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Abstract

We tackle the problems of workforce sizing and shift scheduling of a logistic operator de-
livering parcels in the last-mile segment of the supply chain. Our working hypothesis is that
the relevant decisions are affected by two main trade-offs: workforce size and shift stability.
A large workforce can deal with demand fluctuations but incurs higher fixed costs; by con-
trast, a small workforce might require excessive outsourcing to third-party logistic providers.
Stable shifts, i.e., with predictable start times and lengths, improve worker satisfaction and
reduce turnover; at the same time, they might be less able to adapt to an unsteady de-
mand. We test these assumptions through an extensive computational campaign based on a
novel mathematical formulation. We find that extreme shift stability is, indeed, unsuitable
for last-mile operations. At the same time, introducing a very limited amount of flexibility
achieves similar effects as moving to a completely flexible system while ensuring a better
work-life balance for the workers. Several recent studies in the social sciences have warned
about the consequences of precarious working conditions for couriers and retail workers and
have recommended—among other things—stable work schedules. Our work shows that it is
possible to offer better working conditions in terms of shift stability without sacrificing the
company’s bottom line. Thus, companies prioritising profitability (as is often the case) can
improve workers’ well-being and increase retention with a negligible cost impact.

Keywords: OR in service industries; last-mile delivery; workforce scheduling; workforce
sizing; shift stability.

1 Introduction
Last-mile delivery (LMD) is the final segment of the supply chain, starting at the last warehouse
and ending when the goods reach the customer. With the boom of e-commerce, especially during
and after the Covid-19 pandemic, LMD in large cities is dominated by home deliveries, i.e., by
carriers delivering many small parcels up to the customers’ doorsteps using a fleet of vehicles from
legacy vans to more sustainable means such as cargo bikes (Alfonso et al. 2021). A fundamental
tactical question arises for logistic operators involved in LMD in the urban environment: how
many couriers should they employ? On the one hand, a more extensive workforce is associated
with higher staffing costs; on the other hand, using fewer couriers degrades the quality of service
or forces the operator to resort to expensive outsourcing options. Demand for home delivery
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Figure 1: Example of a city with three regions (delimited with thicker black lines) subdivided
into smaller areas. Blue squares indicate the position of the satellites.

is highly seasonal (throughout the year and at specific hours of the day), further complicating
the challenge of choosing the correct workforce size. This paper introduces a decision support
system for tactical hiring decisions, incorporating realistic constraints and demand uncertainty.

The importance of increasing the efficiency of LMD stems from its relevance in the global
economy. For example, LMD is expected to grow at a compound annual rate of 6.12% from 2023
to 2030 (Contrive Datum Insights 2023). Among the optimisation problems linked with LMD,
Boysen, Fedtke, and Schwerdfeger (2021) identified staffing and fleet sizing as needing attention
from the operational research community because of the “lack [of] scientific decision support”.

We fill this gap by considering the problem of a logistics operator who must deliver parcels
throughout the day and faces the tactical problem of sizing its workforce. The operator can
decide to fulfil each delivery with either a fleet of owned vehicles driven by couriers or paying a
fee to an outsourcing (or crowdsourcing) provider. Maintaining a large workforce would allow
the operator to avoid paying such fees at the price of high fixed staffing costs. Conversely, hiring
few couriers means the operator must extensively resort to outsourcing, leading to high variable
costs. The logistic operator must then balance the tactical workforce sizing and operational
outsourcing decisions. From this point of view, our work contributes to a recent research stream
about workforce sizing in the logistics and service industries (see, e.g., Section 2.2 and (Dai and
P. Liu 2020a; Turan et al. 2022; Pandey, Gajjar, and Shah 2021)).

A central concept in our setting is that of satellites (Crainic et al. 2021). These are locations
within the city where the couriers start and end their delivery trips. They are intermediate
between large distribution centres (usually on the city’s outskirts) and the customers. They are
used for transhipments with little or no temporary storage capabilities. Examples of satellites
are small warehouses, parking lots, mobile vehicles (Gonzalez-Feliu 2012), micro-consolidation
centres (Arrieta-Prieto et al. 2022), or even public transit stops (Delle Donne, Alfandari, et al.
2023; Delle Donne, Santini, and Archetti 2024).

Each satellite is associated with a given portion of the city, called an area. All deliveries
within a given area will occur with vehicles starting and ending their routes at the corresponding
satellite. Areas are further grouped into regions. We assume that hiring decisions must be taken
at the tactical and regional level, i.e., a courier is hired for a specific region and an extended
period. Assignment of couriers to satellites (and, therefore, to areas) happens on the operational
level according to the needs of the logistic operator. Figure 1 shows the example of a city in
which three regions (delimited with thicker black lines) are further divided into several areas
(delimited with white lines). Blue squares indicate the locations of the satellites.

The logistic operator must decide (i) how many couriers to hire in the mid-to-long term in
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each region (workforce sizing) and (ii) which area to assign them in the short term to minimise
the combined labour costs and expected outsourcing costs (assignment and scheduling). To build
a mathematical model to address this problem, we will first present intermediate models with
simplifying assumptions. We consider these models not only because they simplify our exposition
but also because they correspond to different levels of flexibility allowed to the decision-maker.
For example, we will first assume that the logistics company can employ couriers to work shifts
as short as desired. Potentially, the company could hire ten couriers to work from 19:00 to
21:00 and assign them to a different area every day. However, concerns about job quality and
service level suggest that further conditions be imposed. We will then consider situations in
which couriers must be hired for fixed shifts (e.g., 08:00–16:00 each day) or for flexible shifts
(e.g., a period of 8 consecutive hours, but starting at any time during the day) and that couriers
can move between areas, but only within the same region. Indeed, one of the contributions of
our work is to initiate a discussion on the impact of shift flexibility on the company’s bottom
line, complementing research in the social sciences, which instead addresses the effect of shift
instability on workers’ well-being (see Section 2.3).

We emphasise that we are concerned with sizing and scheduling the workforce, assuming
that the company already owns a fleet of vehicles. Therefore, we do not study the problem
of purchasing or leasing vehicles and do not consider the corresponding sunk costs. For recent
works on fleet sizing, we refer the reader to, e.g., (Franceschetti et al. 2017; Banerjee, Erera,
and Toriello 2022; Shehadeh, Hai Wang, and Zhang 2021; Ertogral, Akbalik, and González 2017;
Kunz and Van Wassenhove 2019; Goulart et al. 2021; Rahimi-Vahed et al. 2015; Castillo et al.
2022; Loxton and Lin 2011). We review the contributions more closely related to the present
paper in Section 2.2.

Finally, we highlight the stochastic nature of our problem. The decision-maker can estimate
the number of deliveries in each area but cannot know this number precisely on the timescale
required to make tactical decisions. Therefore, we will introduce a subproblem to estimate the
number of parcels delivered by the hired couriers in each area and the number of parcels which
must instead be outsourced. To this end, we will evaluate several demand scenarios and adapt
approximation formulas from the literature (Figliozzi 2008).

The rest of the paper is organised as follows. In Section 2, we position our contribution in
the literature on LMD scheduling and review related topics such as fleet sizing and districting.
We also review current literature on the topic of stability in workforce scheduling from both
operations research and the social sciences. In Section 3, we formalise our problem and intro-
duce several mathematical formulations, which share the same base but differ in the amount of
flexibility available to the decision-maker. Because the formulations are extremely quick to solve
using commercial software, in Section 4, we present the results of an extensive computational
campaign. We provide managerial insights and highlight the roles of stability and flexibility on
the costs and operations of an LMD logistics company. Finally, we summarise the main findings
and our recommendations in Section 5.

To the best of our knowledge, this work is the first to explore the impact of stability in the
context of workforce sizing and scheduling problems. In particular, we propose a new mathemat-
ical formulation that estimates the hiring and outsourcing costs of a company performing parcel
deliveries in an urban environment. By extending this formulation, we can model different levels
of shift stability and—through a vast computational campaign—provide insights into how the
company performs under different exogenous conditions such as the demand volume, outsourc-
ing costs, or demand patterns. Specifically, we show that shift stability can be guaranteed with
a negligible sacrifice in profitability. This is a major outcome: companies which mostly focus on
competitiveness can anyway act towards improving workers’ well-being.
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2 Related works
This section presents related contributions and positions the current work in the literature. We
focus on three main areas. The first is tactical workforce scheduling, focusing exclusively on
LMD. Compared with classical scheduling, LMD presents additional challenges. Most notably,
demand is stochastic and seasonal; when some couriers are crowdsourced, supply is also stochas-
tic. The second research area is fleet sizing and districting. These decisions usually happen before
workforce scheduling and are better classified as strategic rather than tactical. Still, there are
several points of contact with our work, especially in the methodology used to approximate
operational-level costs. Finally, we add an ethical dimension to our research by considering the
stability of employee shifts. Research in social science associates stable work shifts with higher
job satisfaction, better work-life balance and reduced turnover. We briefly review this literature,
motivating the investigation into the impact of shift stability vs. flexibility on the bottom line
of logistic operators.

We remark that the above areas are not exhaustive. Indeed, recent literature on optimising
LMD operations has focused on timely real-world problems at all decision-making levels. For
example, at the operational level, on determining which deliveries to outsource to crowd couriers
(Fatehi and Wagner 2022); at the tactical level, on balancing driver workload over a week or
a month (Y. Wang et al. 2022); at the strategic level, on partitioning urban areas into regions
(Carlsson et al. 2024). While these decisions are related to workforce sizing and scheduling, we
only include the contributions that share methodological or motivating characteristics with our
work in the following review.

2.1 Workforce scheduling for last-mile delivery
Workforce scheduling concerns the assignment of couriers to perform deliveries in given areas
during specific periods. It is a critical task in all parts of the supply chain, particularly in its
most labour-intensive segment: the last mile. Yildiz and Savelsbergh (2019) have identified “the
importance of having the right number of couriers at the right time” in last-mile meal delivery,
and indeed, their observations can be generalised to other types of LMD.

A few works in the literature tackle workforce scheduling in the LMD setting. Restrepo,
Semet, and Pocreau (2019) consider the combined problems of scheduling couriers (at the tactical
level) and assigning them specific orders (at the operational level). Unlike our approach, the
authors assume staffing is already decided, and the workforce size is fixed. On the other hand,
similarities with our setting include the possibility of outsourcing deliveries when capacity is full
and the fact that the territory is divided into areas. The authors propose an exact two-stage
stochastic approach. The first-stage tactical problem assigns couriers to shifts and areas, while
the second-stage operational problem allocates orders to couriers (or an outsourcing provider).
Using an L-shaped method (Laporte and Louveaux 1993), they achieve solutions with average
gaps of 1.07% from the optimum in realistic instances with up to 150 orders, 42 couriers, 23
scenarios and a capacity of at most two orders for each courier in a given period.

Another stream of work deals with courier scheduling under supply uncertainty. Some de-
livery companies use a mixed workforce of scheduled couriers and occasional ones, e.g., because
they partly rely on crowdsourcing (Santini et al. 2022). Depending on the number of occasional
couriers available, they face the double challenge of uncertain customer demand and supply ca-
pacity. Behrendt, Savelsbergh, and He Wang (2023) and Ulmer and Savelsbergh (2020) tackle
the problem of a company relying on a mix of scheduled and crowdsourced couriers. This prob-
lem differs from ours because even scheduled couriers are hired and dismissed per shift. The
company, in fact, can use the crowdsourcing platform to offer both shifts and single deliveries. If
a person accepts a shift, they become available for the corresponding period, during which they
can be assigned multiple deliveries. Otherwise, a person can accept to perform a single delivery
without committing to be available for an extended period. The objective of the problem is to
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determine the ideal number of scheduled couriers to hire at each period to minimise labour costs
and late-delivery penalties and thus decide the start time and duration of the shifts offered on
the crowdsourcing platform. In (Behrendt, Savelsbergh, and He Wang 2023), the authors use
continuous approximations and value function approximation methods to estimate the number
of couriers required to meet a given service level, assuming a homogeneous order arrival rate. To
the same end, Ulmer and Savelsbergh (2020) use a neural network trained on an off-line dataset
generated via sample average approximation (Kleywegt, Shapiro, and Homem-de-Mello 2002).

Finally, we mention the work of Dai and P. Liu (2020b), who tackle the problem of deter-
mining the correct workforce size and parcel allocation for a combined staff of in-house couriers
and crowdsourced drivers. They remark that an over-reliance on crowdsourcing can provide
short-term benefits but sacrifices long-term objectives such as workforce retention and system
robustness to fluctuation.

2.2 Fleet sizing and districting for last-mile delivery
The problem of deciding the size and composition of a fleet of vehicles is known as fleet sizing.
Because purchasing or leasing vehicles involves high capital costs or long-term contracts, fleet
sizing often happens at the strategic level. Similar to our staff scheduling problem, operational
decisions are usually approximated when performing fleet sizing.

Fleet sizing happens before staff scheduling because the number of available vehicles deter-
mines how many couriers can work simultaneously. It can also happen before, after or simulta-
neously with districting, i.e., the problem of partitioning a given geographical region into fixed
areas and distributing the vehicles among the areas. While, in principle, an operator could
skip districting and solve a large routing problem each day, real-life practice has shown that geo-
graphical partitions drastically simplify operations and increase service quality (see, e.g., Boysen,
Fedtke, and Schwerdfeger 2021; S. Liu, He, and Zuo-Jun 2021; Monteiro Ferraz, Cappart, and
Vidal 2022). In the following, we review two contributions closest to our approach.

Franceschetti et al. (2017) consider the problem of partitioning a rectangular city into rect-
angular areas. There are several differences between their approach and the problem we tackle
in this paper. (a) In Franceschetti et al. (2017)’s settings, there is only one central depot from
where all vehicles are deployed. From this point of view, their work is tailored more towards
classical delivery vans than zero-emission vehicles. (b) The authors also consider the problem
of designing the areas. However, one vehicle operates in each area; therefore, the operational
problem is a Travelling Salesman Problem, compared to a Vehicle Routing Problem (VRP) in
our case. (c) The couriers fulfil all requests with no possibility of outsourcing. (d) Because they
focus on classical delivery vehicles, the authors also consider the cost of owning or leasing such
vehicles and the transportation costs. Similar to our work, they use continuous approximation
formulas to estimate operational routing decisions. The authors consider the case of a heteroge-
neous fleet with some vehicle types subject to access restrictions (i.e., they cannot enter certain
areas during some parts of the day). After analysing optimal solutions obtained via Dynamic
Programming and a Mixed-Integer model, they conclude that access restrictions can sometimes
be counterproductive, increasing the total number of vehicles on the road. Their computational
results also show that the advantage of having a heterogeneous fleet is minor compared with the
corresponding increase in operational complexity.

Banerjee, Erera, and Toriello (2022) tackle a similar problem of designing distribution ar-
eas and determining the correct fleet size to deploy in a same-day-delivery system. Similar to
Franceschetti et al. (2017), all vehicles start and end their routes from the depot, each area
is allocated one vehicle, and no outsourcing is possible. However, the city and its areas are
not limited to being rectangular. The problem characteristics hint at a strong correspondence
between minimising the fleet size and maximising the area covered by each vehicle. The au-
thors exploit this link to develop area-maximising policies and apply a fleet-size minimisation
algorithm. Both in Franceschetti et al. (2017) and Banerjee, Erera, and Toriello (2022), similar
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to our work, the authors use a continuous approximation model to estimate operational cost.
However, the problem setting fundamentally differs from the one we consider. First, the focus
of the above two papers is on districting decisions; moreover, both works assume that a single
vehicle operates in each area while we allow deploying multiple couriers.

2.3 Geographical and temporal stability in workforce scheduling
While, on paper, extremely flexible and volatile schedules might appear the most suited to meet
a highly dynamic demand, real-world practice reveals the importance of stability and planning
at the tactical level.

Regarding geographical stability, a stable assignment of couriers to areas or even to customers
leads to shorter routing and service times. In classical supply chains where drivers visit a few
large customers, consistency leads to quicker operations and increased customer satisfaction. In
a seminal work, Groër, B. Golden, and Wasil (2009) introduced the Consistent Vehicle Routing
Problem (ConVRP), a multi-period routing problem rewarding stability in assigning drivers
to customers and visiting the same customer at similar times. This problem has garnered
considerable attention: we refer the reader to a survey by Kovacs et al. (2014) and to the work of
Smilowitz, Nowak, and Jiang (2013) for links between the ConVRP and workforce management.
Regarding recent contributions published after the survey, see, e.g., (Rodríguez-Martín, Salazar-
González, and Yaman 2019; M. Schneider 2016; Goeke, Roberti, and M. Schneider 2019). Stable
assignment of drivers to areas is also beneficial in modern last-mile settings. For example, in
a recent keynote presentation at the 12th DIMACS implementation challenge, Werneck (2022)
has emphasised the importance of consistency and driver familiarity for last-mile delivery at
Amazon.

The topic of temporal stability falls in the broader literature of workforce scheduling with
workers’ preferences (see, e.g., (Ruiz-Torres et al. 2015; Mohan 2008; Yura 1994) and the survey
of Van den Bergh et al. (2013)).

The issues of shift instability and low wages have been identified among the most critical
aspects of the modern logistics industry, especially in the last mile.

From the couriers’ point of view, unstable or unreliable shifts cause a sensible decrease in
happiness and worsen the work-life balance. In a survey of workers in Illinois, United States,
Dickson, L. Golden, and Bruno (2018) showed that, in 2018, 35% knew their schedule at least
one week before and 10% only knew it 24 hours in advance. Furthermore, the average gap
between the minimum and maximum weekly hours during the six months before the survey was
14 hours, suggesting large fluctuations from one week to another. Part-time workers, who are
largely represented in LMD, are particularly affected: Dickson, L. Golden, and Bruno (2018)
report that “the incidence of unpredictable or varying shift times […] falls disproportionately
on part-time workers—12 percent of part-timers experience irregular shift times”. Furthermore,
the downsides of erratic shifts affect some categories, such as single parents, more than others
(Ananat and Gassman-Pines 2021; Harknett, D. Schneider, and Luhr 2022). Carrillo et al. (2017)
highlights that: “as dual-earner couples, single parent families, and irregular work schedules
have risen in prevalence, the logistics of arranging child care to match work shifts have grown
increasingly complex”. This complexity comes at a significant cost for children; quoting again
Carrillo et al. (2017): “Instability and unpredictability at work were reproduced in […] child-care
arrangements at home. This scramble led to inconsistency in children’s care and also imposed a
heavy psychological burden on parents as they reconciled the difficulty of finding care for their
children with the imperative to keep an open availability for work and catch the shifts that
became available to them.”

From the point of view of logistic operators, excessive shift instability causes higher employee
turnover and lower performance, producing a net detrimental effect for the firm. Chung (2022)
studies the impact of variable work schedules (VWS) on quick-service restaurant chains and
concludes that “despite the common assumption that their [VWS] use helps firms achieve higher
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performance by matching the supply of labor to demand fluctuations […] this study demonstrates
otherwise”, and that “scholars and practitioners should reconsider the general assumption that
staffing flexibility helps organisations adapt to uncertain environments”. Although the role of
schedule volatility on employee turnover has been studied before (see, e.g., Henly and Lambert
2014; Henly, Shaefer, and Waxman 2006), its impact has increased after the Covid-19 pandemic
(see Choper, D. Schneider, and Harknett 2022; Bergman, David, and Song 2023; Rhee, Park,
and Lee 2020).

The above considerations clarify that shift flexibility in workforce scheduling in LMD is
worth researching and that the literature on this topic can be enriched considering an ethical
dimension (Le Menestrel and Van Wassenhove 2009; Ormerod and Werner 2013; Bellenguez,
Brauner, and Tsoukiàs 2023).

3 Problem setting and formulation
In this section, we formalise the problem we are studying and provide several mathematical
models to make workforce sizing and scheduling decisions. Section 3.1 provides a mathematical
description of the considered problem. We present a base mathematical model in Section 3.3
and extend it in Section 3.4.

3.1 Problem description
We consider a logistic operator working in the last mile of the supply chain in an urban en-
vironment. The city is divided into a set A of areas, usually corresponding to districts or
neighbourhoods, with exactly one satellite in each area. Areas are grouped into regions R, such
that R forms a partition of A.

The daily planning horizon is discretised into a set Θ of periods. The planner chooses the
length of the periods in a way that (a) is long enough to ensure that couriers complete their
tours and (b) is suitable for accurately estimating the demand based on historical data. In our
main application setting, couriers employ sustainable vehicles with limited capacities, such as
cargo bikes. Because vehicle capacities limit tour durations, the duration of a period is usually
limited to a few hours.

Couriers start their tours at the beginning of each period and return to the starting satellite
before the end of the period. If a courier changes his/her assigned satellite between two consec-
utive periods, we assume the transfer time to be negligible. This assumption is justified because
transfers are only possible between satellites in the same region.

Each area has an associated demand distribution, which determines how many deliveries
are required during each period. We adopt a scenario-based approach and consider a set S of
scenarios. Each scenario s ∈ S determines, for each area a ∈ A and period θ ∈ Θ, the demand
ns
aθ ∈ N, i.e., the number of deliveries to perform.

The decision variable is the number of couriers assigned to each area during each period and
is denoted with xaθ ∈ N (a ∈ A, θ ∈ Θ). This decision is taken at the tactical level; therefore,
the assignment persists across all scenarios. Eventually, we will introduce constraints on this
assignment, which guarantee, e.g., that couriers work for a minimum number of consecutive
periods (a shift). For the moment, we only note that the number of couriers assigned to an area
must not necessarily ensure they can deliver all parcels under all scenarios. Indeed, the cost
incurred by the planner is the sum of the couriers’ labour cost and the expected outsourcing
cost. We denote with caθ > 0 the unit cost of employing a courier in area a for period θ. The
labour cost associated with a and θ is thus caθxaθ. We denote with ωaθ(xaθ) ≥ 0 the random
variable representing the outsourcing cost for area a and period θ when employing xaθ couriers.
In our approach, we estimate the expected value of ωaθ by computing the average outsourcing
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cost over all scenarios:
E
[
ωaθ(xaθ)

]
≃ 1

|S|
∑
s∈S

ωs
aθ(xaθ),

where ωs
aθ(xaθ) is the deterministic outsourcing cost incurred under scenario s. With the above

notation, the objective function of our problem is

min
xaθ∈N

∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1

|S|
∑
s∈S

ωs
aθ(xaθ)

)
. (1)

Determining the value of ωs
aθ(xaθ) is not straightforward. To know how many deliveries can be

performed by xaθ couriers (and, thus, how many must be outsourced), we would have to solve
an instance of the NP-complete Capacitated Vehicle Routing Problem (CVRP) for each area,
period and scenario. However, knowing the exact value of ωs

aθ is unnecessary at the tactical
planning level. Therefore, in Section 3.2, we devise a method to approximate this value. In the
rest of this section, we introduce constraints which, together with the objective function (1), will
model realistic staff sizing problems faced by LMD operators.

3.2 Approximation of the outsourcing costs
We assume that the outsourcing cost depends linearly on the number of outsourced deliveries.
Specifically, let Cout > 0 be the cost to outsource one delivery and ms

aθ ∈ N the number of
couriers needed to fulfil all deliveries in area a ∈ A during period θ ∈ Θ according to scenario
s ∈ S.

Under the assumption that all couriers deliver roughly the same number of parcels, we can
write the outsourcing cost function as

ωs
aθ(xaθ) =

{
0 if xaθ ≥ ms

aθ,

(ms
aθ − xaθ)

ns
aθ

ms
aθ
Cout otherwise.

(2)

Equation (2) states that the planner does not incur outsourcing costs if a sufficient number of
couriers is hired. Otherwise, a fraction of 1 − xaθ/m

s
aθ of the deliveries must be outsourced at

unit cost Cout.
The problem of calculating ωs

aθ(xaθ) then reduces to the computation of ms
aθ. As mentioned

above, its exact value is given by the solution of a CVRP. In the following, we propose to compute
an approximation m̂s

aθ. To this end, denote with αa > 0 the surface of area a, with r̄a > 0 the
average distance between a point in a and the satellite, with Q > 0 and v > 0 respectively the
capacity and the speed of the courier vehicles, with τ > 0 the service time at the customer’s,
and with T > 0 the duration of a period. We note that capacity Q is expressed in the number of
deliveries (thus assuming that parcels are not too dissimilar in size) and that the unit of measure
of v is derived from those of r̄a and T (i.e., units of space over units of time).

Figliozzi (2008) proposed a closed-form approximation of the cost of the optimal solution of
a VRP with ns

aθ customers and m vehicles:

ka ·
ns
aθ −m

ns
aθ

√
αa · ns

aθ + 2r̄a ·m, (3)

where ka is a coefficient which depends on the shape of area a and must be learned, e.g., via
regression. We extend this formula to use it as an approximation of the average time a courier
needs to complete a route, including the service time at the customers:

route time =
1

m
ka

ns
aθ −m

v · ns
aθ

√
αa · ns

aθ + 2
r̄a
v

+
ns
aθ

m
· τ. (4)

8



The first term approximates the travel time between customers, the second approximates the
round trip from the satellite, and the third term accounts for the service time at the customers.
Because each courier must respect both the capacity and the route duration constraint, we look
for the smallest integer m such that

m ≥
ns
aθ

Q
, and

1

m
ka

ns
aθ −m

v · ns
aθ

√
αa · ns

aθ + 2
r̄a
v

+
ns
aθ

m
· τ ≤ T.

Simple algebraic manipulations yield

m̂s
aθ =

⌈
max

{
ns
aθ

Q
,

ka
v

√
αans

aθ + ns
aθ · τ

T + ka
v·ns

aθ

√
αans

aθ −
2r̄a
v

}⌉
. (5)

3.3 Base model
We introduce a base optimisation model which uses objective function (1) and the framework
described in Section 3.2 to solve a loosely constrained version of our problem. Indeed, the only
basic constraints we introduce are: (a) a global upper bound u ∈ N on the number of couriers
that the logistic operator can employ during any given period and (b) a regional-level upper
bound uR ∈ N on the number of couriers that can work in region R ∈ R during any given
period. These bounds can derive from real-life considerations, such as a staffing budget (for
bound u) or the number of available vehicles (for bounds uR). The model, denoted MBase,
reads as follows.

min
∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1

|S|
∑
s∈S

ω̂s
aθ(xaθ)

)
(6a)

s.t.
∑
a∈R

xaθ ≤ uR ∀R ∈ R, ∀θ ∈ Θ (6b)∑
a∈A

xaθ ≤ u ∀θ ∈ Θ (6c)

xaθ ∈ N ∀a ∈ A, ∀θ ∈ Θ. (6d)

In (6b) and (6c), the bounds are enforced for all periods θ ∈ Θ to ensure that the maximum
workforce size is not exceeded at any period of the planning horizon. Function ω̂s

aθ denotes the
approximate outsourcing cost ωs

aθ in which ms
aθ is replaced by m̂s

aθ in eq. (2). Indeed, directly
using (2), we obtain the following formulation for MBase:

min
∑
a∈A

∑
θ∈Θ

(
caθxaθ +

1

|S|
∑
s∈S

Ωs
aθ

)
(7a)

s.t.
∑
a∈R

xaθ ≤ uR ∀R ∈ R, ∀θ ∈ Θ (7b)∑
a∈A

xaθ ≤ u ∀θ ∈ Θ (7c)

Ωs
aθ ≥ (m̂s

aθ − xaθ)
ns
aθ

m̂s
aθ

Cout ∀a ∈ A, ∀θ ∈ Θ, ∀s ∈ S (7d)

xaθ ∈ N ∀a ∈ A ∀θ ∈ Θ (7e)
Ωs
aθ ≥ 0 ∀a ∈ A, ∀s ∈ S ∀θ ∈ Θ. (7f)

In model (7a)–(7f), we introduced new variables Ωs
aθ to hold the value of ω̂s

aθ(xaθ). We re-
mark that the above formulation is decomposable by period θ; however, when we add further
constraints in Section 3.4, this will no longer be the case.
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The complete solution of model MBase requires two steps. First, we compute the approxi-
mate values m̂s

aθ using (5), for each s, a and θ. Then, we use these values to solve model MBase
and to find the optimal values of xaθ and their corresponding cost.

3.4 Shift linking constraints
Model MBase potentially allows employing couriers for just one period or intermittent periods
during the day. However, job quality and service level considerations forbid such practices in
most real-life situations. To this end, we introduce the concept of shifts: a set of consecutive
periods such that if a courier works during one of them, they must work during all of them.

While the concept of a work shift is almost universally employed, its implementation changes
from company to company. In what follows, we propose three types of shifts with different levels
of flexibility. Each will correspond to new variables and constraints extending model MBase;
their impact will be evaluated in Section 4.

The first type is fixed shifts: partitioning the set of periods Θ into contiguous non-overlapping
sets. For example, if the working day is from 9 AM to 9 PM and each period spans two hours, we
would have Θ = {1, . . . , 6}. Two fixed shifts could be 9 AM to 3 PM (periods 1 to 3) and 3 PM
to 9 PM (periods 4 to 6). The start period and the duration of each shift are given in advance
by labour regulations or local uses, and are not decision variables. Each courier is assigned to
one of these preset shifts.

The second type is flexible shifts. Each courier has an associated shift, i.e., a set of contiguous
periods of fixed total duration. However, the start time of each courier’s shift is not given in
advance and is a decision variable: different couriers can have shifts starting at different times.
Unlike fixed shifts, flexible shifts do not need to partition the set of periods and can overlap.

The third type is partially flexible shifts, which provide intermediate flexibility between fixed
and flexible shifts. In this case, we limit the number of possible distinct shift start times. For
example, we might aim to create four possible shifts (i.e., selecting four possible start times) and
then assign one shift to each courier. If the number of possible start times equals the number of
periods, then we are in the special case of flexible shifts. On the other hand, limiting the number
of shift start times to only a few possibilities decreases the system’s flexibility and creates stabler
rosters for the couriers.

Figure 2 shows three examples of shifts which can be devised for the same demand pattern
displayed at the bottom. The blue shifts at the top are fixed with 9 AM and 3 PM start times.
The red shifts in the middle are flexible, and the yellow ones at the bottom are partially flexible.

In the remainder of this section, we introduce the necessary notation, shift-type-specific
variables, and constraints that we add to model MBase.

3.4.1 Fixed shifts

Let P be the set of shifts, i.e., a partition of Θ such that each shift P ∈ P is a contiguous set of
periods. We denote with θs

P and θe
P the first and last periods of shift P .

We introduce new variables ya1a2θ ∈ N denoting the number of couriers moving from area a1
to area a2 between periods θ − 1 and θ (a1 ̸= a2, a1 and a2 belong to the same region, θ is not
the first period of the day).
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We add the following constraints to formulation (7a)–(7f) to model fixed shifts:∑
a2∈R

ya1a2θ ≤ xa1θ ∀R ∈ R, ∀a1 ∈ R, ∀θ ∈ Θ (8a)

∑
a∈R

xaθ =
∑
a∈R

xaθs
P

∀R ∈ R, ∀P ∈ P , ∀θ ∈ P \ {θs
P } (8b)

xa1θ = xa1,θ−1 +
∑

a2∈R\{a1}

ya2a1θ −
∑

a2∈R\{a1}

ya1a2θ

∀R ∈ R, ∀a1 ∈ R, ∀P ∈ P , ∀θ ∈ P \ {θs
P }. (8c)

Constraint (8a) ensures that no more couriers move away from each area a1 than there are
working in a1. Constraint (8b) ensures that the number of employed couriers stays constant
within each region for the duration of each shift, thus forbidding hiring or dismissing couriers
in the middle of a shift. Constraint (8c) states that the number of couriers working in area a1
during period θ is given by the number of couriers working in a1 during the previous period,
plus couriers who move into a1, minus couriers who move out of a1. We denote with Fixed the
model obtained adding (8b)–(8c) to MBase.

3.4.2 Flexible shifts

To model flexible shift, we add to the already introduced x and y new variables z−aθ ∈ N, denoting
the number of couriers starting their shift in area a at the beginning of period θ, and z+aθ ∈ N,
denoting the number of couriers ending their shift in area a at the end of period θ.

Denoting with ℓ ∈ N the shift length, we observe that variables z−aθ must be set to zero for
all areas a ∈ A and for periods θ ∈ Θ such that θ > |Θ| − ℓ. Indeed, a shift has to start before
|Θ|− ℓ in order to satisfy shift duration ℓ. Analogously, variables z+aθ are set to zero for all areas
a ∈ A and for periods θ ∈ Θ such that θ < ℓ.

To obtain a model for the flexible shifts, we add constraint (8a) and the following constraints
to formulation (7a)–(7f):∑

a∈R
z−aθ =

∑
a∈R

z+a,θ+ℓ−1 ∀R ∈ R, ∀θ ∈ Θ, θ ≤ |Θ| − ℓ+ 1 (9a)

xa1θ = xa1,θ−1

+
∑

a2∈R\{a1}

ya2a1θ

−
∑

a2∈R\{a1}

ya1a2θ

+ z−a1θ − z+a1,θ−1

∀R ∈ R, ∀a1 ∈ R, ∀θ ∈ Θ, θ > 1 (9b)

xa1 = z−a1 ∀a ∈ A. (9c)

Constraint (9a) makes sure that all couriers starting a shift at the beginning of period θ
complete it at the end of period θ + ℓ− 1. Constraint (9b) extends (8c) by considering couriers
who start or end their shift. Because (9b) is defined for θ > 1, constraint (9c) addresses the
special case of the beginning of the planning horizon, stating that all workers who start a shift
during the first period are working in the respective areas. We denote with Flex the model
obtained by adding (9a)–(9c) to MBase.

3.4.3 Partially flexible shifts

To model partially flexible shifts, we introduce variables wθ ∈ {0, 1} (θ ∈ Θ, θ ≤ |Θ| − ℓ + 1)
taking value 1 if and only if a shift starts at the beginning of period θ. Let µ ∈ N+ be the
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maximum number of shifts to create. A model for partially flexible shift uses constraints (9a)–
(9c) together with the following inequalities:∑

a∈R
z−aθ ≤ uR · wθ ∀R ∈ R, ∀θ ∈ Θ, θ ≤ |Θ| − ℓ+ 1 (10a)

|Θ|−ℓ+1∑
θ=1

wθ ≤ µ. (10b)

Constraint (10a) links the z and w variables allowing couriers to start their shift only when such
a shift is created (value uR acts as a “big-M” constant). Constraint (10b) limits the number
of created shifts. We denote with PartFlex the model obtained by adding (9a)–(9c) and
(10a)–(10b) to MBase.

3.4.4 Dealing with symmetry

Models using variables ya1a2θ suffer from symmetry. For example, increasing by one the value
of both ya1a2θ and ya2a1θ yields a new solution with the same cost and corresponding to an
unrealistic scenario (two couriers swapping areas without reason). To break this symmetry, we
add to the objective function (7a) the following term:

ε ·
∑
R∈R

∑
a1∈R

∑
a2∈R\{a1}

∑
θ∈Θ

ya1a2θ, (11)

where ε > 0 is a small constant. The term (11) penalises unnecessarily large values of variables
ya1a2θ and prevents situations such as the one described above. In the above example, increasing
by one the value of ya1a2θ and ya2a1θ would cause the objective function to increase by 2ε > 0
making the resulting solution sub-optimal.

4 Results
In this section, we present the results of our computational experiments. First, we describe
how we generated our instances based on realistic data from four large European cities. Second,
we show that the optimisation problems presented in Section 3 are fast to solve on commonly
available computers, making them particularly suitable as decision support tools. Third, exploit-
ing this computational efficiency, we perform a large experimental campaign aimed at deriving
managerial insights and assessing the role of shift flexibility on the company’s bottom line.

4.1 Instances
We generate instances based on Paris, Lyon (France), Berlin and Frankfurt (Germany). There
are three main components to instance generation: the geographical subdivision of each city
into regions and areas, the demand distribution, and the parameters related to couriers (costs,
bounds on workforce size, shift lengths, etc). All parameters are summarised in Table 1.

4.1.1 City geography

Each area in the cities corresponds to a postcode. We obtained the corresponding data under the
Open Database License from OpenStreetMap (2023). Cities were subdivided into four regions,
grouping areas to form compact groups of roughly equal population. We obtained population
data from the EU’s Global Human Settlement dataset (Schiavina et al. 2023). Figure 3 depicts
the four cities and how they are divided into regions and areas. Paris has 20 areas, Lyon has 16,
Berlin 59 and Frankfurt 32. Satellites are located around the centroids of the areas, ensuring
that each satellite falls inside the area. The regression coefficient ka of the cost approximation
used in (5) is set to 0.77 ∀a ∈ A, as suggested by Figliozzi (2008) for areas with a central depot.
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Figure 3: The four considered cities and their subdivision into areas (white boundaries) and
regions (coloured). The numbers indicate the number of people living in each region. Top left:
Paris, top right: Lyon, bottom right: Frankfurt, bottom left: Berlin.
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Notation Value(s) Description

— Berlin, Frankfurt,
Lyon, Paris

City.

DB 0.5, 1, 2, 4 Number of parcels per 1000 inhabitants and day.
DT Uniform, Peak,

DoublePeak,
AtEnd

Demand type.

OC 1.2, 1.5, 1.8, 2 Per-delivery outsourcing cost multiplier.
RM 0.75, 1, 1.5, 3, 5 Multiplier to determine the regional courier upper

bound uR.
GM 0.6, 0.7, 0.8, 0.9, 1 Multiplier to determine the global courier upper

bound u.
µ 2, 3, 4 Maximum number of shifts for PartFlex.

— 16 Daily planning horizon in hours.
— 2 Period duration in hours.
ka 0.77 Regression coefficient for VRP cost estimation.
Q 5 Courier capacity in number of parcels.
v 21 Courier speed in km/h.
τ 5 Courier service time in min.
caθ 1 Courier labour cost per period.

Table 1: Instance generation parameters.

4.1.2 Demand distribution

Demand is proportional to area population via a Demand Baseline (DB) parameter expressed in
the number of parcels per thousand inhabitants and day. When we generate an instance, the
daily demand of each area is chosen uniformly at random in the interval [0.75DB, 1.25DB]. Once
the total daily demand is determined, we distribute it among the periods making up the time
horizon. Our instances use eight periods of two hours each for a daily planning horizon of 16
hours (6 AM to 10 PM). We consider four ways of assigning demand to each period based on a
demand type parameter (DT). We describe them below and visualise them in Figure 4.

• For Uniform demand, we distribute the total number of parcels uniformly throughout
the planning horizon. Although home deliveries rarely occur steadily throughout the day,
we use this demand type as a baseline.

• Peak demand resembles the histogram of a truncated normal distribution with mean
|Θ|/2, standard deviation |Θ|/6, left extreme 0 and right extreme |Θ|. It corresponds to a
peak in deliveries in the central hours of the day.

• DoublePeak demand follows the histogram of a mixture of two truncated normal distri-
butions. They are similar to the distribution used for Peak demand, but their means are
at |Θ|/3 and 2|Θ|/3, and their standard deviation is |Θ|/10. It simulates two peak hours:
a morning one (around 11 AM) for workplace deliveries and an evening one (around 5 PM)
for home deliveries.

• AtEnd is similar to Peak demand, but the mean of the truncated normal distribution is
at 2|Θ|/3. It corresponds to a situation where most deliveries are at people’s homes at the
end of the workday (around 5 PM).

15



06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

0

20

40

60

80

100

120

140

160

N
u

m
b

er
of

p
ar

ce
ls

Uniform

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

Peak

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

0

20

40

60

80

100

120

140

160

N
u

m
b

er
of

p
ar

ce
ls

DoublePeak

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

AtEnd

Figure 4: Example of hourly parcel demand according to each of the four demand types (DT)
used in instance generation. The daily demand in the given area is 1000.

4.1.3 Courier parameters

We consider a uniform fleet of bike couriers with capacity Q = 5 parcels and speed v = 21 km/h
(Romanillos and Gutiérrez 2020). We normalise the labour costs to caθ = 1 ∀a ∈ A, ∀θ ∈ Θ.
If couriers travel at full capacity, i.e., carrying five parcels, the courier per-delivery cost is then
0.2. We obtain the per-delivery outsourcing cost Cout by multiplying this figure by a multiplier
OC. For example, when OC = 1.2, we set Cout = 0.2 · 1.2 = 0.24.

Recall that m̂s
aθ, defined in Section 3.2, is the approximate number of couriers required to

deliver all parcels in area a during period θ according to scenario s. Then, the average number
of couriers required to deliver all parcels in a during θ across all scenarios is 1

|S|
∑

s∈S m̂s
aθ.

Averaging over all periods, we obtain values m̂a = 1
|Θ|

∑
θ∈Θ m̂s

aθ and m̂R =
∑

a∈R m̂a (for
R ∈ R). This is a rough approximation of the number of couriers per period required in each
region to serve the entire demand. Especially for non-Uniform demand types, this average will
not be a good approximation, and more couriers will be required during peak periods and fewer
during valley periods. Indeed, we only use m̂R as a baseline to choose parameters uR and u, i.e.,
the per-region and global upper bounds on the number of couriers we can employ. We set the
regional upper bounds as uR = RM ·m̂R and the global upper bound u = GM ·

∑
R∈R uR, where RM

and GM are parameters. When GM takes value 1, global bound u is moot, and only the regional
bounds can be tight.

4.1.4 Instance availability

Varying the parameters introduced in this Section (city, DB, DT, OC, RM, GM), the model (MBase,
Flex, PartFlex, Fixed) and, for model PartFlex, the value of µ, we obtain a large set of
8000 instances and 48000 experiments. We generate 90 scenarios per each instance by repeatedly
drawing from the relevant random distributions. Preliminary experiments, however, determined
that reducing the number of scenarios to 30 does not significantly affect the quality of the cost
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Figure 5: Cost per parcel vs. model. The left box plot summarises the cost distribution over all
instances. The bar plot on the right shows the average over all instances and splits the cost into
its hiring and outsourcing components.

approximation and, perhaps more importantly, the overall solution. We provide in repository
(Mandal, Santini, and Archetti 2024) the instances that we use in this study. The repository also
includes the scripts used to generate the instances, the solver, and the scripts used to produce
tables and figures.

4.2 Insights
We implemented the models in Python using Gurobi 9 as the MIP solver. Gurobi solves each
instance in a fraction of a second, ranging from an average of 0.06 s for model MBase to 0.13 s
for PartFlex with µ = 2. This allowed us to run an extensive computational campaign on our
large instance set and to draw the managerial insights described in the rest of this section. The
main research question is to understand the impact of shift stability on the logistic provider in
terms of costs and operational complexity.

4.2.1 High-level impact of flexibility on costs

The main high-level result about costs is depicted in Figure 5. The left figure shows the cost per
parcel when using the different models. This cost is defined as the objective value of the optimal
solution divided by the total number of parcels to deliver over all areas and periods. Each box
represents the cost distribution over all the instances and, therefore, refers to 8000 observations.
The central line in the box is the median; its value is also written inside the box. The top and
bottom borders are the third and first quartiles, respectively. Whiskers extend to the rest of
the distribution except for outliers, i.e., observations more extreme than twice the interquartile
range. Because our hiring costs are normalised and both hiring and outsourcing costs can vary
considerably in different markets, the reader should consider their relative differences rather
than their absolute values.

The figure shows two important effects. On the one hand, using fixed shifts results in
noticeably higher costs, justifying the assumption that some degree of flexibility is required in
an industry with unsteady demand. On the other hand, the difference between the base model
(workers can be hired and dismissed at each period), the flexible model (shifts can start at any
period), and the partially flexible model (shifts can only start in µ different periods) is small. In
particular, moving away from MBase causes a marginal increase in the median cost per parcel
(from 0.65 to 0.66, i.e., +1.54%) and the difference between the flexible and the partially flexible
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Figure 6: Impact of the RM parameter on the cost per parcel.

models is so small that the costs are identical up to the second decimal digit. Indeed, in the vast
majority of the instances, the solutions obtained by Flex are identical to those obtained, e.g.,
by PartFlex (µ = 3). This observation supports the conclusion that limiting shift instability
is a viable strategy to reconcile the company’s bottom line with the workers’ well-being, because
high shift stability can be achieved with a negligible cost increase..

The right plot in Figure 5 also refers to the costs per parcel. The height of each bar cor-
responds to the average cost over all instances, which we split into its hiring and outsourcing
components. As we will see in the following, the ratio of each component in the total costs
depends on many factors, the main one being the unit outsourcing cost. This is an exogenous
market characteristic, and, in our instances, we only assume that outsourcing a delivery is more
expensive than performing it in-house. We control the unit outsourcing cost more precisely
through parameter OC. Because, in this plot, each bar shows the average over all instances, we
cannot appreciate the impact of OC. Still, this figure shows that—even in aggregate—using fixed
shifts results in sensibly higher hiring costs compared with the other models. When scheduling
flexibility is very limited, optimal solutions use a larger workforce and incur higher hiring costs
but do not significantly differ in terms of outsourcing costs.

4.2.2 Detailed cost analysis

In the following subsection, we evaluate the effect of the instance parameters that most impact
the cost structure of the logistic provider.

Figure 6 shows how the costs change with the regional bound parameter RM. Recall that this
bound limits the workforce size at a regional level and models external constraints, such as the
fleet size, that prevent a decision-maker from hiring too many couriers. As expected, relaxing
this bound results in lower costs, and the cost decrease is significant. Therefore, decision-makers
who find themselves bound by fleet capacity should look into mid or long-term fleet expansion
rather than consistently relying on outsourcing.

We also remark that the cost structure also changes when RM changes. When the bound
is lax (high RM), Fixed gives relatively larger costs compared to the other models. When the
bound is tight (low RM), on the contrary, the cost per parcel is high but similar for all the
models. A tight bound means that the operator is subject to structural constraints such as a
small fleet or a workforce shortage (i.e., it is understaffed) that are commonly associated with
tight or even negative profit margins. Contrary to common intuition, such an operator would
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Figure 7: Impact of the DB parameter on the number of outsourced parcels and costs.

not get a large advantage by moving to more flexible schedules; instead, it would compound
burnout from understaffing and overwork with decreased job quality due to shift instability.
The relationship between overwork, instability, burnout, and mental health has been studied in
the medical and social science literature, especially in relation to nurses, doctors, and healthcare
workers. These categories have been historically known to be subject to long and intense work
hours, demanding both on the physical and emotional levels. Still, the results shown in Figure 6
suggest that future studies should not neglect LMD workers. More specifically, minor cost
increases can achieve better working conditions. Thus, companies that do not want to sacrifice
their bottom line could still act in favour of workers’ well-being, given the negligible impact on
profitability. We believe this is a strong argument and a call to action towards a more conscious
relationship between service sector companies and their workers. Indeed, some recent research
has started to focus on these categories (see, e.g., Pyo et al. 2023; Wei et al. 2023; Couve, Lam,
and Verlinghieri 2023).

Figure 7 shows the impact of the baseline demand parameter DB. The left figure reports
the percentage of outsourced parcels, and the right one gives a breakdown of the costs. When
demand is low, optimal solutions tend to use more outsourcing (left figure). In this scenario,
in fact, a large workforce would be idle for a considerable portion of the time, and outsourcing
becomes a more attractive option. This consideration holds for all models, including MBase.
When demand grows, the logistic operator outsources fewer deliveries, up to the point when
the capacity of the in-house delivery system is reached and the curves in the left figure start
flattening. The Fixed model tends to keep a large workforce and, therefore, requires less
outsourcing compared to the other models.

The right figure supports three main points. First, as in most other businesses, LMD shows
economies of scale, and the cost per parcel decreases when the volume increases. Second, these
efficiency gains incur diminishing returns; e.g., doubling DB from 0.5 from 1 produces a larger
cost decrease than doubling from 2 to 4. Third, the difference in costs is usually larger between
instances with different values of DB than it is between models for a given value of DB. Model
Fixed displays higher costs per parcel even for larger volumes (for example, Fixed’s costs when
DB= 4 are higher than MBase’s costs when DB= 2), but this is the exception rather than the
norm. The other models tend to have more similar costs, hinting at the fact that increasing
flexibility can only partially mitigate underlying problems such as low demand.

The impact of the outsourcing costs, controlled by parameter OC, is reported in Figure 8.
The higher the costs, the lower the number of outsourced parcels; the left plot in the figure,
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Figure 9: Impact of the DT parameter on the costs.

however, shows that the relation is not linear. Although the effect is less pronounced than
in Figure 7, we see that the curves representing the percentage of outsourced parcels tend to
flatten when reaching the limit of parcels that in-house couriers can deliver. The right figure
shows that increasing the outsourcing costs causes a slight increase in the hiring costs (because
it is convenient to employ more in-house couriers) and a large increase in the outsourcing costs.

Finally, in Figure 9, we focus on the impact of the demand type (parameter DT) on the costs.
When the demand is Uniform, costs are low, no flexibility is required, and all models yield
roughly the same costs. Furthermore, in a uniform demand scenario, the optimal number of
couriers to hire does not change with the period. Therefore, the problem reduces to find the
best workforce size. This scenario is similar to the classical newsvendor problem: the workforce
size is analogous to the order quantity, the number of couriers required to deliver all parcels
is the stochastic demand, and the cost difference between outsourcing and in-house delivery is
the opportunity cost. Indeed, the cost structure shown in Figure 9 also shows a remarkable
similarity with the optimal newsvendor solution: optimal solutions are characterised by equal
outsourcing and staffing costs, i.e., the solid and the hatched bars have the same height.

The more challenging demand type is Peak, i.e., when the highest parcel volume occurs in
the middle of the day. Model Fixed uses two shifts dividing the daily planning horizon into two
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Figure 10: Impact of the DT parameter on three company operations metrics.

halves and, as a result, is the least suitable to deal with this demand pattern. Still, we remark
that the cost difference between the three types, AtEnd, DoublePeak, and Peak, is small
and that the cost structure is similar. These facts suggest that the conclusions that we draw in
this analysis are valid for a diverse range of demand types and could be generalised beyond the
patterns that we study in this paper.

4.2.3 Impact of flexibility on operations

In this section, we study the impact that the instance generation parameters and the different
models have on key indicators of the company’s operational practices. The first indicator, which
we already presented in Figures 7 and 8, is the percentage of outsourced parcels. The second is
the number of couriers hired as a percentage of the global limit u. The third is the percentage
of couriers who change area at the end of each period. This last indicator is used as a proxy
of the operational complexity and is related to the geographical stability concept discussed in
Section 2.3.

Figure 10 shows the impact of the demand type on the three metrics mentioned above. When
the demand is Uniform, as we have seen for the costs, all models show similar characteristics.
However, there are considerable differences between the other demand types. When using Fixed
shifts, the percentage of employed couriers increases with non-Uniform demand types. The
Flex and PartFlex models, on the other hand, can take advantage of the fact that demand
concentrates during some periods of the day (and is much lower during the other periods) and
require hiring overall fewer couriers. In particular, the Flex model keeps the number of hired
couriers significantly lower compared with the PartFlex models.

In general, all models only require a modest amount of area changes; in this respect, demand
type DoublePeak is the most demanding. Still, this metric should be considered with care
because, in our instance generation procedure, the number of parcels to deliver in each area is
only proportional to its population. Logistic operators might have access to more detailed data,
which could exacerbate the demand difference between areas. For example, residential areas
might require more deliveries in the late afternoon, while commercial areas could have a higher
demand during the mornings.

This figure also shows that the Fixed model is an outlier that not only yields higher costs
but also requires significantly different operational choices. On the other hand, the Flex and
PartFlex models are not too dissimilar, especially when considering the number of parcels
outsourced and the area movements required.

Figure 11 reports the percentage of outsourced parcels as a function of the global (left)
and regional (right) multipliers of the workforce size upper bounds. First, we note that the
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Figure 11: Impact of the GM and RM parameters on the number of outsourced parcels.

two multipliers impact this metric differently. The parameter GM decreases the number of out-
sourced parcels almost linearly, while the relationship between parameter RM and the number
of outsourced parcels is non-linear. Furthermore, even when the bounds are large, the optimal
amount of outsourcing is strictly positive (around 20% for the highest value of GM and around 7%
for the highest value of RM). Indeed, we repeated our computational experiments by completely
removing constraints (7b) and (7c), and we found that the average percentage of outsourced
parcels ranged between 4.48% for Fixed and 6.18% for PartFlex (µ = 2). This shows that
outsourcing can be economically convenient to balance fixed and variable costs, even when there
is no tight bound on the workforce size.

Finally, Figure 12 shows how the model and the outsourcing costs affect the couriers’ mobility
between areas at each period. We do not report results relative to model MBase because it does
not include the y variables necessary to track courier movements between areas. The distribution
of this indicator is skewed and shows large right tails: whereas the medians are all low and similar
to each other, the left figure shows that a part of the distribution reaches values of over 25%. The
right figure, which is on a different scale compared to the left one, further shows that the means
exhibit a larger variation, with model Fixed requiring more courier movement compared to the
other models, outlining a trade-off between temporal and geographical stability. Furthermore,
when outsourcing is more expensive, in the majority of cases, the company responds by increasing
the geographical mobility to better adapt to the demand and outsource less. The Fixed model
is an exception in this respect because when OC is high, this model uses a larger workforce that
is sometimes idle and requires less repositioning. On the other hand, models that use the courier
workforce more also need more movement between areas.

4.3 Robustness to changes in demand types
At the operational level, the demand distribution (identified by the parameter DT in our instances)
can change on specific days. For example, different patterns can be observed during weekdays
and weekends or during the holiday season. If these differences are predictable, a decision-maker
can solve an instance of our problem per each expected demand pattern. Operational decisions,
such as rostering, can help reconcile the different solutions. For example, if the weekday problem
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requires 20 couriers and the weekend one only requires 10, the couriers’ roster can exploit this
difference to schedule appropriate weekly rest days.

If the variations in demand patterns are more unpredictable, the logistic operator will some-
times have to use a strategic solution devised for a given demand type with a different realised
demand type. In this section, we investigate how robust solutions are to changes of the DT pa-
rameter. More precisely, we want to estimate how much efficiency a decision-maker would lose
if they sized and scheduled their workforce for a given value of DT, but then a different demand
type was realised.

To answer this question, we ran the following experiment. For each combination of param-
eters, we fix the corresponding solution and we evaluate its cost on instances with the same
parameters—city, DB, OC, RM and GM—but different demand type DT. We do so by fixing vari-
ables xat to the value they take in the optimal solution of an instance with a given demand
type DT1, and, keeping these variables fixed, we recompute the solution cost on instances with
different demand types DT2 ̸= DT1.

Figure 13 reports the results of this experiment. The figure shows a heatmap for each of the
six models. The value DT1 used to fix variables xat is on the x-axis, and the value DT2 used to
evaluate the solution cost is on the y-axis. The values reported in the heatmap are the average
percent cost increases over all instances sharing the same values for parameters city, DB, OC, RM
and GM. For example, the value corresponding to Peak on the x-axis and AtEnd on the y-axis
reports the average cost increase incurred when using a solution devised for the Peak demand
type when the actual demand distribution follows the AtEnd pattern and all other instance
generation parameters are the same.

Figure 13 prompts the following observations. On the one hand, when the realised demand
is Uniform, solutions obtained according to other demand types are particularly ineffective
(first row of each heatmap). Indeed, for a given area, any solution deploying couriers in a
pattern that deviates from a constant value throughout the day is inefficient because demand is
constant throughout the day. On the other hand, Peak and DoublePeak cause the smallest
cost increases when the realised demand is one of these DTs and the solution was obtained
using the other. Furthermore, and most important for our analysis, we remark that the average
percent cost increases for the Fixed model are generally the lowest. (The only exception is when
using a solution for Peak on a DoublePeak realised demand, in which case the BaseModel
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shows a smaller cost increase.) In other words, using completely fixed shifts is more expensive
but more resilient to changes in demand patterns. The excess courier capacity that is usually
present in the solutions of the Fixed model (see the central plot in Figure 10) acts as a buffer
that helps deal with demand changes.

The above analysis relies on the assumption that the solution devised for a given value of DT
must be used without modifications when the realised DT is different. In practical circumstances,
the decision-maker might deviate, on the operational level, from the strategic problem solution.
For example, they might increase the number of couriers working during some periods by using
overtime. In this case, couriers might be subject to sudden roster variation, a practice that
negatively affects their work-life balance. While the impact of deviating from the schedule on
workers’ well-being is clear, it is less clear whether these deviations help reduce costs. To answer
this question, we conducted a small case study based on the demand pattern variation that
seems most challenging for all models, i.e., using a solution devised for DT Peak when the
realised DT is Uniform. In the case study, we allow the value of variables xat to deviate by
at most δ ∈ {0, . . . , 3} from the value taken in the optimal solution for DT = Peak. When
δ = 0, the decision maker cannot deviate from the solution, and we recover the case studied in
Figure 13. For δ > 0, we allow the decision maker to deploy more or fewer couriers in each area
and period, up to a difference of ±δ. Figure 14 shows the results of this experiment. Whereas
allowing more deviations reduces costs, the Fixed model remains the most competitive in terms
of resiliency. Furthermore, the most flexible models (BaseModel and Flex) with an allowed
deviation of δ = 3 produce cost increases barely smaller than the Fixed model with δ = 0. And
when δ = 2, all other models produce a larger relative cost increase compared with the Fixed
model with δ = 0.

5 Conclusions
In this paper, we have tackled the problem of tactical hiring and scheduling decisions for a
company performing parcel deliveries in the last-mile segment of the supply chain. In particular,
we have developed mathematical models to determine the correct number of couriers to hire to
balance salary costs and outsourcing costs. These latter are paid when the company do not hire
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enough couriers to deliver all parcels. We have put a particular emphasis on the topic of shift
stability, i.e., devising shifts with a predictable start time and duration. In doing so, we wanted
to explore if flexible shifts, which decrease job satisfaction and disrupt the couriers’ work-life
balance, are justified by large savings. Our main conclusions are the following:

• Using completely fixed shifts that start at two predetermined times during the day results
in significantly higher costs. Over all instances, the average per-parcel cost obtained using
fixed shifts is 9.36% higher than the one obtained using extremely flexible schedules, in
which couriers can be called into (and out of) at each two-hour period.

• A partially flexible model (PartFlex) that uses two shifts—but allows their start times
to be a decision variable—incurs costs that are only 1.89% higher than those obtained
with extremely flexible schedules.

• The advantage of flexible schedules compared to fixed ones is more significant when the
company can hire a large workforce and has a large fleet. When the company cannot hire
many couriers (because it does not have enough vehicles to operate or because market
conditions make labour scarce), flexible and fixed schedules yield almost the same costs.
The conclusion is that stable shifts are a viable strategy for a company that has trouble
finding couriers. Stable shifts do not significantly increase costs, and they provide better
working conditions that help attract potential employees.

• As in many industries, we observed economies of scale. When the volume increases, the
cost per parcel decreases, although with diminishing returns.

• Predictable demand patterns, such as having one or two daily peak times, do not have a
large impact on the total costs, but they significantly change some aspects of the company’s
operations. For example, instances with two daily peaks require more couriers and more
courier movements between geographical areas, compared with instances with a single peak
(either in the central or the later part of the day).

• When demand patterns are less predictable, the logistic operator will have to use a schedule
optimised for a given pattern in days when the realised pattern is different. Solutions
featuring stable shifts are particularly suitable in this case and provide the smallest cost
increases. In other words, stable shifts are generally more expensive to implement but
more resilient to sudden changes in demand patterns.

We conclude by remarking that our work relies on a number of assumptions and that our
conclusions are based on computational results over synthetic instances. At the same time, we
tested our approach on a variety of instance generation parameters, and we observed significant
results consistently over a large number of instances. This suggests that a compromise approach
that features limited schedule flexibility deserves further analysis, especially from larger logistic
providers using scientific management approaches to optimise their tactical and operational
planning decisions.

Concerning future research directions, a natural continuation of this work involves rostering
decisions. Rostering involves specifying detailed working hours for each worker and day based
on the shift schedules determined with the methodology presented in this work. In addition, it
might be interesting to integrate districting decisions with shift scheduling. This would lead to
a more sophisticated problem, but the increase in complexity might be compensated by benefits
in terms of economic convenience and work stability. Finally, we argue that there is a need to
put more emphasis on social welfare by considering workers’ well-being as the main objective in
planning decisions, extending our work to problems arising in fields beyond LMD.
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