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Abstract

Sequential optimality conditions have played a major role in proving strong global convergence prop-
erties of numerical algorithms for many classes of optimization problems. In particular, the way com-
plementarity is handled defines different optimality conditions, and is fundamental to achieving a strong
condition. Typically, one uses the inner product structure to measure complementarity, which gives a
very general approach to a general conic optimization problem, even in the infinite dimensional case.
In this paper we exploit the Jordan algebraic structure of symmetric cones in order to measure com-
plementarity, which gives rise to a stronger sequential optimality condition related to the well-known
complementary approximate Karush-Kuhn-Tucker conditions in standard nonlinear programming. Our
results improve some known results in the setting of semidefinite programming and second-order cone
programming in a unified manner. In particular, we obtain global convergence results which are stronger
than the ones known for augmented Lagrangian algorithms and interior point methods for general sym-
metric cones.

Key words: Nonlinear symmetric cone optimization, sequential optimality conditions, numerical algo-
rithms, global convergence.

1 Introduction

The concept of a symmetric cone appeared for the first time in the context of quantum mechanics [27],
in the quest for the adequate mathematical object describing an observable quantity. Although physicists
have abandoned the idea early on, symmetric cones turned out to be extremely relevant in several fields
of mathematics. In particular, the relation between symmetric cones and Jordan algebras has fueled many
contributions from algebraists. More recently, the concept has proved to be in the center of the most relevant
conic optimization problems.

Any symmetric cone is associated with an Euclidean Jordan algebra; if the algebra is simple then the
symmetric cone is also called simple. Jordan, von Neumann, and Wigner presented a complete classification
of simple Euclidean Jordan algebras in [27] up to isomorphisms; the same classification can be seen in [20]
in a more modern exposition. In terms of such classification, the existing symmetric cones are: the positive
semidefinite cone defined over the symmetric matrices with real, complex or quaternionic entries, the so-
called Lorentz cone or second-order cone, and the exceptional or Albert cone, which is defined as a 27-
dimensional cone of positive semidefinite 3×3 matrices with octonion entries. All other symmetric cones are
obtained by taking the Cartesian product of the simple symmetric cones above; for instance, the nonnegative
orthant in Rm is simply the Cartesian product of positive semidefinite one dimensional cones.

*This work has been partially supported by CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants 2023/01655-2,
2018/24293-0 and 2017/18308-2), CNPq (grants 306988/2021-6, 302000/2022-4, 309136/2021-0 and 407147/2023-3), PRONEX
- CNPq/FAPERJ (grant E-26/010.001247/2016) and ANID (Fondecyt grant 1231188).

�Department of Applied Mathematics, University of Campinas, Campinas, SP, Brazil. E-mail: andreani@ime.unicamp.br
�Department of Applied Mathematics, University of São Paulo, São Paulo, SP, Brazil. E-mail: ghaeser@ime.usp.br
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In optimization, the importance of symmetric cones is clear. The positive semidefinite cone and the
second-order cone allows defining the nonlinear semidefinite programming (NSDP) problem and the nonlin-
ear second-order cone programming (NSOCP) problem. Each of these problems are well studied due to their
presence in many applications. When the problem has more than one type of conic constraint, say, semidef-
inite and second-order cone ones, formulation as a symmetric cone may be beneficial. Also, by exploiting
the Jordan algebraic structure of symmetric cones, one is able to highlight the most relevant features of
the problem. In general, the study of optimization problems over general symmetric cones appears as an
unifying tool of the theory developed for each of these problems mentioned, see [20, 33, 34]. See also [40]
for strategies for dealing with mixed constraints by means of symmetric cones; in particular, even though
a second-order cone constraint may be formulated as a semidefinite constraint, this reformulation usually
introduces some undesired structure to the problem, at least when one is interested in working with weak
constraint qualifications.

In this work, we propose a strong global convergence theory for an augmented Lagrangian method and
an interior point method formulated for a general nonlinear symmetric cone problem defined on a real
vector space. This is obtained by means of so-called sequential optimality conditions, which, by means of a
penalization technique, builds a primal-dual sequence nearby a local minimizer of the problem. This gives
a new necessary optimality condition, without constraint qualifications, which establishes the existence of a
particular primal-dual sequence in order for it to be checked. We then show that the algorithms we study
generate precisely this type of sequence; therefore, the primal feasible limit points of the sequences generated
by the algorithms satisfy the new necessary (sequential) optimality condition. This gives a (stronger)
confidence with respect to the optimality of the limit point. The strength of this confidence is measured by
comparing our results with the classical one stating that under a (weak) constraint qualification the said
limit point satisfies the standard Karush-Kuhn-Tucker conditions.

Sequential optimality conditions emerged as a theoretical tool for this type of analysis more than a decade
ago [5] and they have been widely exploited in the most diverse contexts such as cardinality constrains
[28], complementarity constraints [8], geometric constraints [18], infinite dimensional spaces [16], sequential
quadratic programming for NSDP [36], bound-constrained minimization and complexity analysis [37, 26],
Nash equilibrium [30, 17], constraint qualifications for NSDP [6] and NSOCP [7], among several other
contexts. In the case of symmetric cones, its eigenvalue structure [9] or the inherent inner product [4] have
been used in order to define a notion of approximate complementarity. However, although the use of the
Jordan product provides stronger results [3, 2], this has only been partially explored in the literature. In this
paper we present a novel way of exploiting the Jordan product in defining approximate complementarity,
which allows us to present a proof that algorithms for general symmetric cones generate this sequence, instead
of resorting to a case-by-case analysis such as in [3, 2]. The global convergence result for an augmented
Lagrangian method obtained in this way is stronger than the previous ones for all classes of symmetric
cones, in particular, the augmented Lagrangian method studied in [33] requires that the set of Lagrange
multipliers be a singleton, while this set may even be unbounded in our analysis. We refer also to [39] for
primal-dual global convergence of augmented Lagrangian methods under second-order sufficient conditions
in a framework that includes conic constraints. See also [22] in the context of nonlinear programming. We
also expand our studies to consider an interior point method which also generates this type of sequence,
hence enjoying the same strong global convergence result. Interestingly, the interior point method we
consider is inherently formulated in the context of symmetric cones, as it heavily makes use of the spectral
decomposition in its formulation.

This article has the following structure: the basic theoretical tools we use are presented in Section
2. Specifically, we review the fundamental results from Euclidean Jordan algebras and symmetric cones,
together with some fundamentals of convex analysis. In Section 3, we discuss optimality conditions. In
particular, we define the Approximate Gradient Projection (AGP) optimality condition and its stronger
counterpart, the Complementary Approximate KKT (CAKKT) condition and variations. Sections 4 and 5
are devoted to the algorithms. In Section 4 we present an augmented Lagrangian method and in Section 5
an interior point method for nonlinear symmetric cone programming. In both cases, we are able to show
that such algorithms generate CAKKT sequences. Finally, in Section 6, we measure the strength of our
results by means of defining suitable constraint qualifications. Section 7 presents some concluding remarks.

Summary of contributions:

� For the general nonlinear programming problem with a symmetric cone constraint, we introduce a
new sequential optimality condition, which we call Split-Complementary-Approximate-KKT condition,
which is stronger than similar notions defined previously.

� We prove a global convergence result for an augmented Lagrangian method in terms of the new
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optimality condition. This gives, in particular, that feasible limit points of the algorithm satisfy
the Complementary-Approximate-KKT (CAKKT) condition, which was not previously known. This
improves on the quality of the limit point found by this algorithm.

� We extend our results to prove that an interior point framework also satisfy the CAKKT sequential
optimality condition.

� We introduce a new constraint qualification called CAKKT-regularity which is stronger than Robin-
son’s condition such that under this regularity condition a standard KKT point is found by the algo-
rithms above.

Notation: We represent by Sm the set of m × m real symmetric matrices. The positive semidefinite
cone will be denoted by Sm+ = {A ∈ Sm : xTAx ≥ 0,∀x ∈ Rn} and a shorthand for a positive semidefinite
matrix A ∈ Sm+ will be A ⪰ 0. The m-dimensional second-order cone will be denoted by Q = {(x0, x̄) ∈
R × Rm−1 : x0 ≥ ∥x̄∥} for m ≥ 2, where ∥ · ∥ denotes the Euclidean norm. Given a finite dimensional
vector space V equipped with an inner product, an operator J : Rn → V and a point x ∈ Rn, we denote
by DJ(x) the derivative of J at x and its adjoint with respect to the inner product of V and the standard
inner product in Rn by DJ(x)T : V → Rn. The identity matrix of appropriate dimensions will be denoted
by I and the Hadamard product of u, v ∈ Rℓ with u = (u1, . . . , uℓ) and v = (v1, . . . , vℓ) is denoted by
u•v = (u1v1, . . . , uℓvℓ). For a point-to-set mapping C : Rn ⇒ Rℓ we denote the outer limit of C(z) as z → z̄
by lim supz→z̄ C(z) = {w̄ ∈ Rℓ : ∃(zk, wk) → (z̄, w̄), wk ∈ C(zk)}.

2 Preliminaries

In this section we present the essential concepts that form the core of our exposition, namely, Euclidean
Jordan algebras and symmetric cones. We restrict our analysis to the case of a symmetric cone with real
entries, however, one could easily extend our approach to deal with more general symmetric cones. We also
state some well known concepts about projections that are used in our results. Most of the content presented
here can be seen in more detail in [20]. See also [21, 33].

Definition 2.1. Let V be a real finite-dimensional vector space. We say that V is a Jordan algebra when
it is equipped with a Jordan product, that is, a bilinear commutative operator ◦ : V × V → V satisfying the
Jordan property

u ◦ (u2 ◦ w) = u2 ◦ (u ◦ w) for each u,w ∈ V, where u2 = u ◦ u.

In addition, when V is equipped with a compatible inner product, that is, such that x 7→ u ◦ x is self-adjoint
with respect to this inner product for each u ∈ V, we say that V is an Euclidean Jordan algebra. In other
words, we require the inner product ⟨·, ·⟩ and the Jordan product ◦ to be compatible by satisfying

⟨u ◦ w, z⟩ = ⟨w, u ◦ z⟩ for each u,w, z ∈ V.

We assume throughout the paper the existence of a unique multiplicative identity e satisfying u ◦ e = u
for each u ∈ V.

Definition 2.2. Let V be a Jordan algebra. The rank of u ∈ V is the smallest natural number r such that
the elements

e, u1, . . . , ur

are linearly dependent, where ur = u ◦ ur−1 for r > 1 and u1 = u. The rank of V is the maximum rank
among its elements.

We adopt the letter r to represent the rank of a Jordan algebra V, which will be clear from the context.
An element c ∈ V is called an idempotent if c◦ c = c, while a primitive idempotent is an idempotent which is
not the sum of two nonzero idempotents. Furthermore, two idempotents c1 and c2 are said to be orthogonal
if c1 ◦ c2 = 0.

Definition 2.3. We say that {c1, . . . , cr} ⊂ V is a complete system of orthogonal idempotents, where r is
the rank of the Jordan algebra V, if the following conditions hold:

(i) ci ◦ cj = 0 for all i ̸= j;

(ii) ci ◦ ci = ci for all i;

(iii) c1 + · · ·+ cr = e.
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If in addition each idempotent ci is primitive, then we say that {c1, . . . , cr} is a Jordan frame of V.

An essential tool for developing the theory of nonlinear symmetric cone programming is the spectral
decomposition, which we present next.

Theorem 2.1. ([20, Theorem III.1.2]) Let V be an Euclidean Jordan algebra and u ∈ V. Then there exist
real numbers λ1(u), . . . , λr(u) and a Jordan frame {c1(u), . . . , cr(u)} such that

u =

r∑
i=1

λi(u)ci(u).

The numbers λ1(u), . . . , λr(u) are the eigenvalues of u.

Next, we state the notion of a symmetric cone and its relations with Euclidean Jordan algebras.

Definition 2.4. Let V be a finite-dimensional vector space equipped with an inner product ⟨·, ·⟩. A non-empty
cone K ⊆ V is a symmetric cone if its interior, denoted by int(K), is non-empty,

(i) K is self-dual, that is, K = K∗ := {u : ⟨u, v⟩ ≥ 0,∀v ∈ K}, and

(ii) K is homogenous, that is, for each u, v ∈ int(K) there is a linear bijection T such that T (u) = v and
T (K) = K.

The simplest examples of symmetric cones are the cone of m × m positive semidefinite matrices with
real entries, the second-order cone in Rm and the non-negative orthant of Rm. Next, we will present a very
useful characterization of a symmetric cone in terms of Euclidean Jordan algebras.

Theorem 2.2. ([20, Theorem III.2.1]) Let V be a finite-dimensional inner product space and ∅ ̸= K ⊆ V.
We have that K is a symmetric cone if, and only if, V can be equipped with a Jordan product ◦ compatible
with the inner product of V so that K = {u ◦ u : u ∈ V}.

In summary, every symmetric cone can be seen as a cone of squares of a convenient Jordan product.
For instance, a symmetric matrix A is positive semidefinite if, and only if, A has a square root, that is, a
symmetric matrix B such that A = B2. This can be seen from the previous result by endowing Sm with the
compatible Jordan product:

X ◦ Y :=
XY + Y X

2

for X,Y ∈ Sm. Similarly, the second-order cone Q is the cone of squares of Rm when equipped with the
canonical inned product and the Jordan product

x ◦ y := (⟨x, y⟩, x0ȳ + y0x̄)

for x = (x0, x̄) ∈ R×Rm−1 and y = (y0, ȳ) ∈ R×Rm−1. In turn, the non-negative orthant of Rm is the cone
of squares of Rm equipped with the Jordan product x ◦ y := x • y for x, y ∈ Rm. The following propositions
summarize some basic properties of symmetric cones which will be used in the sequel.

Proposition 2.1 ([20]). Let V be an Euclidean Jordan algebra and ∅ ̸= K ⊆ V its associated symmetric
cone. Let u, v ∈ V.

(i) u ∈ K if, and only if, the eigenvalues of u are non-negative.

(ii) When u, v ∈ K we have u ◦ v = 0 if, and only if, ⟨u, v⟩ = 0.

Proposition 2.2 ([25]). Let V be an Euclidean Jordan algebra.

(i) We have that

|⟨u, v⟩| ≤ ∥u ◦ v∥1 ≤ ∥u∥2∥v∥2 for every u, v ∈ V,

where ∥ · ∥1 and ∥ · ∥2 are the ℓ1 and ℓ2 spectral norms of V, respectively.

(ii) If {uk}k∈N is a sequence in V, then

uk ◦ uk → 0 if, and only if ∥uk∥ → 0.

.
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We end this introductory part with some elementary facts about the projection of an element u ∈ V
onto a closed convex cone K ⊆ V, which will be denoted by ΠK(u). When K is a symmetric cone and V is
endowed with the corresponding Jordan product, we can write the spectral decomposition u =

∑r
i=1 λici;

in this case, it is well-known that ΠK(u) =
∑r

i=1 max{0, λi}ci. Notice that since K is self-dual, the polar of
K is −K. The next lemma brings useful properties of projections.

Lemma 2.1. ([4, Lemma 2.1]) Let V be an inner product space, K ⊆ V a closed convex self-dual cone, and
u ∈ V. Then,

(i) ΠK(αu) = αΠK(u) for all α ≥ 0;

(ii) ΠK(−u) = −Π−K(u);

(iii) (Moreau’s decomposition) u = ΠK(u) + Π−K(u) and ⟨ΠK(u),Π−K(u)⟩ = 0.

3 Optimality conditions

The problem we are dealing with is the general nonlinear symmetric cone programming (NSCP) problem
stated as

Minimize
x∈Rn

f(x),

subject to G(x) ∈ K,
h(x) = 0,

(NSCP)

where f : Rn → R, h : Rn → Rℓ and G : Rn → V are continuously differentiable mappings with V a finite
dimensional inner-product space, and K ⊆ V a symmetric cone. We denote by ◦ the compatible Jordan
product of V given by Theorem 2.2.

Let us recall the well-known Karush-Kuhn-Tucker (KKT) conditions for NSCP. Let L : Rn×Rℓ×V → R
be the so-called Lagrangian function associated with our problem, that is, L(x, λ, σ) := f(x) + ⟨λ, h(x)⟩ −
⟨G(x), σ⟩. A triple (x̄, λ, σ) ∈ Rn × Rℓ ×K is a KKT triple for (NSCP) if

∇xL(x̄, λ, σ) = 0,

σ ◦G(x̄) = 0,

with h(x̄) = 0 andG(x̄) ∈ K, where∇xL(x̄, λ, σ) = ∇f(x̄)+Dh(x̄)Tλ−DG(x̄)Tσ. The condition σ◦G(x̄) = 0
is called the complementarity condition and it can be replaced by ⟨σ,G(x̄)⟩ = 0 or by λi(σ)λi(G(x̄)) = 0 for all
i = 1, . . . , r, where G(x̄) and σ share a common Jordan frame. We say that x̄ satisfies strict complementarity
if rank(σ) + rank(G(x̄)) = r. It is well-known that when we have some constraint qualification (CQ), the
KKT conditions provide necessary optimality conditions for (NSCP). In order to obtain global convergence
results for algorithms, some specific constraint qualifications are usually needed in order to guarantee that
the sequence generated by the algorithm can be proven to give rise to a KKT triple. In [33], the authors
propose an augmented Lagrangian algorithm for nonlinear programming problems on symmetric cones where
their convergence results are obtained requiring the so-called nondegeneracy condition defined below.

Definition 3.1. We say that a feasible point x̄ satisfies the nondegeneracy condition if

Rℓ = Im(Dh(x̄)),

V = lin TK(G(x̄)) + Im(DG(x̄)),

where Im(·) denotes the image space of the underlying operator and lin TK(G(x̄)) denotes the lineality space
of the tangent cone of K at G(x̄).

Although nondegeneracy is a very widespread condition used in many conic contexts, it is considered
too stringent as it guarantees, for instance, uniqueness of the Lagrange multiplier. In order to avoid this
assumption, we will adopt a different approach that does not require a constraint qualification. This type of
condition is called sequential optimality condition and the idea is to adopt an approximate version of the KKT
conditions. In this version, the KKT conditions are approximately satisfied by requiring the existence of a
sequence of primal points, not necessarily feasible, that converges to the feasible point of interest, alongside
a sequence of (possibly unbounded) Lagrange multipliers that in some sense approximately satisfy the KKT
conditions. Let us begin by explicitly defining the simplest of these conditions, named Approximate-KKT
(AKKT) condition, initially introduced for NSDP in [9] and extended to symmetric cones in [3].
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Definition 3.2 (AKKT for symmetric cones). Let x̄ be a feasible point for (NSCP). We say that x̄
satisfies the Approximate-KKT (AKKT) conditions if there exist sequences {xk}k∈N → x̄, {λk}k∈N ⊂ Rℓ,
and {σk}k∈N ⊂ K such that

∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk → 0, (1)

If λi(G(x̄)) > 0 then λi(σ
k) = 0 for each i ∈ {1, . . . , r} and sufficiently large k, (2)

ci(σ
k) → ci(G(x̄)) for each i ∈ {1, . . . , r},

where we use the terminology introduced in Theorem 2.1 for the spectral decompositions of G(x̄) and σk, k ∈
N.

The correspondence between the Jordan frames of G(x̄) and σk, k ∈ N, given in (2) allows looking at
strictly positive eigenvalues of G(x̄) as “inactive” constraints, with the “corresponding” Lagrange multiplier
eigenvalue being eventually equal to zero. This enables a more direct analogy with the concept of active
constraints from classic nonlinear programming. As shown in [3], any local minimizer satisfies the AKKT
conditions without a CQ. Also, an AKKT point satisfying Robinson’s CQ, a condition strictly weaker than
nondegeneracy (see Definition 6.1), is also a KKT point. Constraint qualifications that guarantee that any
AKKT point is actually a KKT point are often called strict CQs [11]. Observe that any strict CQ is a
constraint qualification by default. In later sections we will go further into the specifics of algorithms and
strict constraint qualifications for (NSCP).

Over the last decade, new sequential optimality conditions have emerged in nonlinear optimization in
order to present stronger global convergence results of algorithms. In particular, we are interested in the
so-called Complementarity-AKKT (CAKKT) condition introduced in [10] in the nonlinear programming
context. This concept was extended to the conic context in [3, 2, 4], however the analysis of algorithms
for general symmetric cones under this condition is not complete. For instance, in [3, 2], an augmented
Lagrangian method for specific classes of symmetric cones (semidefinite cone and second-order cone) have
been shown to generate a CAKKT sequence, while in [4] a different extension of CAKKT has been proposed
which does not make use of the Jordan algebraic structure. Both definitions generalize the notion from [10]
for the case of nonlinear programming. We will bridge this gap by defining a new sequential optimality
condition which we call split-CAKKT, which will imply both definitions of CAKKT in the conic context,
and we will show that this condition is satisfied at feasible limit points of an augmented Lagrangian method.
We will also show an interior point method in a general symmetric cone context which generates CAKKT
sequences. Next, we define the CAKKT conditions for (NSCP) as in [3].

Definition 3.3 (CAKKT for symmetric cones). Let x̄ be a feasible point for (NSCP). We say
that x̄ satisfies the Complementarity-AKKT condition (CAKKT) if there exist sequences {xk}k∈N → x̄,
{λk}k∈N ⊂ Rℓ, and {σk}k∈N ⊂ K satisfying

∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk → 0,

σk ◦G(xk) → 0,

and λk • h(xk) → 0.

Once an algorithm is known to generate a CAKKT sequence, one can also use this fact to propose
a suitable stopping criterion [10] or a criterion for complexity analysis [26, 37]. Namely, the following
characterization of CAKKT will be useful later on:

Proposition 3.1. A point x̄ satisfies the CAKKT condition if, and only if, for all ε > 0, there exists x with
∥x− x̄∥ ≤ ε such that x is an ε-CAKKT point, that is, there exist σ ∈ K and λ ∈ Rℓ such that

∥∇f(x) +Dh(x)Tλ−DG(x)Tσ∥ ≤ ε, ∥h(x)∥ ≤ ε,

and
dist(G(x),K) ≤ ε, ∥σ ◦G(x)∥ ≤ ε, ∥λ • h(x)∥ ≤ ε,

where dist(G(x),K) = ∥G(x)−ΠK(G(x))∥ is the distance of G(x) to K.

Proof. This is straightforward by noticing that from continuity one has ∥h(xk)∥ → 0 and ∥dist(G(xk),K)∥ →
0 for some xk → x̄ if, and only if, x̄ is feasible. ■

Finally, we propose next our extension of the CAKKT condition from [10] to the context of symmetric
cones. We exploit further the splitting technique using Moreau’s decomposition introduced in [4], however
we use the Jordan product instead of the inner product. Thus, clearly, our condition implies both previously
defined notions of the CAKKT concept in the context of symmetric cones [4, 3].
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Definition 3.4 (Split-CAKKT/AGP for symmetric cones). Let x̄ be a feasible point of (NSCP).
Suppose that there exist sequences {xk}k∈N → x̄, {λk}k∈N ⊂ Rℓ, and {σk}k∈N ⊂ K such that (1) is satisfied.

(i) We say that x̄ satisfies the Split-CAKKT condition if, in addition to satisfying (1), the sequences
satisfy

λk • h(xk) → 0, (3)

σk ◦ΠK(G(x
k)) → 0, (4)

and
σk ◦Π−K(G(x

k)) → 0. (5)

(ii) We say that x̄ satisfies the Approximate Gradient Projection (AGP) condition if, in addition to
satisfying (1), the sequences satisfy (4).

To see that Split-CAKKT implies CAKKT as in [3], it is enough to use Lemma 2.1 to write G(xk) =
ΠK(G(x

k))+Π−K(G(x
k)) and use the fact that the Jordan product is bilinear to conclude that σk ◦G(xk) →

0. Also, by Proposition 2.2, (4) and (5) imply ⟨σk,ΠK(G(x
k))⟩ → 0 and ⟨σk,Π−K(G(x

k))⟩ → 0, which is
the definition from [4]. In the previous definition we also propose a stronger notion of the Approximate
Gradient Projection condition which makes use of the Jordan product (in place of the inner product as in
[4]). The idea is that for the augmented Lagrangian method, we will be able to show that an AGP sequence is
generated without further smoothness assumptions, while a Split-CAKKT sequence will be generated under
an additional smoothness assumption of the functions G(·) and h(·). Next we prove that Split-CAKKT (and
AGP) are necessary optimality conditions for NSCP without the need of a constraint qualification to be
present. The idea is based on the classical external penalty method in a very similar way to what is done in
[3, Theorem 3.1].

Theorem 3.1. Let x̄ be a local minimizer for (NSCP). Then, x̄ satisfies the Split-CAKKT condition.

Proof. Let us build an auxiliary problem

Minimize
x∈Rn

f(x) +
1

2
∥x− x̄∥2,

subject to G(x) ∈ K,
h(x) = 0,

∥x− x̄∥ ≤ δ,

(6)

for some δ > 0 small enough. Thus, x̄ is the unique global minimizer of (6). In fact, it is enough to consider
{x : ∥x− x̄∥ ≤ δ} as the neighborhood that attests that x̄ is a local minimizer in order to make it a global
one, while the regularization term ∥x− x̄∥2 asserts uniqueness. Now, let us consider the penalized problem

Minimize
x∈Rn

f(x) +
1

2
∥x− x̄∥2 + ρk

2

(
∥h(xk)∥2 + ∥ΠK(−G(x))∥2

)
,

subject to ∥x− x̄∥ ≤ δ,

(7)

where {ρk}k∈N → ∞ for each k ∈ N. Notice that by Lemma 2.1, ∥ΠK(−G(x))∥ = ∥Π−K(G(x))∥ =
∥G(x) − ΠK(G(x))∥ = dist(G(x),K), therefore problem (7) penalizes infeasibility. Now, considering xk

the solution of (7), we can prove by usual external penalty method arguments that xk → x̄ and therefore
∥xk − x̄∥ < δ for k large enough. Thus,

∇f(xk) + (xk − x̄) +Dh(xk)Tλk −DG(xk)Tσk = 0,

where λk = ρkh(x
k), σk = ρkΠK(−G(xk)), which implies (1). Since {σk}k∈N ⊆ K and ΠK(−G(xk)) ∈ K,

we have by Lemma 2.1 that〈
σk,ΠK(G(x

k))
〉
= −ρk

〈
Π−K(G(x

k)),ΠK(G(x
k))
〉
= 0,

therefore, σk ◦ΠK(G(x
k)) = 0, which implies (4). Now, to prove (3) and (5) note that by Lemma 2.1,

σk ◦Π−K(G(x
k)) = ρkΠK(−G(xk)) ◦Π−K(G(x

k))

= −√
ρkΠK(−G(xk)) ◦

√
ρkΠK(−G(xk)).
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Note also that λk • h(xk) → 0 if, and only if ρk∥h(xk)∥2. Then, since xk is a solution of (7), we have that

f(xk) +
1

2
∥xk − x̄∥2 + ρk

2
(∥h(xk)∥2 + ∥ΠK(−G(xk))∥2) ≤ f(x̄).

Thus,
ρk
2
(∥h(xk)∥2 + ∥ΠK(−G(xk))∥2) ≤ f(x̄)− f(xk)− 1

2
∥xk − x̄∥2.

Since xk → x̄ we have by the above inequality that ρk∥h(xk)∥2 → 0 and ∥√ρkΠK(−G(xk))∥2 → 0. Thus,
by the above calculation and using Proposition 2.2 item ii) we conclude that λk • h(xk) → 0 and σk ◦
Π−K(G(x

k)) → 0. Hence, x̄ satisfies the Split-CAKKT condition. ■

In the next sections, we will discuss the algorithmic implications of the conditions we defined. One
of the reasons that justifies the interest in optimization over symmetric cones is the fact that in practical
problems one is often dealing with problems over mixed conic constraints. Thus, an algorithm and its
convergence theory can be elegantly and concisely formulated, being specified only when implementing. In
the next sections we will present two well-known algorithms in this context, the augmented Lagrangian
algorithm and the interior point method. Our goal is to show that the augmented Lagrangian algorithm
generates Split-CAKKT sequences (consequently, CAKKT sequences). For the interior point method we will
prove that it generates CAKKT sequences. The reason for using CAKKT sequences and not Split-CAKKT
sequences for the interior point method is that in this way we can consider a standard interior point method
without needing to redefine the algorithm. In addition, Split-CAKKT is not natural in this context due to
the explicit need of considering projections onto the cone.

4 Global convergence of an augmented Lagrangian method

We are interested in the augmented Lagrangian algorithm for NSOCP and NSDP discussed in [3] and
[2, 9], respectively. In [9] it is shown that the algorithm generates AKKT sequences when applied to NSDPs,
while in [2] the results are extended to CAKKT sequences. In [3], similar results appear for NSOCP.
We will show that the result holds for a general symmetric cone by means of showing that the algorithm
in fact generates Split-CAKKT sequences, which in particular implies CAKKT. Notice also that equality
constraints were not considered in these previous works. Our results are also stronger than the ones obtained
in [4, 16, 33], which can be applied to our context. Let us introduce the augmented Lagrangian algorithm.

Given ρ > 0, let Lρ : Rn × Rℓ ×K → R be the augmented Lagrangian function of (NSCP), defined as

Lρ(x, λ, σ) := f(x) +
ρ

2

(∥∥∥∥h(x) + λ

ρ

∥∥∥∥2 + ∥∥∥∥ΠK

(
−G(x) + σ

ρ

)∥∥∥∥2
)
,

whose partial derivative with respect to x is given by

∇xLρ(x, λ, σ) = ∇f(x) +Dh(x)T (λ+ ρh(x))−DG(x)TΠK (σ − ρG(x)) . (8)

To see this, it is enough to note that ∥ΠK(−u)∥2 = dist(u,K)2 is continuously differential with derivative
with respect to u given by 2(u−ΠK(u)). See [23].

We assume now that a sequence {xk}k∈N can be generated by the previous algorithm and that it admits
a limit point x̄. In practice [14], this is usually done by considering additional box constraints that are
carried over to the subproblems. This additional constraint does not hinder the theory developed here
at all and assures that the augmented Lagrangian subproblems admit a global minimizer, and that any
sequence generated by approximately solving the augmented Lagrangian subproblems will be bounded. We
also assume that the limit point is feasible. We do this in view of [4, Proposition 1], since the limit points
tend to be feasible as they are stationary for an infeasibility measure. We start by showing that, without
additional smoothness assumptions, the algorithm generates an AGP sequence.

Theorem 4.1. Let x̄ be a feasible limit point of a sequence {xk}k∈N generated by the augmented Lagrangian
method. Then, x̄ satisfies the AGP condition.

Proof. From (9) and (8), we get

∥∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk∥ ≤ εk,

8



Algorithm 1 General framework: augmented Lagrangian

Inputs: A sequence {εk}k∈N of positive scalars such that εk → 0; a non-empty compact set B ⊂ Rℓ × K;

real parameters τ > 1, σ ∈ (0, 1), and ρ0 > 0; and initial points (λ̂0, σ̂0) ∈ B.

For every k ∈ N:
1. Compute xk such that

∥∇xLρk
(xk, λ̂k, σ̂k)∥ ≤ εk; (9)

2. Update the multipliers

λk := λ̂k + ρkh(x
k), σk := ΠK

(
σ̂k − ρkG(x

k)
)
,

and compute some (λ̂k+1, σ̂k+1) ∈ B (typically, the projection of (λk, σk) onto B);

3. Define

V k :=

(
h(xk),ΠK

(
σ̂k

ρk
−G(xk)

)
− σ̂k

ρk

)
;

4. If k = 0 or ∥V k∥ ≤ σ∥V k−1∥, set ρk+1 := ρk. Otherwise, choose some ρk+1 ≥ τρk.

where σk = ρkΠK
(
ρ−1
k σ̂k −G(xk)

)
and λk = ρk

(
h(xk) + λ̂k

ρk

)
. Thus, (1) holds with σk ∈ K for every

k. Taking a subsequence if necessary, we can suppose that {xk}k∈N → x̄. Our aim is to show that σk ◦
ΠK(G(x

k)) converges to zero. Note that, by setting uk = ρ−1
k σ̂k − G(xk), we have that σk = ρkΠK (uk)

and then ⟨ρkΠK (uk) ,ΠK (−uk)⟩ = ⟨ρkΠK (uk) ,−Π−K(uk)⟩ = 0. Thus, σk ◦ ΠK(G(x
k)− ρ−1

k σ̂k) = 0, since
⟨σk,ΠK(G(x

k)− ρ−1
k σ̂k)⟩ = 0. Thus, we have that

σk ◦ΠK(G(x
k)) = σk ◦

(
ΠK(G(x

k))−ΠK(G(x
k)− ρ−1

k σ̂k)
)
. (10)

We examine two scenarios based on whether the sequence {ρk}k∈N is bounded or not:

1. Suppose that ρk → ∞.

By applying Proposition 2.2 item i) in (10) and the non-expansitivity of the projection, we get

∥σk ◦ΠK(G(x
k))∥1 ≤ ∥σk∥2

∥∥∥∥ σ̂k

ρk

∥∥∥∥
2

=
∥∥ΠK(ρ

−1
k σ̂k −G(xk))

∥∥
2
∥σ̂∥2 → 0,

due to the boundedness of {σ̂k}k∈N and feasibility of x̄.

2. If {ρk}k∈N is a bounded sequence.

By the Step 3 of the algorithm, we see that V k must converge to zero, and hence V k
2 → 0, where V k

2

is the second component of V k. Using Moreau’s decomposition and the definition of V k
2 , we see that

ΠK(G(x
k))−ΠK(G(x

k)− ρ−1
k σ̂k) = ΠK(G(x

k))−G(xk) + ρ−1
k σ̂k −ΠK(ρ

−1
k σ̂k −G(xk))

= ΠK(G(x
k))−G(xk)− V k

2 → 0.

The result follows from (10) noting that {σk}k∈N must be bounded when {ρk} is bounded.

Therefore, we conclude that x̄ satisfies the AGP condition. ■

Next, let us present the main convergence result associated with Algorithm 1, namely that it generates
Split-CAKKT sequences. To do so, we will assume that the point x̄ satisfies the so-called generalized
Lojasiewicz inequality.

Assumption 4.1. We say that a point x̄ satisfies the generalized Lojasiewicz inequality when there exist
some neighborhood U of x̄ and a continuous function ψ(x) : U → R such that ψ(x) → 0 when x→ x̄, and

|Ψ(x)−Ψ(x̄)| ≤ ψ(x)∥∇Ψ(x)∥ for every x ∈ U ,

where Ψ(x) = (1/2)
(
∥ΠK(−G(x))∥2 + ∥h(x)∥2

)
.
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This assumption corresponds to the one introduced in [10] in the context of nonlinear programming.
This type of assumption has been widely used in optimization and other research areas, primarily due to
its non-restrictive nature. For a detailed understanding of this assumption, we refer to [15, 32] and the
references therein. For instance, the condition is satisfied if the functions are analytic. The function Ψ(x) is
an infeasibility measure of the point x and every limit point of a sequence {xk}k∈N generated by Algorithm 1
is a stationary point for the problem of minimizing Ψ(x). See [3, Theorem 5.1] and [4, Proposition 1].

Theorem 4.2. Let x̄ be a feasible limit point of a sequence {xk}k∈N generated by the augmented Lagrangian
algorithm that satisfies Assumption 4.1. Then x̄ satisfies the Split-CAKKT condition.

Proof. Let us assume, for simplicity, that the sequence {xk}k∈N → x̄. By Theorem 4.1 it is enough to prove
that λk • h(xk) → 0 and σk ◦ Π−K(G(x

k)) = −σk ◦ ΠK(−G(xk)) also converges to zero. We will make use
of the fact that

ρk
(
∥ΠK(−G(xk))∥2 + ∥h(xk)∥2

)
→ 0, (11)

as proved in Theorem 4 of [4] in the context of general cones. To account for equality constraints, we refer
to Theorem 4.1 of [10]. Let us divide this proof in two cases based on {ρk}k∈N being a bounded sequence or
not, similarly to the proof of Theorem 4.1.

1. Suppose that {ρk}k∈N is unbounded. Computing σk ◦ΠK(−G(xk)), we see that

σk ◦ΠK(−G(xk)) = ρkΠK(ρ
−1
k σ̂k −G(xk)) ◦ΠK(−G(xk))

=
(
ΠK(σ̂

k − ρkG(x
k))−ΠK(−ρkG(xk))

)
◦ΠK(−G(xk)) + ρkΠK(−G(xk))2.

(12)
Observe that, by (11), we have ρk∥ΠK(−G(xk))∥2 → 0 and then ρkΠK(−G(xk))2 → 0. Now, we
proceed by showing that the first expression of (12) goes to zero. By the non-expansitivity of the
projection, the boundedness of {σ̂k}k∈N and Proposition 2.2 item i), we get that:∥∥(ΠK(σ̂

k − ρkG(x
k))−ΠK(−ρkG(xk))

)
◦ΠK(−G(xk))

∥∥
1
≤ ∥σ̂k∥2∥ΠK(−G(xk))∥2 → 0.

Thus, σk ◦ΠK(−G(xk)) → 0. It remains to show that λk • h(xk) → 0. This follows from (11) and the

fact that λk • h(xk) = λ̂k • h(xk) + ρkh(x
k) • h(xk), noting that {λ̂k}k∈N is bounded and x̄ is feasible.

2. Suppose that {ρk}k∈N is a bounded sequence. Similarly to the proof of Theorem 4.1, we have that
{σk}k∈N and {λk}k∈N are bounded sequences, and thus it follows trivially that σk ◦ΠK(−G(xk)) and
λk • h(xk) converge to zero.

This concludes the proof that x̄ satisfies the Split-CAKKT condition. ■

We note that in [33] the global convergence of the augmented Lagrangian method was studied in the con-
text of symmetric cones without assuming strict complementarity. They do so by employing the strategy of
reformulating the problem by using squared slack variables, which allows them to avoid the conic constraints
and treat them with standard nonlinear programming tools. However, it is well known that squared slack
variables should be avoided due to the numerical instability it can introduce. In addition, as a general rule,
reformulating the constraints instead of working with them in their original format introduces additional
structure to the problem in such a way that a constraint qualification may be lost. The only exception in the
case of the squared slack reformulation is the nondegeneracy condition, which was employed in [33]. That
is, even though the approach of [33] is very interesting for dealing with symmetric cones, it is doomed to fail
when the original problem does not satisfy nondegeneracy. For the use of squared slack variables in nonlinear
programming, we refer to [19], and the references therein, where they report some second-order complexity
results and competitive numerical results by means of a squared slack approach. In our approach, instead
of reformulating the problem as a nonlinear programming problem and avoiding the conic structure, we do
not reformulate the problem at all. Instead, we embrace the conic constraints and its rich mathematical
structure, making use of the spectral decomposition given by the Jordan algebraic environment, allowing us
to present the global convergence of the algorithm without strict complementarity and under a constraint
qualification much weaker than nondegeneracy (where, for instance, the set of Lagrange multipliers may be
unbounded), which we will present in Section 6.
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5 Global convergence of an interior point method defined by spec-
tral functions

Interior point methods have received considerable attention since the work of Karmarkar [31] due to its
numerous advantages, especially in the linear case. Firstly, they are computationally efficient, especially for
some structured large-scale problems [24]. Secondly, these methods excel in handling inequality constraints.
Thirdly, they exhibit numerical stability [24], which makes them suitable for ill-conditioned problems. Lastly,
their versatility allows for their application in various optimization problems, including linear programming,
quadratic programming, and semidefinite programming, among others. In the context of linear semidefinite
programming, Alizadeh introduced an interior point method with polynomial convergence in [1], while
Nesterov and Nemirovskii obtained the same result in [35] in a more general setting. In [41], convergence rates
are obtained in the context of symmetric cones. In this section, we will introduce an interior point method
for (NSCP). In particular, we will exploit the Jordan algebraic structure introduced by the symmetric
cone constraints and the spectral decomposition. To start, let us introduce some basic notions of spectral
functions.

Consider the set C of convex, lower-semicontinuous, and proper functions defined on R with values in
R ∪ {+∞} such that ϕ is twice continuously differentiable on (0,∞) and

(0,∞) ⊂ dom ϕ ⊂ [0,∞), lim
t→0+

ϕ′(t) = −∞ and ϕ′′(t) > 0,∀t > 0. (13)

Now, in the context of (NSCP), for ϕ ∈ C, we consider the function Φ : V → R ∪ {∞} as

Φ(z) :=

r∑
j=1

ϕ(λj(z)), z ∈ V. (14)

It is well known that Φ is well-defined and does not depend on the spectral decomposition of z. From [13]
and by Proposition 2.3 of [38], we have that Φ is a spectral function. Furthermore, we have the following:

Proposition 5.1. The statements below hold:

� int(dom Φ) = int(K);

� Φ is strictly convex and twice differentiable on int(K);

� Let z ∈ int(K) with the spectral decomposition z =
∑r

j=1 λj(z)cj(z). Then,

∇Φ(z) =

r∑
j=1

ϕ′(λj(z))cj(z).

In addition, we will assume that ϕ ∈ C satisfies

ϕ′(s)s ≥M, for every s ∈ (0, δ) (15)

for some δ > 0 and a scalar M ∈ R. We mention that classical barrier functions such as ϕ1(s) = s log s− s,
ϕ2(s) = − 1

r s
r (r ∈ (0, 1)), ϕ3(s) = − log s (logarithmic barrier) and ϕ4(s) = s − log s (modified logarithm

barrier) satisfy (15). For other classical barrier functions, as ϕ5(s) = s−1, (15) may fail. By Proposition 2.2
of [38], any ϕ ∈ C satisfies (15) if 0 ∈ dom(ϕ).

In order to introduce the interior point method, let us, as usual, introduce slack variables in (NSCP).
That is, we replace the constraint G(x) ∈ K with G(x) = z, where z ∈ K. Given a barrier function ϕ ∈ C
and a parameter µ > 0, we aim at solving the following subproblem

Minimize
(x,z)∈Rn×V

f(x) + µΦ(z),

subject to h(x) = 0,

G(x) = z,

(16)

where Φ is given by (14) and z is assumed to lie in int(K). The interior point algorithm is defined as follows:
In Step 1 of Algorithm 2, we will assume that the subproblem is solved with an algorithm that generates

CAKKT sequences. This can be done by simply considering Newton’s method to a suitable KKT system
that includes complementarity for equality constraints and taking into account that z must always remain
in the interior of K. In particular, by Proposition 3.1, we assume that an iterate (xk, zk) ∈ Rn × int(K)
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Algorithm 2 A framework for interior-point methods based on a general spectral functions

Let θ ∈ (0, 1) and {εk} ⊂ R+ be a sequence of positive scalars with εk → 0.
For every k ∈ N:

1. Find an εk approximate minimizer (xk, zk) ∈ Rn × int(K) of subproblem (16) with µ = µk.

2. Set µk+1 := θµk.

is computed in Step 1 satisfying the εk-CAKKT condition, which can be stated to problem (16) in the
following form: there exist λk ∈ Rℓ and Λk ∈ V such that

∥∇f(xk) +Dh(xk)Tλk +DG(xk)TΛk∥ ≤ εk, ∥µk∇Φ(zk)− Λk∥ ≤ εk, (17)

and

max{∥h(xk)∥, ∥G(xk)− zk∥} ≤ εk, ∥λk • h(xk)∥ ≤ εk, ∥Λk ◦ (G(xk)− zk)∥ ≤ εk. (18)

Remark 1. Notice that Proposition 3.1 applies to equality constraints of the form h(x) = 0 where h : Rn →
Rℓ, while the equality constraint of (16) is of the form (h(x), G(x) − z) = (0, 0), which maps Rn × V to
Rℓ×V. The modification in the theory to account for this case is straightforward by considering the Hadamard
product • in Rℓ and the Jordan product ◦ in V, which we decided not to present in the preliminary material
for clarity of the presentation.

Theorem 5.1. Consider a sequence {(xk, zk)}k∈N generated by Algorithm 2 such that (xk, zk) is an εk-
CAKKT point of subproblem (16) with µ = µk. Then, any limit point of {xk} is a feasible CAKKT point
of (NSCP).

Proof. Let x̄ be any limit point of {xk}. By continuity of G, {zk} has a limit point z̄ such that (x̄, z̄) is
a limit point of {(xk, zk)}. Thus, taking an adequate subsequence, we assume that {(xk, zk)} converges to
(x̄, z̄) where x̄ is feasible to (NSCP).

Since for each k ∈ N, (xk, zk) is an εk-CAKKT point of (16) with µ = µk, there exist sequences {λk} ⊂ Rℓ

and {Λk} ⊂ V such that (17) and (18) hold. We will show that {xk} is a CAKKT sequence of x̄ associated
with (NSCP) having as approximate multiplier sequence {λk} ⊂ Rℓ and {σk := ΠK(−Λk)} ⊂ K.

Indeed, from (17) and non-expansivity of the projection, we get

∥Π−K(Λ
k)−Π−K(µk∇Φ(zk))∥ ≤ εk and ∥ΠK(Λ

k)−ΠK(µk∇Φ(zk))∥ ≤ εk. (19)

We proceed to analyze ΠK(µk∇Φ(zk)). As zk ∈ int K, we have zk =
∑r

j=1 λj(z
k)cj(z

k) with λj(z
k) > 0,

∀j. Thus, by Proposition 5.1, we get µk∇Φ(zk) =
∑r

j=1 µkϕ
′(λj(z

k))cj(z
k) and hence,

ΠK(µk∇Φ(zk)) =

r∑
j=1

µk max{ϕ′(λj(zk)), 0}cj(zk).

Furthermore, after taking a further subsequence, we assume that {λj(zk)} ⊂ R++ and {cj(zk)} ⊂ V converge
for every j. This can be done since an idempotent has unit norm. Now, if {λj(zk)} converges to a positive
scalar, then ϕ′(λj(z

k)) also converges. So using that µk → 0, we get µk max{ϕ′(λj(zk)), 0}cj(zk) → 0. In the
case that λj(z

k) → 0, property (13) implies that ϕ′(λj(z
k)) → −∞ and hence µk max{ϕ′(λj(zk)), 0}cj(zk) =

0 for sufficiently large k. From these observations, we get ΠK(µk∇Φ(zk)) → 0 and by (19), as εk → 0, we
get ΠK(Λ

k) → 0.
By Moreau’s decomposition, we get σk := ΠK(−Λk) = ΠK(Λ

k)− Λk and thus we conclude that

∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk = (20)

∇f(xk) +Dh(xk)Tλk +DG(xk)TΛk −DG(xk)TΠK(Λ
k) → 0,

since ΠK(Λ
k) → 0, {DG(xk)} is bounded and (17) holds. Note that λk • h(xk) → 0 follows trivially from

(18). It remains to show that σk ◦ G(xk) → 0. In order to do this, let wk
1 := Λk ◦ (G(xk) − zk) and

wk
2 := Π−K(Λ

k)− Π−K(µk∇Φ(zk)). By (18), ∥wk
1∥ ≤ εk and by (19), ∥wk

2∥ ≤ εk. So, w
k
1 → 0 and wk

2 → 0.
Now, using Moreau’s decomposition we get

σk ◦G(xk) = −Λk ◦G(xk) + ΠK(Λ
k) ◦G(xk)

= −Λk ◦ zk − wk
1 +ΠK(Λ

k) ◦G(xk)
= −Π−K(Λ

k) ◦ zk −ΠK(Λ
k) ◦ zk − wk

1 +ΠK(Λ
k) ◦G(xk)

= −Π−K(µk∇Φ(zk)) ◦ zk − wk
2 ◦ zk −ΠK(Λ

k) ◦ zk − wk
1 +ΠK(Λ

k) ◦G(xk).

(21)
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Clearly, as ΠK(Λ
k) → 0, we have ΠK(Λ

k) ◦ zk, wk
2 ◦ zk and ΠK(Λ

k) ◦G(xk) converge to zero. Thus, by (21),
we only need to show that Π−K(µk∇Φ(zk))◦ zk → 0. Since zk ∈ int K, we get zk =

∑r
j=1 λj(z

k)cj(z
k) with

λj(z
k) > 0, ∀j, and by Proposition 5.1, µk∇Φ(zk) =

∑r
j=1 µkϕ

′(λj(z
k))cj(z

k) and hence,

Π−K(µk∇Φ(zk)) =

r∑
j=1

µk min{ϕ′(λj(zk)), 0}cj(zk). (22)

Since {c1(zk), . . . , cr(zk)} is a Jordan frame, cj(z
k) ◦ ci(zk) = 0, i ̸= j and c2i (z

k) = ci(z
k), ∀i. By (22), we

get

Π−K(µk∇Φ(zk)) ◦ zk =

r∑
j=1

µk min{ϕ
′
(λj(z

k)), 0}λj(zk)cj(zk).

As done previously, we assume that {λj(zk)} ⊂ R++ and {cj(zk)} ⊂ V converge for every j. If λj(z
k) con-

verges to a positive scalar, then ϕ′(λj(z
k)) also converges. So, µk → 0 implies that µk min{ϕ′(λj(zk)), 0}cj(zk) →

0. Now, if λj(z
k) → 0, by (15) we have ϕ′(λj(z

k))λj(z
k) ≥ M for some M ∈ R and k large enough. Thus,

0 ≥ µk min{ϕ′(λj(zk)), 0}λj(zk) ≥ µk min{M, 0}. As µk → 0, we get µk min{ϕ′(λj(zk)), 0}λj(zk) → 0 and
hence Π−K(µk∇Φ(zk)) ◦ zk → 0. Substituting this into (21), we get σk ◦G(xk) → 0. From this and by (20),
we conclude that x̄ is a CAKKT point to (NSCP). ■

Notice that although it is somewhat unusual to include a complementarity constraint for equality con-
straints, it has been shown in [10] that this occurs somewhat naturally in the context of augmented La-
grangian methods. Our result suggests that this should be considered when solving the equality constrained
subproblems of interior point methods in order to achieve a stronger global convergence result. This was
already suggested in other contexts in [12] and [29].

6 The strength of the optimality condition

Our main objective in the previous sections was to introduce an optimality condition that does not depend
on the validity of constraint qualification and that is generated by the augmented Lagrangian algorithm and
the interior point method. Now, we will compare the results we obtained with previous ones known in
the literature. To achieve this, we will introduce so-called strict constraint qualifications (SCQ). These
conditions are properties satisfied by the constraints of the problem at a point in order to guarantee that
when a sequential optimality condition holds at this point, the KKT conditions are also fulfilled. For more
details in the context of nonlinear programming see [11].

We start by showing that our result is better than the one obtained under Robinson’s constraint quali-
fication. This CQ is strictly weaker than nondegeneracy and it is equivalent to the boundedness of the set
of Lagrange multipliers. The definition for problem (NSCP) is as follows:

Definition 6.1. We say that a feasible point x̄ satisfies Robinson’s condition if Dh(x̄) is surjective and
there exists d ∈ Rn such that

G(x̄) +DG(x̄)d ∈ int(K),

Dh(x̄)d = 0.

Let us begin by showing that Robinson’s condition is an SCQ associated with the Split-CAKKT condition.
This is the statement of the next Theorem.

Theorem 6.1. Let x̄ ∈ Rn be a point such that Split-CAKKT and Robinson’s conditions are fulfilled. Then,
x̄ satisfies the KKT conditions.

Proof. Let sequences {xk}k∈N → x̄, {λk}k∈N ⊂ Rℓ, and {σk}k∈N ⊂ K be such that

∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk → 0, (23)

and
σk ◦ΠK(G(x

k)) → 0, σk ◦Π−K(G(x
k)) → 0. (24)

If the sequence of Lagrange multipliers {λk}k∈N and {σk}k∈N ⊂ K are bounded, it is easy to see that
the limits given in (23) and (24) imply that x̄ satisfies the KKT conditions. Otherwise, we can consider
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αk = max{1, ∥λk∥, ∥σk∥}, divide (23) and (24) by αk, and take the limit in an appropriate subsequence to
obtain:

Dh(x̄)Tλ−DG(x̄)Tσ = 0 (25)

and σ ◦ ΠK(G(x̄)) = 0, σ ◦ Π−K(G(x̄)) = 0 which implies σ ◦ G(x̄) = 0 and, in particular, ⟨G(x̄), σ⟩ = 0
for some 0 ̸= (λ, σ) ∈ Rℓ × K. From Definition 6.1, we must have σ ̸= 0 since otherwise (25) with λ ̸= 0
contradicts the surjectivity of Dh(x̄). Take d ∈ Rn as in Definition 6.1. Thus, we have by (25) that

0 = ⟨Dh(x̄)Tλ−DG(x̄)Tσ, d⟩ − ⟨G(x̄), σ⟩ = ⟨Dh(x̄)Tλ, d⟩ − ⟨DG(x̄)Tσ, d⟩ − ⟨G(x̄), σ⟩
= ⟨λ,Dh(x̄)d⟩ − ⟨σ,G(x̄) +DG(x̄)d⟩.

Thus, ⟨σ,G(x̄) +DG(x̄)d⟩ = 0 which contradicts the fact that G(x̄) +DG(x̄)d ∈ int(K) and 0 ̸= σ ∈ K. ■

Now let us introduce a condition which is weaker than Robinson’s condition in such a way that it is still
the case that any point satisfying this condition is such that every Split-CAKKT point is actually a KKT
point. In fact, the condition we propose will be the weakest one with such property.

Definition 6.2. We say that a feasible point x̄ satisfies the Split-CAKKT-regularity condition if

lim sup
(x,γ)→(x̄,0)

C(x, γ) ⊂ C(x̄, 0),

that is, the set-valued function (x, s) ∈ Rn × R ⇒ C(x, s) is outer semicontinuous at (x̄, 0), where

C(x, γ) :=
{
Dh(x)Tλ−DG(x)Tσ | max{∥σ ◦ΠK(G(x))∥, ∥σ ◦Π−K(G(x))∥} ≤ γ, λ ∈ Rℓ, σ ∈ K

}
.

Note that using a similar set, we can propose a similar constraint qualification (weaker than Robinson’s
condition) associated with the sequential optimality condition CAKKT. We omit the details. Next we state
the minimality property of Split-CAKKT-regularity as follows:

Theorem 6.2. A feasible point x̄ ∈ Rn satisfies Split-CAKKT-regularity if, and only if, for each continuously
differentiable objective function f such that x̄ satisfies the Split-CAKKT condition, x̄ actually satisfies the
KKT condition for (NSCP) with objective function f .

Proof. Consider the feasible point x̄ ∈ Rn such that x̄ satisfied Split-CAKKT-regularity and an objective
function f such that x̄ satisfies Split-CAKKT. Thus, there are sequences {xk}k∈N → x̄, {λk}k∈N ⊂ Rℓ and
{σk}k∈N ⊂ K such that

∇f(xk) +Dh(xk)Tλk −DG(xk)Tσk → 0, σk ◦ΠK(G(x
k)) → 0, and σk ◦Π−K(G(x

k)) → 0.

Then, since Dh(xk)Tλk−DG(xk)Tσk → −∇f(x̄) we have that −∇f(x̄) ∈ lim sup(x,γ)→(x̄,0) C(x, γ). Since x̄
satisfies Split-CAKKT-regularity we have that −∇f(x̄) ∈ C(x̄, 0). Thus, this clearly implies that x̄ satisfies
the KKT condition. Now we will prove the reciprocal implication. Take

w ∈ lim sup
(x,s)→(x̄,0)

C(x, s).

Then, there are sequences xk → x̄ and sk → 0 such that wk ∈ C(xk, sk) for wk → w. Define f(x) = −⟨w, x⟩
and we have that x̄ satisfies the Split-CAKKT condition. Thus, x̄ is a KKT point, which implies that
w = −∇f(x̄) ∈ C(x̄, 0) and the Split-CAKKT-regularity condition is satisfied. ■

While Theorem 6.2 gives that Robinson’s condition implies Split-CAKKT-regularity, the simple example

G(x) :=

(
x 0
0 −x

)
with K = S2+ shows that the implication is strict.

7 Final Remarks

In this paper we provided a unified approach of the most relevant nonlinear conic programming problems
that include second-order cones and semidefinite cones. We studied an augmented Lagrangian method and an
interior point method where we showed a natural way to measure fulfillment of the complementarity condition
by means of the underlying Jordan product. By means of introducing a new sequential optimality condition,
defined in terms of the Jordan product, we show a strong global convergence property of the standard
augmented Lagrangian method in the general context of symmetric cones. The condition introduced is
natural enough such that a similar analysis is conducted in the context of an interior point method. We
envision that by considering the Jordan algebraic structure of the problem one may obtain strong global
convergence of other algorithms for symmetric cones such as the sequential quadratic programming algorithm
studied in [36] and others.
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