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Abstract. The moment-sum of squares hierarchy by Lasserre has become an established tech-
nique for solving polynomial optimization problems. It provides a monotonically increasing series of
tight bounds, but has well-known scalability limitations. For structured optimization problems, the
term-sparsity SOS (TSSOS) approach scales much better due to block-diagonal matrices, obtained by
completing the connected components of adjacency graphs. This block structure can be exploited by
semidefinite programming solvers, for which the overall runtime then depends heavily on the size of
the largest block. However, already the first step of the TSSOS hierarchy may result in large diagonal
blocks. We suggest a new approach that refines TSSOS iterations using combinatorial optimization
and results in block-diagonal matrices with reduced maximum block sizes. Numerical results on a
benchmark library show the large potential for computational speedup for unconstrained and con-
strained polynomial optimization problems, while obtaining almost identical bounds in comparison
to established methods.
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1. Introduction. Consider the polynomial optimization problem (POP):

(1.1) θ∗ := inf
x
{f(x) : x ∈ K},

where f(x) ∈ R[x] is a polynomial and K ⊆ Rn is the basic semialgebraic set

(1.2) K = {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m } ,

for some polynomials gj(x) ∈ R[x], j = 1, . . . ,m. The moment-SOS (sum of squares)
hierarchy by Lasserre [5] based on Putinar’s certificate of positivity on K [11] is an
established approach for solving this class of problems. It results in a hierarchy of
semidefinite programing (SDP) relaxations of (1.1). The assosiated monotone se-
quence of optimal values converges to θ∗ from below and the convergence is finite
generically [10]. However, in view of the present status of SDP solvers, the moment-
SOS hierarchy is limited to problems of modest size.

There are several existing ways to address this scalability issue. One possibility
is to use weaker certificates of positivity such as Krivine-Stengle’s certificate [4, 13]
producing a hierarchy of linear programming (LP) relaxations. Although modern
LP solvers can solve huge problems with millions of variables and constraints, it has
been shown that LP-relaxations provide less accurate bounds and in general have
only asymptotic, not finite convergence [7]. Alternative approaches based on weaker
positivity certificates are, for instance, DSOS [1], SDSOS [1] and BSOS [8].

Another possibility to overcome the scalability limitations is to exploit sparsity,
which is often present in large-scale instances of (1.1). If each polynomial in the defini-
tion of K involves only a few variables, and the polynomial f is a sum of polynomials,
each containing a few variables only, the computational cost might be reduced by
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considering correlative sparsity patterns [6, 14], where the variables are partitioned
into blocks according to the maximal cliques of the chordal extension of the graph,
whose nodes correspond to the variables and there is an edge between two nodes if
and only if these two variables appear in the same term of the objective polynomial f
or in the same polynomial gj from K. However, if f has a term involving all variables
or some constraint gj contains all variables, the problem does not fulfill the correlative
sparsity pattern. This means that the correlative spasity pattern fails on many fairly
sparse POPs.

Instead of considering sparsity from the perspective of variables, one can exploit
sparsity from the perspective of terms. The TSSOS approach from [18, 16] as well
as the chordal-TSSOS from [17] associate a so-called term sparsity graph with the
POP. The nodes of this graph are monomials. Two nodes are connected via an edge if
the product of the corresponding monomials appears in the supports of polynomials
involved in the POP or is a monomial square. These methods are iterative, where each
iteration consists of two successive operations: (i) a support extension operation and
(ii) either a block closure operation on adjacency matrices in the case of TSSOS or
a chordal extension operation in the case of chordal-TSSOS. This two-step procedure
results in a moment-SOS hierarchy with block-diagonal SDP matrices for TSSOS and
quasi block-diagonal SDP matrices for chordal-TSSOS.

Although the final iterative step of the TSSOS hierarchy is guaranteed to return
the same bound as the dense moment-SOS relaxation, in practice it often happens that
the same optimal value is achieved at an earlier step, even at the first one. However, for
some fairly sparse polynomials, already the first iterative step of the TSSOS hierarchy
gives a matrix with large diagonal blocks, so that the corresponding sparse moment-
SOS relaxation might be rather expensive to solve. That is why we provide a new
approach that exploits a block-diagonal matrix returned by the k-th iterative step
of TSSOS and relies on Integer Programming (IP) to generate a new block-diagonal
matrix with smaller blocks that are chosen with the goal of weakening the bound as
few as possible. The maximal size of blocks is controlled using a parameter, which
allows some level of flexibility. As mentioned in Remark 4.4 the new approach can
also be used within the chordal-TSSOS method.

The paper is organized as follows: Section 2 contains all necessary notation as
well as the basics of the TSSOS method, summarized for the convenience of non-
expert readers, experts may omit this section. In section 3, we slightly reformulate
the TSSOS procedure for generating block-diagonal matrices with the purpose of
reducing the computational cost of the corresponding IP problem. In section 4, we
explain the idea of our approach and present the algorithm. In section 5, we test the
proposed approach on randomly generated polynomials and compare its performance
with the TSSOS and chordal-TSSOS methods. In section 6, we provide conclusion
and outlook on our approach.

2. Notation and Preliminaries. Let x = (x1, . . . , xn) be a tuple of variables
and R[x] = R[x1, . . . , xn] be the ring of real n-variate polynomials. A polynomial
f ∈ R[x] can be written as f(x) =

∑
α∈A fαxα with fα ∈ R, xα = xα1

1 · · ·xαnn
and A ⊆ Nn. The support of f is defined by supp(f) = {α ∈ A | fα 6= 0 } and the
convex hull of A is denoted by conv(A ). For a nonempty finite set A ⊆ Nn, let
P(A ) be the set of polynomials in R[x] whose supports are contained in A , i.e.,
P(A ) = { f ∈ R[x] | supp(f) ⊆ A }. We use | · | to denote the cardinality of a set.
For A1,A2 ⊆ Nn, let A1 + A2 := {α1 + α2 | α1 ∈ A1, α2 ∈ A2 }. For any α ∈ Nn, we
define (α)2 := ((α1 mod 2), . . . , (αn mod 2)) ∈ Zn2 with Z2 being the ring of integers
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modulo 2 and refer to (α)2 as the parity type of α. We also use the same notation for
any subset A ⊆ Nn, i.e., (A )2 := { (α)2 | α ∈ A } ⊆ Zn2 .

For d ∈ N, let Nnd := {α = (αi) ∈ Nn |
∑n
i=1 αi ≤ d } and assume that f ∈

P(Nn2d). The sum of squares (SOS) condition f(x) =
∑t
i=1 fi(x)2, f1(x), . . . , ft(x) ∈

R[x] is equivalent to the existence of a positive semidefinite matrix Q (called a Gram
matrix [2]) such that

(2.1) f(x) =
(
xNnd

)T
QxNnd ,

where xNnd is the |Nnd |-dimensional column vector consisting of the monomials xα,
α ∈ Nnd . We refer to xNnd as the standard monomial basis. The computational cost of
checking sum of squares conditions of multivariate polynomials can be reduced using
the Newton polytope method, where the set Nnd in (2.1) is replaced by

(2.2) B =
1

2
·New(f) ∩ Nn ⊆ Nnd ,

with New(f) = conv({α : α ∈ supp(f)}) being the Newton polytope of f . See Theorem
1 in [12]. Replacing Nnd with B reduces the size of the corresponding matrix Q thus
simplifying the semidefinite program to be solved. We further abuse notation and
denote the monomial basis xB by the exponent set B.

For a positive integer r, the set of r× r symmetric matrices is denoted by Sr and
the set of r × r positive semidefinite (PSD) matrices is denoted by Sr+. For matrices
A,B ∈ Sr, let A ◦ B ∈ Sr denote the Hadamard, or entrywise, product of A and B,
defined by [A ◦B]ij = AijBij . Let Zr×r2 with Z2 := { 0, 1 } be the set of r × r binary
matrices. The support of a binary matrix B ∈ Sr ∩ Zr×r2 is the set of locations of
nonzero entries, i.e.,

(2.3) supp(B) := { (i, j) ∈ [r]× [r] | Bij = 1 } ,

where [r] = { 1, . . . , r }. For a symmetric binary matrix B ∈ Sr ∩ Zr×r2 , we define the
set of PSD matrices with sparsity pattern represented by B as

(2.4) Sr+(B) := {Q ∈ Sr+ | B ◦Q = Q } .

For a binary matrix B ∈ Sr ∩ Zr×r2 , let R ⊆ [r]× [r] be the adjacency relation of
B, i.e., (i, j) ∈ R if and only if Bij = 1. The transitive closure of R, denoted by R,
is the smallest relation that contains R and is transitive, i.e., (i, j), (j, k) ∈ R implies
(i, k) ∈ R. The block-closure B ∈ Sr ∩ Zr×r2 of B is defined as

(2.5) Bij :=

{
1, (i, j) ∈ R,
0, otherwise.

The definition of B has a graphical description: if G is the adjacency graph of B,
then B is the adjacency matrix of the graph obtained by completing the connected
components of G to complete subgraphs. The matrix B is block-diagonal up to
permutation and each of its blocks corresponds to a connected component of G.

Example 2.1. Let us consider the matrix

B =


1 0 1 1 0
0 1 0 1 0
1 0 1 0 0
1 1 0 1 0
0 0 0 0 1
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The adjacency graph G of B has two connected components: { 1, 2, 3, 4 } and { 5 }.
Completion of these connected components to complete subgraphs results in the graph
G, whose adjacency matrix B has two blocks of size 4 and 1 corresponding to the
connected components of G. The graphs G, G as well as the matrix B are given in
Figure 1.

B =


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 1



Fig. 1. The graphs G, G and the matrix B from Example 2.1

The rest of this section is dedicated to the basics of the TSSOS approach. Before
we proceed with the description of the method, we first list some necessary definitions.

The Riesz linear functional: Given a real sequence y = (yα)α∈Nn ⊂ R, let Ly :
R[x]→ R be the linear functional, defined by:

(2.6) f =
∑
α∈Nn

fαxα → Ly(f) =
∑
α∈Nn

fαyα, ∀f ∈ R[x].

Moment matrix: Given a sequence y = (yα) and a monomial basis B, let MB(y)
be the real symmetric moment marix with rows and columns labeled by α ∈ B and
constructed as follows:

(2.7) MB(y)αβ := Ly(xαxβ) = yα+β , ∀α, β ∈ B.

If B = Nnd , we also denote MB(y) by Md(y).
Localizing matrix: Given a polynomial g =

∑
γ gγx

γ ∈ R[x] and an integer d ≥ 1,
the localizing matrix with respect to y = (yα) and g is defined to be the matrix
Md(gy) with rows and columns indexed by α ∈ Nnd such that

(2.8) Md(gy)αβ := Ly(g(x)xαxβ) =
∑
γ

gγyγ+α+β , ∀α, β ∈ Nnd .

2.1. The TSSOS method [18]. Consider a polynomial f(x) ∈ R[x] with A =
supp(f) and let B be a monomial basis with r = |B|. Let S (0) = A ∪ (2B),
where 2B = { 2β | β ∈ B }. For k ≥ 1, the TSSOS method recursively defines binary

matrices B
(k)
A ∈ Sr ∩ Zr×r2 indexed by B via two successive steps:

1) Support-extension: define a binary matrix C
(k)
A ∈ Sr ∩ Zr×r2 by

(2.9) [C
(k)
A ]βγ :=

{
1, if β + γ ∈ S (k−1),

0, otherwise.

2) Block-closure: construct C
(k)
A using (2.5), set B

(k)
A = C

(k)
A and S (k) =

{β + γ | [B(k)
A ]βγ = 1 }.
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For all k ≥ 1, supp(B
(k)
A ) ⊆ supp(B

(k+1)
A ). Hence the sequence of binary matrices(

B
(k)
A

)
k≥1

stabilizes after a finite number of steps. The stabilized matrix is denoted

by B
(∗)
A .

Let Σ(A ) be the set of SOS polynomials supported on A , i.e.,

(2.10) Σ(A ) := { f ∈P(A ) | ∃Q ∈ Sr+ s.t. f =
(
xB
)T
QxB } .

For k ≥ 1, let Σk(A ) be the subset of Σ(A ) whose member admits a Gram matrix

with sparsity pattern represented by B
(k)
A , i.e.,

(2.11) Σk(A ) := { f ∈P(A ) | ∃Q ∈ Sr+
(
B

(k)
A

)
s.t. f =

(
xB
)T
QxB } .

In addition, let

(2.12) Σ∗(A ) := { f ∈P(A ) | ∃Q ∈ Sr+
(
B

(∗)
A

)
s.t. f =

(
xB
)T
QxB } .

It was shown in [18] that for a finite set A ⊆ Nn, one has Σ∗(A ) = Σ(A ). So the
TSSOS method gives the following chain of inclusions:

(2.13) Σ1(A ) ⊆ Σ2(A ) ⊆ · · · ⊆ Σ∗(A ) = Σ(A ).

Remark 2.2. The block-closure operation from (2.5) used in the second step of the

TSSOS algorithm to obtain B
(k)
A can be replaced with a chordal-extension operation

on the adjacency graph of C
(k)
A . This results in the method called chordal-TSSOS.

See [17] for more details on this approach.

2.1.1. A block SDP hierarchy for the unconstrained case. Consider the
unconstrained polynomial optimization problem:

(P) θ∗ := inf
x
{f(x) : x ∈ Rn}

with f(x) ∈ R[x]. The SOS relaxation of (P) is given by

(SOS) θsos := sup
λ
{λ | f(x)− λ ∈ Σ(A )},

with A = {0} ∪ supp(f). Raplacing Σ(A ) with Σk(A ) yields a hierarchy of sparse
SOS relaxations of (P):

(2.14) (P k)∗ : θk := sup
λ
{λ | f(x)− λ ∈ Σk(A )}, k = 1, 2, . . . .

In addition, let

(TSSOS) θtssos := sup
λ
{λ | f(x)− λ ∈ Σ∗(A )}.

It follows from (2.13) that the hierarchy of sparse SOS relaxations (2.14) results in
the hierarchy of lower bounds for the optimum of (P):

(2.15) θ∗ ≥ θsos = θtssos ≥ · · · ≥ θ2 ≥ θ1.
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Let B be the monomial basis. For each k ≥ 1, the dual of (2.14) is the following
block moment problem

(2.16) (P k) :


inf Ly(f)

s.t. B
(k)
A ◦MB(y) � 0,

y0 = 1.

It was proven in [18] that, for each k ≥ 1, there is no duality gap between (P k)∗ and
(P k).

2.1.2. A block SDP hierarchy for the constrained case. Consider the
constrained polynomial optimization problem:

(Q) θ∗ := inf
x
{f(x) : x ∈ K},

where f(x) ∈ R[x] is a polynomial and K ⊆ Rn is the basic semialgebraic set

(2.17) K = {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m } ,
for some polynomials gj(x) ∈ R[x], j = 1, . . . ,m.

Let dj = ddeg(gj)/2e, j = 0, . . . ,m, where g0 := 1 and

d = max{ddeg(f)/2e, d1, . . . , dm}.

With d̂ ≥ d being a positive integer, the Lasserre hierarchy [5] of moment semidefinite
relaxations of Q is defined by:

(2.18)


inf Ly(f)

s.t. Md̂(y) � 0,

Md̂−dj (gjy) � 0, j = 1, . . . ,m,

y0 = 1,

with optimal value denoted by θd̂ and d̂ called the relaxation order.

Let A = supp(f)∪
⋃m
j=1 supp(gj). Set S

(0)

0,d̂
= A ∪(2Nn

d̂
) , S

(0)

j,d̂
= ∅, j = 1, . . . ,m

and rj :=
(n+d̂−dj
d̂−dj

)
. For k ≥ 1, the TSSOS method recursively defines binary matrices

B
(k)

j,d̂
∈ Srj ∩ Zrj×rj2 , indexed by Nn

d̂−dj
, j = 0, . . . ,m via two successive steps:

1) Support-extension: define a binary matrix C
(k)

j,d̂
∈ Srj ∩ Zrj×rj2 with rows

and columns indexed by Nn
d̂−dj

as

[C
(k)

j,d̂
]βγ :=

{
1, if (supp(gj) + β + γ) ∩

⋃m
j=0 S

(k−1)
j,d̂

6= ∅,
0, otherwise.

2) Block-closure: construct C
(k)

j,d̂
using (2.5), set B

(k)

j,d̂
= C

(k)

j,d̂
and

S (k) = supp(gj) + {β + γ | [B(k)

j,d̂
]βγ = 1 } .

Therefore with k ≥ 1, the TSSOS method gives a block moment relaxations of (2.18):

(2.19)


inf Ly(f)

s.t. B
(k)

0,d̂
◦Md̂(y) � 0,

B
(k)

j,d̂
◦Md̂−dj (gjy) � 0, j = 1, . . . ,m,

y0 = 1,
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with optimal value denoted by θ
(k)

d̂
. By construction, for all k ≥ 1 and j = 0, . . . ,m,

supp(B
(k)

j,d̂
) ⊆ supp(B

(k+1)

j,d̂
). Hence the sequence of binary matrices

(
B

(k)

j,d̂

)
k≥1

stabi-

lizes for all j after a finite number of steps. The stabilized matrices are denoted by

B
(∗)
j,d̂

, j = 0, . . . ,m and the optimal value of the corresponding SDP is denoted by θ∗
d̂
.

It was shown in [18] that for fixed d̂ ≥ d, the sequence (θ
(k)

d̂
)k≥1 of optimal values

of (2.19) is monotone nondecreasing and θ∗
d̂

= θd̂.

3. Reformulation of the TSSOS. In this section we present an alternative

procedure for generating block-diagonal binary matrices B
(k)
A and B

(k)

j,d̂
, j = 0, . . . ,m

from the TSSOS method. Within this procedure instead of working with binary

matrices C
(k)
A and C

(k)

j,d̂
, j = 0, . . . ,m indexed by B and B(j), respectively, we apply

the block-closure operation to binary matrices C(k) and C(j,k), j = 0, . . . ,m indexed
by (B)2 and

(
B(j)

)
2
. Matrices C(k) and C(j,k) are further used in our approach.

3.1. Defining matrices B
(k)
A for the unconstrained case. Let f(x) ∈ R[x]

with A = supp(f) and let B be a monomial basis with r = |B| and set S (0) =
A ∪ (2B). We partition the set B into subsets Bδ with δ ∈ (B)2 defined in the
following way:

(3.1) Bδ = {α ∈ B | (α)2 = δ } .

Using this notation we have B =
⋃
δ∈(B)2

Bδ. For k ≥ 1, we define binary matrices

B
(k)
A ∈ Sr ∩ Zr×r2 indexed by B via three successive steps:

1) Support-extension: define a binary matrix C(k) ∈ Srb ∩ Zrb×rb2 , rb =
| (B)2 |, indexed by (B)2 as

(3.2) [C(k)]δσ :=

{
1, if (Bδ + Bσ) ∩S (k−1) 6= ∅,
0, otherwise.

2) Block-closure: evaluate C(k) using (2.5), set B(k) = C(k) and S (k) =
{Bδ + Bσ | [B(k)]δσ = 1 }

3) Reconstruction of B
(k)
A ∈ Sr ∩ Zr×r2 from B(k):

(3.3) [B
(k)
A ]βγ =

{
1, if [B(k)]δσ = 1 with δ = (β)2, σ = (γ)2,

0, otherwise.

Lemma 3.1. The three-step-procedure presented above generates the same matri-

ces B
(k)
A , k ≥ 1 as the two-step-procedure described in subsection 2.1.

Proof. To prove the equivalence between the two- and three-step-procedures, we

need to show that if [B
(k)
A ]βγ = 1 for some β, γ ∈ B with δ := (β)2, σ := (γ)2, then

[B
(k)
A ]ων = 1 for all ω ∈ Bδ, ν ∈ Bσ, which will imply that we can first define a binary

matrix C(k) indexed by δ, σ ∈ (B)2, evaluate its block-closure B(k), and reconstruct

B
(k)
A using (3.3).

For k ≥ 1, let R be the adjacency relation of C
(k)
A . Since B

(k)
A = C

(k)
A , R is the

adjacency relation of B
(k)
A and [B

(k)
A ]βγ = 1 implies (β, γ) ∈ R. For all ω ∈ Bδ, we

have (ω + β)2 = (ω)2 + (β)2 = 2δ = 0, which means ω + β ∈ 2B and, consequently,
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(ω, β) ∈ R ⊆ R. Similarly, for all ν ∈ Bσ, we have (γ + ν)2 = 0 and (γ, ν) ∈ R ⊆ R.
Since for all ω ∈ Bδ, (ω, β), (β, γ) ∈ R, it follows from transitivity of R that (ω, γ) ∈ R
for all ω ∈ Bδ, which in combination with (γ, ν) ∈ R, ν ∈ Bσ gives (ω, ν) ∈ R for all

ω ∈ Bδ, ν ∈ Bσ. Applying (2.5) we get [B
(k)
A ]ων = 1 for all ω ∈ Bδ, ν ∈ Bσ.

Remark 3.2. Apart from the case, when all sets Bδ, δ ∈ (B)2 have cardinality
one, implying |B| =

∑
δ∈(B)2

|Bδ| = |(B)2|, a binary matrix C(k) defined in (3.2) is

smaller than C
(k)
A defined in (2.9), for example, for a polynomial with the standard

monomial basis B = N8
4, we have C

(k)
A ∈ S495 and C(k) ∈ S163.

3.2. Defining matrices B
(k)

j,d̂
for the constrained case. Let A = supp(f) ∪⋃m

j=1 supp(gj). For the relaxation order d̂, set S
(0)

0,d̂
= A ∪ (2Nn

d̂
) , S

(0)

j,d̂
= ∅, j =

1, . . . ,m . Let dj = ddeg(gj)/2e, j = 0, . . . ,m , where g0 := 1 and rj :=
(n+d̂−dj
d̂−dj

)
. We

partition each B(j) = Nn
d̂−dj

, j = 0, . . . ,m into subsets B
(j)
δ = {α ∈ B(j) | (α)2 = δ }

with δ ∈
(
B(j)

)
2

and define rbj := |
(
B(j)

)
2
|. For k ≥ 1, we recursively define binary

matrices B
(k)

j,d̂
∈ Srj ∩Zrj×rj2 , indexed by B(j), j = 0, . . . ,m via three successive steps:

1) Support-extension: define a binary matrix C(j,k) ∈ Srbj ∩Zrbj×rbj2 indexed
by
(
B(j)

)
2

as

(3.4) [C(j,k)]δσ :=

{
1, if (supp(gj) + B

(j)
δ + B

(j)
σ ) ∩

⋃m
j=0 S

(k−1)
j,d̂

6= ∅,
0, otherwise.

2) Block-closure: evaluate C(j,k) using (2.5), set B(j,k) = C(j,k) and

S
(k)

j,d̂
= supp(gj) + {B

(j)
δ + B(j)

σ | [B(j,k)]δσ = 1 } .

3) Reconstruction of B
(k)

j,d̂
∈ Srj ∩ Zrj×rj2 from B(j,k):

[B
(k)

j,d̂
]βγ =

{
1, if [B(j,k)]δσ = 1 with δ = (β)2, σ = (γ)2,

0, otherwise.

Lemma 3.3. For the relaxation order d̂, the three-step-procedure presented above

generates the same matrices B
(k)

j,d̂
, k ≥ 1, j = 0, . . . ,m as the two-step-procedure

described in subsection 2.1.

Proof. Follows from applying the arguments from the proof of Lemma 3.1 to each

matrix C
(k)

j,d̂
, k ≥ 1, j = 0, . . . ,m .

3.3. Examples.

Example 3.4. Consider the polynomial f(x) = x61 + 3x62 + 5x63 − 3x51 + 7x31x
2
3 +

8x1x
4
3 − 6x1x

2
3 + 5. The monomial basis is B = N3

3 with

(B)2 = { (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) } .

For this monomial basis, the matrix C
(1)
A defined in (2.9) has size |B| =

(
3+3
3

)
= 20

and the matrix C(1) defined in (3.2) has size |(B)2| = 8. The adjacency graphs

G
(1)
A and G(1) of these matrices are depicted in Figures 2a and 2b, respectively.
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Since G(1) has six connected components, the matrix B(1) has six diagonal blocks:
{ {000, 100}, {101, 001}, {010}, {111}, {110}, {011} }. Applying (3.3) to B(1) we get

the matrix B
(1)
A with the following six blocks:

1) { 1, x1, x
2
1, x

2
2, x

2
3, x

3
1, x1x

2
2, x1x

2
3 },

2) {x3, x33, x21x3, x22x3, x1x3 },
3) {x2, x32, x21x2, x2x23 },
4) {x1x2x3 },
5) {x1x2 },
6) {x2x3 },

corresponding to the connected components of the graph G
(1)
A . The sequence of binary

(a) G
(1)
A

(b) G(1)

Fig. 2. Adjacency graphs of C
(1)
A and C(1) from Example 3.4.

matrices
(
B

(k)
A

)
k≥1

stabilizes at k = 2. Solving the corresponding SDP problems we

obtain θ1 = θ2 = θtssos = θsos ≈ −43.8281.

Example 3.5. We now modify three terms of the polymonial from Example 3.4
and consider the polynomial f(x) = x61 + 3x62 + 5x63 − 3x1x

2
2x

2
3 + 7x32x

2
3 + 8x1x

3
3 −

6x1x
2
3 + 5. The monomial basis is again B = N3

3. The adjacency graphs G
(1)
A and

G(1) of matrices C
(1)
A and C(1) are depicted in Figures 3a and 3b, respectively. Since

G(1) has only one connected component, B(1) and, consequently, B
(1)
A obtained using

(3.3) are all-ones matrices, which coinsides with the fact that the graph G
(1)
A has

only one connected component. Solving the corresponding SDP problem we obtain
θ1 = θtssos = θsos ≈ −29.6934.

4. Refined TSSOS. In this section, we are going to describe a new approach
that exploits block-diagonal matrices returned by the TSSOS method and produces
new block-diagonal matrices with reduced maximum block sizes using combinatorial
optimization. We first introduce some necessary terminology. If P = {Pi : i ∈ [s] } is
a partition of a set S, we call max { | Pi| : i ∈ [s] } the width of the partition P . If a
partition P of a set S is a refinement of a partition P ′ of S, we write P ≤ P ′.

For k ≥ 1, let B
(k)
A be a binary matrix from subsection 2.1 with rows and columns

indexed by elements of a monomial basis B. Let I(k) be a partition of B induced by

B
(k)
A : two vectors β, γ ∈ B belong to the same element of I(k) if and only if the rows
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(a) G
(1)
A

(b) G(1)

Fig. 3. Adjacency graphs of C
(1)
A and C(1) from Example 3.5.

and columns indexed by β, γ belong to the same diagonal block of the matrix B
(k)
A .

Our approach generates a refinement I(τ) of the partition I(k), where τ = k − 1 + ε
with ε ∈ (0, 1) being a parameter that is used to control the width of the partition
I(τ).

Let B
(τ)
A be the block-diagonal matrix corresponding to the partition I(τ), then

supp(B
(τ)
A ) ⊆ supp(B

(k)
A ). Let Στ (A ) be the subset of Σ(A ) (defined in (2.10)) whose

member admits a Gram matrix with sparsity pattern represented by B
(τ)
A , i.e.,

Στ (A ) := { f ∈P(A ) | ∃Q ∈ Sr+
(
B

(τ)
A

)
s.t. f =

(
xB
)T
QxB } .

Replacing Σ(A ) with Στ (A ) in (SOS) yields a sparse SOS relaxation of (P):

(4.1) (P τ )∗ : sup
λ
{λ | f(x)− λ ∈ Στ (A )}

with the dual

(4.2) (P τ ) :


inf Ly(f)

s.t. B
(τ)
A ◦MB(y) � 0,

y0 = 1.

Proposition 4.1. Assume that (P τ )∗ has a feasible solution. Then (P τ )∗ is
solvable and there is no duality gap between (P τ ) and (P τ )∗.

Proof. Follows from Proposition 3.1 of [5] and the fact that each block of B
(τ)
A ◦

MB(y) is a principal submatrix of MB(y).

Lemma 4.2. For k ≥ 1, let θk and θτ with τ = k − 1 + ε, ε ∈ (0, 1) be optimal
values of (P k) and (P τ ), respectively, then θτ ≤ θk.

Proof. Since supp(B
(τ)
A ) ⊆ supp(B

(k)
A ) and B

(τ)
A is block-diagonal, (P τ ) is a re-

laxation of (P k), therefore θτ ≤ θk.
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We now explain how to generate a partition I(τ). For k ≥ 1, let S (k−1) be the
set defined in subsection 2.1. For all α ∈ S (k−1), let Aα ∈ Sr ∩Zr×r2 with r = |B| be
a binary matrix indexed by B such that

(4.3) [Aα]βγ =

{
1, if β + γ = α,

0, otherwise.

From (2.9) we get C
(k)
A =

∑
α∈S (k−1) Aα and the amount of elements in supp(C

(k)
A )

that correspond to the exponent α ∈ S (k−1) is

(4.4) | supp(Aα)| =
∑
β∈B

∑
γ∈B

[Aα]βγ .

By construction supp(C
(k)
A ) ⊆ supp(B

(k)
A ), consequently, supp(Aα) ⊆ supp(B

(k)
A ) for

all α ∈ S (k−1). Since the computational cost of solving a block SDP problem (P τ )∗

depends on the size of the largest diagonal block in B
(τ)
A , in order to minimize the

overall runtime we obtain a refinement I(τ) of I(k) by solving an IP problem that

minimizes the width of I(τ) and restricts B
(τ)
A to satisfy the requirements:

1. for all α ∈ S (k−1) \ (2B), supp(B
(τ)
A ) should contain at least ε| supp(Aα)|

elements from supp(Aα)

2. for α ∈ 2B, supp(Aα) ⊆ supp(B
(τ)
A )

Assigning a binary variable to each element of C
(k)
A defined in (2.9) generally yield a

large and, consequently, rather expensive IP problem. That is why we choose to work
with a binary matrix C(k) defined in (3.2), which normally results in a reduced size
IP problem. Furthermore, if the IP problem corresponding to C(k) is too large, it can
be replaced with a sequence of smaller IPs as explained in subsection 4.1.

Remark 4.3. In the constrained case, for the relaxation order d̂ and k ≥ 1, let I
(k)

j,d̂

be the partition of the monomial basis Nn
d̂−dj

induced by a matrix B
(k)

j,d̂
, j = 0, . . . ,m

defined in subsection 2.1.2. For parameters τj = k − 1 + εj , j = 0, . . . ,m with

εj ∈ (0, 1), we aim to find refinements I
(τj)

j,d̂
of partitions I

(k)

j,d̂
, where εj controls the

width of the partition I
(τj)

j,d̂
.

4.1. Algorithm for obtaining I(τ). In this section, we formulate the algorithm
that we use to define a partition I(τ) of B with τ = k − 1 + ε for k ≥ 1 and a given
parameter value ε ∈ (0, 1).

Let us first introduce some necessary notation. Let P = {Pi | i ∈ [rp] } be a
partition of the set (B)2 and I = { Ii | i ∈ [rp] } with

Ii =
⋃
δ∈Pi

Bδ =
⋃
δ∈Pi

{α ∈ B | (α)2 = δ }

be the corresponding partition of the monomial basis B. For a partition P and a
binary matrix M ∈ Srb ∩Zrb×rb2 with rb = |(B)2| indexed by (B)2, we define a binary

matrix DM ∈ Srp ∩ Zrp×rp2 by

(4.5) [DM ]ij =

{
1, if 1 ∈ {Mδσ : δ ∈ Pi, σ ∈ Pj},
0, otherwise.
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For a vector ν ∈ (B + B)2, we define a binary matrix Eν ∈ Srb ∩ Zrb×rb2 with
rb = |(B)2| indexed by (B)2 as

(4.6) [Eν ]δσ =

{
1, if δ + σ = ν,

0, otherwise.

For k ≥ 1 and a chosen parameter value ε ∈ (0, 1), a partition I(τ) of B is defined
using Algorithm 4.1.

Algorithm 4.1 Defining a partition I(τ) with τ = k − 1 + ε

1: Choose k ≥ 1 and ε ∈ (0, 1)
2: Define C(k) using (3.2)
3: Set W = C(k)

4: Set P = {(B)2}, i.e., the trivial partition
5: Set S = S (k−1) with S (k−1) defined in subsection 2.1
6: for ν ∈ (S )2 \ {0} do
7: Define Eν using (4.6)
8: Compute M = W ◦ (Eν + E0)
9: Compute DM based on M and P using (4.5)

10: Update P solving an IP problem for ε, ν and DM defined in subsection 4.2
11: end for
12: Set I(τ) to the partition of B corresponding to the resulting partition P of (B)2

Instead of iterating through ν ∈
(
S (k−1))

2
\ {0} in Algorithm 4.1 we could also

formulate a single Integer Programming problem. However, this IP problem might
be rather expensive to solve. Replacing it with a sequence of smaller IP problems
normally results in a significant reduction of the computing time.

Remark 4.4. The new approach can also be used within the chordal-TSSOS. Let

B
(τ)
A be the block-diagonal matrix corresponding to the partition I(τ) obtained using

Algorithm 4.1 and let C
(k)
A , k ≥ 1 be a binary matrix defined in (2.9). Maximal cliques

of the graph obtained by applying a chordal-extension operation to the adjacency

graph of C
(k)
A ◦B(τ)

A might produce a cheaper SDP relaxation than the one generated
by the k-th iterative step of the chordal-TSSOS. We further refer to the resulting
method as the refined chordal-TSSOS.

Remark 4.5. In the constrained case, for the relaxation order d̂ and parameter

τj = k−1+εj with k ≥ 1 and εj ∈ (0, 1), j = 0, . . . ,m a partition I
(τj)

j,d̂
of B(j) = Nn

d̂−dj
is obtained by applying Algorithm 4.1 to C(j,k) defined in (3.4) with S = S (k−1)

being replaced with S =
(
S

(k−1)
0,d̂

− supp(gj)
)
∩
(
B(j) + B(j)

)
, where S

(k−1)
0,d̂

is

defined in subsection 2.1.

4.2. Assembling an IP problem. We now define an IP problem used in Al-
gorithm 4.1. Let S be the set defined in Line 5 of Algorithm 4.1 and let Sν be
the subset of S containing elements with a parity type ν ∈ (S )2, i.e., Sν :=
{β ∈ S | (β)2 = ν }. Let P = {Pi | i ∈ [rp] } be the current partition of the set (B)2
with I = { Ii | i ∈ [rp] } being the corresponding partition of B. Solving an Integer
Programming problem for ν ∈ (S )2 \ {0} we aim to find a new partition P ′ of (B)2
with P ≤ P ′ such that the corresponding partition I ′ of B satisfies the following
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condition further referred to as C.1: for all α ∈ Sν , the support of the block-diagonal
matrix inducing I ′ contains at least ε| supp(Aα)| elements from supp(Aα), where ε
is a parameter specified in Line 1 of Algorithm 4.1 and the matrix Aα is defined in
(4.3). In order to approximate the goal of minimizing the overall computational cost
of solving (P τ ), we optimize over the set of all partitions I ′ satisfying condition C.1
with the objective function being the width of I ′.

Let Y be a matrix variable defined using the binary matrix DM ∈ Srp ∩ Zrp×rp2

by

(4.7) Yij =


1, if i = j,

yij ∈ {0, 1}, if [DM ]ij = 1 and i 6= j,

0, otherwise

and let Gd := {Gds | s ∈ [rd] } be the set of connected components of the adjacency
graph of DM . For α ∈ Sν , we define a matrix Kα ∈ Srp ∩ Zrp×rp by

(4.8) [Kα]ij =
∑
β∈Ii

∑
γ∈Ij

[Aα]βγ .

Using this notation we can rewrite (4.4) as

(4.9) | supp(Aα)| =
∑
β∈B

∑
γ∈B

[Aα]βγ =

rp∑
i=1

rp∑
j=1

[Kα]ij

The new partition P ′ is obtained by solving the following IP problem:

minimize
ω ∈ Z, Y as in (4.7)

ω

subject to Yik + Ykj − Yij ≤ 1, ∀ i, j, k ∈ Gds , s ∈ [rd]
(i 6= j, j 6= k, k 6= i)

,

rp∑
k=1

|Ik|Yik ≤ ω, i ∈ [rp],

rp∑
i=1

rp∑
j=1

[Kα]ijYij ≥ ε
rp∑
i=1

rp∑
j=1

[Kα]ij , ∀ α ∈ Sν ,

where ω is an integer variable corresponding to the width of I ′, the first set of con-
straints further refered to as (C1) restricts Y to be block-diagonal, the second set of
constraints (C2) guarantees that the width of I ′ does not exceed ω, and the third set
of constraints (C3) is imposed to make I ′ satisfy condition C.1.

Let Gy := {Gys | s ∈ [ry] } be the set of connected components of the adjacency
graph of Y . If P = {Pi | i ∈ [rp]} is the current partition of (B)2, then the new
partition P ′ is given by P ′ = {P ′s | s ∈ [ry] } with P ′s = ∪i∈GysPi.

4.3. Example: refined TSSOS.

Example 4.6. Let us now apply Algorithm 4.1 to the polynomial from Exam-
ple 3.5, for which we have

(
S (0)

)
2

= { (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1) } with

• S
(0)
(1,0,0) = { (1, 2, 2), (1, 0, 2) }

• S
(0)
(0,1,0) = { (0, 3, 2) }
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• S
(0)
(1,0,1) = { (1, 0, 3) }

Let us choose k = 1 and ε = 0.2. The partition P of (B)2 is initially set to the
trivial partition, i.e., P = { (B)2 }. After solving IP problems for ν = (1, 0, 0) and
ν = (0, 1, 0), we get the partition P = {P1, P2, P3, P4, P5 } with

• P1 = { (0, 0, 0) }
• P2 = { (1, 0, 0) }
• P3 = { (0, 1, 0) }
• P4 = { (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1) }
• P5 = { (1, 1, 0) }

For ν = (1, 0, 1), using (4.6) and M = C(1) ◦ (E101 + E000) we get

E101 =



0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0


M =



1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

where the matrices E101 and M are indexed by

(B)2 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

We now obtain the binary matrix DM ∈ Srp ∩ Zrp×rp2 with rp = |P | = 5 by
applying (4.5) to the matrix M and the current partition P . We proceed in the
following way: [DM ]24 = 1 since 1 ∈ { [M ]δσ | δ ∈ P2, σ ∈ P4 } and [DM ]34 = 0 since
1 /∈ { [M ]δσ | δ ∈ P3, σ ∈ P4 }. Repeating this process for all (i, j) ∈ [5]× [5] we get

DM =


1 0 0 1 0
0 1 0 1 0
0 0 1 0 0
1 1 0 1 0
0 0 0 0 1

 and DM =


1 1 0 1 0
1 1 0 1 0
0 0 1 0 0
1 1 0 1 0
0 0 0 0 1


with the set of connected components of the adjacency graph of DM being Gd =
{ { 1, 2, 4 } , { 3 } , { 5 } }. Using (4.7) we defined the variable matrix

Y =


1 y12 0 y14 0
y12 1 0 y24 0
0 0 1 0 0
y14 y24 0 1 0
0 0 0 0 1

 ,

producing to the following sets of (C1) and (C2) constraints:

−y12 + y14 + y24 ≤ 1 |I1| · 1 + |I2| · y12 + |I4| · y14 ≤ ω
y12 − y14 + y24 ≤ 1 |I1| · y12 + |I2| · 1 + |I4| · y24 ≤ ω(4.10)

y12 + y14 − y24 ≤ 1 |I1| · y14 + |I2| · y24 + |I4| · 1 ≤ ω
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with |I1| = 4, |I2| = 4, |I4| = 7, where we use |Ik| =
∑
δ∈Pk |Bδ|. Since

K103 =


0 0 0 1 0
0 0 0 2 0
0 0 0 0 0
1 2 0 0 0
0 0 0 0 0


the corresponding (C3) constraint is

(4.11) y14 + 2y24 ≥ ε · 3.

Minimizing ω ∈ Z subject to constraints (4.10) and (4.11), we get: y12 = y24 = 0,
y14 = 1. This results in the partition P = {P1, P2, P3, P4 } with

• P1 = { (0, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1) },
• P2 = { (1, 0, 0) },
• P3 = { (0, 1, 0) },
• P4 = { (1, 1, 0) },

giving the following partition I(0.2) of the monomial basis B:
1) { 1, x21, x

2
2, x

2
3, x3, x

3
3, x

2
1x3, x

2
2x3, x1x3, x2x3, x1x2x3 },

2) {x1, x31, x1x22, x1x33 },
3) {x2, x32, x21x2, x2x23 },
4) {x1x2 }.

Solving the corresponding SDP problem we obtain θ0.2 ≈ −29.6934.

5. Numerical experiments. In this section, we present numerical results for
the proposed sparse moment-SOS relaxations constructed with k = 1 and different
parameter values ε ∈ (0, 1) for both unconstrained and constrained polynomial opti-
mization problems. Since τ = k − 1 + ε, we have τ ∈ (0, 1). Our algorithm, named
rTSSOS (refined TSSOS) is implemented in Julia, utilizes JuMP [3] to model IP prob-
lems from Algorithm 4.1 and relies on MOSEK [9] to solve them. The corresponding
SDP problems are assembled and solved using functions from the TSSOS tool [15].
In the following subsections, we compare the performance of rTSSOS with that of the
block and chordal-TSSOS methods. The block TSSOS method is described in subsec-
tion 2.1 and the chordal-TSSOS is obtained by replacing the block-closure operation
from (2.5) with a chordal-extension operation on the adjacency graph. The numerical
results for the block and chordal-TSSOS were obtained using the TSSOS tool.

All numerical examples were computed on a server with the Linux system. The
timing of rTSSOS includes the time for pre-processing (to get all the necessary data
for IP and SDP problems) and the time for assembling and solving IPs and SDP.
The runtime for all methods was obtained using the @elapsed function. In our com-
putations we set the CPU time limit for the SDP solver to 5000 seconds. If for the
relaxation produced by some method the SDP solver terminates with the status dif-
ferent from OPTIMAL, the problem is considered to be unsolved by this method. Note
that the time the solver actually spent on the problem was in several cases signifi-
cantly larger than the imposed upper limit of 5000s due to solver-specific reasons. In
our statistics, we used the values that were reported by the @elapsed function. The
notations used in this section are listed in Table 1.

5.1. Unconstrained polynomial optimization problems.

Example 5.1. Let us start with an illustrative example and consider the following
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Table 1
Notation

n the number of variables
2d the degree of a polynomial
s the length of a support
k the iterative step of the TSSOS (chordal or block)

d̂ the ralaxation order of Lasserre hierarchy
mb the maximal size of blocks
Nu the amount of unsolved problems
ΘM the optimal value obtained with method M
ΘB the best optimal value over all methods
TM the computing time for method M

M :

τ the rTSSOS for the parameter value τ
t1 the block TSSOS (k = 1)
c1 the chordal-TSSOS (k = 1)
c2 the chordal-TSSOS (k = 2)

polynomials:

f1 =

8∑
i=1

1

i
x8i +

4∑
i=1

(−1)i
1

2i
x4ixi+2xi+4 +

5∑
i=1

(−1)i
1

3i
xixi+1x

2
i+2xi+3,

f2 =

8∑
i=1

1

i
x8i +

4∑
i=1

(−1)i
1

2i
x2ixi+2xi+4 +

5∑
i=1

(−1)i
1

3i
xix

2
i+1x

2
i+2xi+3,

f3 =

8∑
i=1

1

i
x8i +

4∑
i=1

(−1)i
1

2i
x2ixi+2 +

5∑
i=1

(−1)i
1

3i
xixi+1x

2
i+2.

The polynomials f1, f2 and f3 have 8 variables and are of degree 8. The monomial
basis is xN8

4 . The numerical results on these polynomials listed in Table 2 demonstrate
a potential speed-up of the refined TSSOS compared to the block TSSOS. Table 2
also shows that for a polynomial f ∈ R[x] and a fixed parameter value τ , the ratio of
the maximal size of blocks in the relaxation generated by the refined TSSOS to the
maximal size of blocks in the relaxation given by the first iterative step of the block
TSSOS method (mbτ/mbt1) strongly depends on the support of f .

Table 2
Numerical results for the polynomials from Example 5.1 demonstrate a potential speed-up of

the refined TSSOS compared to the block TSSOS and dependence of mbτ/mbt1 on the support of f .

block TSSOS
refined TSSOS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

f1

mb 340 45 45 45 45 45 95 197
time 49.874 1.222 1.063 1.138 1.048 1.051 2.421 20.897
opt -0.132 -0.132 -0.132 -0.132 -0.132 -0.132 -0.132 -0.132

f2

mb 248 45 46 46 63 63 65 185
time 24.699 0.793 0.931 0.881 1.306 1.270 1.415 14.263
opt -0.220 -0.246 -0.246 -0.246 -0.220 -0.220 -0.220 -0.220

f3

mb 184 54 54 54 100 100 102 184
time 10.425 1.033 0.944 0.979 2.629 2.446 2.758 9.763
opt -0.385 -0.464 -0.464 -0.464 -0.385 -0.385 -0.385 -0.385
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We now test our approach on three sets of random polynomials. Polynomials
from the first set (set I) are defined by

f = c0 +

n∑
i=1

cix
2d
i +

s−n−1∑
j=1

c′jx
αj ∈ randpolyI(n, 2d, s)

and constructed as follows: we randomly choose coefficients ci between 0 and 1 as well
as s− n− 1 vectors αj in Nn2d−1 \ {0} with random coefficients c′j between −1 and 1.
The second set (set II) consists of polynomials f ∈ randpolyI(n, 2d, s) that satisfy an
additional requirement, namely, we restrict all vectors αj , j ∈ { 1, . . . , s− n− 1 } to
have at least 5 non-zero components. Polynomials f ∈ randpolyI(n, 2d, s) from the
third set (set III) have αj , j ∈ { 1, . . . , s− n− 1 } with at most 3 non-zero components.
To form each of these sets we use polynomials from 10 different classes:

1 2 3 4 5 6 7 8 9 10
n 8 8 8 9 9 9 10 10 11 11

2d 8 8 8 8 8 8 8 8 8 8
s 17 19 21 19 21 23 21 23 23 25

For each of these classes we generate 100 random polynomials. The information
about the IP problems solved to obtain rTSSOS relaxations is presented in Table 5.
Numerical results for the refined, block and chordal-TSSOS on polynomials from sets
I, II and III are presented in rows 1, 2 and 3 of Figure 4 as well as in Tables 6
to 8 in Appendix A. Comparing the runtime from Tables 5 to 8 one can see that
solving of IP problems takes only a small fraction of the overall computational cost.
The distribution of the maximal size of blocks for the refined and block TSSOS on
polynomials from set I is depicted in Figure 5.

The obtained numerical results show that on polynomials from sets I, II and
III the refined TSSOS method allows to obtain cheaper relaxations than the ones
returned by the first iterative step of the block TSSOS, rTSSOS with a well-chosen
parameter value τ ∈ (0, 1) also provides more accurate bounds than the first step of
the chordal-TSSOS with only moderate increase in the computing time. It is still an
open question how to choose an optimal parameter value τ that would allow to obtain
a good quality bound in a reasonable time. On set II, the refined TSSOS performs
much better than the second iterative step of the chordal-TSSOS, which becomes
very expensive on this kind of polynomials. On the other hand, on set III the second
iterative step of the chordal-TSSOS is significantly faster than rTSSOS with large τ
and more accurate than rTSSOS with small τ .

Newton polytopes of polynomials from sets I, II and III are scaled standard sim-
plices. To test our approach on polynomials with more general Newton polytopes we
use polynomials f ∈ randpolyII(n, 2d, k1, k2, k3, k4) generated as follows:

1. Randomly generate a partition {A1, A2, A3 } of the set { 1, . . . , n } with |A2|+
|A3| = k1.

2. Randomly pick vectors γi, i ∈ { 1, . . . , k2 } from 2Nn(d+2) \ 2Nnd .

3. Define a polynomial g =
∑
i∈A1

cix
2d
i +

∑
i∈A2

cix
2(d+1)
i +

∑
i∈A3

cix
2(d+2)
i +∑k2

j=1 c
e
ix
γi with random coefficients ci and cei between 0 and 1.

4. Set dg = deg(g)/2 and Bg = 1
2 ·New(g) ∩ Nn.

5. Define f = g +
∑k3
j=1 c

′
jx
αj +

∑k4
j=1 c

o
jx
βj , where we randomly choose k3

vectors αj in Nn2d with coefficients c′j between -1 and 1 as well as k4 vectors
βj in (Bg + Bg) \ (Nn2d ∪ 2Bg) with coj between 0 and 1 if |βj | = 2dg and
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Fig. 4. Numerical results for the chordal (c1 and c2), block (t1) and refined TSSOS with
different parameter values τ ∈ (0, 1) in the unconstrained case: plots in column 1 show the fraction

of problems solved to a certain accuracy by method M , i.e., with
|ΘM−ΘB |
|ΘB |

≤ tol, the ratio of CPU

time for method M to CPU time of TSSOS (k = 1), i.e., TM/Tt1, averaged over all problems in the
set is depicted in column 2, box plots showing the spread of values TM/Tt1 are given in column 3,
where the central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. Note that the CPU time limit for the SDP solver is 5000
seconds. If for some problem the solver fails to terminate within this time on a relaxation produced
by method M , this problem is considered to be unsolved by this method.

between -1 and 1 if |βj | < 2dg.
We consider polynomials from two classes:

(n, 2d, k1, k2, k3, k4) ∈ {(8, 8, 2, 4, 8, 4), (8, 8, 4, 6, 8, 4)}.

For each of these classes we generate 100 random polynomials. We refer to these
polynomials as set IV. Numerical results on this set are displayed in row 4 of Figure 4
and listed in Table 9 in Appendix A. Note that the time for computing a monomial
basis is included in the time of the first iterative step of the block and chordal-TSSOS
as well as the refined TSSOS for all τ .

Finally, we generate 20 random polynomials H1, . . . ,H10 ∈ randpolyI(10, 4, 30),
H11, . . . ,H20 ∈ randpolyI(10, 4, 35), such that all vectors αj , j ∈ { 1, . . . , s− n− 1 }
have at least 6 non-zero components. Numerical results on polynomials H1, . . . ,H20

listed in Table 3 demonstrate that in comparison with the first iterative step of the
chordal-TSSOS method application of the refined TSSOS method to this kind of
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Fig. 5. The distribution of the maximal size of blocks for the block (t1) and refined TSSOS
with different parameter values τ ∈ (0, 1) on polynomials from set I: the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are
plotted individually using the ’+’ symbol.

polynomials either results in cheaper relaxations (possibly sacrificing the accuracy) or
in better quality bounds (possibly increasing the computational costs).

Table 3
Numerical results on polynomials Hi, i = 1, . . . , 20: for these polynomials the refined TSSOS

with different parameter values τ results either in a computational speed-up or in better quality
bounds compared to the chordal-TSSOS (k = 1)

chordal-TSSOS refined TSSOS
k = 1 τ = 0.25 τ = 0.3 τ = 0.35

Opt T ime Opt T ime Opt T ime Opt T ime
H1 -1634.37 32.47 -1720.11 3.58 -1634.36 4.31 -1634.37 9.81
H2 -4636.21 32.16 -5568.03 3.46 -4636.19 7.24 -4636.21 32.83
H3 -42.32 41.57 -132.25 3.78 -120.84 4.55 -62.49 7.77
H4 -1810.46 27.57 -2728.98 6.42 -2236.28 4.55 -1809.28 16.06
H5 -291.54 22.62 -508.79 3.39 -330.32 4.95 -291.54 9.07
H6 -771.15 43.51 -2471.77 4.04 -1458.63 8.18 -909.953 13.29
H7 -23.81 35.34 -59.67 3.15 -43.96 4.13 -31.63 6.04
H8 -42.82 44.17 -221.83 3.38 -184.75 4.12 -49.26 17.04
H9 -459.17 37.14 -1134.22 3.25 -881.56 5.16 -493.75 10.87
H10 -16.72 34.95 -43.15 3.43 -35.38 5.06 -24.13 7.83
H11 -14.78 40.41 -45.79 13.74 -20.29 27.12 -10.99 306.13
H12 -25.34 55.69 -123.32 5.94 -35.38 17.46 -10.91 126.79
H13 -295.29 59.77 -1849.01 5.40 -657.48 11.19 -197.71 377.17
H14 -48.99 62.93 -212.21 5.34 -124.71 9.93 -26.64 51.71
H15 -2666.89 48.12 -5364.11 10.86 -2818.64 28.59 -2666.69 198.92
H16 -362.99 42.74 -1077.34 9.39 -432.41 28.26 -242.24 880.44
H17 -1168.15 62.83 -3254.47 5.50 -2397.9 10.59 -1056.01 390.77
H18 -40.94 47.47 -220.09 6.73 -82.47 12.86 -35.35 112.77
H19 -100.11 60.13 -380.15 4.17 -124.99 14.98 -78.97 228.44
H20 -443.15 47.68 -3433.21 4.47 -1049.09 10.58 -469.66 26.06

5.2. Constrained polynomial optimization problems. Now we present the
numerical results for constrained polynomial optimization problems. First we min-
imize polynomials from set I used in subsection 5.1 over a basic semialgebraic set
K := {(x1, . . . , xn) ∈ Rn | g1 = 25 − (x21 + · · · + x2n) ≥ 0}. Numerical results for the
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relaxation order d̂ = 4 with τ0 = τ1 are given in Figure 7 and Table 10 in Appendix A.
These results give a qualitative similar picture to Figure 4. The computational gains
for the TSSOS method are even more impressive, highlighting the potential of the
rTSSOS method for constrained problems. We now focus on the question how the
hyperparameters τ0 and τ1 should be chosen. The numerical results for the relaxation
order d̂ = 4 with (τ0, τ1) ∈ { (0.1i, 0.1j) : i, j ∈ [9] } on polynomials from set I with
(n, s) = (8, 21) are presented in Figure 6. According to these results it makes more
sense to choose τ0 ≥ τ1, since this yields relaxations returning tight bounds with
larger computational savings compared to the case when τ0 < τ1.

Fig. 6. Numerical results for the refined TSSOS on polynomials from set I with (n, s) = (8, 21),

K := {(x1, . . . , xn) ∈ Rn | g1 = 25 − (x2
1 + · · · + x2

n) ≥ 0} and the relaxation order d̂ = 4: the
plot on the left shows the fraction of 100 problems solved to the accuracy tol = 0.001, i.e., with
|Θ(τ0,τ1)−Θt1|

|Θt1|
≤ tol, the plot on the right depicts the ratio of CPU time for the refined TSSOS

to CPU time of TSSOS (k = 1), i.e., T(τ0,τ1)/Tt1, averaged over 100 problems, where (τ0, τ1) ∈
{ (0.1i, 0.1j) : i, j ∈ [9] }.

We now test the refined chordal-TSSOS method, i.e., the refined TSSOS approach
implemented within the chordal-TSSOS method. For this we consider randomly gen-
erated polynomials defined by

f =

s∑
j=1

cjx
αj ∈ randpolyIII(n, 2d, s)

constructed as follows: we randomly choose s vectors αj in Nn2d with random coeffi-
cients cj between −1 and 1 and make sure that an obtained support contains at least
one exponent α with |α| = 2d. We generate 18 random polynomials F1, . . . , F18:

F1, F2, F3 ∈ randpolyIII(8, 8, 30)

F4, F5, F6 ∈ randpolyIII(8, 8, 35)

F7, F8, F9 ∈ randpolyIII(8, 8, 40)

F10, F11, F12 ∈ randpolyIII(10, 8, 30)

F13, F14, F15 ∈ randpolyIII(10, 8, 35)

F16, F17, F18 ∈ randpolyIII(10, 8, 40)

The numerical results on polynomials F1, . . . , F18 for the relaxation order d̂ = 4
and K := {(x1, . . . , xn) ∈ Rn | g1 = 9−(x21+· · ·+x2n) ≥ 0} are listed in Table 4, where
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the column mc contains the maximal size of maximal cliques in the moment matrix
Md̂(y) and the localizing matrix Md̂−d1(g1y), the obtained bound and the computing
time are given in the columns Opt and Time, respectively. On these polynomials in
comparison with the first iterative step of the chordal-TSSOS the refined version of
this method allows to reduce the computing time without a large loss in the quality
of bounds.

Table 4
Numerical results on polynomials Fi, i = 1, . . . , 18 for the constrained case with K :=

{(x1, . . . , xn) ∈ Rn | g1 = 9 − (x2
1 + · · · + x2

n) ≥ 0} and the relaxation order d̂ = 4: on these
polynomials the refined chordal-TSSOS allows to reduce the computing time without a large loss in
the quality of bounds compared to the chordal-TSSOS (k = 1)

chordal-TSSOS
refined chordal-TSSOS

τ = (0.1, 0.1) τ = (0.3, 0.3)
mc Opt T ime mc Opt T ime mc Opt T ime

F1 (54,41) -120.14 25.73 (45,10) -120.19 3.21 (45,15) -120.80 5.23
F2 (57,38) -344.14 25.98 (45,9) -344.15 2.95 (45,17) -344.14 6.10
F3 (60,42) -103.49 28.06 (45,9) -103.70 3.42 (45,14) -103.54 4.40
F4 (74,44) -1360.37 32.10 (45,13) -1360.37 4.43 (70,47) -1360.37 24.60
F5 (69,41) -328.72 30.55 (45,10) -328.72 3.60 (45,31) -328.72 11.32
F6 (76,46) -137.16 34.24 (45,21) -137.16 7.52 (45,42) -137.16 22.37
F7 (70,47) -579.07 27.83 (45,14) -579.19 4.31 (45,28) -579.07 8.69
F8 (72,44) -422.31 45.24 (45,23) -422.44 8.54 (45,26) -422.31 10.71
F9 (98,48) -444.38 51.91 (45,20) -444.38 5.60 (45,46) -444.38 39.65
F10 (66,42) -302.29 50.12 (66,11) -302.29 5.46 (66,11) -302.29 5.74
F11 (66,28) -106.61 20.48 (66,11) -106.61 4.63 (66,11) -106.61 5.18
F12 (66,39) -97.77 36.22 (66,11) -158.01 4.24 (66,11) -97.77 4.57
F13 (74,48) -103.82 141.96 (66,11) -105.65 5.29 (66,11) -105.65 6.96
F14 (66,45) -196.48 53.68 (66,11) -196.54 4.92 (66,11) -196.48 5.36
F15 (66,47) -38.88 89.59 (66,11) -38.97 5.01 (66,11) -38.91 6.58
F16 (89,57) -238.29 147.44 (66,16) -238.29 8.37 (66,35) -238.29 31.12
F17 (84,55) -166.62 148.59 (66,11) -166.80 5.64 (66,12) -166.80 6.99
F18 (66,43) -116.91 56.61 (66,24) -116.91 10.92 (66,31) -116.91 21.22

6. Conclusion and Outlook. We have provided a new approach that refines
TSSOS iterations using combinatorial optimization and results in block-diagonal ma-
trices with reduced maximum block sizes. Numerical results on a benchmark library
show the large potential for computational speedup for unconstrained and constrained
polynomial optimization, while obtaining almost identical bounds in comparison to
established methods.

One direction of further research is to investigate other strategies for generating a
partition I(τ) with τ = k−1 +ε, ε ∈ (0, 1). For instance, I(τ) can also be obtained by
solving an IP problem that minimizes the width of I(τ) and restricts the corresponding

binary matrix B
(τ)
A to satisfy the requirements:

1. for all vectors ν ∈
(
S (k−1))

2
\ {0 }, supp(B

(τ)
A ) should contain at least

ε
∑

(δ,σ)∈Jν |Bδ| · |Bσ| elements from

{ (β, γ) ∈ supp(B
(k)
A ) | (β + γ)2 = ν } ,

where Jν := { (δ, σ) ∈ supp(C(k)) | δ + σ = ν } with C(k) defined in (3.2),

2. { (β, γ) ∈ supp(B
(k)
A ) : (β + γ)2 = 0 } ⊆ supp(B

(τ)
A )

Utilization of this or some other alternative strategy might potentially improve the
approach. Another question left for further investigation is how to choose an optimal
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parameter value τ producing tight bounds and keeping the computational costs small
at the same time.
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Appendix A. Numerical results.

Table 5
IP problem data for sets I, II and III: columns ”max(#var)” and ”max(#con)” contain the

maximal number of variables and constaints over all IP problems (for all τ and all polynomials),
columns ”mean(#var)” and ”mean(#con)” display the corresponding average values, ”#prob” is an
average amount of IP problems solved to obtain an rTSSOS relaxation and an average time to get
a relaxation is given in collumn ”time”.

Set (n, d, s) max(#var) mean(#var) max(#con) mean(#con) #prob time

I

(8, 4, 17) 140 11.42 1483 26.84 7.40 0.276
(8, 4, 19) 255 12.43 5339 36.95 9.31 0.356
(8, 4, 21) 215 13.71 4020 49.83 11.21 0.447
(9, 4, 19) 121 12.47 1697 28.96 8.46 0.320
(9, 4, 21) 162 12.94 2483 34.48 10.54 0.409
(9, 4, 23) 161 13.94 2481 41.04 12.33 0.487
(10, 4, 21) 94 12.50 1111 26.08 9.65 0.379
(10, 4, 23) 203 13.61 3473 33.29 11.57 0.465
(11, 4, 23) 68 13.99 419 28.58 10.74 0.444
(11, 4, 25) 197 14.34 3453 32.14 12.69 0.535

II

(8, 4, 17) 147 22.24 1697 59.12 7.73 0.310
(8, 4, 19) 302 26.72 6928 120.82 9.81 0.458
(8, 4, 21) 412 29.67 11002 165.23 11.62 0.638
(9, 4, 19) 196 21.72 3451 53.13 8.89 0.353
(9, 4, 21) 439 24.69 12217 84.91 10.89 0.479
(9, 4, 23) 360 26.87 8819 115.42 12.79 0.584
(10, 4, 21) 121 20.64 1697 43.79 9.91 0.388
(10, 4, 23) 326 22.53 7827 58.76 11.90 0.478
(11, 4, 23) 122 20.38 1098 41.27 10.95 0.446
(11, 4, 25) 177 21.34 2937 46.99 12.92 0.531

III

(8, 4, 17) 11 5.23 36 10.04 6.75 0.239
(8, 4, 19) 11 5.38 36 10.59 8.69 0.313
(8, 4, 21) 14 5.61 43 11.51 9.78 0.355
(9, 4, 19) 11 5.36 36 10.30 7.82 0.290
(9, 4, 21) 11 5.36 36 10.43 9.27 0.344
(9, 4, 23) 13 5.51 41 11.02 11.01 0.407
(10, 4, 21) 11 5.27 36 10.04 8.72 0.336
(10, 4, 23) 12 5.51 36 10.69 9.94 0.382
(11, 4, 23) 11 5.39 36 10.29 9.40 0.391
(11, 4, 25) 11 5.48 36 10.71 11.11 0.467
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Table 6
Numerical results on set I: the amount of problems solved to the accuracy tol and the

average computing time for the chordal (c1 and c2), block (t1) and refined TSSOS for τ ∈
{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}.

n = 8, d = 4, s = 17 n = 8, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 89 94 97 97 0.422 c1 58 64 75 91 0.424
c2 99 99 100 100 4.443 c2 97 97 100 100 16.290
t1 100 100 100 100 14.825 t1 100 100 100 100 38.648
0.4 95 95 98 100 1.356 0.4 68 71 81 91 2.293
0.45 95 95 98 100 1.386 0.45 73 76 81 92 2.678
0.5 96 96 99 100 1.520 0.5 80 81 83 93 2.917
0.55 98 98 99 100 2.275 0.55 86 87 90 97 5.119
0.6 98 98 99 100 2.432 0.6 87 89 92 100 5.419
0.65 100 100 100 100 3.611 0.65 96 97 98 100 11.835
0.7 100 100 100 100 5.816 0.7 97 97 97 100 17.239

n = 8, d = 4, s = 21 n = 9, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 52 58 81 89 0.519 c1 88 91 97 98 0.721
c2 98 99 100 100 41.089 c2 97 98 99 99 7.249
t1 100 100 100 100 50.649 t1 100 100 100 100 36.777
0.4 71 77 86 95 4.380 0.4 97 97 98 98 2.365
0.45 78 82 89 95 5.117 0.45 97 97 98 98 2.407
0.5 86 90 92 97 6.623 0.5 97 97 98 98 2.712
0.55 94 96 98 99 14.820 0.55 98 99 100 100 4.286
0.6 95 97 98 100 16.061 0.6 99 99 100 100 4.207
0.65 96 98 99 100 32.672 0.65 99 99 100 100 6.891
0.7 98 100 100 100 39.710 0.7 99 99 100 100 10.146

n = 9, d = 4, s = 21 n = 9, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 58 67 89 97 0.811 c1 29 33 62 78 1.299
c2 98 98 99 99 43.349 c2 98 99 100 100 188.425
t1 100 100 100 100 126.055 t1 100 100 100 100 192.679
0.4 74 77 88 92 3.034 0.4 59 63 77 87 4.635
0.45 75 78 89 93 3.181 0.45 63 71 81 89 5.314
0.5 78 82 92 93 3.430 0.5 69 76 84 92 6.562
0.55 87 89 94 98 3.942 0.55 85 86 95 99 13.608
0.6 86 89 94 97 5.727 0.6 85 87 95 98 15.283
0.65 94 96 99 99 12.122 0.65 100 100 100 100 40.967
0.7 96 97 99 99 17.512 0.7 99 100 100 100 53.307

n = 10, d = 4, s = 21 n = 10, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 72 76 87 95 1.435 c1 49 53 74 89 1.889
c2 98 99 100 100 18.108 c2 97 97 99 99 119.080
t1 100 100 100 100 101.374 t1 100 100 100 100 327.538
0.4 84 86 93 97 2.914 0.4 57 61 74 84 4.664
0.45 84 86 94 98 3.145 0.45 59 63 76 83 5.192
0.5 85 86 93 98 3.363 0.5 62 67 80 85 5.424
0.55 87 89 94 98 3.942 0.55 71 75 87 92 9.887
0.6 89 90 95 98 4.126 0.6 76 79 90 93 10.908
0.65 93 94 98 98 6.484 0.65 81 85 95 96 22.169
0.7 94 95 98 99 9.678 0.7 90 93 98 98 30.888

n = 11, d = 4, s = 23 n = 11, d = 4, s = 25

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 70 71 84 93 2.312 c1 39 42 66 82 2.469
c2 97 98 99 100 21.751 c2 91 91 97 99 172.247
t1 100 100 100 100 144.074 t1 100 100 100 100 569.459
0.4 81 83 92 96 4.839 0.4 49 53 73 88 6.389
0.45 82 83 92 96 4.894 0.45 53 57 77 89 6.820
0.5 82 83 92 96 5.055 0.5 55 58 78 91 7.172
0.55 84 86 95 97 6.268 0.55 62 67 82 92 9.817
0.6 83 85 94 97 6.372 0.6 64 70 85 92 9.726
0.65 89 90 98 99 10.408 0.65 74 77 86 93 19.399
0.7 92 94 98 99 13.447 0.7 78 84 91 96 33.441
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Table 7
Numerical results on set II: the amount of problems solved to the accuracy tol and the

average computing time for the chordal (c1 and c2), block (t1) and refined TSSOS for τ ∈
{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}, the amount of problems not solved within the time limit is given
in round brackets in column M .

n = 8, d = 4, s = 17 n = 8, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 90 92 97 98 0.515 c1 60 65 81 90 0.709
c2 100 100 100 100 20.403 c2 99 100 100 100 82.667
t1 100 100 100 100 22.099 t1 100 100 100 100 53.532
0.4 97 97 99 100 1.131 0.4 97 97 99 100 2.009
0.45 99 99 100 100 1.455 0.45 100 100 100 100 3.292
0.5 99 99 100 100 1.453 0.5 100 100 100 100 3.543
0.55 100 100 100 100 1.597 0.55 100 100 100 100 6.391
0.6 100 100 100 100 2.058 0.6 100 100 100 100 9.509
0.65 100 100 100 100 2.938 0.65 100 100 100 100 18.293
0.7 100 100 100 100 3.924 0.7 100 100 100 100 28.847

n = 8, d = 4, s = 21 n = 9, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 61 70 85 89 0.978 c1 84 85 89 91 1.078
c2 100 100 100 100 155.100 c2 98 98 100 100 68.172
t1 100 100 100 100 59.671 t1 100 100 100 100 72.764
0.4 99 99 99 99 4.152 0.4 89 91 93 96 1.680
0.45 100 100 100 100 8.234 0.45 92 94 95 100 1.805
0.5 100 100 100 100 11.753 0.5 92 93 95 99 1.832
0.55 100 100 100 100 25.417 0.55 95 96 97 99 1.909
0.6 100 100 100 100 34.430 0.6 95 96 97 98 2.091
0.65 100 100 100 100 51.482 0.65 96 97 99 99 2.479
0.7 100 100 100 100 59.696 0.7 96 97 98 99 3.213

n = 9, d = 4, s = 21 n = 9, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 60 64 77 86 0.956 c1 36 42 58 72 1.147
c2 97 98 100 100 593.791 c2 100 100 100 100 1452.443
t1 99 100 100 100 199.432 t1 100 100 100 100 256.519
0.4 74 76 90 96 2.568 0.4 77 80 91 95 4.049
0.45 85 86 94 98 2.974 0.45 90 92 96 99 5.746
0.5 88 90 95 99 3.092 0.5 90 93 98 99 6.801
0.55 92 94 99 100 4.123 0.55 96 98 99 99 11.639
0.6 94 96 99 100 5.198 0.6 100 100 100 100 19.413
0.65 99 100 100 100 11.056 0.65 100 100 100 100 47.260
0.7 98 100 100 100 23.030 0.7 100 100 100 100 97.0419

n = 10, d = 4, s = 21 n = 10, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 84 86 92 96 1.449 c1 48 50 67 80 1.491
c2 98 99 100 100 96.794 c2(6) 93 94 94 94 1325.003
t1 100 100 100 100 128.946 t1 100 100 100 100 657.311
0.4 94 95 97 98 2.845 0.4 72 74 85 91 3.768
0.45 94 95 97 99 3.061 0.45 72 74 89 94 4.077
0.5 96 97 99 99 3.082 0.5 74 76 89 94 4.206
0.55 95 96 99 100 3.281 0.55 77 81 89 97 4.485
0.6 95 96 98 99 3.536 0.6 82 83 91 98 4.923
0.65 96 97 99 99 4.079 0.65 87 87 95 99 6.436
0.7 95 97 99 99 5.594 0.7 92 92 99 100 10.289

n = 11, d = 4, s = 23 n = 11, d = 4, s = 25

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 74 75 87 91 2.801 c1 35 40 53 74 2.415
c2 94 95 96 96 98.126 c2(6) 88 90 93 94 1211.669
t1 99 99 100 100 140.913 t1 100 100 100 100 888.690
0.4 86 86 93 99 4.174 0.4 57 61 74 86 5.459
0.45 85 85 93 99 4.377 0.45 57 63 80 90 5.773
0.5 86 86 94 99 4.414 0.5 58 63 80 90 5.799
0.55 85 86 94 99 4.542 0.55 60 65 80 92 6.213
0.6 87 88 95 99 4.788 0.6 63 69 81 91 6.551
0.65 89 90 95 98 5.028 0.65 69 74 84 92 7.696
0.7 91 91 95 98 5.391 0.7 71 74 85 93 8.858
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Table 8
Numerical results on set III: the amount of problems solved to the accuracy tol and the

average computing time for the chordal (c1 and c2), block (t1) and refined TSSOS for τ ∈
{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}.

n = 8, d = 4, s = 17 n = 8, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 85 92 99 100 0.400 c1 70 80 92 94 0.384
c2 99 100 100 100 1.217 c2 97 97 99 99 2.908
t1 100 100 100 100 9.674 t1 100 100 100 100 21.355
0.4 95 98 99 100 1.383 0.4 80 82 88 94 2.302
0.45 96 98 98 100 1.503 0.45 86 88 94 96 2.763
0.5 96 98 98 100 1.497 0.5 86 88 94 96 2.791
0.55 100 100 100 100 2.557 0.55 94 94 97 99 5.448
0.6 100 100 100 100 2.653 0.6 95 95 97 99 5.685
0.65 100 100 100 100 3.790 0.65 96 96 98 99 8.013
0.7 100 100 100 100 5.996 0.7 99 99 99 99 11.943

n = 8, d = 4, s = 21 n = 9, d = 4, s = 19

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 63 72 90 98 0.418 c1 90 95 100 100 0.681
c2 97 99 100 100 4.275 c2 98 100 100 100 2.687
t1 100 100 100 100 27.939 t1 100 100 100 100 25.822
0.4 81 85 92 95 3.844 0.4 92 93 97 98 2.490
0.45 86 88 98 98 4.737 0.45 95 96 99 99 2.728
0.5 86 88 98 98 4.723 0.5 95 96 99 99 2.734
0.55 96 96 98 99 10.024 0.55 98 98 99 100 5.588
0.6 97 97 99 99 10.801 0.6 98 98 99 100 5.800
0.65 98 99 100 100 14.416 0.65 99 99 100 100 9.562
0.7 100 100 100 100 18.384 0.7 100 100 100 100 14.853

n = 9, d = 4, s = 21 n = 9, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 73 79 93 96 0.700 c1 60 72 95 98 0.815
c2 100 100 100 100 4.312 c2 99 99 100 100 10.799
t1 100 100 100 100 48.051 t1 100 100 100 100 87.657
0.4 87 89 95 95 3.518 0.4 76 82 90 97 6.345
0.45 87 89 95 95 4.398 0.45 80 87 94 99 8.318
0.5 87 89 95 95 4.416 0.5 80 87 94 99 8.378
0.55 95 96 98 98 8.583 0.55 92 96 98 99 21.360
0.6 96 97 99 99 9.081 0.6 93 96 98 99 22.715
0.65 98 99 99 99 17.191 0.65 97 99 100 100 35.411
0.7 100 100 100 100 26.776 0.7 99 99 100 100 51.0111

n = 10, d = 4, s = 21 n = 10, d = 4, s = 23

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 87 87 99 100 1.323 c1 83 89 99 99 1.402
c2 99 100 100 100 4.039 c2 99 99 100 100 8.701
t1 100 100 100 100 60.871 t1 100 100 100 100 119.759
0.4 86 88 96 98 4.345 0.4 87 92 96 97 5.732
0.45 87 87 96 98 4.697 0.45 89 92 96 97 7.699
0.5 87 87 96 98 4.720 0.5 89 92 96 97 7.712
0.55 90 90 98 99 9.687 0.55 96 98 100 100 16.947
0.6 91 91 98 99 10.301 0.6 96 98 100 100 17.674
0.65 93 93 99 100 19.782 0.65 98 99 100 100 37.969
0.7 100 100 100 100 32.182 0.7 100 100 100 100 54.760

n = 11, d = 4, s = 23 n = 11, d = 4, s = 25

M
tol

time M
tol

time
0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 84 96 99 99 2.454 c1 68 82 95 97 2.582
c2 100 100 100 100 8.315 c2 98 99 100 100 15.558
t1 100 100 100 100 144.482 t1 100 100 100 100 315.069
0.4 89 92 98 99 7.115 0.4 76 80 90 96 10.223
0.45 90 91 97 99 8.482 0.45 75 78 89 96 13.510
0.5 90 91 97 99 8.510 0.5 75 78 89 96 13.533
0.55 96 96 99 100 16.579 0.55 85 87 95 99 30.821
0.6 95 95 99 100 17.159 0.6 85 87 95 99 32.885
0.65 98 98 98 100 41.036 0.65 94 94 97 100 72.780
0.7 99 99 99 99 62.001 0.7 96 96 98 100 114.329
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Table 9
Numerical results on set IV: the amount of problems solved to the accuracy tol by method M ,

i.e., with
|ΘM−ΘB |
|ΘB |

≤ tol and the average computing time. For some polynomials from this set the

refined TSSOS method with some parameter values τ generates an infeasible SDP relaxation. The
amount of such problems is given in column Nu.

M
(8, 8, 2, 4, 8, 4) (8, 8, 4, 6, 8, 4)

tol
time Nu

tol
time Nu0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 14 20 40 59 3.96 0 20 31 56 76 6.40 0
c2 51 57 71 78 37.45 0 65 75 93 98 350.84 0
t1 90 92 98 100 91.90 0 88 90 94 97 309.98 0
0.4 27 36 63 74 5.34 5 47 55 73 84 8.89 3
0.45 29 41 65 77 5.69 5 54 61 77 84 11.26 3
0.5 29 42 65 77 6.11 5 56 62 77 87 12.72 3
0.55 45 53 75 81 10.24 3 68 75 87 93 21.86 1
0.6 45 53 75 81 10.23 3 70 76 88 92 30.60 1
0.65 53 61 81 88 16.66 2 73 77 89 94 48.66 1
0.7 61 69 88 95 28.35 0 77 80 89 95 71.72 1
0.75 68 73 91 96 35.53 0 77 82 91 96 99.77 1

Table 10
Numerical results for the chordal (c1 and c2), block (t1) and refined TSSOS with different

parameter values τ0 = τ1 = τ , τ ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 } in the constrained case with
K := {(x1, . . . , xn) ∈ Rn | g1 = 25− (x2

1 + · · ·+ x2
n) ≥ 0}, the amount of problems not solved within

the time limit is given in column Nu.

M
n = 8, d = 4, s = 21, d̂ = 4 n = 9, d = 4, s = 21, d̂ = 4

tol
time Nu

tol
time Nu0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 53 61 82 90 2.13 0 64 71 90 98 2.35 0
c2 98 99 100 100 122.79 0 99 99 100 100 287.51 0
t1 100 100 100 100 68.61 0 100 100 100 100 175.58 0
0.1 44 46 65 80 2.61 0 73 76 88 92 3.28 0
0.2 58 60 75 87 2.83 0 73 75 85 91 3.35 0
0.3 67 70 84 89 3.77 0 78 80 89 94 3.90 0
0.4 84 86 91 97 6.08 0 81 82 90 95 5.76 0
0.5 92 95 95 99 10.80 0 87 90 94 96 8.00 0
0.6 98 99 100 100 30.33 0 93 94 97 98 17.18 0
0.7 100 100 100 100 45.04 0 99 99 100 100 34.36 0

M
n = 9, d = 4, s = 23, d̂ = 4 n = 10, d = 4, s = 23, d̂ = 4

tol
time Nu

tol
time Nu0.001 0.01 0.1 0.25 0.001 0.01 0.1 0.25

c1 35 38 63 78 3.22 0 51 58 80 92 3.73 0
c2 97 99 100 100 914.31 0 96 96 97 97 862.79 2
t1 100 100 100 100 258.63 0 100 100 100 100 432.98 0
0.1 48 49 67 77 4.17 0 61 64 81 87 4.96 0
0.2 50 51 71 84 4.48 0 63 64 81 88 5.30 0
0.3 57 58 76 84 6.06 0 66 69 82 89 6.10 0
0.4 69 75 86 92 8.93 0 70 72 85 91 7.91 0
0.5 84 87 94 97 16.20 0 80 82 93 95 11.10 0
0.6 94 97 100 100 45.66 0 87 87 96 96 31.40 0
0.7 98 100 100 100 96.83 0 96 97 99 99 58.31 0
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Fig. 7. Numerical results on polynomials from set I for the chordal (c1 and c2), block (t1) and
refined TSSOS with different parameter values τ0 = τ1 = τ , τ ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 } with

K := {(x1, . . . , xn) ∈ Rn | g1 = 25 − (x2
1 + · · · + x2

n) ≥ 0} the relaxation order d̂ = 4: plots in
column 1 show the fraction of 100 problems solved to a certain accuracy by method M , i.e., with
|ΘM−ΘB |
|ΘB |

≤ tol, the ratio of CPU time for method M to CPU time of TSSOS (k = 1), i.e., TM/Tt1,

averaged over 100 problems is depicted in column 2, box plots showing the spread of values TM/Tt1
are given in column 3, where the central mark indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. Note that the CPU time limit for the
SDP solver is 5000 seconds. If for some problem the solver fails to terminate within this time on a
relaxation produced by method M , this problem is considered to be unsolved by this method.

[18] J. Wang, V. Magron, and J.-B. Lasserre, TSSOS: A Moment-SOS Hierarchy That Ex-
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