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Fluminense, Niterói, Rio de Janeiro, Brazil.

2Departamento de Computação Cient́ıfica, Universidade Federal da
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Abstract

This study establishes the convergence of a cutting-plane algorithm tailored for a
specific non-convex optimization problem. The presentation begins with the prob-
lem definition, accompanied by the necessary hypotheses that substantiate the
application of a cutting plane. Following this, we develop an algorithm designed
to tackle the problem. Lastly, we provide a demonstration that the sequence gen-
erated by the algorithm converges to a solution to the problem. To illustrate the
convergence of the algorithm visually, numerical experiments are conducted using
Matlab.
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1 Problem definition

Let g : Rn × R → R be a given function, non-convex w.r.t. the last input of g. The
problem we focus on is defined as follows:

(P) : max
x∈Rn,λ∈R

λ (1)

subject to : g(x, λ) ⩽ 0 (2)

Let Ω = {(x, λ) : g(x, λ) ⩽ 0} be the feasible set of (P) and we write (x∗, λ∗) as
the optimal of (P). We are going to fix a particular λ0 ∈ R such that λ0 ⩾ λ∗. The
fundamental hypothesis about g are:
(H1) fλ0

(x) := g(x, λ0) is convex.
(H2) ∃M ⩾ 0: ∀(x, λ) such that λ0 ⩾ λ and g(x, λ) ⩽ 0, fλ0

(x) ⩽ M(λ0 − λ).
In this work, g is the maximum of m scalar functions g1, . . . , gm. The constraint

(2) is equivalent to the m inequalities gi(x, λ) ⩽ 0 for all i ∈ {1, . . . ,m}. If gi satisfy
(H1) and (H2) for a given λ0 and Mi ⩾ 0, g also satisfy (H1) and (H2). In this case,
the constant M in (H2) can be M = max{M1, . . . ,Mm}. More discussions about the
computation of M is given in section 3.

2 A valid cutting-plane

Let λ∗ be an optimal objective function value of (P). In this section we define an
hyperplane in the variables x and λ that separates an infeasible point (x0, λ0) with
λ0 ⩾ λ∗ from all feasible point of (P ).
Theorem 1. If (x∗, λ∗) be an optimal of (P), (x0, λ0) is such that g(x0, λ0) > 0,
λ0 ⩾ λ∗ and s0 ∈ ∂ fλ0(x

0), then:

g(x0, λ0) + s⊤0 (x− x0) ⩽ M(λ0 − λ) (3)

is false for (x0, λ0) and is true for all (x, λ) ∈ Ω.

Proof. Setting x = x0 and λ = λ0 in (3) we get g(x0, λ0) ⩽ 0 which is false since
g(x0, λ0) > 0. Since (H1), fλ0(x) = g(x, λ0) is convex, then

p(x;x0) := g(x0, λ0) + s⊤0 (x− x0) = y (4)

is an extreme support to the graph of fλ0
(x). In the special case of g smooth, s0 =

∇fλ0
(x0). In such situation y = p(x, x0) is tangent hyperplane to the the graph of

fλ0
(x) at x = x0. Additionally, since fλ0

is convex,

p(x;x0) ⩽ fλ0
(x), ∀x. (5)

Now, since (x, λ) ∈ Ω, g(x, λ) ⩽ 0 and consequently, λ∗ ⩾ λ. By hypothesis, λ0 ⩾ λ∗,
then λ0 ⩾ λ. So, using (4), (5) and (H2), we arrive to (3).
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3 Computation of M

If M satisfy (H2) and M ⩽ M ′, then M ′ also satisfy (H2). Hence, all M satisfying
(H2) must verify M∗ ⩽ M where M∗ is the solution of:

(PM ) : min
x,λ,M

M (6)

s.t. g(x, λ) ⩽ 0 (7)

g(x, λ0) ⩽ M(λ0 − λ) (8)

where λ0 ⩾ λ ⩾ λ∗. Problem (PM ) akin to (P ), share the constraint g(x, λ) ⩽ 0.
Consequently, it is observed that (PM ) do not exhibit a simpler structure than (P ).
Therefore, we abstain from pursuing this approach for computing M∗.

The subsequent theorem provides a valid value for M .
Theorem 2. If gi is a smooth scalar functions for i ∈ {1, . . . ,m}, g =
max{g1, . . . , gm},

M := max

{∣∣∣∣∂gi∂λ
(x, λ)

∣∣∣∣ : i ∈ {1, . . . ,m}, (x, λ) ∈ Ω

}
(9)

then, (H2).

Proof. Consider λ′ ⩽ λ0, g(x, λ
′) ⩽ 0, then using the fundamental theorem of calculus,

for all i = 1, . . . ,m:

gi(x, λ0) = gi(x, λ
′) +

λ0∫
λ′

∂gi
∂λ

(x, λ)dλ (10)

⩽ g(x, λ′) +

λ0∫
λ′

∣∣∣∣∂gi∂λ
(x, λ)

∣∣∣∣ dλ (11)

⩽ 0 +

λ0∫
λ′

Mdλ = M(λ0 − λ′). (12)

Consequently, g(x, λ0) ⩽ M(λ0 − λ′) since g = max{g1, . . . , gm}.

4 A cutting-plane algorithm

Let S0 be a compact polyhedron in Rn × R containing (x∗, λ∗) and Ω. Assume ε > 0
and (x0, λ0) be an infeasible point of (P): g(x0, λ0) > ε.

We are going to consider the following class of algorithms to solve (P):
To have a particular algorithm of the class, we have to choose one subgradient

sk ∈ ∂x g
(
xk, λk

)
. In the case of g is smooth, sk is unique and equal to ∇x g(xk, λ

k).

3



Algorithm 1 Cutting-Plane Algorithm (CPA)

Require: g, S0, M , ε
1: k ← 0
2: (xk, λk)← argmax {λ | (x, λ) ∈ Sk}
3: while g

(
xk, λk

)
> ε do

4: Choose sk ∈ ∂x g
(
xk, λk

)
.

5: Sk+1 ← Sk ∩
{
x | g

(
xk, λk

)
+ s⊤k

(
x− xk

)
⩽ M(λk − λ)

}
6: (xk+1, λk+1)← argmax {λ | (x, λ) ∈ Sk+1}
7: k ← k + 1
8: end while

5 The convergence of CPA

To prove the convergence of the sequence generated by the Algorithm 1, we require
the following additional hypothesis:
(H3) There exists a compact set S ⊂ Rn × R such that Ω ⊂ S.

(H4) ∀(x, λ) ∈ S, ∀s ∈ ∂x g(x, λ), ∃K > 0 such that

∥∥∥∥[ s
M

]∥∥∥∥ ⩽ K.

The proof of the next theorem follows the steps in the proof presented in [1].
Theorem 3. If (xk, λk) ∈ Sk is such that

λk = max{λ | (x, λ) ∈ Sk}
where

Sk = Sk−1 ∩ {(x, λ) | g(xk−1, λk−1) + s⊤k−1(x− xk−1) ⩽ M(λk−1 − λ)}

then the sequence {(xk, λk)} contains a subsequence that converges to a point (x, λ) in
Ω with λ ⩾ λ for all (x, λ) ∈ Ω.

Proof. Let λ∗ be the optimal value of (P). Since (xk, λk) maximizes λ over all (x, λ) ∈
Sk, and Ω ⊆ Sk ⊂ Sk−1, we have that λ

∗ ⩽ λk ⩽ λk−1. Thus, if the sequence {(xk, λk)}
contains a subsequence that converges to a point (x, λ), in Ω, then it follows from the
method of computation that λ = λ∗.

To prove that {(xk, λk)} contains the desired subsequence we proceed as follows.
Note first that since (xk, λk) ∈ Sk, it must satisfy

g(xi, λi) + s⊤i (x
k − xi) ⩽ M(λi − λk), i ∈ {0, 1, . . . , k − 1},

or equivalently

g(xi, λi) ⩽
[
s⊤i M

]([xi

λi

]
−
[
xk

λk

])
, i ∈ {0, 1, . . . , k − 1}. (13)
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If the desired convergence does not occur, then there exists ε > 0 independent of
k such that ε ⩽ g(xi, λi), then using Cauchy-Schwarz inequality and (H4):

ε ⩽ g(xi, λi) ⩽ K

∥∥∥∥[xi

λi

]
−
[
xk

λk

]∥∥∥∥ , i ∈ {0, 1, . . . , k − 1}. (14)

Consequently, every subsequence of indices {kp} also satisfy:

ε

K
⩽

∥∥∥∥[xkq

λkq

]
−
[
xkp

λkp

]∥∥∥∥ , q < p, (15)

so that {(xk, λk)} does not contain a Cauchy subsequence. But this is impossible since
the sequence {(xk, λk)} is in the compact S, as assumed in (H3). Then, {(xk, λk)}
contains a subsequence which converges to (x, λ) ∈ S and {g(xk, λk)} converges to
zero, therefor (x, λ) ∈ Ω.

6 Numerical examples

6.1 Example 1, n=1.

Let ω1 = 1, ω2 = 1.3, ϕ1 = 0, ϕ2 = −0.5π and

g(x, λ) = max {g1(x, λ), g2(x, λ)} , (16)

g1(x, λ) = −
1

2
a sin(ω1λ+ ϕ1)− x, (17)

g2(x, λ) = x− 1

3
a sin(ω2λ+ ϕ2). (18)

Given λ0, fλ0
(x) = max{−c1 − x, x − c2} where c1 = −0.5 a sin(ω1λ0 + ϕ1) and

c2 = −0.3 a sin(ω2λ0 + ϕ2), then fλ0
is convex.

To obtain s ∈ ∂fλ0
(x), first we compute i = argmax{g1(x, λ0), g2(x, λ0)}, then

s = 1 if i = 1 and s = −1 if i = 2.
Figure 1 shows Ω∩S0 where S0 = [−a, a]× [0, 2a] and a = 1.8π. The feasible region

of (P), restricted to S0, is the union of two disconnected regions.
TakingM = 4.6 and ε = 10−6, the algorithm makes 45 iterations to finish, reaching

(x∗, λ∗) = (−1.1973, 8.9875). Figure 2 shows the cuts generated by the algorithm.
Now, we take a = 3π and maintain other parameters as before. Figure 3 shows

Ω ∩ S0. In this case, the feasible region of (P), restricted to S0, is the union of three
disconnected parts. Using the same M and ε as before, the algorithm performs 251
iterations and obtains (x∗, λ∗) = (−0.0139, 15.7046). Figure 4 shows the cuts generated
by the algorithm.
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Fig. 1 Example 1. Plot of Ω ∩ S0, S0 = [−a, a]× [0, 2a] and a = 1.8π.

Fig. 2 Example 1. Cuts generated by the algorithm.

6



Fig. 3 Example 1. Plot of Ω ∩ S0, S0 = [−a, a]× [0, 2a] and a = 3π.

Fig. 4 Example 1. Cuts generated by the algorithm.
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7 Conclusions

This research introduces a cutting-plane algorithm designed to address the specific
non-convex optimization problem (P ). Assuming hypotheses (H1) and (H2), we estab-
lish a valid cutting plane that depends on an infeasible point (x0, λ0) and a constant
M satisfying (H2). A practical formula is provided for computing M for a specific
function g. The proposed cutting-plane algorithm is outlined, and its convergence to
an optimal solution of (P ) is proven. An initial numerical example is presented, show-
casing the sequence of cuts and demonstrating how the optimal solution is obtained,
even in scenarios involving disconnected feasible sets.
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