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Abstract. The development of nonlinear optimization algorithms capable of performing reliably in the presence5
of noise has garnered considerable attention lately. This paper advocates for strategies to create6
noise-tolerant nonlinear optimization algorithms by adapting classical deterministic methods. These7
adaptations follow certain design guidelines described here, which make use of estimates of the noise8
level in the problem. The application of our methodology is illustrated by the development of a line9
search gradient projection method, which is tested on an engineering design problem. It is shown that10
a new self-calibrated line search and noise-aware finite-difference techniques are effective even in the11
high noise regime. Numerical experiments investigate the resiliency of key algorithmic components.12
A convergence analysis of the line search gradient projection method establishes convergence to a13
neighborhood of the solution.14
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1. Introduction. Over the past 50 years, significant progress has been made in the de-17
velopment of robust and efficient methods for deterministic nonlinear optimization. These18
methods have been adopted in a wide range of applications, and in the case of constrained19
optimization, can be quite complex. Recently, there has been a growing interest in tackling20
nonlinear problems where the function and/or gradient evaluations are subject to noise or21
errors [1, 4, 10, 11, 13, 19, 26, 29, 42]. This raises the question of whether existing optimiza-22
tion methods require substantial redesign to ensure robustness in the presence of noise, or if23
certain modifications are sufficient to tackle such challenges.24

This paper argues that one can develop effective methods for a broad range of noisy25
optimization problems by retaining the fundamental properties of deterministic methods while26
incorporating certain modifications based on the design guidelines outlined herein. These27
guidelines stem from the observation that, in the presence of noise, only few operations can28
lead to numerical difficulties in optimization methods. These operations include:29

1. Comparisons of noisy function values, as required e.g., in line search and trust region30
techniques.31

2. Computation of differences of noisy function values, as required in finite-difference32
approximations to a gradient.33

3. Computation of differences of noisy gradients, a basic ingredient in quasi-Newton34
updating.35

Robust methods can be designed by ensuring that these operations are conducted reliably,36
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preventing the algorithm from making harmful decisions. In this paper, we explore stabiliza-37
tion procedures that utilize an upper bound or a standard deviation of the noise (referred to38
as the noise level), and illustrate their performance in solving a design optimization problem.39
Examples of strategies proposed in the literature to safeguard the three fragile operations men-40
tioned above are as follows. Soft comparisons: when assessing whether a step is acceptable41
by comparing noisy function values, the classical sufficient decrease condition can be relaxed42
in proportion to the noise level [2, 3, 39]; Robust difference intervals: in computing a finite43
difference gradient approximation, the distance between evaluation points for noisy functions44
should be proportional the square root of the noise level divided by the norm of the Hessian45
[26, 38]; Controlled gradient differences: quasi-Newton methods can achieve robustness by46
ensuring that points used for computing gradient differences (normally consecutive iterates)47
are adequately spaced in relation to the noise level in the problem [37, 42].48

We do not argue that the only way to design nonlinear optimization methods for noisy49
problems is to adapt existing deterministic methods. We will see that in scenarios with highly50
noisy gradients, deviating from traditional approaches can be beneficial. Specifically, utilizing51
techniques like diminishing steplengths [6, 28, 33] can help counteract the adverse impacts of52
errors or noise, offering a viable alternative to line searches or trust region techniques. Never-53
theless, the sophistication of some of the established methods and software for deterministic54
optimization makes it alluring to build upon their foundations as much as possible because of55
the important algorithmic ideas they embody. For example, in cases where a good estimate of56
the optimal active set is available, it is sensible to employ an active set method like sequential57
quadratic programming, as it can effectively utilize this estimate [34]. Similarly, primal-dual58
interior point methods have demonstrated remarkable efficacy in handling large-scale prob-59
lems with network structure [20]. Maintaining these capabilities even amidst noise is highly60
desirable.61

In this paper, we study the performance of an algorithm that follows the design principles62
mentioned above and apply it to a design optimization problem in which the noise level can63
be adjusted. In this problem, the goal is to optimize the shape of an acoustic horn to achieve64
optimal efficiency, assuming that there is uncertainty in some of the physical properties of the65
system [29]. This leads to a nonconvex bound constrained optimization problem, for which66
we design a noise-tolerant gradient projection method with a new self-calibrated line search67
that incorporates noise suppression within the classical framework. Our case study provides68
ample flexibility for assessing the efficacy of various optimization methods as noise increases69
from mild to extremely high, a regime where the stochastic gradient descent (SGD) method70
[33] has shown to be particularly effective.71

1.1. Contributions of the Paper. The recent literature on noisy nonlinear optimization72
typically reports numerical tests using either synthetic noise or simple machine learning mod-73
els, leaving the question of their effectiveness in realistic applications open. In this paper,74
we focus on the sources of noise and errors that arise in certain practical problems, identify75
three critical operations prone to failure, and discuss the importance of the noise level in76
designing noise-tolerant algorithms. Based on a case study in optimal design, we conduct77
systematic tests to verify the robustness of two key components of our gradient projection78
method, namely the line search and the finite difference gradient approximation, as the noise79
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level in the problem increases.80
Building upon these findings, we introduce a new self-calibrated line search technique,81

effective even in environments with high levels of noise. This technique narrows the gap82
between traditional algorithms and the fixed step length SGD method. Additionally, we83
provide a convergence analysis for the line search gradient projection algorithm used in our case84
study, under the assumption that the noise in the function is bounded—a realistic assumption85
in this context.86

1.2. Organization of the Paper. This paper is structured into seven sections. In the fol-87
lowing section, we explore the concept of noise level and its estimation. Section §3 introduces88
the optimal design problem central to our study. In Section §4, we detail a gradient projection89
method rooted in robust design principles. Section §5 presents the results of our numerical90
tests, while Section §6 offers a global convergence analysis of the gradient projection method91
with a line search. The paper concludes with final remarks in Section §7.92

2. Noise and Errors. Let f be a smooth function and f̃ its noisy or inexact counterpart.93
Polyak [32] proposed two broad categories of noise and errors:94

(2.1) f̃(x) = f(x) + ∆(x) stochastic noise,95
96

(2.2) f̃(x) = f(x) + δ(x) deterministic error.97

The first case arises e.g. from Monte Carlo simulation, and thus ∆(x) ∼ Dx is a random98
variable following a distribution Dx that may be parameterized by x. The second case concerns99
computational error, broadly speaking, where repeated evaluations of f̃(x) for a given x give100
the same result.101

Following Moré and Wild [25, 26], we use the term noise level of a function. For the case102
of stochastic noise, we define the noise level of f̃ at a point x as the standard deviation of103
f̃(x), which we denote σf (x). In practice, we compute an estimate εf (x):104

(2.3) εf (x) ≈ σf (x) :=
√
V(f̃(x)).105

There are situations where deterministic error (2.2) can be described in a useful manner106
using a stochastic model, so that δ(x) can be viewed as a realization of a random variable.107
In this case, we say that the function exhibits computational noise, and we will denote the108
resultant random variable as ∆(x), as in the case of stochastic noise. Following Moré and Wild109
[25, 26], we define the noise level σf (x) as the standard deviation of ∆(x), with εf (x) serving110
as an approximate measure. For example, roundoff error is deterministic but can be modeled111
(albeit imperfectly) using a random variable drawn from a uniform distribution over the112
interval [−|f(x)|εM , |f(x)|εM ], where εM is unit roundoff. More examples of computational113
noise can be found in [25] and in §3.4 of this paper.114

In summary, stochastic and computational noise can be analyzed using a uniform approach115
by studying the properties of ∆(x).116

In the more general case of deterministic error, we can employ an estimate of the maximum117
error:118

(2.4) εb ≈ sup |δ(x)|, x ∈ R,119
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where R is the region of interest.120

2.1. Noise Level Estimation. Knowledge of the noise level in the function is a key com-121
ponent in the algorithms described in this paper. As a result, we now discuss some practical122
procedures for estimating the noise level.123
Local Pointwise Estimate εf (x). Given m i.i.d. samples {f̃1(x), f̃2(x), . . . , f̃m(x)}, we can124

define the pointwise noise level, in the case of stochastic noise, as125

(2.5) εf (x) :=

√√√√ 1
m− 1

m∑
j=1

(
f̃j(x)− f̃(x)

)2
, where f̃(x) := 1

m

∑
j=1

f̃j(x).126

From classic statistics, we know that εf (x) is an unbiased and consistent estimator of σf (x) =127
[V(f̃(x))]1/2.128

We observe that formula (2.5) is not suitable in the context of computational noise. Since129
this type of noise is deterministic, the formula would erroneously suggest a noise level of130
zero. One can, however, use the ECNoise algorithm [25], which was specifically designed for131
computational noise. It samples points along a randomly chosen line and employs Hamming132
differences [21] to yield an estimate εf (x).133
Global Estimate εf . Estimating εf (xk) at every iteration is expensive and often unnecessary134
in practice. Whenever possible, it is desirable to employ a universal estimate εf for all x in135
the region of interest. A global measure of noise over the region of interest R can be defined136
as137

(2.6) σf = 1
|R|

∫
R
σf (x)dx,138

and can be estimated as139

(2.7) εf := 1
M

M∑
i=1

εf (xi) ≈ σf140

where {x1, · · · , xM} are randomly sampled from R, and εf (xi) is either given by (2.5) or is141
the output of ECNoise.142

In some cases, e.g. Figure 3 in the next section, σf (x) remains relatively constant across143
R, allowing us to use a few (ideally only one representative) sample point xi to define εf .144

There are other more powerful estimators in the statistics literature but they are typically145
more expensive. Considering the iterative aspect of optimization algorithms, the simpler146
constant estimators εf defined above are often adequate for practical purposes, as illustrated147
in §5.148

3. Case Study: An Acoustic Design Problem. To guide our discussion on the design of149
robust optimization methods and illustrate the concept of noise level, we begin by presenting150
a case study involving optimal design under uncertainty. In this problem, the uncertainty of151
some system parameters and the use of sampling techniques lead to noise in the objective func-152
tion. While the uncertainty in the parameters is well-defined, predicting its propagation into153
the objective function becomes challenging owing to the nonlinear nature of the simulation.154
Nonetheless, we will see that estimating the noise level in the function is feasible, enabling us155
to effectively utilize a range of approaches to solve the optimization problem.156
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3.1. Statement of the Problem. We consider the 2-D acoustic design problem under157
uncertainty studied by Ng and Willcox [29]. An incoming wave enters a horn through its inlet158
and exits the outlet into the exterior domain with an absorbing boundary; see Figure 1. The159
goal is to find the shape of the horn so as to optimize its efficiency.160

Figure 1: Schematic plot for the design of horn

The propagation of the acoustic wave is modeled by the non-dimensional complex Helm-161
holtz equation162

(3.1) ∇2u+ k̂2u = 0,163

where u represents velocity and k̂ is the wave number. The design variables b = (b1, b2, · · · , b6)164
in R6 define the flare half-widths. We impose bounds on the design variables, bL ≤ b ≤ bU ,165
and assume that the dimensions, a, L, depicted in Figure 1 are given. The PDE is solved166
using a finite element method.167

The model contains uncertainties. The impedances zl and zu of the lower and upper horn168
walls are not known, but are assumed to follow a Gaussian distribution, N(50, 3). Similarly,169
the wave number k̂ is assumed to follow a uniform distribution Unif(1.3, 1.5). We characterize170
uncertainty by the random variable ω, so that k̂(ω) ∼ Unif(1.3, 1.5), zl(ω) ∼ N(50, 3), and171
zu(ω) ∼ N(50, 3).172

For a particular realization ξi of the random variable ω, the efficiency s of the horn is173
characterized by the flux at the inlet, as follows:174

(3.2) s(b, ξi) =
∣∣∣∣∫

Γinlet
u(b, ξi, t)dt− 1

∣∣∣∣ .175

Ng and Wilcox employ various statistics of s(b, ω) to estimate overall efficiency and to achieve176
a robust design. We focus here on the following formulation177

(3.3) min
bL≤b≤bU

f(b) = E[s(b, ω)] + 3
√
V[s(b, ω)].178

Although one may argue in favor of other robust formulations, the precise choice of the179
objective is not important in the discussion that follows. Note that problem (3.3) is a bound180
constrained stochastic optimization problem.181

This manuscript is for review purposes only.



6 Y. LOU, S. SUN, J. NOCEDAL

3.2. Approximating the Objective Function. Closed form representations of the expec-182
tation and variance terms in (3.3) are unknown and must be estimated by sampling. At every183
iteration k of the optimization algorithm, we compute the stochastic approximation:184

(3.4) f̃(bk) = s̄k(bk,Ξk) + 3
√
Sk(bk,Ξk)2,185

where Ξk = {ξ1, ξ2, · · · , ξN} is a batch of i.i.d. samples of the random variable ω. Here,186
s̄k(bk,Ξk) is the sample mean of s(bk, ξi) with respect to the batch Ξk, i.e.,187

(3.5) s̄k(bk,Ξk) = 1
N

∑
ξi∈Ξk

s(bk, ξi),188

and Sk(bk,Ξk)2 is the sample variance of s(bk, ξi) in Ξk, i.e.,189

(3.6) Sk(bk,Ξk)2 =
∑
ξi∈Ξk

(s(bk, ξi)− s̄k(bk,Ξk))2

N − 1 .190

For simplicity, we assume the batch size |Ξk| = N is constant across all optimization iterations.191
The evaluation of f̃ is expensive because, for each of the N realizations of ω, the acoustic192

efficiency s given in (3.2) requires the solution of a differential equation using a finite element193
method that involves the solution of a linear system of order O(30,000). (Ng and Willcox [29]194
employ a multifidelity approach to improve the efficiency of the sampling mechanism, but we195
will not consider it as it is not central to this investigation.)196

3.3. Illustration. To visualize the behavior of the noisy function (3.4), we plot it in Fig-197
ure 2 over a two-dimensional slice of R6 defined by varying two variables: b3, b4. The noise198
displays a discernible pattern rather than being highly erratic. As a result, the optimization199
problem is tractable notwithstanding the inherent nonlinearity of the simulation,200

Figure 2: Noisy Function. The vertical axis plots the noisy objective (3.4) with different
numbers of sample points: N = 10 (left), N = 50 (middle), and N = 100 (right). The
horizontal axes represent values of two of the design variables, b3 and b4. Different realizations
of the random variable ω were employed for each evaluation of f̃ in the region of interest.

The noise level σf (b) in this function is defined as the standard deviation of f̃(b) (see201
(2.3)), since the problem exhibits stochastic noise. In Figure 3, we plot an estimate εf (b) of202
σf (b) (defined in (2.5) with m = 50) as we vary the variables b3, b4. While εf (b) does vary203
among different values of b, its fluctuations are not substantial. Thus, a single estimate might204
suffice for the optimization, as discussed in sections below.205
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Figure 3: Noise Level. The vertical axis plots the estimated noise level εf (b) of the objective
(3.4) with different numbers of sample points: N = 10 (left), N = 50 (middle), and N = 100
(right). The horizontal axes represent values of two of the design variables b3 and b4. Each
value εf (b) is computed as defined in (2.5) with m = 50.

3.4. A Variant Illustrating Computational Noise. The acoustic horn design problem206
can also be used to illustrate computational noise. As already mentioned, the finite element207
solution of the Helmholtz equation (3.1) requires solving of a non-symmetric linear system of208
equations. In the examples given in the previous sections this was done using a direct linear209
solver. However, practical applications often benefit from approximating solutions with an210
iterative method. In our next experiment, we utilize the gmres method, with tolerance of211
10−6, to solve the linear system.212

In order to isolate the effect of computational noise, we generate and fix a particular213
realization of Ξk ≡ Ξ, of size N = 10, in the evaluation of the objective function (3.4). We214
plot the generated objective function in Figure 4. For comparison, we also plot the function215
using a direct linear solver. In this context, computational noise is notably smaller than the216
stochastic noise previously illustrated. Although increasing the linear solver’s tolerance can217
amplify the noise level, for brevity, our experiments will concentrate solely on stochastic noise.218

4. Line Search Gradient Projection Methods. In this section, we consider algorithms for219
the solution of noisy bound constrained optimization problems, such as the acoustic design220
problem (3.3). Our starting point is a classical gradient projection method with a backtracking221
line search, designed to be stable with respect to the critical operations discussed in the222
introduction.223

Suppose the problem is defined in Rn. Let g(x) := ∇f(x), and let g̃(x) denote its noisy224
approximation. As is common, we denote gk := g(xk) and g̃k := g̃(xk). Given a search225
direction p̃k, a straightforward extension of the Armijo sufficient decrease condition [30] reads226

f̃(xk + βkp̃k)− f̃(xk) ≤ cβkg̃Tk p̃k, c ∈ (0, 1].227

This requires the comparison of noisy function evaluations (case 1 in §1) and can lead to poor228
performance or failure [2, 31, 39]. To see this, suppose e.g. that p̃k = −g̃k. Then, the right229
hand side is always negative, but due to the noisy nature of f̃ , the left hand side can be230
positive even for a very small steplength, forcing the line search to decrease βk even more.231

One approach for circumventing these difficulties is to introduce a margin εA(xk) and to232
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Figure 4: Computational Noise. The vertical axis plots a deterministic variant of the func-
tion (3.4) in which the samples have been fixed. The linear system within the PDE scheme
is solved using a direct method (left) and using the iterative method gmres with tolerance
10−6 (right).

relax the Armijo condition as follows [2, 3, 37, 39],233

(4.1) f̃(xk + βkp̃k) ≤ f̃(xk) + cβkg̃
T
k p̃k + 2εA(xk).234

A gradient projection method using a relaxed line search is given in Algorithm 1. It depends235
on a parameter α0 that determines the initial trial point in the line search. The importance236
of α0 will be discussed in subsequent sections. In the algorithm, PΩ[·] denotes the projection237
operator onto the feasible region Ω. For the moment, we assume that εA(xk) depends on238
εf (xk), and will elaborate on the exact nature of this relationship in the next subsection.239

Algorithm 1: (GP-LS) Line Search Gradient Projection Method
1 Input: Initial point x0, constants ρ ∈ (0, 1), c ∈ (0, 1), and initial trial steplength

α0 > 0.
2 Set k ← 0.
3 while a termination condition is not met do
4 Determine εA(xk).
5 Compute a stochastic gradient g̃k.
6 p̃k ← PΩ[xk − α0g̃k]− xk.
7 Set βk ← 1.
8 while f̃(xk + βkp̃k) > f̃(xk) + cβkg̃

T
k p̃k + 2εA(xk) do

9 βk ← ρβk.
10 end
11 xk+1 ← xk + βkp̃k.
12 Set k ← k + 1.
13 end

In our experiments we use the parameters ρ = 1/2 and c = 10−4. We could have considered240
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a more sophisticated gradient projection method with a projected backtracking line search [7],241
but the numerical and theoretical results would not be significantly different.242

We now discuss the unspecified aspects of Algorithm 1, namely the computations of the243
relaxation εA(xk) and the noisy gradients g̃k.244

4.1. Choosing the Relaxation εA(x). One option is to choose εA(x) to be greater than245
εb, where the latter is defined in (2.4) as a bound on the noise. Then (4.1) is satisfied for all246
sufficiently small βk, and one can establish deterministic convergence results to a neighborhood247
of the solution [2, 31, 39]. However, in many applications, computing the bound εb is not248
feasible. Even when it is possible, choosing εA(x) > εb tends to be excessively cautious and249
can degrade performance, as we will demonstrate in §5.250

A more effective approach, in general, is to choose εA(x) ← λεf (x), where εf (x) is the251
estimated noise level at x and λ is a positive constant. This rule is justified as follows.252

Suppose that the random variable ∆(x) is i.i.d. for all x ∈ Ω, and that σf (x) remains253
constant, so that computing εf (x) at a single x suffices. Then by utilizing concentration254
inequalities we can see that, E(∆(x)) + λεf (x) serves as a high-probability estimate of εb255
for λ large enough. Given that the critical operations discussed in this paper solely involve256
comparisons or differences of function values, the mean cancels out, justifying the rule εA(x)←257
λεf (x).258

This rule can also be motivated in the absence of the i.i.d assumption by introducing the259
weaker set of assumptions: V(∆(x)) ≤ σ2 and E(∆(x)) = 0 [11]. In that case it is reasonable to260
set εA(x)← λσ. Another line of research [22, 23] that also motivates the rule εA(x)← λεf (x)261
assumes the existence of probabilistic bounds of ‖∆(x)‖, and allows for E(∆(x)) 6= 0.262

When the noise level does not vary significantly within the region of interest, it is more263
efficient to compute a constant estimate εf (as discussed in §2.1) and fine tune the parameter264
λ ∈ [1, 2] to the application at hand. We can then drop the dependency on x and write265

(4.2) εA ← λεf .266

In case the distribution of ∆(x) varies dramatically for different x, one may have to267
recompute εA during the course of the optimization or employ εb in lieu of a fixed value εA;268
see Appendix B for details.269

4.2. Finite Difference Gradient Approximation. The gradient of the objective function270
can be approximated using (noisy) finite differences. This involves the critical operation 2271
mentioned in §1. To achieve stability, the function evaluations must be spread out appropri-272
ately to balance truncation error and noise.273

Let us consider the case where a universal noise level estimate εf is available for all x. A
value of h that minimizes mean squared error for the forward difference estimator

[g̃FD(x)]i := f̃(x+ hei)− f̃(x)
h

, i = 1, . . . , n,

is given by [26]274

(4.3) h ≈ 81/4
√
εf
L
,275
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where L is a bound on the second derivative of the objective function (or the Lipschitz constant276
of the gradient). (In this formula, εf should be replaced by εb when the latter is the only277
information available.) Traditionally, the value of L is estimated independently from εf [17,278
26, 36]. However, Shi et al. [38] recently introduced a bisection procedure that calculates h279
directly using only noisy evaluations f̃ , avoiding a separate estimation of L.280

In certain applications, such as the acoustic design problem described in §3, analytic281
expressions for the gradient of a sample average approximation of the objective function are282
available; see Appendix A. This will allow us to present a comparative efficiency analysis of283
noisy finite difference methods versus analytic gradients.284

5. Numerical Experiments. We now describe numerical experiments that test the effi-285
ciency of algorithms for solving noisy bound constrained optimization problem under various286
noise regimes. We compare the line search gradient projection method GP-LS defined in Al-287
gorithm 1 with a variant using a fixed steplength, referred to as GP-F, given by288

(5.1) xk+1 ← PΩ[xk − αg̃k],289

where g̃k is a gradient approximation, PΩ[·] is the projection operator onto the feasible region,290
and α is a fixed steplength determined at the start of the algorithm.291

Unless otherwise noted, the algorithms tested in this paper operate in the sample incon-292
sistent case, meaning that every evaluation of the function uses a different batch of samples.293
This applies both to finite difference approximations of gradients and to line searches. (As a294
benchmark, we report the results for the sample consistent case in Appendix C.)295

5.1. Relaxed Line Search vs. Fixed Step Lengths. It is common practice to avoid line296
searches when minimizing noisy functions. We investigate whether this practice is still justified297
when employing the relaxed line search (4.1). To do so, we test our acoustic design problem298
under increasing noise levels.299

In the first set of experiments, we compare the two gradient projection algorithms, GP-F300
and GP-LS, using gradients generated by finite differences. We chose a sample size N = 100301
in (3.4) for which the estimated noise level εf (b) varies between 10−3 and 10−2 (see Figure 3).302
Since εf (b) does not change dramatically, we use a single value εf . We set εA = 10−3 through303
(4.2), after experimenting with the value of λ. Similarly, we use a fixed finite difference304
interval h = 10−2 in both methods, based on formula (4.3) (experiments for other values of h305
are discussed in the next subsection).306

The results are displayed in Figure 5. Algorithm GP-F was tested using three values of307
the fixed steplength, α = 10−1, 10−2, 10−3. Algorithm GP-LS used an initial trial steplength308
α0 = 1. In the vertical axis we plot an approximation of the true objective function obtained309
by setting N = 100 in (3.4). In the left panel, the horizontal axis plots the iteration number;310
and in the right panel, it plots computational effort, defined as311

(5.2) N × number of function calls.312

We observe from Figure 5 that the performance of GP-F varies greatly with the choice313
of steplength α. The value α = 10−3 leads to a slow method, whereas the choice α = 10−1314
results in wild oscillations. The best performing method, using α = 10−2, was identified after315
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Figure 5: Comparison of the gradient projection method with (GP-LS) and without (GP-F) a
line search; the former using a relaxation εA = 10−3 and the latter using three values of α.
All methods use N = 100 and a finite difference interval h = 10−2. Left: Objective function
value vs. iteration. Right: Objective function value vs. computational effort.

extensive experimentation. Observe that GP-LS outperforms the best option of GP-F in the316
initial third of the run.317

In the second set of experiments, we measure the effect of the relaxation parameter εA318
on algorithm GP-LS. Figure 6 reports results for choices εA = 10−2, 10−3, 10−4, which were319
derived as follows. For N = 100, letting λ = 2 and defining εf by (2.7), we have that εA ≈ 10−2320
(such estimate is close to εb). To seek a lower bound of εf (b), we set λ = 1, compute εf by321
randomly sampling b1, . . . , b100 in Ω, and let εf = mini=1,...,100 εf (bi); this gives εA ≈ 10−3.322
(We experiment with εA = 10−4 in order to observe the effect of underestimating εA.)323

We observe from Figure 6 that GP-LS performs well for εA = 10−3 and 10−4 but not so for324
εA = 10−2. By using this upper bound, the algorithm accepts overly noisy steps, resulting in325
oscillations. In contrast, if the relaxation εA is chosen too small (i.e., 10−4), it may cause the326
algorithm to repeatedly reject steps once it reaches the attainable accuracy in the function327
(observe the straight line in the right panel). However, this is not really harmful and a high328
number of rejections can be avoided by imposing a maximum number of backtracks; see e.g.329
the strategy in §5.5. In summary, it is advisable to choose εA to be in the lower range of the330
estimated values of εf (b).331

5.2. Finite Differences vs. Analytic Gradients. A common view in optimization is that332
finite difference gradient approximations should be avoided in the noisy setting. We investigate333
this perspective in the context of the acoustic horn problem by comparing the use of finite334
differences and analytic expressions for the gradient of a sample average approximation of335
the function. These analytic expressions are provided by the PDE solver as discussed in336
Appendix A.337

In Figure 7, we report the performance of the line search algorithm GP-LS using finite338
differences or analytic gradients. We set N = 100 and εA = 10−3 and obtain the estimate339
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Figure 6: Performance of Algorithm GP-LS with three values (10−2, 10−3, 10−4) of the re-
laxation parameter εA in the line search. We also plot the performance of Algorithm GP-F
with α = 10−2. Left: Objective function value vs. iteration. Right: Objective function vs.
computational effort (5.2).

h ≈ 10−2 by using formula (4.3) with εf = 10−3. Consequently, we report results with three340
values of the finite difference interval, namely h = 10−1, 10−2, 10−3, to compare the outcomes341
of overestimating and underestimating interval choices. In the figure on the right we plot the342
objective function vs. CPU time, which is an appropriate measure since the cost of an analytic343
gradient evaluation is difficult to quantify in terms of function evaluations.344

The plots in Figure 7 indicate that, as anticipated, the use of analytic gradients yields the345
best results. However, the margin of improvement is not significant compared to GP-LS with346
h = 10−2, a value of h aligned with formula (4.3).347

5.3. Increasing the Noise Level: N = 50. As the sample size decreases from N = 100348
to N = 50, the problem becomes more noisy, potentially compromising the stability of the349
line search. Now, the convergence theory of stochastic gradient methods [8] states that the350
steplength should diminish in response to rising noise. This fact can be used to make the line351
search more robust by decreasing the initial trial steplength α0 in GP-LS.352

In Figure 8, we set N = 50, εA = 2 × 10−3, and plot the results for GP-LS with α0 =353
1, 0.25, 10−3. While 0.25 is a reasonable choice, 1 and 10−3 are included to demonstrate the354
effects of excessively large or small choices of α0. We also report the performance of GP-F355
with α = 10−2, a steplength obtained via tuning. The two figures report objective value vs.356
computational effort (defined in (5.2)). The left panel focuses on the early stage of the run357
while the right panel plots the overall long term behavior.358

Figure 8 shows the benefits of using values of α0 smaller than 1 in GP-LS. The choice359
α0 = 0.25 outperforms all other options including the tuned GP-F. The very small value360
α0 = 10−3 leads to poor performance both because it limits the lengths of the steps unduly361
and because comparisons in the line search become unreliable, sometimes yielding repeated362
rejections of trial steplengths.363
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Figure 7: Comparison of analytic vs. finite difference gradients in Algorithm GP-LS. We report
results for three values of the finite difference parameter h = 10−1, 10−2, 10−3. Left: Objective
function value vs. iteration. Right: Objective function value vs. CPU time.

0 1 2 3 4 5 6 7 8

Computational Efforts 104

0.05

0.1

0.15

0.2

O
b

je
c
ti
v
e

0 0.5 1 1.5 2 2.5 3 3.5

Computattional Efforts 10
5

0.05

0.1

0.15

0.2

O
b

je
c
ti
v
e

Figure 8: Comparison of three different values of the initial trial steplength, namely α0 =
1, 0.25, 10−3 in GP-LS. We also report GP-F with α = 10−2. Both algorithms were tested using
N = 50. Left: Objective function value vs. computational effort (up to 75, 000). Right:
Objective function value vs. computational effort (up to 3× 105).

5.4. A Higher Noise Level: N = 10. When N = 10, the noise level is so high that364
all algorithms exhibit strong oscillations in the objective. In Figure 9, we report results of365
GP-F with α = 10−2, and GP-LS with εA = 10−2 and α0 = 0.025 (all parameters chosen after366
experimentation). The panel on the left focuses on the initial stages of the run, and the right367
panel on the overall run. Note that the best objective value achievable by the methods is368
around 8× 10−2, whereas for N = 50, 100 it was 6× 10−2. GP-LS no longer has an advantage369
over GP-F, unlike the case for N = 50 or 100.370
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To summarize our experiments so far, the relaxed line search strategy performs efficiently371
in the presence of noise by reducing the initial trial point α0 as the noise level increases. Yet,372
when dealing with highly noisy functions, employing a fixed step length strategy is equally373
effective. Nevertheless, we now demonstrate that further enhancements to the line search374
strategy are possible.375
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Figure 9: Comparison of GP-F and GP-LS with heuristics. Algorithm GP-LS and GP-F were
tested using N = 10; Left: Objective function value vs. computational effort (up to 75, 000).
Right: Objective function value vs. computational effort (up to 3× 105).

5.5. A Self-Calibrated Line Search Strategy. We now show that the performance of the376
GP-LS method can be improved significantly in the highly noisy regime by adaptively selecting377
the two key parameters in the GP-LS method: εA and α0. To do so, we first define a user-378
specified memory size T . Every T iterations, before computing the noisy gradients in GP-LS,379
instead of performing line 4 of Algorithm 1, we proceed as follows:380

• Compute the average number of line search backtracks in the most recent T iterations,381
denoted as avg.382
• If avg ≥ 3, then update εA and α0 as383

(5.3) εA ← min{1.5εA, 2εf}, α0 ← max{0.5α0, 10−5},384

and if avg ≤ 0.1,385

(5.4) εA ← max{0.5εA, 10−5}, α0 ← min{1.5α0, 10−1}.386

The motivation for this strategy is as follows.387
Case 1: If avg is large, then either the relaxation is too small and the line search has388

stagnated (see Figure 6 for εA = 10−4), or the search direction is too noisy leading to many389
backtracking steps. In this case, the strategy increases εA and decreases α0 to further relax390
the line search and put more emphasis on safeguarding errors. The upper bound of εA is391
set as 2εf since we have seen in §4.1 that line search will ultimately be successful with high392
probability as εA is increased to 2εf .393
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Case 2: If avg is small, then either εA is adequately large or the steps are productive. In394
this case, we decrease εA since we try to keep this parameter as small as possible, and increase395
α0 to attempt to take more aggressive steps.396

In addition to the rules (5.3) and (5.4), we limit the number of possible backtracks by397
requiring that βk never be smaller than ρ3T , where ρ is the contraction parameter defined in398
Algorithm 1. Thus, the condition in the while loop in line 8 of Algorithm 1 is changed to399

(5.5) f̃(xk + βkp̃k) > f̃(xk) + cβkg̃
T
k p̃k + 2εA and βk ≥ ρ3T .400

The constants in (5.3) and (5.4) can be tuned for the application at hand, but the method401
is not sensitive to the choices of these constants, with one caveat. It is important that, when402
changing εA and α0, we decrease them more rapidly than increase them (note 1.5× 0.5 < 1)403
because it is less harmful to perform more backtracks than accepting a poor step. We mention404
in passing that this method stands in contrast to a recently proposed method [40], where an405
estimation of the gradient norm variance was used to re-scale the steps.406

The results of applying GP-LS with the self-calibrated strategy, denoted as GP-LS-cal,407
are displayed in Figure 10. There, T = 5 and the sample size is N = 10. The left panel408
compares fine-tuned GP-LS against GP-LS-cal. The right panel plots a smoothed version of409
the left figure, i.e., a moving average of objective. We can observe that GP-LS-cal clearly410
outperforms GP-LS. Moreover, the best average objective value of GP-LS-cal improves to411
around 6× 10−2, which is similar to the objective obtained for N = 50 and 100.412
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Figure 10: Comparison of GP-LS and GP-LS-cal. Algorithms were tested using N = 10,
T = 5; Left: Objective function value vs. computational effort. Right: Moving average of
recent 50 objective function values vs. computational effort.

6. Convergence Analysis. In this section, we establish convergence properties for algo-413
rithm GP-LS in the presence of bounded noise, when applied to the problem414

(6.1) min
x∈Ω

f(x),415
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where f is a nonlinear function and Ω is a closed convex set. We begin by stating two common416
assumptions.417

Assumption 6.1. Ω is a nonempty, closed, and convex set, and for any x ∈ Ω, f(x) > −∞.418

Assumption 6.2. f is continuously differentiable in the feasible region Ω and for all x, y ∈
Ω, there exist L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖.

Next, we assume that the noise in the function and gradient is bounded.419

Assumption 6.3. For all x ∈ Ω, there exists a constant εb > 0 such that

‖f̃(x)− f(x)‖ ≤ εb.

Assumption 6.4. For all x ∈ Ω, there exists a constant εg > 0 such that

‖g̃(x)− g(x)‖ ≤ εg.

Let us comment on the last two assumptions. In many engineering applications, including420
our acoustic design problem, the noise in the objective and gradient is inherently bounded due421
to the physical nature of the problem. In that case, when employing finite difference gradient422
estimations, we have that Assumption 6.2 and 6.3 imply Assumption 6.4. This justifies the423
results in [2, 3, 5, 31, 39] and the analysis given below, which assume bounded noise.424

Nonetheless, a series of studies [9, 15, 22, 23] assume only probabilistic bounds on the425
noise, and as mentioned in §4.1, achieve high-probability convergence results. That analysis is426
more sophisticated but also more involved than the one presented here. Since we believe that427
the boundedness assumption holds in many applications, our analysis is relevant to practice.428
It is also novel in that no prior results exists for noisy gradient projection methods with a line429
search, to our knowledge.430

We begin the proof of global convergence by citing several established lemmas and intro-431
ducing a stationarity measure specifically tailored to this problem. Our ultimate objective is432
to demonstrate that the limit inferior of this measure is of order O(εb + ε2g).433

Lemma 6.1 (Prop. 1.1.9 Appendix B in [7]). For any x ∈ Rn, the projection of x on Ω exists434
and is unique. Furthermore, z is the projection of x on Ω if and only if (x − z)T (y − z) ≤ 0435
for all y ∈ Ω.436

Lemma 6.2 (Theorem 9.5-2 part (5) in [24]). For any x, y ∈ Rn,

‖PΩ[x]− PΩ[y]‖ ≤ ‖x− y‖.

We now recall a standard stationary measure from convex optimization [7]:437

(6.2) p(x) := PΩ[x− α0g(x)]− x, p̃(x) := PΩ[x− α0g̃(x)]− x,438

where α0 > 0 is any initial step-length set in Algorithm 1. Note that by design of our gradient439
projection method, p(x) is the search direction.440
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Lemma 6.3. x∗ ∈ Ω is a first-order stationary point of problem (6.1) if and only if p(x∗) =441
0.442

This lemma is a simple extension of a classical result (see Prop. 6.1.1 (b) in [7]); we include443
its proof in Appendix D for completeness.444

Remark 6.4. Lemma 6.3 implies that beyond serving as the search direction for algorithm445
GP-LS at iteration xk, p(xk) also functions as a measure of stationary for problem (6.1).446
There is, however, another optimality measure that is more convenient in deriving our main447
convergence result. This measure is given by −p(xk)T g(xk), as discussed next.448

Lemma 6.5. x∗ ∈ Ω is a first-order stationary point of problem (6.1) if and only if449

(6.3) p(x∗)T g(x∗) = 0.450

Proof. By Lemma 6.3, it suffices to show that (6.3) is equivalent to p(x∗) = 0. Clearly451
p(x∗) = 0 ⇒ p(x∗)T g(x∗) = 0.452

To establish the converse, assume that p(x∗)T g(x∗) = 0, and define θ as the angle between
p(x∗) and g(x∗), so that

‖p(x∗)‖‖g(x∗)‖ cos θ = 0.
If ‖p(x∗)‖ = 0 or ‖g(x∗)‖ = 0 (which by (6.2) implies ‖p(x∗)‖ = 0), then p(x∗) = 0, yielding453
the desired result.454

Let us therefore consider the case when ‖p(x∗)‖ 6= 0 and ‖g(x∗)‖ 6= 0, and cos θ = 0. We455
show by contradiction that this case is not possible. Note from (6.2)456

‖PΩ[x∗ − α0g(x∗)]− (x∗ − α0g(x∗))‖2 = ‖PΩ[x∗ − α0g(x∗)]− x∗‖2 + ‖α0g(x∗)‖2

> ‖PΩ[x∗ − α0g(x∗)]− x∗‖2.457

This contradicts the fact that PΩ[x∗ − α0g(x∗)] as the unique vector closest to x∗ − α0g(x∗)458
in Ω.459

Using the standard abbreviations pk := p(xk), p̃k := p̃(xk), Lemma 6.5 establishes pTk gk as a460
stationary measure of problem (6.1)—and p̃Tk g̃k is its noisy counterpart, which is the quantity461
accessed by the algorithm. In light of Lemma 6.1, it is easy to see that −pTk gk ≥ 0 and462
−p̃Tk g̃k ≥ 0.463

Let us now define464

(6.4) δg(xk) := (−g̃k)− (−gk), δp(xk) := p̃k − pk.465

We now establish a technical lemma relating −p̃Tk g̃k and the stationary measure −pTk gk,466
in terms of a scaling factory dependent on the magnitude of the noise ‖δg(x)‖.467

Lemma 6.6. Under the assumptions previously stated, for any iterate xk generated by
GP-LS (Algorithm 1),

−p̃Tk g̃k ≥
(1

2 −
α0
2 −

(3α0
2 + 1

2

)
γ2
k

)
(−pTk gk)

where468

(6.5) γk := ‖δg(xk)‖√
−pTk gk

.469
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Proof. We lead the proof by noting the differences between −pTk gk and −p̃Tk g̃k:470

(6.6) − p̃Tk g̃k − (−pTk gk) = −gTk δp(xk) + pTk δg(xk) + δp(xk)T δg(xk).471

We establish bounds on each terms on the right hand side of this equation.472
We first show that the last term δp(xk)T δg(xk) is non-negative. Apply Lemma 6.1 with473

x = xk−α0gk, z = PΩ[xk−α0gk] = xk+pk, and y = xk+p̃k, we have (−α0gk−pk)T (p̃k−pk) ≤ 0,474
which implies475

(6.7) − pTk δp(xk) ≤ α0g
T
k δp(xk).476

Apply again Lemma 6.1 with x = xk−α0g̃k, z = PΩ[xk−α0g̃k] = xk+ p̃k and y = xk+pk ∈ Ω,477
we have (−α0g̃k − p̃k)T (pk − p̃k) ≤ 0, which implies478

(6.8) p̃Tk δp(xk) ≤ −α0g̃
T
k δp(xk).479

Summing up (6.7) and (6.8), we obtain480

(p̃k − pk)T δp(xk) ≤ α0(gk − g̃k)T δp(xk)481

=⇒ δp(xk)T δg(xk) ≥
1
α0
‖δp(xk)‖2 ≥ 0.(6.9)482

483

We next analyze the cross term gTk δp(xk). For this, we first derive a few auxilary inequal-484
ities. First note by Lemma 6.2,485

(6.10) ‖δp(xk)‖ = ‖pk − p̃k‖ ≤ α0‖gk − g̃k‖ = α0‖δg(xk)‖.486

Moreover, apply Lemma 6.1 with x = xk−α0gk, z = PΩ[xk−α0gk] = xk+pk, and y = xk ∈ Ω,487
we obtain488

(6.11) ‖pk‖2 ≤ −α0p
T
k gk.489

To bound gTk δp(xk), we have from (6.8)490

(6.12) p̃Tk δp(xk) ≤ −α0g̃
T
k δp(xk) = −α0g

T
k δp(xk) + α0δp(xk)T δg(xk).491

Re-organize and obtain492

−α0g
T
k δp(xk) ≥ p̃Tk δp(xk)− α0δp(xk)T δg(xk)493

= pTk δp(xk) + δp(xk)T δp(xk)− α0δp(xk)T δg(xk)494

≥ −α0‖δg(xk)‖‖pk‖ − α2
0‖δg(xk)‖2495

≥ −α0‖δg(xk)‖
√
−α0pTk gk − α

2
0‖δg(xk)‖2496

≥ α0
2 pTk gk −

3α2
0

2 ‖δg(xk)‖
2497

=
(
α0
2 + 3α2

0
2 γ2

k

)
pTk gk.(6.13)498
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499

Here, the second inequality follows from Cauchy-Schwartz inequality, ‖δp(xk)‖2 ≥ 0, and500
(6.10); the third inequality follows from (6.11); the fourth is from arithmetic-geometric mean,501

i.e., α0‖δg(xk)‖
√
−α0pTk gk ≤

1
2

(
α2

0‖δg(xk)‖2 − α0p
T
k gk

)
; and the last line is by γk defined502

in (6.5).503
Finally, using (6.13), (6.9) & Cauchy-Schwartz, (6.11), and arithmetic-geometric mean for504

the following inequalities respectively, we obtain the desired result:505

−p̃Tk g̃k = −pTk gk + (−gTk δp(xk)) + pTk δg(xk) + δp(xk)T δg(xk)506

≥ −pTk gk +
(1

2 + 3α0
2 γ2

k

)
pTk gk + pTk δg(xk) + δp(xk)T δg(xk)507

≥
(1

2 −
3α0
2 γ2

k

)
(−pTk gk)− ‖pk‖‖δg(xk)‖508

≥
(1

2 −
3α0
2 γ2

k

)
(−pTk gk)− ‖δg(xk)‖

√
−α0pTk gk509

≥
(1

2 −
3α0
2 γ2

k

)
(−pTk gk)−

1
2‖δg(xk)‖

2 + α0
2 pTk gk510

=
(1

2 −
α0
2 −

(3α0
2 + 1

2

)
γ2
k

)
(−pTk gk).(6.14)511

512

We can now state the main convergence theorem for the gradient projection algorithm513
with a relaxed line search. We recall that −pTk gk serves both an algorithmic role in the514
Armijo decrease condition and a theoretical role as a stationary measure of the problem, as515
mentioned in Remark 6.4.516

Theorem 6.7. Under Assumptions 6.1-6.4, if α0 + 2c < 1 and εA > εb, the iterates {xk}
generated by GP-LS (Algorithm 1) satisfy

lim inf
k→∞

∣∣∣pTk gk∣∣∣ ≤ ε̄
where517

(6.15) ε̄ :=
ε2g
γ2 + 2α0L

cρ
(

1
2 −

α0
2 −

(
3α0

2 + 1
2

)
γ2
) (εA + εb) ,518

and519

(6.16) γ2 := (1− 2c− α0)(1− α0)
(1− 2c− α0) (3α0 + 1) + 2 .520

Proof. The proof is constructed by characterizing the descent on the objective function521
using the noisy stationary measure p̃Tk g̃k, and dividing the proof into two cases according to522
the relative size of the noise.523

First, by applying Lemma 6.1 with x = xk − α0g̃k, z = PΩ[xk − α0g̃k] = xk + p̃k, and524
y = xk ∈ Ω, we have525

(6.17) ‖p̃k‖2 ≤ −α0p̃
T
k g̃k.526
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Next, by a Taylor expansion and Assumption 6.2, we have for any β > 0,527

f(xk + βp̃k) ≤ f(xk) + βp̃Tk gk + L

2 β
2‖p̃k‖2

≤ f(xk) + βp̃Tk (g̃k + δg(xk)) + L

2 β
2(−α0p̃

T
k g̃k)

≤ f(xk) + (−β + α0L

2 β2)(−p̃Tk g̃k) + β‖p̃k‖‖δg(xk)‖

≤ f(xk) + (−β + α0L

2 β2)(−p̃Tk g̃k) + β‖δg(xk)‖
√
−α0p̃Tk g̃k

≤ f(xk) +
((

α0
2 − 1

)
β + α0L

2 β2
)

(−p̃Tk g̃k) + β

2 ‖δg(xk)‖
2,

(6.18)528

where the second and fourth inequalities are from (6.17), the third is from Cauchy-Schwartz,529
and the last is from the arithmetic-geometric mean. Together with Assumption 6.3, we have530

(6.19) f̃(xk + βp̃k) ≤ f̃(xk) +
[((

α0
2 − 1

)
β + α0L

2 β2
)

(−p̃Tk g̃k) + β

2 ‖δg(xk)‖
2
]

+ 2εb.531

We now note that the line search in GP-LS always terminates within finitely many back-532
tracking steps. This follows from the fact that we pick εA > εb and that the term inside square533
brackets in (6.19) converges to zero as β → 0. Hence, the relaxed Armijo condition (4.1) will534
be satisfied for some sufficiently small βk > 0.535

We now divide the set of iterates into two cases depending on whether the noise dominates536
the optimality measure, in the sense that the ration γk is larger than the threshold γ, where537
these quantities are defined in (6.5) and (6.16), respectively.538

Note by the assumption α0 + 2c < 1 and simple algebra539

(6.20) 0 < γ2 <
1− α0
3α0 + 1 .540

Case 1: Noise is relatively small: γ2
k ≤ γ2. By (6.19), (6.5), and Lemma 6.6, we have541

f̃(xk + βp̃k) ≤ f̃(xk) +
((

α0
2 − 1

)
β + α0L

2 β2
)

(−p̃Tk g̃k) + β

2 γ
2
k(−pTk gk) + 2εb

≤ f̃(xk) +
((

γ2
k

1− α0 − (3α0 + 1)γ2
k

+ α0
2 − 1

)
β + α0L

2 β2
)

(−p̃Tk g̃k) + 2εb.

(6.21)

542

With this result, the Armijo condition (4.1) holds when543

(6.22)
(

γ2
k

1− α0 − (3α0 + 1)γ2
k

+
(
α0
2 − 1

))
β + α0L

2 β2 ≤ −cβ,544

which is equivalent to545

(6.23) β ≤ 2
α0L

(
−c− γ2

k

1− α0 − (3α0 + 1)γ2
k

− α0
2 + 1

)
.546
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Since γ2
k ≤ γ2, by (6.20),547

(6.24) 1− α0 − (3α0 + 1)γ2
k ≥ 1− α0 − (3α0 + 1)γ2 > 0.548

With this, we note that − γ2
k

1−α0−(3α0+1)γ2
k

is decreasing in γ2
k , for γ2

k ∈ (0, γ2]. Therefore its549

lower bound is achieved when γk = γ, i.e.550

(6.25) − c− γ2
k

1− α0 − (3α0 + 1)γ2
k

− α0
2 + 1 ≥ −c− γ2

1− α0 − (3α0 + 1)γ2 −
α0
2 + 1 = 1

2551

where the equality follows from the definition of γ2 in (6.16) and algebra.552
This, together with (6.23), implies that the relaxed Armijo condition holds for any β ≤553

1
α0L

. Thus, for any k ∈ N in Case 1,554

(6.26) βk ≥
ρ

α0L
.555

Therefore, we have from (4.1), Assumption 6.3, and (6.26) that556

f(xk + βkp̃k) ≤ f(xk) + cβkp̃
T
k g̃k + 2εA + 2εb

≤ f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk) + 2εA + 2εb,
(6.27)557

which measures the reduction of the objective between any two consecutive iterations for Case558
1 (notice that according to Algorithm 1, xk+1 = xk + βkp̃k).559

Case 2: Noise is relatively large: γ2
k > γ2. By definition of γk in (6.16)560

(6.28) ‖δg(xk)‖2 > γ2(−pTk gk).561

As explained in the paragraph after (6.19), there always exists βk > 0 such that the relaxed562
Armijo condition (4.1) holds. This fact, together with Assumption 6.3, Assumption 6.4,563
and (6.28),564

f(xk + βkp̃k) ≤f(xk)− cβk(−p̃Tk g̃k) + 2εA + 2εb
≤f(xk) + 2εA + 2εb

=f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk)

+ cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk) + 2εA + 2εb

≤f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk)

+ cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
) ‖δg(xk)‖2

γ2 + 2εA + 2εb

≤f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk)

+ cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)
ε2g
γ2 + 2εA + 2εb

=f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk) + η,

(6.29)565
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where566

(6.30) η := cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)
ε2g
γ2 + 2εA + 2εb.567

Condition (6.29) measures the reduction of the objective between any two consecutive itera-568
tions for Case 2.569

Now combine both Case 1 and 2, and since η > 2εA + 2εb, it follows that for all k ∈ N,570

(6.31) f(xk+1) ≤ f(xk)−
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)

(−pTk gk) + η.571

Finally, to prove that lim infk→∞ |pTk gk| ≤ ε̄ where ε̄ is defined in (6.15), assume for572
contradiction that there exists ε1 > ε̄ such that −pTk gk ≥ ε1. Then for all k ∈ N,573

f(xk+1) ≤ f(xk)−
[
cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)
ε1 − η

]
.(6.32)574

This shows that for each iteration there is a decrease in f of at least

cρ

α0L

(1
2 −

α0
2 −

(3α0
2 + 1

2

)
γ2
)
ε1 − η.

We conclude by noting that this quantity is strictly positive as ε1 > ε̄ and that575
cρ
α0L

(
1
2 −

α0
2 −

(
3α0

2 + 1
2

)
γ2
)
ε̄− η = 0. Therefore f(xk)→ −∞ as k →∞, which is a contra-576

diction to Assumption 6.1. In light of Lemma 6.1 −pTk gk ≥ 0, and thus lim infk→∞ |pTk gk| ≤ ε̄.577

7. Final Remarks. We underscore how this research extends beyond prior studies aimed at578
mitigating roundoff errors in optimization. Nonlinear optimization packages [12, 16, 27, 41, 43]579
and textbooks [14, 18, 30] devote attention to this issue. Nonetheless, the strategies for580
handling errors are introduced as heuristics that are seldom documented or justified. More581
critically, they tend to focus solely on roundoff errors,1 characterized by machine precision εM ,582
which is a precisely specified quantity. There is a need for a more comprehensive understanding583
of this topic in which stabilization techniques follow clearly specified guidelines, and where584
noise exhibits a more complex behavior than roundoff. This paper attempts to be a step585
toward that goal.586

In the future, it would be desirable to conduct similar studies, using practical applications,587
for more general constrained optimization problems. We believe that the ideas presented here588
extend to such a wider setting.589

Acknowledgments. The authors are grateful to Richard Byrd, Figen Oztoprak, and Stefan590
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Appendix A. Analytical Gradient of the Design Problem.684
In the acoustic horn design problem outlined in (3.3), the gradient of the sample approx-685

imation in (3.4) can be computed analytically. More specifically,686

(A.1) g̃k
∆= ∇f(bk,Ξk) = ∇s̄k(bk,Ξk) + 3∇

√
Sk(bk,Ξk)2,687

where s̄k(bk,Ξk) and Sk(bk,Ξk)2 are defined in (3.5) and (3.6). Furthermore,688

(A.2) ∇s̄k(bk,Ξk) = 1
N

∑
ξi∈Ξk

∇s(bk, ξi),689

and simple algebra shows that,690

(A.3) ∇
√
Sk(bk,Ξk)2 = 1

N − 1

∑
ξi∈Ξk

(s(bk, ξi)− s̄k(bk,Ξk))(∇s(bk, ξi)−∇s̄k(bk,Ξk))√
S2
k(bk,Ξk)

.691

If Ξk is randomly sampled, g̃k is an unbiased estimator for the gradient in (3.3) and can be692
computed by approximating ∇s(bk, ξi) for each ξi ∈ Ξk. In the definition of s from (3.2), Γinlet693
is independent of b. If u is smooth, with 1 indicating

∫
Γinlet

udΓ ≥ 0,694

(A.4) ∇s(b, ξi) = (21− 1)
∫

Γinlet
∇udΓ.695

Here ∇u can be obtained as a by-product while solving the Helmholtz equation with a finite696
element solver. Numerical integration over Γinlet yields ∇s(b, ξi) and g̃k.697

Appendix B. Further Discussion on Noise Level.698
In §4.1, we justified the rule εA ← λεf , under specific assumptions on ∆(x). However,699

these assumptions may not be valid in cases where the noise distribution varies significantly700
across different x values. This limitation is evident in scenarios where canceling the mean is701
not possible, as discussed in §4.1.702

While the self-calibrated strategy proposed in §5.5– which can be viewed as an implicit703
way of estimating the local noise level– is one possible solution, it may fail to provide sufficient704
safeguards in some extreme cases (e.g. when the algorithm is highly sensitive to the choice of705
εA). For those scenarios, we still need to estimate a bound on the noise εb (defined in (2.4))706
or a high-probability bound. We discuss such estimation next.707

B.1. Estimation of εb for Stochastic Noise. For simplicity, we will obtain εb by comput-708
ing an estimate of sup ‖∆(x)‖ at a representative x. A global estimate can then be derived709
e.g. by (2.7).710

One can establish consistent estimators of the noise bound if we can compute an estimate711
on the true objective value. Let us generate m i.i.d. samples {f̃1(x), f̃2(x), . . . , f̃m(x)} and712
let us compute an accurate estimate of the true objective f(x), denoted as f̂(x). Then the713
samples of noise in the function are given by714

(B.1) δj(x) := f̃j(x)− f̂(x), j = 1, 2, · · · ,m.715
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A concrete example arises in stochastic optimization where the true objective is f(x) :=716
E(F (x, ξ)). The jth sample of the noisy objective is defined as f̃j(x) = 1

N

∑N
i=1 F (x, ξji) for717

an i.i.d. batch {ξj1 , ξj2 , · · · , ξjN } of size N . An accurate estimator f̂(x) of f(x) can then be718
defined as f̂(x) = 1

M

∑M
i=1 F (x, ξi) for another batch of i.i.d. samples {ξi}Mi=1, where M � N719

is sufficiently large.720
We provide the following three estimators that can be used in practice, where the first721

two require the access to f̂(x) and the third one does not:722

1) Empirical Chebyshev bound [35]:723

(B.2) ε̂1b := δ(x) + λ

√√√√ 1
m− 1

m∑
j=1

(δj(x)− δ(x))2724

for some integer λ large enough, where δ(x) = [δ1(x) + · · ·+ δm(x)]/m .725
2) Maximum of |δj(x)|:726

(B.3) ε̂2b := max
j=1,··· ,m

{|δj(x)|}.727

3) Range of noisy objectives:728

(B.4) ε̂3b := max
j=1,··· ,m

f̃j(x)− min
j=1,··· ,m

f̃j(x).729

ε̂1b is a high-probability bound of ‖∆(x)‖, assuming that the noise has a finite variance730
but not necessarily bounded. ε̂2b is a consistent estimator of εb if sup ‖∆(x)‖ <∞. ε̂3b can be731
a biased (and depending on the estimated quantity, potentially inconsistent) estimator if the732
noise does not have mean zero, yet it can be easily computed without f̂(x). In practice, ε̂3b733
is an attractive candidate when f̂(x) is expensive or not accessible, or when the noise level734
estimate is not required to be accurate, as in the acoustic horn design.735

B.2. Estimating εb for Computational Noise. Due to the deterministic nature of compu-736
tational noise, the first two estimators discussed above cannot be employed. As an alternative,737
we can modify the range estimator (B.4) following a similar approach as ECNoise. At a se-738
lected point x, one can collect noisy objectives in a small neighborhood of x, and then compute739
the range as an estimate of εb. Similar to the argument for stochastic noise, if the distribution740
does not vary significantly, using ECNoise is usually effective; see [25].741

Appendix C. Sample Selection and Consistency. In many stochastic optimization742
problems, such as the acoustic horn design described in §3, the noisy evaluations f̃(xk),743
e.g. (3.4), depend on a particular sample batch Ξk. In certain cases, the selection of Ξk is744
entirely under the control of the user. One can thus fix Ξk during the course of an iteration745
of the optimization algorithm, a case we refer to as “sample consistency”. In such a setting746
the effect of noise on function comparisons and differences is more benign.747

Reusing samples is, however, not always possible. In that case, the algorithm will operate748
in the “sample inconsistent” regime, which is the most general and challenging for optimization749
methods and holds particular interest in this paper.750

Let us summarize these two cases for the key components of our algorithm.751
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Relaxed line search. For backtrack numbers ` = 1, 2, · · · , we denote the sample used in752
the evaluation of f̃(xk + β`kp̃k) by Ξ`k. In the sample inconsistent case, the Ξ`k are different753
from each other and a relaxation εA is employed. On the other hand, if sample consistency is754
ensured, we can set εA ← 0 since no errors are involved in the comparison with a fixed Ξk 2.755

Finite differences. Given the estimated noise level εf , the finite difference estimator is756

(C.1) [g̃k]i := f̃(bk + hei,Ξ2
k)− f̃(bk,Ξ1

k)
h

i = 1, · · · , n,757

where Ξ1
k and Ξ2

k are two batches. Sample inconsistency allows Ξ1
k 6= Ξ2

k, and h needs to758
be chosen according to the noise level as seen in (4.3). With sample consistency, Ξ1

k = Ξ2
k,759

formula (C.1) gives a fairly accurate gradient approximation of the corresponding sample760
average approximation of the objective, and thus h is set as the unit roundoff εM .761

C.1. Numerical Results with Sample Consistency. We study the performance of algo-762
rithm GP-LS when fixing the sample during line search and gradient estimation. In Figure 11,763
we plot the performance of GP-LS with εA = 0, and for N = 10, 50, 100. For each value764
of N , we adjust α0 (0.1, 0.25, 1 respectively) to cope with the fact that the sample average765
approximations of the objective function become increasingly inaccurate as N decreases. The766
finite difference interval h is chosen to be 10−6 for all cases.767
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Figure 11: Comparison of different sample sizes when using a sample consistent version of
Algorithm GP-LS using sample sizes 10, 50, 100, and different α0 respectively; Left: Objective
function value vs. computational effort (up to 75, 000). Right: Objective function value vs.
computational effort (up to 3× 105).

We observe in Figure 11 that all three plots exhibit nice convergence behavior. With768
smaller sample sizes the iterates approach the solution more quickly, although they may give769
rise to spikes as the iteration continues. We conclude that, when feasible, sample consistency770

2Note that although the comparison is robust, f̃(xk) is still a noisy estimate and a careful choice of α0 can
be useful when noise is large; see §C.1.
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results in robust and efficient performance, if an appropriate value of the sample size N is771
first determined after experimentation.772

Appendix D. Supplementary Proof.773

Lemma D.1. x∗ ∈ Ω is a first-order stationary point of problem (6.1) if and only if p(x∗) =774
0.775

Proof. Prop. 6.1.1 (b) in [7] shows (⇐) of Lemma 6.3.776
To see (⇒), since x∗ is a stationary point and by definition, g(x∗)T (x − x∗) ≥ 0 for all777

x ∈ Ω. Take x = PΩ[x∗ − α0g(x∗)], then778

(D.1) g(x∗)T (PΩ[x∗ − α0g(x∗)]− x∗) = p(x∗)T g(x∗) ≥ 0.779

Note that by letting x = x∗ − α0g(x∗), z = PΩ[x∗ − α0g(x∗)] and y = x∗ in Lemma 6.1, one780
has781

(x∗ − α0g(x∗)− PΩ[x∗ − α0g(x∗)])T (x∗ − PΩ[x∗ − α0g(x∗)]) ≤ 0
=⇒‖p(x∗)‖2 = ‖x∗ − PΩ[x∗ − α0g(x∗)]‖2 ≤ −α0p(x∗)T g(x∗) ≤ 0

782

where the final inequality follows from (D.1). This implies that p(x∗) = 0.783
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