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Abstract. This paper considers sparse polynomial optimization with unbounded sets. When
the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierar-
chy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for
each variable clique according to the correlative sparsity pattern. Under the running intersection
property, we prove that this hierarchy has asymptotic convergence. Furthermore, we provide two
alternative sparse hierarchies to remove perturbations while preserving asymptotic convergence. As
byproducts, new Positivstellensätze are obtained for sparse positive polynomials on unbounded sets.
Extensive numerical experiments demonstrate the power of our approach in solving sparse polyno-
mial optimization problems on unbounded sets with up to thousands of variables. Finally, we apply
our approach to tackle two trajectory optimization problems (block-moving with minimum work and
optimal control of Van der Pol).
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1. Introduction. In this paper, we consider the polynomial optimization prob-
lem (POP):

(1.1)

{
inf f(x)
s.t. gj(x) ≥ 0, j = 1, . . . ,m,

where f(x), gj(x) are polynomials in x := (x1, . . . , xn) ∈ Rn. LetK denote the feasible
set of (1.1) and let fmin denote the optimal value of (1.1). Throughout the paper,
we assume that fmin > −∞. The Moment-SOS hierarchy proposed by Lasserre [18]
is efficient in solving (1.1). Under the Archimedeanness of constraining polynomials
(the feasible set K must be compact in this case; see [18, 21]), it yields a sequence of
semidefinite relaxations whose optimal values converge to fmin. Furthermore, it was
shown in [9, 31] that the Moment-SOS hierarchy converges in finitely many steps if
standard optimality conditions hold at every global minimizer. We refer to books and
surveys [20, 22, 29, 33] for more general introductions to polynomial optimization.

When the feasible set K is unbounded, the classical Moment-SOS hierarchy typ-
ically does not converge. There exist some works on solving polynomial optimization
with unbounded sets. Based on Karush-Kuhn-Tucker (KKT) conditions and Lagrange
multipliers, Nie proposed tight Moment-SOS relaxations for solving (1.1) [32]. In [12],
the authors proposed Moment-SOS relaxations by adding sublevel set constraints.
The resulting hierarchy of relaxations is also convergent under the Archimedeanness
for the new constraints. Based on Putinar-Vasilescu’s Positivstellensatz [36, 37], Mai,
Lasserre, and Magron [28] proposed a new hierarchy of Moment-SOS relaxations by
adding a small perturbation to the objective, and convergence to a neighborhood
of fmin was proved if the optimal value is achievable. The complexity of this new
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hierarchy was studied in [26]. Recently, a homogenized Moment-SOS hierarchy was
proposed in [11] to solve polynomial optimization with unbounded sets employing
homogenization techniques, and finite convergence was proved if standard optimality
conditions hold at every global minimizer, including those at infinity. A theoreti-
cally interesting problem for polynomial optimization with unbounded sets is the case
where the optimal value is not achievable. We refer to [7, 11, 34, 40, 43] for related
works.

A drawback of the Moment-SOS hierarchy is its limited scalability. This is be-
cause the size of involved matrices at the kth order relaxation is

(
n+k
k

)
which in-

creases rapidly as n, k grow, and current semidefinite program (SDP) solvers based
on interior-point methods can typically solve SDPs involving matrices of moderate
size (say, ≤ 2, 000) in reasonable time on a standard laptop [42]. An important way
to improve the scalability is exploiting sparsity of inputting polynomials. There are
two types of sparsity patterns in the literature to reduce the size of SDP relaxations:
correlative sparsity and term sparsity. Correlative sparsity [44] considers the spar-
sity pattern of variables. The resulting sparse Moment-SOS hierarchy is obtained
by building blocks of SDP matrices with respect to subsets of the input variables.
Under the so-called running intersection property (RIP) and Archimedeanness, this
sparse hierarchy was shown to have asymptotic convergence in [5, 16, 19]. In contrast,
term sparsity proposed by Wang et al. [46, 47] considers the sparsity of monomials
or terms. One can obtain a two-level block Moment-SOS hierarchy by using a two-
step iterative procedure (a support extension operation followed by a block closure or
chordal extension operation) to exploit term sparsity. For both types of sparsity, if
the size of obtained SDP blocks is relatively small, then the resulting SDP relaxations
are more tractable and computational costs can be significantly reduced. They have
been successfully applied to solve optimal power flow problems [13, 49], round-off
error bound analysis [23], noncommutative polynomial optimization [15, 45], neural
network verification [30], dynamical systems analysis [50], etc.

However, the above sparse Moment-SOS hierarchies may not converge when K is
unbounded as in the dense case. For the unbounded case, Mai, Lasserre, and Magron
[27] have recently provided a sparse version of Putinar–Vasilescu’s Positivstellensatz.
To be more specific, it was proved that if the problem (1.1) admits a correlative
sparsity pattern (x(1) . . . ,x(p)) satisfying the RIP and f ≥ 0 on K, then for every
ϵ > 0, there exist sums of squares σ0,ℓ, σj,ℓ, j ∈ Jℓ of suitable degrees in variables
x(ℓ), ℓ = 1, . . . , p such that

f + ε

p∑
ℓ=1

(
1 +

∑
xi∈x(ℓ)

x2
i

)d

=

p∑
ℓ=1

σ0,ℓ +
∑

j∈Jℓ
σj,ℓgj

Θk
ℓ

,

where d ≥ 1+⌊deg(f)/2⌋ and Θk
ℓ , ℓ = 1, . . . , p are typically high-degree denominators

(see Section 2.3 for related notations and concepts). Based on this, a sparse Moment-
SOS hierarchy with perturbations is proposed to solve sparse polynomial optimization
with unbounded sets. However, due to the occurrence of high-degree denominators, it
is limited to solving problems with up to 10 variables. The computational benefit of
this sparse hierarchy is hence rather limited, and it is essentially a theoretical result
as stated in [27].

Contributions. This paper studies sparse polynomial optimization with un-
bounded sets using homogenization techniques. Our new contributions are as follows.

I. When the problem (1.1) admits correlative sparsity, we propose a sparse
homogenized reformulation for (1.1) while preserving the correlative sparsity
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pattern of the original problem. The sparse reformulation introduces two new
types of variables. One is the homogenization variable, and the other consists
of auxiliary variables associated to each variable clique. Then we apply the
sparse Moment-SOS hierarchy to solve the new reformulation with a small
perturbation. Under the RIP, we prove that the sequence of lower bounds
produced by this hierarchy converges to a near neighborhood of fmin.

II. To remove undesired perturbations, we also propose two alternative sparse
homogenized reformulations of (1.1) at the cost of possibly increasing the
maximal clique size. We establish asymptotic convergence of the resulting
sparse Moment-SOS hierarchies to fmin.

III. Based on the sparse homogenized reformulations, novel Positivstellensätze
are provided for sparse positive polynomials on unbounded sets.

IV. Diverse numerical experiments demonstrate that our approach performs much
better than the usual sparse Moment-SOS hierarchy when solving sparse poly-
nomial optimization on unbounded sets. In fact, with it we are able to handle
such problems with up to thousands of variables!

V. To further illustrate its power, we apply our approach to trajectory optimiza-
tion problems arising from the fields of robotics and control. It turns out
that our approach can achieve global solutions for those problems with high
accuracy.

The rest of this paper is organized as follows. Section 2 reviews some basics about
polynomial optimization. Section 3 introduces the sparse homogenized Moment-SOS
hierarchy with perturbations and presents its asymptotic convergence result. Then
Positivstellensätze with perturbations are provided. In Section 4, we introduce two
alternative sparse homogenized Moment-SOS hierarchies without perturbations and
prove their asymptotic convergence. Positivstellensätze without perturbations are
provided. Numerical experiments are presented in Section 5. Applications to trajec-
tory optimization are provided in Section 6. Section 7 draws conclusions and make
some discussions.

2. Notations and preliminaries.

Notation. The symbol N (resp., R) denotes the set of nonnegative integers (resp.,
real numbers). For n ∈ N, let [n] := {1, . . . , n}. Let x := (x1, . . . , xn) denote a tuple
of variables and let x2 := (x2

1, . . . , x
2
n). By slight abuse of notation, we also view x as

a set, i.e., x = {x1, . . . , xn}. For α = (α1, . . . , αn) ∈ Nn, let

xα := xα1
1 · · ·xαn

n , |α| := α1 + · · ·+ αn.

For k ∈ N, let Nn
k := {α ∈ Nn | |α| ≤ k}. Denote by [x]k the vector of all monomials

in x with degrees ≤ k, i.e.,

[x]k := [1, x1, x2, . . . , x
2
1, x1x2, . . . , x

k
1 , x

k−1
1 x2, . . . , x

k
n]

⊺.

Let R[x] := R[x1, . . . , xn] be the ring of polynomials in x with real coefficients, and
R[x]k ⊆ R[x] is the subset of polynomials with degrees≤ k. For a polynomial p ∈ R[x],
denote by deg(p), p(∞), p̃ its total degree, highest degree part and homogenization

with respect to the homogenization variable x0 (i.e., p̃(x̃) = x
deg(p)
0 p(x/x0) with

x̃ := (x0, x1, . . . , xn)), respectively. A homogeneous polynomial is said to be a form.
A form p is positive definite if p(x) > 0 for all nonzero x ∈ Rn. We write A ⪰ 0 to
indicate that a symmetric matrix A is positive semidefinite. For a vector v ∈ Rn,
∥v∥ denotes the standard Euclidean norm. We write 0 (resp., 1) for the zero (resp.,
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all-one) vector whose dimension is clear from the context. For t ∈ R, ⌈t⌉ denotes the
smallest integer greater than or equal to t.

2.1. Some basics for polynomial optimization. We review some basics in
real algebraic geometry and polynomial optimization, referring to [20, 22, 33] for more
details.

A subset I ⊆ R[x] is called an ideal of R[x] if I · R[x] ⊆ I, I + I ⊆ I. For a
polynomial tuple h := (h1, . . . , hl), Ideal[h] denotes the ideal generated by h, i.e.,

Ideal[h] := h1 · R[x] + · · ·+ hl · R[x].

For k ∈ N, the kth degree truncation of Ideal[h] is

Ideal[h]k := h1 · R[x]k−deg(h1) + · · ·+ hl · R[x]k−deg(hl).

Given a subset of variables x′ ⊆ x, if the polynomial tuple h ∈ R[x′]l, we denote the
ideal generated by h in R[x′] by

Ideal[h,x′] := h1 · R[x′] + · · ·+ hl · R[x′].

Its kth degree truncation is defined as

Ideal[h,x′]k := h1 · R[x′]k−deg(h1) + · · ·+ hl · R[x′]k−deg(hl).

A polynomial p ∈ R[x] is said to be a sum of squares (SOS) if p = p21 + · · · + p2t
for some p1, . . . , pt ∈ R[x]. The set of all SOS polynomials in R[x] is denoted by Σ[x].
For k ∈ N, let Σ[x]k := Σ[x] ∩ R[x]k. For a polynomial tuple g = (g1, . . . , gm), the
quadratic module generated by g is defined by

(2.1) QM[g] := Σ[x] + g1 · Σ[x] + · · ·+ gm · Σ[x].

For k ∈ N, the kth degree truncation of QM[g] is

(2.2) QM[g]k := Σ[x]k + g1 · Σ[x]k−⌈deg(g1)/2⌉ + · · ·+ gm · Σ[x]k−⌈deg(gm)/2⌉.

Similarly, if g ∈ R[x′]m for x′ ⊆ x, its quadratic module generated by g in R[x′] and
kth degree truncation are denoted as

QM[g,x′] := Σ[x′] + g1 · Σ[x′] + · · ·+ gm · Σ[x′],

QM[g,x′]k := Σ[x′]k + g1 · Σ[x′]k−⌈deg(g1)/2⌉ + · · ·+ gm · Σ[x′]k−⌈deg(gm)/2⌉.

The set Ideal[h] + QM[g] is said to be Archimedean if there exists R > 0 such that
R − ∥x∥2 ∈ Ideal[h] + QM[g]. Clearly, if p ∈ Ideal[h] + QM[g], then p ≥ 0 on the
semialgebraic set S := {x ∈ Rn | h(x) = 0, g(x) ≥ 0} while the converse is not always
true. However, if p is positive on S and Ideal[h] + QM[g] is Archimedean, we have
p ∈ Ideal[h] + QM[g]. This conclusion is referred to as Putinar’s Positivstellensatz
[35].

For k ∈ N, let RNn
2k be the set of all real vectors that are indexed by Nn

2k. Given
y ∈ RNn

2k , define the following Riesz linear functional:

(2.3) ⟨p,y⟩ :=
∑

|α|≤2k

pαyα, ∀p =
∑

|α|≤2k

pαx
α ∈ R[x]2k.
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For a polynomial p ∈ R[x] and y ∈ RNn
2k+deg(p) , the kth localizing matrix Mk[py]

associated with p is the symmetric matrix indexed by Nn
k such that

(2.4) q⊺
(
Mk[py]

)
q =

〈
p(q⊺[x]k)

2,y
〉

for all q ∈ RNn
k . In particular, if p = 1, then Mk[y] is called the kth moment matrix.

For x′ ⊆ x and p ∈ R[x′], let Mk[py,x
′] be the localizing submatrix obtained by

retaining only those rows and columns of Mk[py] indexed by α ∈ Nn with xα ∈ R[x′].

2.2. The homogenized Moment-SOS hierarchy. When the feasible set K is
unbounded, the standard Moment-SOS hierarchy typically fails to have convergence.
In this section, we present the homogenization approach introduced [11] for solving
polynomial optimization with unbounded sets.

Let x̃ = (x0, x) ∈ Rn+1. For the feasible set K given in (1.1), define the homoge-
nized set

(2.5) K̃ :=

{
x̃ ∈ Rn+1

∣∣∣∣ g̃j(x̃) ≥ 0, j ∈ [m],
x0 ≥ 0, ∥x̃∥2 = 1.

}
The set K is said to be closed at infinity if

K̃ = cl(K̃ ∩ {x̃ ∈ Rn+1 | x0 > 0}),

where cl(·) is the closure operator. A basic property for closedness at infinity is

that f − γ ≥ 0 on K if and only if f̃(x̃) − γxd
0 ≥ 0 on K̃ with d := deg(f) [11].

Therefore, whenK is closed at infinity, (1.1) is equivalent to the following homogenized
optimization problem:

(2.6)

{
sup γ

s.t. f̃(x̃)− γxd
0 ≥ 0 on K̃.

By applying the standard Moment-SOS relaxations to solve the homogenized refor-
mulation (2.6), a homogenized Moment-SOS hierarchy was proposed in [10, 11] to
solve (1.1) with unbounded sets. Asymptotic and finite convergences were proved
under some generic assumptions.

2.3. Polynomial optimization with correlative sparsity. The Moment-
SOS hierarchy with correlative sparsity was first studied in [44]. Suppose that the
subsets of variables x(1), . . . , x(p) ⊆ x satisfy ∪p

ℓ=1x(ℓ) = x. The POP (1.1) is said
to have a correlative sparsity pattern (csp) (x(1), . . . ,x(p)) if

(i) The objective function f ∈ R[x] can be written as

f =

p∑
ℓ=1

fℓ with fℓ ∈ R[x(ℓ)] for ℓ ∈ [p];

(ii) There exists a partition {J1, . . . , Jp} of [m] such that for every ℓ ∈ [p] and
every j ∈ Jℓ, we have gj ∈ R[x(ℓ)].

Let
dmin := max{⌈deg(f)/2⌉, ⌈deg(g1)/2⌉, . . . , ⌈deg(gm)/2⌉}.

Given k ≥ dmin, the kth order SOS relaxation with correlative sparsity for (1.1) is

(2.7)

{
sup γ
s.t. f − γ ∈ QM[(gj)j∈J1

,x(1)]2k + · · ·+QM[(gj)j∈Jp
,x(p)]2k.
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The dual of (2.7) is the kth order moment relaxation

(2.8)


inf ⟨f,y⟩
s.t. y0 = 1, Mk [y,x(ℓ)] ⪰ 0, ℓ ∈ [p],

Mk−⌈deg(gj)/2⌉ [gjy,x(ℓ)] ⪰ 0, j ∈ Jℓ, ℓ ∈ [p].

The csp (x(1), . . . ,x(p)) is said to satisfy running intersection property (RIP) if
for every ℓ ∈ [p− 1], there exists some s ∈ [ℓ] such that

(2.9) x(ℓ+ 1) ∩
ℓ⋃

j=1

x(j) ⊆ x(s).

Under the RIP, it was shown in [5, 16, 19] that the sparse Moment-SOS hierarchy
(2.7)–(2.8) has asymptotic convergence.

Theorem 2.1 ([5, 16, 19]). Suppose that (1.1) has the csp (x(1), . . . ,x(p)) sat-
isfying the RIP, and the quadratic module QM[(gj)j∈Jℓ

,x(ℓ)] is Archimedean for each
ℓ ∈ [p]. If f > 0 on K, then

f ∈ QM[(gj)j∈J1 ,x(1)] + · · ·+QM[(gj)j∈Jp ,x(p)].

Remark 2.2. For a given POP, a csp (x(1), . . . ,x(p)) satisfying the RIP can be
obtained by: (1) building the csp graph, (2) generating a chordal extension, (3) taking
the list of maximal cliques; see [25, 44]. Note that chordal extensions of a graph are
typically not unique and so are correlative sparsity patterns.

3. The sparse homogenized Moment-SOS hierarchy with perturba-
tions. In this section, we give a hierarchy of sparse homogenized Moment-SOS re-
laxations to solve polynomial optimization with unbounded sets. Suppose the POP
(1.1) admits a correlative sparse pattern and K is unbounded. Note that we can not
directly apply the sparse relaxations (2.7)–(2.8) to solve the homogenized reformation
(2.6) since the spherical constraint ∥x̃∥2 = 1 destroys the csp of (1.1). To overcome
this difficulty, we give a sparse homogenized reformulation for (1.1) by introducing a
tuple of auxiliary variables.

Let (x(1), . . . ,x(p)) be a csp of (1.1) and {J1, . . . , Jp} a partition of [m] such that
for every ℓ ∈ [p] and every j ∈ Jℓ, gj ∈ R[x(ℓ)]. Define the sparse set

(3.1) K̃1
s :=

{
(x̃,w) ∈ Rn+1+p

∣∣∣∣ x0 ≥ 0, g̃j(x̃) ≥ 0, j ∈ [m],
∥x̃(ℓ)∥2 + w2

ℓ = 1, ℓ ∈ [p],

}
where x̃(ℓ) := (x0,x(ℓ)) and w := (w1, . . . , wp) is a tuple of auxiliary variables.

The difference between K̃1
s and K̃ is that we replace the single non-sparse spherical

constraint ∥x̃∥2 = 1 by multiple spherical constraints ∥x̃(ℓ)∥2 + w2
ℓ = 1, ℓ ∈ [p].

Interestingly, K̃1
s retains the correlative sparse pattern of the feasible set K.

Let d := deg(f), d0 := 2⌈d
2⌉. Consider the sparse homogenized reformulation for

(1.1) with perturbations:

(3.2)


sup γ

s.t. f̃(x̃) + ϵ ·
(

n∑
i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0 ≥ 0, ∀ (x̃,w) ∈ K̃1
s ,

where ϵ ≥ 0 is a tunable parameter. Let f (ϵ) be the optimal value of (3.2) and

hℓ := ∥x̃(ℓ)∥2 + w2
ℓ − 1, ℓ ∈ [p].
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For a relaxation order k ≥ dmin, the kth sparse homogenized SOS relaxation for
(3.2) is
(3.3)

sup γ

s.t. f̃(x̃) + ϵ ·
(

n∑
i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0

∈
p∑

ℓ=1

(
Ideal[hℓ, x̃(ℓ) ∪ {wℓ}]2k +QM[{x0} ∪ {g̃j}j∈Jℓ

, x̃(ℓ) ∪ {wℓ}]2k
)
.

The dual of (3.3) is the kth sparse homogenized moment relaxation:

(3.4)


sup ⟨f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
,y⟩

s.t. ⟨xd
0,y⟩ = 1, Mk−1[hℓy, x̃(ℓ) ∪ {wℓ}] = 0, ℓ ∈ [p],

Mk−1[x0, x̃(ℓ) ∪ {wℓ}] ⪰ 0, Mk[y, x̃(ℓ) ∪ {wℓ}] ⪰ 0, ℓ ∈ [p],
Mk−⌈deg(gj)/2⌉[g̃jy, x̃(ℓ) ∪ {wℓ}] ⪰ 0, j ∈ Jℓ, ℓ ∈ [p].

The hierarchy of relaxations (3.3)–(3.4) is called the sparse homogenized Moment-
SOS hierarchy for solving (1.1). Let fk, f ′

k denote the optima of (3.3) and (3.4),
respectively.

3.1. Convergence analysis. When K is closed at infinity, we establish the
relationship between the optimal values of (1.1) and (3.2).

Theorem 3.1. Suppose that K is closed at infinity and x∗ is a minimizer of
(1.1). Let f (ϵ) be the optimal value of (3.2). For every ϵ > 0, the following holds

fmin < f (ϵ) ≤ fmin + ϵ · p ·
(
1 + ∥x∗∥2

) d
2 .

Moreover, one has f (ϵ) = fmin when ϵ = 0.

Proof. Since K is closed at infinity and f−fmin ≥ 0 on K, we have f̃−fminx
d
0 ≥ 0

on K̃. Note that 0 /∈ K̃1
s . Hence, for every (x̃,w) ∈ K̃1

s , we have

f̃(x̃)− fminx
d
0 + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
> 0,

which implies fmin < f (ϵ). On the other hand, let

x̃∗ :=
(1,x∗)√
1 + ∥x∗∥2

, w∗
ℓ :=

√
1− ∥x̃∗(ℓ)∥2 (ℓ ∈ [p]).

Then it holds

g̃j(x̃
∗) = gj(x

∗)/(
√
1 + ∥x∗∥2)deg(gj) ≥ 0, j ∈ [m],

and so (x̃∗,w∗) ∈ K̃1
s . If γ is a feasible point of (3.2), we have (noting d0 ≥ 2)

γ · (x̃∗
0)

d ≤ f̃(x̃∗) + ϵ ·

(
n∑

i=0

(x̃∗
i )

d0 +

p∑
ℓ=1

(w∗
ℓ )

d0

)
≤ (x̃∗

0)
dfmin + ϵ · p.

It follows f (ϵ) ≤ fmin + ϵ · p/(x̃∗
0)

d = fmin + ϵ · p ·
(
1 + ∥x∗∥2

) d
2 . When ϵ = 0, the

above implies that γ ≤ fmin for every feasible point γ of (3.2). Thus, we know that
f (0) = fmin.
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Remark 3.2. Auxiliary variables w are necessary for Theorem 3.1 to be true. For
instance, let x(1) = {x1, x2}, x(2) = {x2, x3}. Consider the unconstrained optimiza-
tion problem with f = x2

1x
4
2 − x4

2x
2
3. Clearly, we have fmin = −∞. In this case, the

sparse homogenized reformulation (3.2) without auxiliary variables w reads as

(3.5)

{
sup γ

s.t. x2
1x

4
2 − x4

2x
2
3 + ϵ · (x4

0 + x4
1 + x4

2)− γx4
0 ≥ 0, ∀x ∈ K̃1

s ,

where

K̃1
s = {(x0, x1, x2, x3) ∈ R4 : x2

0 + x2
1 + x2

2 = 1, x2
0 + x2

2 + x2
3 = 1}.

For arbitrary ϵ ≥ 0, the optimal value of (3.5) is nonnegative. So Theorem 3.1 fails.

The next lemma shows that (3.2) indeed inherits the csp of the original problem
(1.1).

Lemma 3.3. Suppose that (1.1) admits a csp (x(1), . . . ,x(p)). Then (3.2) admits
the csp (x̃(1) ∪ {w1}, . . . , x̃(p) ∪ {wp}). Furthermore, if (x(1), . . . ,x(p)) satisfies the
RIP, so does (x̃(1) ∪ {w1}, . . . , x̃(p) ∪ {wp}).

Proof. By the assumption, we know that f = f1+· · ·+fp ∈ R[x] with fℓ ∈ R[x(ℓ)]
(ℓ ∈ [p]). For ℓ = 1, . . . , p, we have that

f̃ℓ ∈ R[x̃(ℓ) ∪ {wℓ}], hℓ ∈ R[x̃(ℓ) ∪ {wℓ}], g̃j ∈ R[x̃(ℓ) ∪ {wℓ}] (j ∈ Jℓ).

Thus, (3.2) admits the csp (x̃(1)∪{w1}, . . . , x̃(p)∪{wp}). Then the conclusion follows.
For every ℓ ∈ [p− 1], it holds that

(3.6)

(x̃(ℓ+ 1) ∪ {wℓ+1}) ∩ (
⋃ℓ

j=1 x̃(j) ∪ {wj})
= (x(ℓ+ 1) ∪ {x0, wℓ+1}) ∩

⋃ℓ
j=1(x(j) ∪ {x0, wj}),

= {x0} ∪ (Iℓ+1 ∩
⋃ℓ

j=1 Ij).

Hence, the conclusion follows.

In the following, we prove that the sparse homogenized Moment-SOS hierarchy
(3.3)-(3.4) has asymptotic convergence to a neighbourhood of fmin.

Theorem 3.4. Suppose that K is closed at infinity and POP (1.1) admits a csp
(x(1), . . . ,x(p)) satisfying the RIP. Then for every ϵ > 0, we have fk → f (ϵ) as
k → ∞.

Proof. For γ < f (ϵ), we show that for each (x̃,w) ∈ K̃1
s ,

(3.7) f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0 > 0.

If x0 = 0, then

f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0 ≥ ϵ ·

(
n∑

i=1

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
> 0.

If x0 ̸= 0, we have

f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0

= f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− f (ϵ)xd

0 + (f (ϵ) − γ)xd
0 > 0.
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Thus, we have f̃(x̃) + ϵ ·
(

n∑
i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0 > 0 on K̃1
s for any γ < f (ϵ). The

spherical constraint hℓ = 0 implies that Ideal[hℓ, x̃(ℓ) ∪ {wℓ}] + QM[(g̃j)j∈Jℓ
, x̃(ℓ) ∪

{wℓ}] is Archimedean in R[x̃(ℓ) ∪ {wℓ}] for each ℓ ∈ [p]. By Lemma 3.3, POP (3.2)
admits the csp (x̃(1) ∪ {w1}, . . . , x̃(p) ∪ {wp}) satisfying the RIP. It follows from
Theorem 2.1 that

f̃(x̃) + ϵ ·

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− γxd

0 ∈
p∑

ℓ=1

(Ideal[hℓ, x̃(ℓ) ∪ {wℓ}]

+ QM[{x0} ∪ {g̃j}j∈Jℓ
, x̃(ℓ) ∪ {wℓ}]).

Thus we obtain fk → f (ϵ) as k → ∞.

Remark 3.5. If there is no perturbation, i.e., ϵ = 0, the hierarchy (3.3)–(3.4)
still provides valid lower bounds to fmin. However, the convergence to fmin may not
happen. For instance, let

x(1) = {x1, x2, x3, x4, x5}, x(2) = {x5, x6, x7},

and consider the unconstrained optimization problem infx∈R7 f(x) with f = f1 + f2,
where

f1 = (x2
4 + x2

5 + 1)
(
x4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3

)
+ x8

3,

f2 = x2
5x

2
6x

2
7.

We show that for arbitrary γ < fmin = 0, it holds that

f̃ − γx8
0 /∈

2∑
ℓ=1

(Ideal[∥x̃(ℓ)∥2 + w2
ℓ − 1, x̃(ℓ) ∪ {wℓ}] + QM[x0, x̃(ℓ) ∪ {wℓ}]).

Suppose otherwise that there were hℓ ∈ R[x̃(ℓ) ∪ {wℓ}], σℓ ∈ QM[x0, x̃(ℓ) ∪ {wℓ}])
such that

(3.8) f̃ − γx8
0 =

2∑
ℓ=1

(hℓ · (∥x̃(ℓ)∥2 + w2
ℓ − 1) + σℓ).

Substituting (0, 0, 1, 0, 0, 0) for (x0, x5, x6, x7, w1, w2) in (3.8), we obtain

(3.9) x2
4(x

4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3) + x8

3 = σ0 + h0 · (x2
1 + · · ·+ x2

4 − 1)

for some σ0 ∈ Σ[x1, x2, x3, x4], h0 ∈ R[x1, x2, x3, x4]. However, the left-hand side of
(3.9) is the dehomogenized Delzell’s polynomial and the above representation does
not exist as shown in [39].

3.2. Sparse Positivstellensätze with perturbations. In this subsection, we
provide new sparse Positivstellensätze for nonnegative polynomials on unbounded
semialgebraic sets, based on sparse homogenized reformulations. Our Positivstel-
lensätze do not need any denominator, and thus are quite different from the sparse ver-
sions of Reznick’s Positivstellensatz and Putinar–Vasilescu’s Positivstellensatz given
in [27].

First, we consider the homogeneous case with K = Rn.
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Theorem 3.6. Let f ∈ R[x] be a form of degree d. Suppose f admits a csp
(x(1), . . . ,x(p)) satisfying the RIP.

(1) If f ≥ 0 on Rn, then for any ϵ > 0, there exist σℓ ∈ Σ[x(ℓ) ∪ {wℓ}], τℓ ∈
R[x(ℓ) ∪ {wℓ}], ℓ ∈ [p] such that

(3.10) f + ϵ ·

(
n∑

i=1

xd
i +

p∑
ℓ=1

wd
ℓ

)
=

p∑
ℓ=1

(
σℓ + τℓ

(
∥x(ℓ)∥2 + w2

ℓ − 1
))

,

(2) If f is positive definite, then for any ϵ > 0, there exist σℓ ∈ Σ[x(ℓ) ∪ {wℓ}],
τℓ ∈ R[x(ℓ) ∪ {wℓ}], ℓ ∈ [p] such that

(3.11) f + ϵ ·
p∑

ℓ=1

wd
ℓ =

p∑
ℓ=1

(
σℓ + τℓ ·

(
∥x(ℓ)∥2 + w2

ℓ − 1
))

,

Proof. Note that f ≥ 0 on Rn is equivalent to f ≥ 0 on S := {(x,w) ∈ Rn+p |

∥x(ℓ)∥2+w2
ℓ = 1, ℓ ∈ [p]}. Sicen 0 /∈ S, we have f+ϵ(

n∑
i=1

xd
i +

p∑
ℓ=1

wd
ℓ ) > 0 on S. If f is

positive definite and there exists (x,w) ∈ Rn+p such that f(x)+ϵ
p∑

ℓ=1

wd
ℓ = 0, we must

have (x,w) = 0. Hence, we have f + ϵ
p∑

ℓ=1

wd
ℓ > 0 on S. Under given assumptions,

items (i), (ii) follow from Theorem 2.1.

Note that a polynomial f ≥ 0 on Rn is equivalent to f̃ ≥ 0 on Rn+1. Theorem
3.6 can be generalized to non-homogeneous polynomials directly. We omit the proof
for cleanness.

Theorem 3.7. Let f ∈ R[x] with deg(f) = d. Suppose that f admits a csp
(x(1), . . . ,x(p)) satisfying the RIP.

(1) If f ≥ 0 on Rn, then for any ϵ > 0, there exist σℓ ∈ Σ[x̃(ℓ) ∪ {wℓ}], τℓ ∈
R[x̃(ℓ) ∪ {wℓ}], ℓ ∈ [p] such that

(3.12) f̃ + ϵ

(
n∑

i=0

xd
i +

p∑
ℓ=1

wd
ℓ

)
=

p∑
ℓ=1

(
σℓ + τℓ

(
∥x̃(ℓ)∥2 + w2

ℓ − 1
))

,

(2) If f > 0 on Rn and the form f (∞) is positive definite, then for any ϵ > 0,
there exist σℓ ∈ Σ[x̃(ℓ) ∪ {wℓ}], τℓ ∈ R[x̃(ℓ) ∪ {wℓ}], ℓ ∈ [p] such that

(3.13) f̃ + ϵ

p∑
ℓ=1

wd
ℓ =

p∑
ℓ=1

(
σi + τℓ

(
∥x̃(ℓ)∥2 + w2

ℓ − 1
))

,

Let K be defined as in (1.1). Define

K(∞) :=

{
x ∈ Rn

∣∣∣∣ g
(∞)
j (x) ≥ 0, j ∈ [m],

∥x∥2 − 1 = 0.

}
If K is closed at infinity and f is bounded from below on K, then f (∞) ≥ 0 on
K(∞) [11, Theorem 3.6.]. The polynomial f is said to be positive at infinity on K if

f (∞) > 0 on K(∞). When K is closed at infinity, f ≥ 0 on K if and only if f̃ ≥ 0 on K̃.
Thus we can derive the following sparse homogenized version of Putinar-Vasilescu’s
Positivstellensatz from Theorem 2.1.
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Theorem 3.8. Suppose that K is closed at infinity, and POP (1.1) admits a csp
(x(1), . . . ,x(p)) satisfying the RIP.

(1) If f ≥ 0 on K, then for any ϵ > 0, there exist σℓ ∈ QM[({x0}∪{g̃j}j∈Jℓ
, x̃(ℓ)∪

{wℓ}], τℓ ∈ R[x̃(ℓ) ∪ {wℓ}], ℓ ∈ [p] such that

(3.14) f̃ + ϵ

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
=

p∑
ℓ=1

(
σℓ + τℓ

(
∥x̃(ℓ)∥2 + w2

ℓ − 1
))

.

(2) If f > 0 on K and f is positive definite at infinity on K, then for any ϵ > 0,
there exist σℓ ∈ QM[({x0}∪{g̃j}j∈Jℓ

, x̃(ℓ)∪{wℓ}], τℓ ∈ R[x̃(ℓ)∪{wℓ}], ℓ ∈ [p]
such that

(3.15) f̃ + ϵ

p∑
ℓ=1

wd0

ℓ =

l∑
ℓ=1

(
σℓ + τℓ

(
∥x̃(ℓ)∥2 + w2

ℓ − 1
))

.

3.3. Extraction of minimizers. In the case of the dense Moment-SOS hierar-
chy, a convenient criterion for detecting global optimality is flat extension/truncation
(see [4, 22, 33]). A procedure for extracting minimizers is given in [8]. This proce-
dure was generalized to polynomial optimization with correlative sparsity in [19]. We
adapt it to extract minimizers from the sparse homogenized moment relaxtions (3.4).

Let
(3.16)

dK := max{⌈deg(gj)/2⌉, j ∈ [m]} and dℓ := max{⌈deg(gj)/2⌉, j ∈ Jℓ}, ℓ ∈ [p].

Suppose that y∗ is an optimal solution of (3.4) at the kth order relaxation. If there
exists an integer t ∈ [dK , k] such that

rankMt (y
∗, x̃(ℓ) ∪ {wℓ}) = rankMt−dℓ

(y∗, x̃(ℓ) ∪ {wℓ}) , for all ℓ ∈ [p],

rankMt (y
∗, x̃(i) ∩ x̃(j)) = 1, for all i ̸= j ∈ [p] with x̃(i) ∩ x̃(j) ̸= ∅,

(3.17)

then the moment relaxation (3.4) is exact, i.e., f ′
k = f (ϵ). Furthermore, by applying

the extraction procedure in [8] to each moment matrix Mt(y
∗, x̃(ℓ)∪{wℓ}), we obtain

a set of points

∆ℓ := {(x̃∗(ℓ), w∗
ℓ )} ⊆ R|x(ℓ)|+2, ℓ ∈ [p],

where |x(ℓ)| stands for the dimension of x(ℓ). Next we show that approximate mini-
mizers (exact minimizers if ϵ = 0) of (1.1) can be extracted from the sets ∆ℓ (ℓ ∈ [p]).

Theorem 3.9. Suppose that K is closed at infinity and POP (1.1) admits a csp
(x(1), . . . ,x(p)), and y∗ is an optimal solution of (3.4) satisfying (3.17). Let

Ω :=
{
(x∗

0,x
∗) ∈ Rn+1 | there exists w∗

ℓ ∈ R such that (x̃∗(ℓ), w∗
ℓ ) ∈ ∆ℓ for ℓ ∈ [p]

}
.

If x̃∗ ∈ Ω with x∗
0 > 0, then x∗/x∗

0 ∈ K and

(3.18) f(x∗/x∗
0) + ϵ

(
n∑

i=0

(x∗
i )

d0 +

p∑
ℓ=1

(w∗
ℓ )

d0

)
/(x∗

0)
d = f (ϵ),

where w∗
ℓ is from ∆ℓ. In particular, when ϵ = 0, we have f(x∗/x∗

0) = fmin and x∗/x∗
0

is a minimizer of (1.1).
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Proof. Consider the optimization problem:

(3.19)


inf f̃(x̃) + ϵ

(
n∑

i=0

xd0
i +

p∑
ℓ=1

wd0

ℓ

)
− f (ϵ)xd

0

s.t. x0 ≥ 0, g̃j(x̃) ≥ 0, j ∈ [m],
∥x̃(ℓ)∥2 + w2

ℓ = 1, ℓ ∈ [p],

whose optimal value is clearly 0. Let x̃∗ ∈ Ω with x∗
0 > 0. It follows from [19, Theorem

3.2] that (x̃∗,w∗) is a minimizer of (3.19) and

f̃(x̃∗) + ϵ

(
n∑

i=0

(x∗
i )

d0 +

p∑
ℓ=1

(w∗
ℓ )

d0

)
− f (ϵ)(x∗

0)
d = 0.

Note that f̃(x̃∗) = (x∗
0)

df(x∗/x∗
0), g̃j(x̃

∗) = (x∗
0)

deg(gj)g(x∗/x∗
0) (j ∈ [m]). Thus, we

have that x∗/x∗
0 ∈ K and (3.18) holds.

4. Sparse homogenized Moment-SOS hierarchy without perturbations.
For the sparse homogenized hierarchy (3.3)–(3.4) to converge, perturbations are typ-
ically required as illustrated in Remark 3.5. A natural question is whether we can
design a sparse homogenized Moment-SOS hierarchy without perturbations while hav-
ing asymptotic convergence to the optimal value fmin rather than a neighborhood of
fmin. In the following, we provide such a hierarchy by introducing a new sparse
reformulation of (1.1).

Suppose that (1.1) admits a csp (x(1), . . . ,x(p)). For i ∈ [n], let pi denote the
frequency of the variable xi occurring in x(1), . . . ,x(p). Define the set

(4.1) K̃2
s :=

(x̃,w) ∈ Rn+1+p

∣∣∣∣∣∣∣
x0 ≥ 0, g̃j(x̃) ≥ 0, j ∈ [m],∑
xi∈x(ℓ)

1
pi
x2
i +

1
px

2
0 + w2

ℓ = 1, ℓ ∈ [p],

∥w∥2 = p− 1, 1− x̃2 ≥ 0, 1−w2 ≥ 0.


Consider the new sparse reformulation for (1.1) ( d := deg(f)):

(4.2)

{
sup γ

s.t. f̃(x̃)− γxd
0 ≥ 0, ∀(x̃,w) ∈ K̃2

s .

Let u := (x̃,w). Assume that (u(1), . . . ,u(q)) be the list of maximal cliques of
some chordal extension of the csp graph associated with POP (4.2). Let

h′
ℓ :=

∑
xi∈x(ℓ)

1

pi
x2
i +

1

p
x2
0 + w2

ℓ − 1 (ℓ ∈ [p]), h′
p+1 := ∥w∥2 − p+ 1.

Let {J1, . . . , Jq} be a partition of [m] such that for every ℓ ∈ [q] and every j ∈ Jℓ,
gj ∈ R[u(ℓ)]. Moreover, let {I1, . . . , Iq} be a partition of [p + 1] such that for every
ℓ ∈ [q] and every j ∈ Iℓ, h

′
j ∈ R[u(ℓ)].

For the order k ≥ dmin, the kth order sparse SOS relaxation of (4.2) is
(4.3)

sup γ

s.t. f̃(x̃)− γxd
0 ∈

q∑
ℓ=1

Ideal[{h′
j}j∈Iℓ ,u(ℓ)]2k

+
q∑

ℓ=1

QM[{x0} ∪ {1− u2
i }ui∈u(ℓ) ∪ {g̃j}j∈Jℓ

,u(ℓ)]2k,
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The dual of (4.3) is the kth order sparse moment relaxation:

(4.4)



inf ⟨f̃ ,y⟩
s.t. ⟨xd

0,y⟩ = 1, Mk[y,u(ℓ)] ⪰ 0, ℓ ∈ [q],
Mk−1[h

′
jy,u(ℓ)] = 0, j ∈ Iℓ, ℓ ∈ [q],

Mk−1[x0y,u(ℓ)] ⪰ 0, ℓ ∈ [q],
Mk−⌈deg(gj)/2⌉[g̃jy,u(ℓ)] ⪰ 0, j ∈ Jℓ, ℓ ∈ [q],
Mk−1[(1− u2

i )y,u(ℓ)] = 0, ui ∈ u(ℓ), ℓ ∈ [q]

Let f̄k, f̄
′
k be the optimal values of (4.3) and (4.4), respectively.

4.1. Convergence analysis. In the following, we show that (1.1) and (4.2) have
the same optimal values.

Theorem 4.1. Suppose that K is closed at infinity. Then the optimal value of
(4.2) is fmin.

Proof. Since K is closed at infinity and fmin > −∞, we know that f (∞) ≥ 0 on

K(∞). Take any (x̃,w) ∈ K̃2
s . If x0 = 0, then we have g

(∞)
j (x) = g̃j(x̃) ≥ 0 for

j ∈ [m] and thus f̃(x̃)− fminx
d
0 = f (∞)(x) ≥ 0. If x0 ̸= 0, we have x/x0 ∈ K, and

f̃(x̃)− fminx
d
0 = xd

0(f(x/x0)− fmin) ≥ 0.

It follows that fmin is no greater than the optimal value of (4.2). For the converse,
let x∗ be a minimizer of (1.1). Let

x̃∗ =
(1,x∗)√
1 + ∥x∗∥2

, w∗
ℓ =

√√√√1−
∑

xi∈x(ℓ)

1

pi
(x∗

i )
2 − 1

p
(x∗

0)
2 (ℓ ∈ [p]).

One can verify (x̃∗,w∗) ∈ K̃2
s . If γ is feasible for (4.2), then γ ≤ f̃(x̃∗)/(x∗

0)
d = fmin.

We now establish asymptotic convergence of the sparse homogenized Moment-
SOS hierarchy (4.3)–(4.4).

Theorem 4.2. Suppose that K is closed at infinity, f (∞) is positive definite at
∞ on K, and (1.1) admits a csp (x(1), . . . ,x(p)). Then, f̄k → fmin as k → ∞.

Proof. For any γ < fmin, we show that f̃(x̃)− γxd
0 > 0 on K̃2

s . Take any (x̃,w) ∈
K̃2

s . If x0 = 0, then we must have x ̸= 0. Suppose otherwise x = 0. Then w2
1 = w2

2 =
· · · = w2

p = 1, which contradicts to the constraint ∥w∥2 − p+ 1 = 0 in the definition

of K̃2
s . Since f (∞) is positive definite at ∞ on K, we have

f̃(0,x)− γ · 0d = f (∞)(x) > 0.

If x0 ̸= 0, we have x/x0 ∈ K and

(4.5) f̃(x̃)− γ(x0)
d = (x0)

d(f(x/x0)− γ) > 0.

Therefore, f̃(x̃) − γxd
0 > 0 on K̃2

s for any γ < fmin. Moreover, for each ℓ ∈ [q], the
quadratic module

QM[{x0} ∪ {1− u2
i }ui∈u(ℓ) ∪ {g̃j}j∈Jℓ

,u(ℓ)]
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is clearly Archimedean in R[u(ℓ)]. It follows from Theorem 2.1 that for any γ < fmin,

f̃(x̃)− γxd
0 ∈

q∑
ℓ=1

(
Ideal[{h′

j}j∈Iℓ ,u(ℓ)] + QM[{x0} ∪ {1− u2
i }ui∈u(ℓ) ∪ {g̃j}j∈Jℓ ,u(ℓ)]

)
.

As a result, we obtain f̄k → fmin as k → ∞.

Remark 4.3. If the flat truncation condition (3.17) is satisfied for the kth moment
relaxation (4.4), then f̄k = fmin and we can extract minimizers of (1.1) via a similar
procedure as described in Section 3.3.

4.2. Sparse Positivstellensätze without perturbations. In this subsection,
we provide new sparse Positivstellensätze for positive polynomials on general (possibly
unbounded) semialgebraic sets and no perturbations are required.

First, we consider the unconstrained case, i.e., K = Rn.

Theorem 4.4. Assume that f > 0 on Rn and f (∞) is positive definite. Then
there exist σℓ,i ∈ Σ[u(ℓ)] for each ui ∈ u(ℓ), ℓ ∈ [q] and τℓ,j ∈ R[u(ℓ)] for each
j ∈ Iℓ, ℓ ∈ [q] such that

(4.6) f̃ =

q∑
ℓ=1

 ∑
ui∈u(ℓ)

σℓ,i(1− u2
i ) +

∑
j∈Iℓ

τℓ,jh
′
j

 .

Proof. Let

S :=

{
(x̃,w) ∈ Rn+p+1

∣∣∣∣∣
∑

xi∈x(ℓ)

1
pi
x2
i +

1
px

2
0 + w2

ℓ = 1, ℓ ∈ [p],

∥w∥2 = p− 1, 1− x̃2 ≥ 0, 1−w2 ≥ 0.

}

We show that f̃ > 0 on S. Take any (x̃,w) ∈ S. If x0 ̸= 0, then we have f̃(x̃) =
xd
0f(x/x0) > 0; If x0 = 0, then x ̸= 0 and f̃(x̃) = f (∞)(x) > 0 since f (∞) is positive

definite. Moreover, for each ℓ ∈ [q], the quadratic module
q∑

ℓ=1

QM[{1−u2
i }ui∈u(ℓ),u(ℓ)]

is Archimedean in R[u(ℓ)]. Thus, the conclusion follows from Theorem 2.1.

The following theorem addresses the constrained case. As the proof is quite
similar to that of Theorem 4.4, we omit it for cleanliness.

Theorem 4.5. Notations follow Section 4.1. Suppose that K is closed at infinity.
If f > 0 on K and f is positive definite at infinity on K, then there exists σℓ ∈
QM[{x0}∪{1−u2

i }ui∈u(ℓ)∪{g̃j}j∈Jℓ
,u(ℓ)] for each ℓ ∈ [q] and τℓ,j ∈ R[u(ℓ)] for each

j ∈ Iℓ, ℓ ∈ [q] such that

(4.7) f̃ =

q∑
ℓ=1

σℓ +
∑
j∈Iℓ

τℓ,jh
′
j

 .

4.3. An alternative sparse homogenized Moment-SOS hierarchy with-
out perturbations. In the description of K̃2

s , there is a spherical constraint ∥w∥2 =
p − 1 involving all auxiliary variables. When the csp of (1.1) contains a lot of vari-
able cliques, this constraint would lead to a variable clique of big size in the csp of
K̃2

s , which could significantly increase the computational complexity of the hierarchy
(4.3)–(4.4). To address this issue, in the following we propose an alternative sparse
homogenized Moment-SOS reformulation without perturbations.
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Suppose (x(1), . . . ,x(p)) is a csp of (1.1). Recall that for i ∈ [n], pi denotes the
frequency of the variable xi occurring in x(1), . . . ,x(p). Define

(4.8) K̃3
s :=


(x̃,w) ∈ Rn+p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 ≥ 0, g̃j(x̃) ≥ 0, j ∈ [m],∑
xi∈x(1)

1
pi
x2
i +

1
px

2
0 = w2

1,∑
xi∈x(2)

1
pi
x2
i +

1
px

2
0 + w2

1 = w2
2,

...∑
xi∈x(p)

1
pi
x2
i +

1
px

2
0 + w2

p−1 = 1,

1− x̃2 ≥ 0, 1−w2 ≥ 0,


where w := (w1, . . . , wp−1). Consider the following sparse homogenized reformulation
for (1.1):

(4.9)

{
sup γ

s.t. f̃(x̃)− γxd
0 ≥ 0, ∀(x̃,w) ∈ K̃3

s .

Similarly, one can verify that (4.9) has the same optimal value with (1.1). Further-
more, the asymptotic convergence of the corresponding sparse homogenized Moment-
SOS hierarchy for (4.9) as well as related sparse Positivstellensätze can be established
using similar arguments as in the previous subsections.

So far, we have discussed how to exploit correlative sparsity for homogenized
polynomial optimization but do not touch term sparsity. Actually, correlative sparsity
and term sparsity can be exploited simultaneously to gain further reductions on the
size of SDP relaxations arising from Moment-SOS hierarchies. We refer the reader to
[25, 48] for details.

5. Numerical examples. In this section, we present numerical results on solv-
ing POPs with three sparse homogenized Moment-SOS hierarchies. All numerical
experiments are performed on a desktop computer with Intel(R) Core(TM) i9-10900
CPU@2.80GHz and 64G RAM. To model the homogenized hierarchies, we use the
Julia package TSSOS1 [24], relying on Mosek 10.0 [1] as an SDP backend with default
settings. Unless otherwise specified, we set ϵ = 10−4 for relaxations (3.3)–(3.4). We
do not implement and compare with the approach proposed in [27] since it is limited
to problems of modest size. Notations are listed in Table 1.

5.1. Unconstrained polynomial optimization.

Example 5.1. Let x(1) = {x1, x2, x3} and x(2) = {x1, x2, x4}. Consider POP
(1.1) with csp (x(1),x(2)), where

f = f1 + f2, f1 = x2
3(x

2
1 + x4

1x
2
2 + x4

3 − 3x2
1x

2
2) + x8

2, f2 = x2
1x

2
2x

2
4.

The polynomial f1 is the dehomogenized Delzell’s polynomial, which is nonnegative
but not an SOS [39]. This example is a variation of Example 1 in [27]. As shown in
[27], f is nonnegative and f /∈ Σ [x(1)] + Σ [x(2)]. By solving (3.3) with ϵ = 0 and
k = 5, we obtain f5 ≈ −1.6 × 10−7, which confirms f5 = fmin = 0 (up to numerical
round-off errors).

1TSSOS is freely available at https://github.com/wangjie212/TSSOS.

https://github.com/wangjie212/TSSOS
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Table 1
Notation

n number of variables
k relaxation order
opt optimum
time running time in seconds
SSOS the sparse SOS relaxation (2.7)
HSOS the dense homogenized SOS relaxation

HSSOS1 the sparse homogenized SOS relaxation (3.3)
HSSOS2 the sparse homogenized SOS relaxation (4.3)
HSSOS3 the alternative sparse homogenized SOS relaxation in Section 4.3
bold font global optimality being certified

* indicating unknown termination status
∗∗ infeasible SDP
- returning an out of memory error

Example 5.2. Let

x(1) = {x1, x2, x3, x4}, x(2) = {x4, x5, x6, x7}, x(3) = {x7, x8, x9, x10}.

Consider POP (1.1) with csp (x(1),x(2),x(3)), where f = f1 + f2 + f3 (x0 := 1)

f1 =

4∑
i=1

x4
i +

4∑
i=0

∏
j ̸=i

(xi − xj) ,

f2 =

7∑
i=4

x4
i +

∑
i=0,4,...,7

∏
j ̸=i

(xi − xj) ,

f3 =

10∑
i=7

x4
i +

∑
i=0,7,...,10

∏
j ̸=i

(xi − xj) .

Here we set ϵ = 0 for HSSOS1. The numerical results for this problem are presented
in Table 2. From the table, we can draw the following conclusions: (1) Without
homogenization, the sparse hierarchy converges slowly; (2) By exploiting sparsity, we
gain a significant speed-up especially when the relaxation order is high; (3) All three
sparse homogenized Moment-SOS hierarchies achieve the optimum fmin ≈ 0.6927 at
the third order relaxation.

Table 2
Results of Example 5.2

k
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

2 0.5497 0.02 0.5497 0.05 0.5497 0.03 0.5497 0.02 0.5497 0.03

3 0.5497 0.21 0.6927 13.3 0.6927 0.37 0.6927 0.15 0.6927 0.20

4 0.5864* 0.73 0.6927 683 0.6927 3.27 0.6927 1.38 0.6927 1.77
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Example 5.3. Let

x(1) = {x1, x2, x3, x4, x5}, x(2) = {x1, x2, x6, x7, x8},
x(3) = {x1, x2, x9, x10, x11}, x(4) = {x1, x2, x12, x13, x14},
x(5) = {x1, x2, x15, x16, x17}, x(6) = {x1, x2, x18, x19, x20}.

Consider POP (1.1) with csp (x(1),x(2),x(3),x(4),x(5),x(6)), where f =
∑6

i=1 fi,
and for i = 1, . . . , 6,

fi =x2
1 (x1 − 1)

2
+ x2

2 (x2 − 1)
2
+ x2

3i (x3i − 1)
2
+ 2x1x2x3i (x1 + x2 + x3i − 2)

+
1

4
((x1 − 1)

2
+ (x2 − 1)

2
+ (x3i − 1)

2
+ (x3i+1 − 1)

2
) + (x3i+1x3i+2 − 1)2.

Here we set ϵ = 0 for HSSOS1. The numerical results for this problem are presented
in Table 3. From the table, we can draw the following conclusions: (1) Without
homogenization, the sparse hierarchy converges slowly; (2) By exploiting sparsity,
we gain a significant speed-up and reach relaxations of higher orders; (3) HSSOS1
achieves the optimum at k = 4 and HSSOS3 achieves the optimum at k = 3, whereas
HSSOS2 gives wrong answers due to numerical issues when k ≥ 3.

Table 3
Results of Example 5.3

k
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

2 1.1804 0.01 1.1804 0.54 1.1804 0.04 1.1804 0.09 1.1804 0.11

3 1.1804 0.07 - - 1.1895 0.34 1.1969* 1.18 1.1900 0.96

4 1.1809 0.40 - - 1.1900 1.48 1.4871* 17.4 1.1901 5.94

5.2. Constrained polynomial optimziation.

Example 5.4. Let

x(1) = {x1, x2}, x(2) = {x2, x3}, x(3) = {x2, x4, x5}.

Consider POP (1.1) with csp (x(1),x(2),x(3)):

(5.1)

 inf x2
1 + 3x2

2 − 2x2x
2
3 + x4

3 − x2(x
2
4 + x2

5)
s.t. x2

1 − 2x1x2 − 1 ≥ 0, x2
1 + 2x1x2 − 1 ≥ 0,

x2
2 − 1 ≥ 0, x2 − x2

6 − x2
7 ≥ 0.

For this problem, the optimal value is 4 + 2
√
2 ≈ 6.8284. The numerical results of

this problem are presented in Table 4. From the table, we can draw the following
conclusions: (1) Without homogenization, the sparse hierarchy converges slowly; (2)
HSOS, HSSOS2, and HSSOS3 all achieve the optimum at k = 4, while HSSOS1
converges more slowly.

Example 5.5. Let

x(1) = {x1, x2, x3, x7}, x(2) = {x4, x5, x6, x7}.

Consider POP (1.1) with csp (x(1),x(2)):{
inf f1 + f2
s.t. x1 − x2x3 ≥ 0,−x2 + x2

3 ≥ 0, 1− x2
4 − x2

5 − x2
6 ≥ 0,
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Table 4
Results of Example 5.4

k
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

2 2.0000 0.05 2.0000 0.01 2.0048 0.01 2.0000 0.01 2.0000 0.01

3 2.0343* 0.05 5.1310* 0.06 2.8286 0.05 4.9449* 0.09 4.9678 0.09

4 2.1950* 0.07 6.8284 0.19 4.1178 0.19 6.8284 0.15 6.8284 0.18

where

f1 = x4
1x

2
2 + x4

2x
2
3 + x4

3x
2
1 − 3(x1x2x3)

2 + x2
2 + x2

7(x
2
1 + x2

2 + x2
3),

f2 = x2
4x

2
5(10− x2

6) + x2
7(x

2
4 + 2x2

5 + 3x2
6).

For this problem, the optimal value is 0 [38]. The numerical results are presented in
Table 5. From the table, we make the following observations: (1) Without homoge-
nization, the sparse hierarchy either yields infeasible SDPs or gives very looser bounds;
(2) By exploiting sparsity, we gain some speed-up; (3) HSOS achieves the optimum at
k = 4, and both HSSOS2 and HSSOS3 achieves the optimum at k = 5, while HSSOS1
converges to a near neighbourhood of fmin at k = 4.

Table 5
Results of Example 5.5

k
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

3 ∗∗ 0.04 -4532 0.28 -1756* 0.16 -1065* 0.24 -1106* 0.20

4 ∗∗ 0.19 -1.6e-8 2.71 0.0001 0.82 -0.0002 1.37 -0.0002 1.77

5 -4.0e5 0.89 -9.8e-9 33.4 0.0001 5.33 1.1e-7 6.98 1.4e-7 6.38

Example 5.6. For an integer p ≥ 2, let

x(i) = {x8i−7, x8i−6, . . . , x8i+2}, i ∈ [p].

For i ∈ [p], let

fi =

 10∑
j=1

(
x
(i)
j

)2
+ 1

2

− 4

((
x
(i)
1 x

(i)
2

)2
+ · · ·+

(
x
(i)
4 x

(i)
5

)2
+
(
x
(i)
5 x

(i)
1

)2)

− 4

((
x
(i)
6 x

(i)
7

)2
+ · · ·+

(
x
(i)
9 x

(i)
10

)2
+
(
x
(i)
10x

(i)
6

)2)
+

1

5

10∑
j=1

(
x
(i)
j

)4
.

Consider POP (1.1) with csp (x(1),x(2), . . . ,x(p)):{
inf

∑p
i=1 fi

s.t. ∥x(i)2∥2 − 1 ≥ 0, i = 1, . . . , p.

We solve the fourth order relaxations for different p. The numerical results for this
problem are presented in Table 6. From the table, we can draw the following conclu-
sions: (1) Without homogenization, the sparse relaxation yields very looser bounds;
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(2) For p = 2, 3, HSOS achieves the optimum while for p ≥ 4, HSOS runs out of
memory; (3) By exploiting sparsity, we improve the scalability of the homogenization
approach and still obtain good bounds.

Table 6
Results of Example 5.6

p
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

2 -11053* 2.72 6.1488 156 6.0984 14.6 6.1488 15.5 6.1488 12.8

3 -18999* 4.14 9.2232 2763 9.1475 20.1 9.2227 20.6 9.2228 31.3

4 -26984* 5.14 - - 12.196 29.4 12.294 30.4 12.295 55.1

5 -31198* 6.54 - - 15.246 39.0 15.365 39.4 15.364 69.4

10 -80847* 12.8 - - 30.491 101 30.543 122 30.504 170

Example 5.7. We generate random instances of quadratic optimization on un-
bounded sets as follows. For n ∈ {20, 40, 100, 200, 400, 800, 2000}, let p = ⌈n

3 ⌉. Let

x(1) = {x1, x2, x3}, x(i) = {x3(i−1), . . . , x3i} (i = 2, . . . , p− 1), x(p) = {x3(p−1), . . . , xn}.

Let A1 ∈ R3×3, b1 ∈ R3, Ai ∈ R4×4, bi ∈ R4 (i = 2, . . . , p − 1), bp ∈ Rn−3p+4,
Ap ∈ R(n−3p+4)×(n−3p+4) be randomly generated with entries being uniformly taken
from [0, 1]. For i = 1, . . . , p, let fi = ∥Aix(i)

2∥2 + b⊺i x(i)
2. Consider the POP with

csp (x(1),x(2), . . . ,x(p)):{
inf

∑p
i=1 fi

s.t. ∥x(i)2∥2 − 1 ≥ 0, i = 1, . . . , p.

We solve the fourth order relaxations for different n. The numerical results for this
problem are presented in Table 7. From the table, we can draw the following conclu-
sions: (1) Without homogenization, the sparse relaxation yields much looser bounds;
(2) By exploiting sparsity, we gain a significant speed-up; (3) Both HSOS and HSOSS2
do not scale well with the problem size (HSOS runs out of memory when n ≥ 40 and
HSOSS2 runs out of memory when n ≥ 100); (4) Both HSSOS1 and HSOSS3 scale
well with the problem size (up to n = 2000).

Table 7
Results of Example 5.7

n
SSOS HSOS HSSOS1 HSSOS2 HSSOS3

opt time opt time opt time opt time opt time

20 5.5065 0.33 8.8328 240 8.4216 0.93 8.8328 1.21 8.8328 1.52

40 11.813 0.35 - - 17.481 1.51 18.059 29.7 17.856 3.59

100 27.976 1.29 - - 42.273 6.94 - - 41.336 16.3

200 60.178 2.62 - - 87.726 19.7 - - 82.240 52.9

400 111.35 6.52 - - 164.06 55.4 - - 146.66* 190

800 228.42 18.7 - - 337.01 229 - - 296.70* 702

2000 577.88 88.0 - - 854.14* 1736 - - 768.31* 6424
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6. Applications to trajectory optimization. Trajectory optimization plays
an essential role in the fields of robotics and control [3]. [41] demonstrates applying
the sparse Moment-SOS hierarchy to specific trajectory optimization problems with
compact feasible sets tends to yield tight solutions. However, assuming pre-defined
bounds over all physical quantities can be unrealistic. For instance, it is particularly
hard to bound the generalized momentum of highly nonlinear systems or the contact
forces in contact-rich scenarios [2]. In such contexts, the ability to relax the compact-
ness assumption while still achieving tight solutions is desirable. In this section, we
explore two trajectory optimization problems with unbounded feasible sets: (1) block-
moving with minimum work using direct collocation; (2) optimal control of Van der
Pol oscillator with direct multiple shooting. We compare the performance of SSOS,
HSSOS1, and HSSOS3 (noting that HSOS and HSSOS2 do not scale with large clique
numbers).

6.1. Block-moving with minimum work. The continuous time version of
block-moving with minimum work is shown as follows [14]:

(6.1)


min

u(τ),x1(τ),x2(τ)

∫ 1

τ=0
|u(τ)x2(τ)|dτ

s.t. d
dt

[
x1

x2

]
= f(x, u) =

[
x2

u

]
,

x1(0) = 0, x2(0) = 0, x1(1) = 1, x2(1) = 0,

where x1 and x2 are the block’s position and velocity respectively. Starting from the
origin in state space x(0) = [0, 0]⊺, our goal is to push the block to a terminal state
x(1) = [1, 0]⊺ at time t = 1, while minimizing the work done. To achieve this, slack
variables are introduced, and direct collocation is applied to discretize (6.1). This
process results in the following POP:

(6.2)



min
uk, k=0,...,N

xk,1,xk,2, k=0,...,N
sk,1,sk,2, k=0,...,N

∑N
k=0(sk,1 + sk,2) · h

s.t. sk,1 ≥ 0, sk,2 ≥ 0, k = 0, . . . , N,
sk,1 − sk,2 = uk · xk,2, k = 0, . . . , N,
ẋk,c = f(xk,c, uk,c), k = 0, . . . , N − 1,
x0,1 = 0, x0,2 = 0, xN,1 = 1, xN,2 = 0,

where N is the total time steps and h is the time step. Since the terminal time is
fixed as 1, N · h = 1 should hold. Here ẋk,c, xk,c, and uk,c in (6.2) stems from the
collocation constraints.

It should be noted that (6.2) is a non-convex problem due to the inclusion of qua-
dratic equality constraints. (6.2) exhibits a chain-like csp. Specifically, if we consider
the kth clique as (uk−1, xk−1, sk−1, uk, xk, sk), k = 1, . . . , N , the RIP is satisfied due
to the Markov property. Setting relaxation order k to 2, we test the three algorithms’
performance on multiple values of N and umax. For HSSOS1, the perturbation pa-
rameter ϵ is set to 10−4. The results are shown in Table 8. Note that we also reported
the sub-optimality gap η between SDP’s solution and the solution refined by nonlinear
programming solvers (here we use MATLAB’s fmincon). Denote SDP’s optimal value
as flower and fmincon’s local minimum as fupper. Then η is defined as

(6.3) η =
|fupper − flower|

1 + |fupper|+ |flower|
.
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This gap is shown in logarithmic form, i.e., log10 η. From Table 8, we see that
HSSOS3 achieves tight solutions in all parameter settings, with the sub-optimiality
gap always lower than 10−4. However, both SSOS and HSSOS1 suffer from numerical
issues. Further trajectory visualizations for u(t) are given in Figure 1.

Table 8
Results of the block-moving example

N umax
SSOS HSSOS1 HSSOS3

opt time gap opt time gap opt time gap

10

10 1.1164 2.90 −2.62 0.5044∗ 25.9 −0.43 1.1111 10.0 −12.0

12 0.9660 3.26 −2.74 0.4391∗ 26.5 −0.43 0.9625 12.5 −10.5

14 0.8100∗ 6.30 −2.01 0.3774∗ 24.2 −0.45 0.7944 10.8 −10.2

16 0.6370∗ 4.72 −1.61 0.3101∗ 26.4 −0.49 0.6069 13.9 −12.9

18 0.6448∗ 5.43 −0.63 0.2565∗ 23.4 −0.55 0.4000 10.6 −7.89

20 0.3651∗ 3.41 −0.45 0.1370 28.4 −0.92 0.1741 11.9 −8.17

20

10 1.2301∗ 7.35 −2.76 0.6873∗ 51.0 −0.55 1.2266 29.3 −10.9

12 1.1725∗ 10.4 −1.97 0.6663∗ 59.6 −0.57 1.1476 27.7 −11.1

14 1.1410∗ 12.7 −1.46 0.6600∗ 84.2 −0.63 1.0646 34.3 −7.40

16 1.0924∗ 9.23 −1.40 0.6181∗ 56.3 −0.62 1.0096 26.6 −8.56

18 1.0854∗ 8.31 −1.21 0.5918∗ 59.6 −0.63 0.9591 27.1 −8.04

20 1.0278∗ 8.70 −1.19 0.5680∗ 74.7 −0.64 0.9036 29.7 −8.66

30

10 1.2724∗ 9.50 −2.02 0.8184∗ 73.5 −0.68 1.2483 42.7 −9.22

12 1.2107∗ 11.5 −1.92 0.8024∗ 23.2 −0.72 1.1822 63.0 −8.10

14 1.1985∗ 10.1 −1.52 0.7787∗ 23.4 −0.74 1.1294 44.3 −7.91

16 1.1804∗ 10.1 −1.41 0.7649∗ 23.5 −0.75 1.0923 47.4 −8.27

18 1.1718∗ 8.38 −1.27 0.7436∗ 22.6 −0.76 1.0532 54.9 −7.06

20 1.2133∗ 6.74 −1.04 0.7331∗ 27.1 −0.80 1.0119 67.7 −4.07

6.2. Optimal control of Van der Pol. Now we consider the optimal control
problem for a Van der Pol oscillator [6], a highly nonlinear and potentially unstable
system. Its continuous time dynamics is

(6.4) f(x, u) =
d

dt

[
x1

x2

]
=

[
(1− x2

2)x1 − x2 + u
x1

]
.

Here x = [x1, x2]
⊺ is the system state and u is the control input. Utilizing the

direct multiple shooting technique allows for the trajectory optimization problem as
follows:

(6.5)


min

uk, k=0,...,N−1
xk, k=0,...,N

∑N−1
k=0 (u2

k + ∥xk∥2) · h+ ∥xN∥2 · dt

s.t. xk+1 = xk + f(xk, uk) · h, k = 0, . . . , N − 1,
u2
max − u2

k ≥ 0, k = 0, . . . , N − 1,
x0 = xinit,

where N is the total time steps and h is the step length. Like (6.2), POP (6.5) also ex-
hibits a chain-like csp by assigning the N sequential cliques as {(xk−1, uk−1, xk)}Nk=1.
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Fig. 1. Comparison between SDP’s solutions (blue lines) and solutions refined by fmincon (red
lines) in the block-moving example. In HSSOS3, red lines and blue lines are nearly indistinguishable,
indicating the attainment of tight solutions.

However, (6.5) does not fulfill the Archimedeanness assumption since the variables
{xk}Nk=1 are not subject to any bound. With the relaxation order k = 2, we incre-
mentally vary N from 10 to 100 in steps of 10. At each N , the performance of three
algorithms is assessed using 36 predetermined initial states. Table 9 presents the av-
erage results across these states. From the table, we can draw the conclusion that the
extracted solutions of HSSOS3 are better than those of SSOS and HSSOS1 in terms
of achieving one or two order of magnitudes lower sub-optimality gap η. Further
comparison for solutions extracted from SDP relaxations and refined by fmincon are
shown in Figure 2. Interestingly, despite the varying initial guesses supplied by the
three algorithms, they all converge to identical refined solutions.

7. Conclusions and discussions. In this paper, we propose the sparse ho-
mogenized Moment-SOS hierarchies to solve sparse polynomial optimization with
unbonunded sets. We have shown the asymptotic convergence under the RIP and
extensive numerical experiments demonstrate the power of our approach in solving
problems with up to thousands of variables. Furthermore, we provide applications to
two trajectory optimization problems and obtain global solutions of high accuracy.

Recently, polynomial upper bounds on the convergence rate of the Moment-SOS
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Table 9
Results of the Van der Pol example

N
SSOS HSSOS1 HSSOS3

opt time gap opt time gap opt time gap

10 11.559 0.17 −5.93 11.454 0.48 −2.94 11.559 0.51 −7.55

20 18.457 0.33 −5.05 18.230 0.97 −2.57 18.534 1.32 −7.15

30 23.485 0.55 −3.98 23.012 2.50 −1.93 23.734 5.11 −6.28

40 26.728 0.78 −2.06 25.760 3.89 −1.54 27.419 9.68 −5.99

50 28.122 1.64 −1.57 27.418 12.6 −1.44 29.780 21.1 −5.62

60 28.655 2.07 −1.44 28.434 25.5 −1.45 31.058 42.5 −5.00

70 28.782 1.12 −1.37 29.118 5.07 −1.49 31.768 18.3 −4.94

80 28.874 1.44 −1.35 29.582 5.63 −1.55 32.131 10.7 −4.34

90 28.978 1.52 −1.34 29.918 9.79 −1.65 32.235 33.6 −4.22

100 29.033 1.74 −1.34 30.198 10.2 −1.71 32.257 13.5 −4.03
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Fig. 2. Comparison between SDP’s solutions and solutions refined by fmincon in the Van der
Pol example. Notably, all three algorithms’ initial guesses lead to the same refined trajectories.
Among these initial guesses, the one offered by HSSOS3 is of the best quality.
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hierarchy with correlative sparsity (2.7)–(2.8) are obtained in [17]. It is promising to
get similar convergence rates for our sparse homogenized hierarchies with additional
considerations on the behaviour of f at infinity of K. In Section 4, we propose two
sparse homogenized Moment-SOS hierarchies without perturbations at the price of
possibly increasing the maximal clique size. When tackling application problems, an
interesting question is to explore how to construct correlative sparsity patterns with
a small maximal clique size as the computational cost of sparse relaxations largely
depends on this quantity.
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