remove the single-qubit gates
from the circuits in the preprocessing phase.

2. All gates that act on more than two qubits are decomposed into gates that act on one or
two qubits. Nielsen and Chuang [50] have shown that these gates are universal, and that
any quantum gate can therefore be decomposed into one- or two-qubit gates. There exists a
large number of different decomposition strategies, leading to possibly different quantum gates
(with the same functionality, however). As the choice of the optimal decomposition strategy
is outside the scope of our research, we always choose the same strategy, namely the method
considered in [48, 49].

The quantum circuits that we consider in this paper consist of general one- or two-qubit gates,
multiple-control Toffoli gates up to size five, Peres gates and multiple-control Fredkin gates up to
size four. In Appendix A we consider the decomposition of these gates into one- or two qubit gates,
following the approach from [48, 49]. After that, we remove all single-qubit gates from the circuit.
The preprocessed circuit that remains, will be the quantum circuit Γ = (Q,C) that we take as an
input to our approach.

We consider the following two instance classes:

• Real data: Realistic quantum circuits that we consider are obtained from the RevLib li-
brary [66]. This dataset consists of quantum gates of (well-known) reversible functions consid-
ered in the quantum literature. Due to the assumptions of the preprocessing phase, we only
consider instances consisting of the above-mentioned gates, see Appendix A for an overview.
This leads to a set of 84 instances with n ∈ {5, . . . , 17} and m ∈ {7, . . . , 112}.

• Random data: We also consider synthetic quantum gates in order to also test our approach
on circuits consisting of more qubits and gates. We apply two strategies:

– Random Class I : Given n and m, we create a random circuit on n qubits consisting of m
two-qubit gates. Each gate acts on two qubits that are chosen uniformly at random from
[n] without replacement, independently from the other gates.

For each combination of n ∈ {20, 30, . . . , 100} and m = {2n, 4n}, we consider 5 randomly
generated instances of this type. This leads to a test set of 90 instances.

– Random Class II : Given n and m, we first create a random circuit on n qubits consisting
of m gates selected from: Toffoli gate (on 3, 4 or 5 qubits), Fredkin gate (on 3 or 4
qubits), Peres gate, or a general two-qubit gate. The latter class includes the CNOT,
SWAP and controlled-V or -V † gates. Each gate type is selected with equal probability,
and the qubits on which each gate acts, is chosen uniformly at random from [n] without
replacement. After that, we apply the preprocessing approach explained above to convert
each circuit to an equivalent circuit of two-qubit gates. This leads to quantum gates with
possibly more realistic patterns than Random Class I.

For each combination of n ∈ {20, 30, . . . , 100} and m ∈ {n, 2n}, we consider 5 randomly
generated instances of this type, leading to a test set of 90 instances. After the prepro-
cessing step, the values of m increase and are within 117 ≤ m ≤ 1872.

We solve the NNCP for each quantum circuit on the following coupling graphs:

• Cycle graph: The undirected cycle CN on N = n qubits, see Section 5.1.

• Star graph: The star graph K1,N with N = n− 1, see Section 5.2.

• Biclique graph: The biclique graph KM,N with M = 2 and N = n− 2, see Section 5.2.

For each combination of quantum circuit and coupling graph, we solve the unreduced LP-
formulation (SPP) and the reduced scaled formulation (RSPP′). The unreduced formulation is

23

implemented by a full construction of the graph X = (V,A). The reduced formulation is imple-
mented based on the results from Sections 3-5. We emphasize that it does not rely on the use
of algebraic software, nor does it require a construction of the full graph X. Preliminary experi-
ments have shown that the performance between the nonscaled and scaled formulations, (RSPP)
and (RSPP′), respectively, is very similar. However, as the size of the coefficients in (RSPP) grows
with the order of the automorphism group of Coup(E), the LP formulation becomes unstable for
the star and biclique graphs when n ≥ 11 or n ≥ 12, respectively. Therefore, we only use the more
robust scaled version (RSPP′) in our tests.

Experiments are carried out on a PC with an Intel(R) Core(TM) i7-8700 CPU, 3.20GHz and 8 GB
RAM. Our methods are implemented in Julia 1.8.4 using JuMP v1.6.0 [15] to model the mathematical
optimization problems. We use the LP solver of Mosek 10.0 [3] to solve our models in the default
configuration. The maximum computation time (including the construction time of the program) is
set to 2 hours.

6.2 Results on RevLib instances

Table 3, 4 and 5 show the results for the RevLib instances on the cycle, star and biclique graph,
respectively. The columns ‘n’ and ‘m’ show the number of qubits and quantum gates in the prepro-
cessed circuit. The column ‘OPT’ shows the optimal value of the NNCP instance, i.e., the minimum
number of inserted SWAP gates in order to make the quantum circuit compliant. The columns ‘time
(RSPP ′)’ and ‘time (SPP)’ show the computation time (i.e., clocktimes) in seconds to solve the
reduced model (RSPP′) and the base model (SPP), respectively. The values are rounded to three
decimals. The columns ‘#var (RSPP ′)’ and ‘#const (RSPP ′)’ denote the total number of variables
and constraints after the symmetry reduction. The column ‘reduction #var (%)’ shows the relative

reduction in the number of variables compared to the base model, i.e., #var (SPP)−#var (RSPP ′)
#var (SPP) ·100%,

rounded to two decimal places. The final column shows the same relative reduction for the number
of constraints. Whenever a given instance is not solvable (including construction) within the time
limit of 2 hours, or whenever an instance leads to a shortage of memory, we report a ‘-’ in the tables.

It turned out that the 62 instances with n = 5 are very easy to compute for both models (SPP)
and (RSPP ′). For that reason, results on these instances are not depicted in Tables 3, 4 and 5.
The total relative reduction in the number of variables and constraints on the instances with n = 5
turns out to be at least 90% and 89.8%, respectively.

For the cycle graph, one can clearly see that the bottleneck in the computational limit is the
number of qubits n. It follows from Table 3 that our approach is able to solve instances up to
roughly 8 qubits, while the base model can only solve instances up to 7 qubits. The total computation
time of (RSPP′) is often negligible and below 30 seconds for the instances that can be solved. For
the base model the total computation times are significantly higher, with a maximum difference of
about a factor 100. This can be explained by the large reduction in the total number of variables
and constraints, which are both above 91% for all instances.

For the star graph, we conclude from Table 4 that the reduced model can easily handle the
full set of RevLib instances. The computation times are negligible for almost all instances and
always below 0.2 seconds. This can be explained by the order of Aut(Coup(E)) being factorial in n,
implying that the model (RSPP′) scales linearly in both m and n. The relative reductions with the
base model are enormous, i.e., above 99% in terms of the number of variables and constraints on
all instances. For the unreduced model, the largest instance we can solve has n = 8 and m = 36,
which could not be solved on the cycle coupling graph. This can be explained by the fact that the
star graph on n vertices has one edge less than the cycle graph on n vertices, resulting in the Cayley
graph containing significantly fewer edges. The computational frontier, however, is reached already
at the next instance, for which the base model runs into memory issues.

Finally, the results on the biclique coupling graph look very similar to the results on the star
graph, see Table 5. The total relative reduction between the models is extremely large, leading to
all instances to be solvable within 0.25 seconds using (RSPP′). The computation times are slightly
larger than for the star graph, which can be explained by the smaller size of the automorphism group
of the biclique. For the unreduced formulation we can only solve up to n = 7, while the reduction

24

in computation time for the largest instance solvable by (SPP) is about a factor 4700.

Benchmark n m OPT
time

(RSPP ′)
time

(SPP)
#var

(RSPP ′)
#const

(RSPP ′)
reduction
#var (%)

reduction
#const (%)

graycode6 47 6 5 0 0.000 0.172 1980 3602 91.67 91.62
graycode6 48 6 5 0 0.016 0.172 1980 3602 91.67 91.62
decod24-enable 124 6 21 5 0.047 0.937 8124 15122 91.67 91.65
decod24-enable 125 6 21 4 0.047 0.906 8124 15122 91.67 91.65
decod24-bdd 294 6 24 8 0.062 1.203 9276 17282 91.67 91.66
mod5adder 129 6 71 27 0.157 4.563 27324 51122 91.67 91.66
mod5adder 128 6 77 32 0.172 4.250 29628 55442 91.67 91.66
decod24-enable 126 6 86 34 0.188 5.500 33084 61922 91.67 91.66
xor5 254 6 5 3 0.016 0.188 1980 3602 91.67 91.62
ex1 226 6 5 3 0.016 0.187 1980 3602 91.67 91.62
4mod5-bdd 287 7 23 8 0.469 36.203 61080 115922 92.86 92.86
alu-bdd 288 7 28 7 0.641 51.031 74280 141122 92.86 92.86
ham7 106 7 49 20 1.172 91.672 129720 246962 92.86 92.86
ham7 105 7 65 32 1.485 135.625 171960 327602 92.86 92.86
ham7 104 7 83 38 1.984 181.734 219480 418322 92.86 92.86
rd53 137 7 66 33 3.750 146.811 174600 23762 92.24 92.86
rd53 139 8 36 14 22.672 - 754200 90722 93.75 93.75
rd53 138 8 44 20 26.266 - 921240 110882 93.75 93.75
mini alu 305 10 57 - - - - - - -
sys6-v0 144 10 62 - - - - - - -
rd73 141 10 64 - - - - - - -
parity 247 17 16 - - - - - - -

Table 3: Results on the ‘RevLib’ instances on the cyclic coupling graph. We compare the performance
of the base model (SPP) with the reduced model (RSPP). Times are clocktimes given in seconds.

Benchmark n m OPT
time

(RSPP ′)
time

(SPP)
#var

(RSPP ′)
#const

(RSPP ′)
reduction
#var (%)

reduction
#const (%)

graycode6 47 6 5 2 0.000 0.125 166 32 99.17 99.11
graycode6 48 6 5 2 0.000 0.125 166 32 99.17 99.11
decod24-enable 124 6 21 4 0.016 0.609 678 128 99.17 99.15
decod24-enable 125 6 21 5 0.000 0.594 678 128 99.17 99.15
decod24-bdd 294 6 24 8 0.000 0.672 774 146 99.17 99.16
mod5adder 129 6 71 19 0.000 2.343 2278 428 99.17 99.16
mod5adder 128 6 77 18 0.000 2.953 2470 464 99.17 99.16
decod24-enable 126 6 86 19 0.016 2.718 2758 518 99.17 99.16
xor5 254 6 5 0 0.000 0.109 166 32 99.17 99.11
ex1 226 6 5 0 0.000 0.125 166 32 99.17 99.11
4mod5-bdd 287 7 23 5 0.000 14.875 1019 163 99.86 99.86
alu-bdd 288 7 28 11 0.000 16.141 1239 198 99.86 99.86
ham7 106 7 49 20 0.015 28.328 2163 345 99.86 99.86
ham7 105 7 65 18 0.000 36.157 2867 457 99.86 99.86
ham7 104 7 83 18 0.015 57.516 3659 583 99.86 99.86
rd53 137 7 66 10 0.000 38.521 2911 464 99.86 99.86
rd53 139 8 36 15 0.047 7031.828 2096 290 99.98 99.98
rd53 138 8 44 12 0.000 - 2560 354 99.98 99.98
mini alu 305 10 57 16 0.016 - 5254 572 100.00 100.00
sys6-v0 144 10 62 26 0.015 - 5714 622 100.00 100.00
rd73 141 10 64 27 0.000 - 5898 642 100.00 100.00
parity 247 17 16 0 0.000 - 4401 274 100.00 100.00

Table 4: Results on the ‘RevLib’ instances on the star coupling graph. We compare the performance
of the base model (SPP) with the reduced model (RSPP). Times are clocktimes given in seconds.

25

Benchmark n m OPT
time

(RSPP ′)
time

(SPP)
#var

(RSPP ′)
#const

(RSPP ′)
reduction
#var (%)

reduction
#const (%)

graycode6 47 6 5 1 0.015 0.250 655 77 97.92 97.86
graycode6 48 6 5 1 0.000 0.235 655 77 97.92 97.86
decod24-enable 124 6 21 4 0.016 1.500 2703 317 97.92 97.90
decod24-enable 125 6 21 4 0.000 1.297 2703 317 97.92 97.90
decod24-bdd 294 6 24 5 0.015 1.485 3087 362 97.92 97.91
mod5adder 129 6 71 15 0.032 5.031 9103 1067 97.92 97.91
mod5adder 128 6 77 14 0.031 5.016 9871 1157 97.92 97.91
decod24-enable 126 6 86 16 0.031 5.844 11023 1292 97.92 97.91
xor5 254 6 5 1 0.000 0.266 655 77 97.92 97.86
ex1 226 6 5 1 0.000 0.265 655 77 97.92 97.86
4mod5-bdd 287 7 23 4 0.016 72.110 5081 485 99.58 99.58
alu-bdd 288 7 28 5 0.016 83.844 6181 590 99.58 99.58
ham7 106 7 49 8 0.031 143.265 10801 1031 99.58 99.58
ham7 105 7 65 14 0.031 217.359 14321 1367 99.58 99.58
ham7 104 7 83 8 0.078 282.453 18281 1745 99.58 99.58
rd53 137 7 66 10 0.047 223.981 14541 1388 98.14 99.58
rd53 139 8 36 8 0.063 - 12556 1010 99.93 99.93
rd53 138 8 44 10 0.062 - 15340 1234 99.94 99.94
mini alu 305 10 57 14 0.218 - 41997 2567 100.00 100.00
sys6-v0 144 10 62 13 0.141 - 45677 2792 100.00 100.00
rd73 141 10 64 14 0.095 - 47149 2882 100.00 100.00
parity 247 17 16 1 0.108 - 65896 2178 100.00 100.00

Table 5: Results on the ‘RevLib’ instances on the biclique coupling graph. We compare the perfor-
mance of the base model (SPP) with the reduced model (RSPP). Times are clocktimes given in
seconds.

6.3 Results on random instances

From Table 4 and 5 we observe that the RevLib instances can be easily solved by our symmetry
reduced formulation. To test the performance on larger instances, we consider the random data
set, consisting of quantum circuits with up to 100 qubits and 1837 quantum gates. For the cycle
coupling graph, we have seen that we could only solve instances up to n = 8. Therefore, we do not
include the cycle coupling graph anymore for the random data set. For the same reason, we do no
longer consider the base model (SPP).

Table 6 and 7 show the performance of our symmetry-reduced NNCP formulation on Random
Class I and Random Class II for both the star and biclique coupling graph. Next to the total
solution time, which is given in the column ‘time (RSPP)’, we show in the column ‘time constr.’
the time that is required to construct the LP-instance. Each row in the tables corresponds to the
average value over 5 randomly generated instances of that type. In Figure 2 we plot the averaged
total computation time, i.e., construction and solution time, compared to n and m for both coupling
graphs and random classes.

For the star coupling graph, we see that we can easily solve all instances from Random Class I
within on average 25 seconds, while at most 90 seconds are needed to construct the model. For
Random Class II, we can solve up to n = 100, however, when m is too large, the PC runs out of
memory. For the biclique coupling graph on Random Class I, we can solve instances up to n = 40
within the time span of 2 hours, whereas for Random Class II the instances with large m cannot be
solved anymore.

The sum of solution and construction times on the biclique graphs is significantly higher than
on the star graphs, see Figure 2. The tables reveal that the solution times on the former are an
order of magnitude 2 higher. This can be explained by the difference in the order of Aut(Coup(E)),
as explained in Section 6.2. The construction times, however, heavily deviate among the instances
on the star and the biclique coupling graph. Indeed, the smaller automorphism group increases the
number of orbits. For each of these orbits, one needs to evaluate the orbitals of the group action of Bτ

on E. Hence, the negative effects of having a smaller number of symmetries and a larger number of
edges, strengthen one another and result in large construction times when n and m increase.

26

Figure 2: Overview of total average computation times (construction + solution time) of random
instances with respect to n and m. Each data point displays the average over 5 randomly generated
instances of that type.

When comparing Random Class I and II, we do not observe significant structural differences. It
seems to be primarily the magnitude of n and m that influences the complexity of the instance. Due
to the construction, m grows more rapidly with respect to n for Random Class II than for Random
Class I. This effect can be observed from Figure 2, where we observe that for fixed n, an instance
from Random Class II on average requires more computation time.

The largest quantum circuit that we can successfully solve contains 100 qubits and 1047 quantum
gates. Observe that the unreduced model of this instance would embrace subgraphs of 100! vertices,
hence solving this model is infeasible.

Random Class I Random Class II

n m OPT
time

(RSPP ′)
time

constr.
n m OPT

time
(RSPP ′)

time
constr.

20 40 29.6 0.031 0.088 20 125.6 35.0 0.119 1.425
20 80 65.2 0.056 0.134 20 365.6 80.8 0.334 0.712
30 60 52.4 0.106 0.274 30 255 59.6 0.544 1.189
30 120 101.2 0.243 0.551 30 564.6 126.4 1.350 2.940
40 80 72.4 0.282 0.820 40 302.2 76.6 1.150 2.482
40 160 144.4 0.631 1.556 40 652.4 159.8 3.150 8.081
50 100 91.2 0.569 1.971 50 441.4 104.6 3.272 7.223
50 200 184.6 1.312 3.336 50 854.8 203.8 8.091 16.474
60 120 112.8 1.025 3.349 60 471 122.8 5.737 13.121
60 240 222.4 2.447 6.162 60 1027.4 247.6 16.903 44.061
70 140 132.0 1.769 6.135 70 589.4 145.2 10.838 26.888
70 280 264.6 4.662 14.194 70 1223 292.8 31.875 149.451
80 160 151.0 3.313 10.704 80 722.4 171.6 23.634 97.156
80 320 304.2 7.775 21.305 80 1372.8 333.6 32.600 307.844
90 180 172.0 4.809 24.524 90 750 184.8 22.312 162.915
90 360 343.8 14.681 42.293 90 1602.8 - - -

100 200 191.8 9.106 31.802 100 921.2 218.8 36.966 363.073
100 400 385.0 21.066 85.295 100 1709.6 - - -

Table 6: Results on the random instances on the star coupling graph. Each row shows the average
values over 5 randomly generated instances. Times are clocktimes given in seconds.

27

Random Type I Random Type II

n m OPT
time

(RSPP ′)
time

constr.
n m OPT

time
(RSPP ′)

time
constr.

20 40 20.6 1.588 12.029 20 125.6 27.6 4.188 17.270
20 80 43.4 2.590 14.217 20 365.6 66.8 15.113 30.584
30 60 38.4 9.675 374.035 30 255 50.0 49.175 413.975
30 120 71.2 18.322 390.226 30 564.6 107.2 115.350 829.710
40 80 54.2 44.053 3872.272 40 302.2 61.7 168.276 2800.738
40 160 109.4 66.884 3989.450 40 652.4 - - -

Table 7: Results on the random instances on the biclique coupling graph. Each row shows the
average values over 5 randomly generated instances. Times are clocktimes given in seconds.

7 Conclusions

In this paper we study an exact method for solving the NNCP in the gated quantum computing
model by exploiting symmetries in the underlying formulation.

Starting from the shortest path formulation introduced by [46], see (SPP), we study the algebraic
structure of the underlying graph in Section 3. This graph is composed of a series of Cayley graphs
of the symmetric group Sn generated by the transpositions in the coupling graph of the quantum
system. We show that Sn × Aut(Coup(E)) is a subgroup of the automorphism group of such
Cayley graph, which turns out to be the full automorphism group in case the Cayley graph is
normal as shown by [24]. Although the automorphism groups of specific Cayley graphs generated
by transpositions has been studied before in the literature, we do not make any assumption on the
underlying coupling graph apart from being connected. Next, we show how these subgroups are
merged into a subgroup GX of the automorphism group of the entire graph, see (8). One component
of this subgroup is determined by the algebraic structure of the coupling graph, while the other
component relies on a so-called fixing pattern F following from the quantum gates in the circuit,
see Definition 3.7. The orbit and orbital structures of the action of this group on the graph are also
studied, leading in particular to an overview of the cardinalities of the corresponding quotients, see
Table 1.

By exploiting the convexity of (SPP), we reduce the symmetries in the formulation by averaging
over all symmetric solutions using the Reynolds operator, see (15). This leads to a more compact
equivalent formulation (RSPP) and its scaled variant (RSPP′). We show that this formulation is
equivalent to a generalized network flow problem (GNFP). Due to the in-depth analysis on the
orbit and orbital structure, these formulations can be explicitly constructed from scratch without
the need to first construct the exponentially large Cayley graphs. A direct theoretical implication
of our approach are the complexity results of Theorem 4.2 and Corollary 4.3, which reveal a class
of polynomial time solvable special cases of the NNCP.

The gain of using our approach compared to the base model (SPP) is most vibrant in case
the fixing pattern is less restrictive and the coupling graph is (highly) symmetric. We test our
approach on three types of coupling graphs, for which we explicitly derive the key ingredients of
our formulation, see Table 2. Our numerical results show that the gain in efficiency due to the
exploitation of symmetries is very large. For each of the 84 real and 180 random instances, the total
reduction in the number of variables and constraints is at least 90% and 89.8%, respectively, and
this number grows with n and m. The computation times are significantly reduced compared to the
unreduced model, resulting in solving NNCP instances that are much larger than the ones considered
so far in the literature. The largest instance we can solve contains 100 qubits and 1047 quantum
gates.

Given that we are only at the beginning of the quantum era, related optimization problems
such as the NNCP are likely to remain important in the near future. Based on the successful
implementation of our symmetry-reduced solution approach, it would be interesting to consider the
NNCP on other quantum architectures having a large symmetry group.

28

References
[1] M.G. Alfailakawi, I. Ahmad, and S. Hamdan. Harmony-search algorithm for 2D nearest neigbor quantum circuits

realization. Expert Syst. with Appl., 61:16–27, 2016.

[2] N. Alhagi. Synthesis of reversible functions using various gate libraries and design specifications. Technical
report, Portland State University, 2000.

[3] MOSEK ApS. MOSEK Optimization Suite 10.0.40, 2022.

[4] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, P.W. Margolus, P.W. Shor, T. Sleator, J. Smolin, and
H. Weinfurter. Elementary gates for quantum computation. Phys. Rev., 52:3457–3467, 1995.

[5] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and H. Rahaman. A novel approach for nearest
neighbor realization of 2D quantum circuits. In 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 305–310, Hong Kong, 2018. IEEE.

[6] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and H. Rahaman. Improved look-ahead approaches
for nearest neighbor synthesis of 1D quantum circuits. In 2019 32nd International Conference on VLSI Design
and 2019 18th International Conference on Embedded Systems (VLSID), pages 203–208, Delhi, NCR, India,
2019. IEEE.

[7] D. Bhattacharjee and A. Chattopadhyay. Depth-optimal quantum circuit placement for arbitrary topologies.
arXiv:1703.08540, 2017.

[8] R. Bödi, K. Herr, and M. Joswig. Algorithms for highly symmetric linear and integer programs. Math. Program.,
137(1-2):65–90, 2013.

[9] X. Cheng, Z. Guan, and W. Ding. Mapping from multiple-control Toffoli circuits to linear nearest neighbor
quantum circuits. Quantum Inf. Process., (17):169, 2018.

[10] B.S. Choi and R. Van Meter. An θ(
√
n)-depth quantum adder on a 2D ntc quantum computer architecture. J.

Emerg. Technol. Coput. Syst., 8:1–22, 2012.

[11] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah. On the qubit routing problem.
arXiv:1902.08091, 2019.

[12] J. Ding and S. Yamashita. Exact synthesis of nearest neighbor compliant quantum circuits in 2-d architecture and
its application to large-scale circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 39(5):1045–1058,
2019.

[13] D.P. DiVincenzo and IBM. The physical implementation of quantum computation. Fortschr. der Phys., (48):771–
783, 2000.

[14] J. Van Doornmalen and C. Hojny. A unified framework for symmetry handling. arXiv:2211.01295, 2022.

[15] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical optimization. SIAM
Rev., pages 295–320, 2017.

[16] A. Farghadan and N. Mohammadzadeh. Mapping quantum circuits on 3D nearest-neighbor architectures. Quan-
tum Sci. Technol., 4:035001, 2019.

[17] Y.Q. Feng. Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets.
Journal of Combinatorial Theory, Series B, 96:67–72, 2006.

[18] A.G. Fowler, S.J. Devitt, and L.C.L. Hollenberg. Implementation of Shor’s algorithm on a linear nearest neighbour
qubit array. Quantum Inf. Comput., 4:237–251, 2004.

[19] E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theor. Physics, 21:219–253, 1982.

[20] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms.
J. ACM, 34(3):596–615, jul 1987.

[21] E.J. Friedman. Fundamental domains for integer programs with symmetries. In Combinatorial Optimization and
Applications: First International Conference, COCOA 2007, Xi’an, China, August 14-16, 2007. Proceedings 1,
pages 146–153. Springer, 2007.

[22] A. Ganesan. Automorphism groups of Cayley graphs generated by connected transposition sets. Discrete Math-
ematics, 313:2482–2485, 2013.

[23] A. Ganesan. Automorphism group of the complete transposition graph. Journal of Algebraic Combinatorics,
42:793–801, 2015.

[24] A. Ganesan. On the automorphism group of Cayley graphs generated by transpositions. Australasian Journal
of Combinatorics, 64(3):432–436, 2016.

[25] A. Ganesan. Cayley graphs and symmetric interconnection networks. arXiv:1703.08109, 2017.

[26] K. Gatermann and P.A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl.
Algebra, 192(1-3):95–128, 2004.

[27] C. Godsil and G.F. Royle. Algebraic Graph Theory. Number 207 in Graduate Texts in Mathematics. Springer,
2001.

[28] H. Häffner, C.F. Roos, and R. Blatt. Quantum computing with trapped ions. Phys. Rep., 469(4):155–203, 2008.

29

[29] M.C. Heydemann. Cayley graphs and interconnection networks, pages 167–224. Springer Netherlands, Dordrecht,
1997.

[30] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. An efficient conversion of quantum circuits to a
linear nearest neighbour architecture. Quantum Inf. and Comput., 11:142–166, 2011.

[31] W.N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski. Optimal synthesis of multiple output boolean
functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aid. Des.,
25:1652–1663, 2006.

[32] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo. Optimization of quantum circuit mapping using gate
transformation and commutation. Integration, 70:43–50, 2020.

[33] M.R. Jerrum. The complexity of finding minimum-length generator sequences. Theor. Comput. Sci., 36:265–289,
1985.

[34] V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Math. Program., 114(1):1–36, 2008.

[35] A. Kole, K. Datta, and I. Sengupta. A heurstic for linear nearest neighbor realization of quantum circuits by
SWAP gate insertion using n-gate lookahead. IEEE J. Emerg. Sel. Top. Circuits Syst., 6:62–72, 2016.

[36] A. Kole, K. Datta, and I. Sengupta. A new heuristic for n-dimensional nearest neighbor realization of a quantum
circuit. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 37(1):182–192, 2017.

[37] A. Kole, K. Datta, I. Sengupta, and R. Wille. Towards a cost metric for nearest neighbor constraints in reversible
circuits. In Reversible Computation (RC): 7th International Conference, pages 273–278, Grenoble, France, 2015.

[38] S. Lakshmivarahan, J.S. Jho, and S.K. Dhal. Symmetry in interconnection networks based on Cayley graphs of
permutation groups: A survey. Parallel Computing, (19):361–407, 1993.

[39] J. Lee and F. Margot. On a binary-encoded ilp coloring formulation. INFORMS J. Comput., 19(3):406–415,
2007.

[40] G. Li, Y. Ding, and Y. Xie. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of
the 24th International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 1001–1014, 2019.

[41] L. Liberti. Symmetry in mathematical programming. In Mixed Integer Nonlinear Programming, pages 263–283.
Springer, 2012.

[42] F. Margot. Pruning by isomorphism in branch-and-cut. Math. Program., 94:71–90, 2002.

[43] F. Margot. Exploiting orbits in symmetric ilp. Math. Program., 98:3–21, 2003.

[44] F. Margot. Small covering designs by branch-and-cut. Math. Program., 94:207–220, 2003.

[45] F. Margot. Symmetry in integer linear programming, pages 647–686. Springer, 2009.

[46] A. Matsuo and S. Yamashita. Changing the gate order for optimal lnn conversion. In A. De Vos and R. Wille,
editors, Reversible Computation, pages 89–101, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[47] A. Montanaro. Quantum algorithms: an overview. npj Quantum Inf., 2(15023), 2016.

[48] J. Mulderij. Nearest neighbor compliance in quantum circuit design. Master’s thesis, Delft University of Tech-
nology, 2019.

[49] J. Mulderij, K.I. Aardal, I. Chiscop, and F. Phillipson. A polynomial size model with implicit swap gate counting
for exact qubit reordering. arXiv:2009.08748, 2020.

[50] M.A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University Press,
New York, USA, 2010.

[51] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Math. Program., 126:147–178, 2011.

[52] M. Pedram and A. Shafaei. Layout optimization for quantum circuits with linear nearest neighbor architectures.
IEEE Circuits and Syst. Mag., 16:62–74, 2016.

[53] A. Peres. Reversible logic and quantum computers. Phys. Rev. A, Gen. Phys., 32:3266–3276, 1985.

[54] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.

[55] A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quantum circuits for interaction distance in linear
nearest neighbor architectures. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, 2013.

[56] A. Shafaei, M. Saeedi, and M. Pedram. Qubit placement to minimize communication overhead in 2d quantum
architectures. In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 495–500,
2014.

[57] H.D. Sherali and J.C. Smith. Improving discrete model representations via symmetry considerations. Manage.
Sci., 47(10):1396–1407, 2001.

[58] M.Y. Siraichi, V.F. dos Santos, S. Collange, and F.M.Q. Pereira. Qubit allocation. In Proceedings of the 2018
International Symposium on Code Generation and Optimization (CGO 2018), pages 113–125. ACM, 2018.

[59] T. Toffoli. Reversible computing. Technical report, MIT Lab for Computer Science, 1980. Technical memo
MIT/LCS/TM-151.

30

[60] A.W. Tucker. Solving a matrix game by linear programming. IBM Journal of Research and Development,
4(5):507–517, 1960.

[61] A.W. Tucker. Combinatorial theory underlying linear programs. Recent Adv. Math. Program., pages 1–16, 1963.

[62] R. Van Houte, J. Mulderij, T. Attema, I. Chiscop, and F. Phillipson. Mathematical formulation of quantum
circuit design problems in networks of quantum computers. Quantum Inf. Process., 19:1–22, 2020.

[63] D. Venturelli, M. Do, E. Rieffel, and J. Frank. Temporal planning for compilation of quantum approximate
optimization circuits. In Scheduling and Planning Applications Workshop (SPARK), page 58, 2017.

[64] K.D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow. Mathematics of Opera-
tions Research, 27:445–459, 2002.

[65] R. Wille, L. Burgholzer, and A. Zulehner. Mapping quantum circuits to IBM QX architectures using the minimal
number of SWAP and H operations. In Proceedings of the 56th Annual Design Automation Conference, pages
1–6, Las Vegas, NV, USA, 2019.

[66] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online resource for reversible
functions and reversible circuits. In Int’l Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is available
at http://www.revlib.org.

[67] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler. Look-ahead schemes for nearest
neighbor optimization of 1d and 2d quantum circuits. In 2016 21st Asia and South Pacific design automation
conference (ASP-DAC), pages 292–297, Macao, 2016. IEEE.

[68] R. Wille, A. Lye, and R. Drechsler. Exact reordering of circuit lines for nearest neighbor quantum architectures.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 33(12):1818–1831, 2014.

31

A Quantum gates and their two-qubit decompositions

Since the NNCP is only well-defined when a quantum circuit consists solely of one- or two-qubit
gates, we have to decompose all gates that act on more than two gates. As indicated in Section 6,
this task can be completed in lots of ways and performing this decomposition optimally can be
seen as a research problem in itself. In this paper we apply the decomposition method used in [49],
although the authors of [49] already indicated that this method might be open for improvement.

The quantum circuits that we consider in our experiments consist of the following types of
quantum gates: one-qubit gates, two-qubit gates, three-qubit Peres gates, three- and four-qubit
Fredkin gates and three-, four- and five-qubit Toffoli gates. Commonly used one-qubit gates are the
Hadamard gate and the Pauli-gates, e.g., the Pauli-X-gate. When applying the Hadamard gate to
a qubit in any state, it brings the qubit in a superposition state where it has an equal probability to
be 0 or 1 upon measurement. The Hadamard gate in a quantum circuit is depicted as H . The
Pauli-X-gate is also known as the NOT gate and can be seen as its quantum analog. The NOT-gate
is depicted as .

The most commonly used two-qubit gates are depicted in Figure 3. The controlled-NOT gate,
also known as CNOT or Feynman gate, acts on a control qubit and a target qubit. If the control
qubit is in state |1⟩, a NOT-gate is applied to the target qubit, otherwise nothing happens. The
SWAP gate swaps the states of the two qubits where it acts on. The controlled-V and controlled-V †

act similarly to the controlled-NOT gate, with the only difference that the unitary operation V or V †

is applied to the target qubit. The operation V and V † are the square root of the NOT-gate and
its Hermitian conjugate, respectively. That is, if two controlled-V gates are placed in succession,
the result is similar to a controlled-NOT gate, while the identity gate is obtained when applying a
controlled-V and a controlled-V † gate in succession.

•

(a) Controlled-NOT

×

×

(b) SWAP

•

V

(c) Controlled-V

•

V †

(d) Controlled-V †

Figure 3: Overview of commonly used two-qubit quantum gates.

A Toffoli gate [59] is the multiple-control NOT gate. Acting on several control qubits and a single
target qubit, a NOT gate is applied to the target qubit if all the control qubits are in state |1⟩. The
three-qubit Toffoli gate is depicted in Figure 4, along with a possible decomposition into two-qubit
gates, following the approach of [4].

• • • •

• = • •

V V † V

Figure 4: Decomposition of multiple-control Toffoli gate with two controls and a single target qubit.

The Peres gate [53] is obtained from a combination of a two-qubit controlled-NOT gate and
standard controlled-NOT gate. Following the approach from [31], the Peres gate can be decomposed
into four two-qubit gates, as shown in Figure 5.

32

• •

• =

• •

• •

V † V † V

Figure 5: Decomposition of Peres gate on three qubits.

The Fredkin gate [19] operates on three qubits as a controlled-SWAP gate. If the state of the
control qubit is |1⟩, then a SWAP gate on the two target qubits is performed. The decomposition
into two-qubit gates that we adapt here is the same as the one considered in [49, 66], see Figure 6

•

×

×

=

• • •

• •

• V † V † V •

Figure 6: Decomposition of Fredkin gate (controlled swap gate) with one control qubit.

Finally, we consider the four- and five qubit variants of the Fredkin and Toffoli gate. The
functionality of these gates is similar to their three-qubit implementation, only the number of control
qubits is larger. The four-qubit Fredkin gate can be decomposed as shown by [2], see Figure 7.
Fredkin gates on a larger number of qubits do not appear in our experiments.

•

•

×

×

=

• • • • •

• • • •

• • • •

• V V † V V † V V † V •

Figure 7: Decomposition of Fredkin gate (controlled swap gate) with two control qubits.

Finally, the four- and five-qubit Toffoli gates are shown in Figure 8 and 9. The decompositions
shown here follow from the construction derived in [4]. Toffoli gates on more than five qubits do not
appear in our experiments.

•

•

•
=

• • • • •

• • • •

• • • •

V V † V V † V V † V

Figure 8: Decomposition of multiple-control Toffoli gate with three controls and a single target
qubit.

33

•

•

•

•

=

• • • • • • • • •

• • • • • •

• • • • • •

• • • • • • • •

V V † V V † V V † V V † V V † V V † V V † V

Figure 9: Decomposition of multiple-control Toffoli gate with four controls and a single target qubit.

34

	Introduction
	Nearest neighbour compliance problem
	Mathematical formulation of the NNCP
	The NNCP as a shortest path problem

	Symmetries in X = (V,A)
	Automorphism group of Aut(Cay(Sn, T))
	Automorphism group of X
	Orbit and orbital structure of group action on X

	Symmetry reduction for the NNCP
	Reduced LP formulation
	Reduced combinatorial formulation
	Backward reconstruction of optimal solutions

	Special coupling graphs
	Cycle graph CN
	Biclique graph KM,N and star graph K1,N

	Computational results
	Design of computational experiments
	Results on RevLib instances
	Results on random instances

	Conclusions
	Quantum gates and their two-qubit decompositions

