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Abstract

We derive the error bounds for multilinear terms in [0, 1]n using a proof
methodology based on the polyhedral representation of the convex hull. We
extend the result for multilinear terms in [L,0]× [0,U ] ⊂ Rn.
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1. Introduction

A multilinear term is defined as follows:

w(x) =
n∏
j=1

xj, (1)

where n ∈ N, n > 1, and x ∈ [L,U ]. As notation, bold symbols represent
vectors.

Usually, nonconvex problems with multilinear terms are solved by means
of spatial Branch-and-Bound methods, where each multilinear term is re-
placed by a convex relaxation [2]. The tightest of such relaxations is called
convex hull. More precisely, let W = {(x, w) |w =

∏n
j=1 xj ∧ x ∈ [L,U ]}.

For a single multilinear term, the convex hull W̃ of W is defined as follows:

W̃ = {(x, w) |w ≥ vex[w](x) ∧ w ≤ cav[w](x) ∧ x ∈ [L,U ]}, (2)

where vex[w](x) and cav[w](x) are called convex and concave envelopes,
respectively.
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A meticulous analysis of the tightness of convex hulls for multilinear terms
has been recently put forward in [1]. There, the authors provide bounds for
the worst-case error between the real value of a monomial (i.e.,

∏n
j=1 x

αj

j )
and its convex hull for x ∈ S ⊆ [0, 1]n. Moreover, worst-case errors are
also provided for a multilinear term

∏n
j=1 xj when x ∈ [−1, 1]n and x ∈

[1, r]n, r > 1. In this paper, we first derive a new proof for the bound
formula obtained in [1, Theorem 1.1] for the multilinear term

∏n
j=1 xj when

x ∈ [0, 1]n. This proof is based on the polyhedral representation of the
convex hull. After that, we extend the results to the case where each variable
xi involved in the multilinear term has domain either [li, 0] or [0, ui].

The rest of the paper is organized as follows. Section 2 describes the
background on the polyhedral representation of convex hulls for multilinear
terms in [0, 1]n. The worst-case error analysis is presented in Section 3.
Finally, in Section 4 we extend our results to multilinear terms in [L,0] ×
[0,U ] ⊂ Rn.

2. Preliminaries

In this section we introduce the polyhedral characterization of the convex
hull W̃ of W (called dual in [4]). As the need arises, let V be the set of
vertices of the hyperrectangle [L,U ], and VW be the lifting of V in the space
spanned by (x, w). Hence, ∀x̂ ∈ V, (x̂, w(x̂)) ∈ VW . In [3] it was shown that
envelopes of a multilinear term are vertex polyhedral. This means that W̃ is
a polyhedron having VW as vertex set. Hence, we can express a point in W̃
as a convex combinations of the points in VW . Since we focus on multilinear
terms in [0, 1]n, the components of each element of VW are either 0 or 1.
More formally, let VW = {v1, . . . ,v2n} ⊆ {0, 1}n+1, and λ ∈ [0, 1]2

n
. We can

characterize W̃ as follows:

∀j ∈ {1, . . . , n} xj =
2n∑
i=1

λivi,j (3)

w =
2n∑
i=1

λivi,n+1 (4)

2n∑
i=1

λi = 1. (5)
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We could derive the exact formula to express each vi with respect to the
lower and upper bounds of x (i.e, 0 and 1), as done in [4]. However,
it is sufficient to understand the structure of VW . More precisely, ∀i ∈
{1, . . . , 2n} (vi,1, . . . , vi,n) is the binary representation of the integer number
i− 1 (i.e., i− 1 =

∑n
j=1 2n−jvi,j), and ∀i ∈ {1, . . . , 2n} vi,n+1 =

∏n
j=1 vi,j. For

example, when n = 3 we obtain:

VW =



0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1


, (6)

where the i − th row represents vi ∈ VW . At this point, it can be noticed
from (4) that w = λ2n . This will be used in the proofs of the next section.

3. Error bounds for a multilinear term in [0, 1]n

In this section, the error introduced by the convex hull of a multilinear
term is studied. More precisely, we want to quantify the upper and lower
bounds of the difference between the real value of the multilinear term and
that provided by the convex hull W̃ . These two values, called µU(W̃ ) and
µL(W̃ ), are defined as follows:

µU(W̃ ) = max
(x,w)∈W̃

(w(x)− w) (7)

µL(W̃ ) = min
(x,w)∈W̃

(w(x)− w) . (8)

Theorem 1 (Lower bound). Let x ∈ [0, 1]n and (x, w) ∈ W̃ . Moreover, let

w(x) =
∏n

j=1 xj. Then, w(x)− w ≥ 1−n
n

n−1

√
1
n
.

Proof. Using the fact that w = λ2n , as explained in the previous section, we
can rewrite the term w(x)− w in (8) as follows:

w(x)− w = f(λ2, . . . , λ2n) + λn2n − λ2n , (9)
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where f(·) is a function involving sums of products between variables λi,
except λ1, and it can be obtained by replacing each xj in w(x) using Defini-
tion (3). The idea is to put outside f(·) all the terms (in this case only λn2n)
where the variable λ2n is not multiplied by at least another variable λi, i ∈
{2, . . . , 2n−1}. Since ∀i ∈ {1, . . . , 2n} λi ≥ 0, then f(λ2, . . . , λ2n) ≥ 0. More-
over, ∀i ∈ {1, . . . , 2n} λi ≤ 1, hence λn2n − λ2n ≤ 0. If there exists a feasible
solution λ̃ such that f(λ̃2, . . . , λ̃2n) = 0 and λ̃2n = arg minλ2n∈[0,1](λ

n
2n−λ2n),

then λ̃ is also optimal. Recall that λ̃ is feasible if ||λ̃||1 = 1 and λ̃ ∈ [0, 1]n.
It is easy to check that the optimal solution of minλ2n∈[0,1](λ

n
2n − λ2n)

is λ∗2n = n−1

√
1
n
. In addition, it is possible to construct a feasible solution

λ∗, starting from λ∗2n , such that f(λ∗2, . . . , λ
∗
2n) = 0. The solution is ∀i ∈

{2, . . . , 2n−1} λ∗i = 0, and λ∗1 = 1−λ∗2n . According to (3)-(4), this means that
the solution x∗ for which the lower bound is attained is ∀j ∈ {1, . . . , n}x∗j =
n−1

√
1
n

and λ∗2n = w∗ = n−1

√
1
n
. Hence, µL(W̃ ) =

∏n
j=1 x

∗
j −w∗ = λ∗n2n − λ∗2n =

1−n
n

n−1

√
1
n
.

Theorem 2 (Upper bound). Let x ∈ [0, 1]n and (x, w) ∈ W̃ . Moreover, let
w(x) =

∏n
j=1 xj. Then, w(x)− w ≤

(
n−1
n

)n
.

Proof. we can rewrite the term w(x)− w in (7) as follows:

w(x)− w =
n∏
j=1

pj(λ1, . . . , λ2n−1)− 1 +
2n−1∑
i=1

λi, (10)

where pj(·) = 1 − λ1 −
∑

i∈I(j) λi, and I(j) ⊂ {2, . . . , 2n − 1}. Each pj(·)
can be derived by expanding w(x) using (3) and then replacing each term
λ2n , which appears in each dual representation of xj (see the last row of (6)),

by 1 −
∑2n−1

i=1 λi thanks to (5). Similarly, −w = −λ2n has been replaced

by −1 +
∑2n−1

i=1 λi. Notice that each pj(·) is nonnegative, since ||λ||1 = 1,
and it contains −λ1. In order to maximize (10), the optimal solution has
λ∗1 = 0. To prove it, suppose that there is an optimal solution λ̄ with
λ̄1 > 0. One could construct another solution λ̃ where λ̃1 = 0, λ̃h = λ̄h + λ̄1
for some h ∈ {2, . . . , 2n − 1}, and ∀i 6= h ∈ {2, . . . , 2n} λ̃i = λ̄i. This
solution would still be feasible, and by construction the last term in (10)
would keep the same value (i.e.,

∑2n−1
i=1 λ̃i =

∑2n−1
i=1 λ̄i). Concerning the terms

pj(·), by construction if h ∈ I(j) then pj(λ̃1, . . . , λ̃2n−1) = pj(λ̄1, . . . , λ̄2n−1).
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Otherwise, pj(λ̃1, . . . , λ̃2n−1) > pj(λ̄1, . . . , λ̄2n−1). Hence λ̃ is a solution at
least as good as λ̄. However, we can further extend this reasoning as λ1
is not the only variable equal to 0 in the optimal solution. It is tedious
but not too hard to show that there are n variables λi which appear only
once in the terms pj(·), and each of these variables appear in a distinct term
pj(·). More specifically, they are the variables λi for which the coefficients
of the binary decomposition of i − 1 sum up to n − 1. As the need arises,
let us define the set of those indices as Un = {i ∈ {2, . . . , 2n − 1} : i − 1 =∑n

j=1 2n−jaj ∧a ∈ {0, 1}n∧||a||1 = n−1}. For the sake of the proof, it is not
crucial to determine the elements of Un, rather the cardinality of the set, and
it can be checked that |Un| = n. For example, U2 = {2, 3}, U3 = {4, 6, 7},
and U4 = {8, 12, 14, 15}. The case U3 is illustrated in (6), where the 4th,
6th, and 7th rows have exactly two elements equal to 1 (the last column is
irrelevant). However, one could derive the structure of Un in a recursive way,
i.e., U2 = {2, 3} and ∀n ∈ N : n > 2, Un+1 = {2i,∀i ∈ Un} ∪ {2n+1 − 1}.
With an argument similar to that used to prove that λ∗1 = 0, we can prove
that ∀i ∈ {2, . . . , 2n − 1} \ Un, λ∗i = 0. In other words, it is better to set to
0 the variables appearing more frequently than others in the terms pj(·): as
they have negative sign, they decrease the value of pj(·). At this point, we
can rewrite (10) as follows:∏

h∈Un

(1− λh)− 1 +
∑
h∈Un

λh. (11)

The problem we have to solve can then be casted as:

max

(∏
h∈Un

(1− λh)− 1 +
∑
h∈Un

λh

)
(12)

s.t.
∑
h∈Un

λh ≤ 1 (13)

∀h ∈ Un λh ≥ 0, (14)

where (13) is not an equality constraint because in principle λ2n could be
a nonzero slack variable. By applying the KKT conditions we obtain the
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following constraints:

∀h ∈ Un
∏

k 6=h∈Un

(1− λk) = −µ (15)(∑
h∈Un

λh − 1

)
µ = 0. (16)

From (15), we get:
(1− λ∗i1) = · · · = (1− λ∗in), (17)

where Un = {i1, . . . , in}. Hence, λ∗i1 = · · · = λ∗in . In addition, it is not
possible that µ∗ = 0. As a matter of fact, from (15) and (17) this would
mean that ∀h ∈ Un λh = 1, and that does not respect Constraint (13).
Hence, µ∗ 6= 0 and Constraint (16) imposes that

∑
h∈Un

λh = 1. Therefore,
we obtain:

λ∗i =

{
1
n
, ∀i ∈ Un,

0, otherwise.
(18)

This also means that w∗ = λ∗2n = 0 (Constraint (13) is active at λ∗).
Hence, µU(W̃ ) is equal to the optimal solution of (12)-(14), that is

(
1− 1

n

)n
=(

n−1
n

)n
.

Notice that from Theorems 1 and 2, when n → ∞ we can conclude
that the difference between a multilinear term and its convex hull is always
bounded below by -1 and bounded above by e−1.

4. Error bounds for a multilinear term in [L, 0] × [0, U ] ⊂ Rn

In this section, we extend the results of Theorems 1 and 2 from the domain
[0, 1]n to [L,0]× [0,U ] ⊂ Rn. Consider again the following multilinear term:

w(x) =
∏
j∈N

xj, (19)

where N = {1, . . . , n}. Let NL ⊆ N , NU ⊆ N , ∀h ∈ NL xh ∈ [Lh, 0], and
∀k ∈ NU xk ∈ [0, Uk], Uk 6= 1. We can now define the following auxiliary
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variables:

∀h ∈ NL, x̃h =
xh
Lh
∈ [0, 1] (20)

∀k ∈ NU , x̃k =
xk
Uk
∈ [0, 1]. (21)

As the need arises, let us also define x̃j = xj, ∀j ∈ N \ {NL ∪ NU} (i.e.,
xj ∈ [0, 1]). We can rewrite (19) as follows:

w(x) =
∏

j∈N\{NL∪NU}

x̃j
∏
h∈NL

(x̃hLh)
∏
k∈NU

(x̃kUk) =
∏
j∈N

x̃j
∏
h∈NL

Lh
∏
k∈NU

Uk.

(22)
Since all the variables x̃ are in [0, 1], we can apply the results of Theorem 1
and 2 to obtain the following bounds:

µL(W̃ ) =


∏
h∈NL

Lh
∏
k∈NU

Uk

(
n− 1

n

)n
, if

∏
h∈NL

Lh < 0,

∏
h∈NL

Lh
∏
k∈NU

Uk

(
1− n
n

n−1

√
1

n

)
, otherwise.

(23)

µU(W̃ ) =


∏
h∈NL

Lh
∏
k∈NU

Uk

(
1− n
n

n−1

√
1

n

)
, if

∏
h∈NL

Lh < 0,

∏
h∈NL

Lh
∏
k∈NU

Uk

(
n− 1

n

)n
, otherwise.

(24)

By computing limn→∞ it is easy to derive a result similar to that of the case
[0, 1]n, where the scaling factors depend on L and U as summarized in (23)
and (24).
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