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We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where

historical observations of random demands and disruptions are available. Owing to the combinatorial opti-

mization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-

of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions, or

become computationally prohibitive for large- or even moderate-size problems. In this paper, we address

the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism

with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs

plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a

probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator.

The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the

training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee

for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of

our approach when facing data with covariate information. Numerical results demonstrate that our model

significantly outperforms several important RFL models with respect to both in-sample and out-of-sample

performances as well as computational efficiency.
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History :

1. Introduction

Since 2020, we have been witnessing the frequent and drastic turbulence on supply chains caused

by natural disasters and social disorders. In February, 2021, Winter Storm Uri hit North America,

paralyzed the electricity system of Texas, and disrupted supply chains in many industries such as

grocery retail. During the storm, many people grasped for the most basic of needs, as the extreme

weather disturbed the balance between supply and demand of essential goods. Notably, grocery

retailers were unable to receive shipments of food (Kapadia 2021), and some of them had to throw

out refrigerated items due to days of power outages (Speare-Cole 2021). On the other hand, stores

were overwhelmed by soaring demand, as families rushed to stock up on the household essentials
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to survive in the dire situation (Ledbetter 2021). After experiencing the extreme weather, it is

more crucial than ever for companies to revamp their supply chains to be better-prepared for the

upheavals in both supply and demand, under the risk of potential disruptions.

The reliable facility location (RFL) problem is one of the most important reliable supply chain

design problems, and has been extensively studied in the area of operations research and manage-

ment science (e.g., Snyder and Daskin 2005, Cui et al. 2010, Lu et al. 2015, Li et al. 2022). The

RFL problem focuses on the design of both reliable and cost-efficient supply networks to strike a

balance between normal operational efficiency and emergency service quality, in the face of random

disruptions and demands. In particular, normal operations such as locating facilities and shipping

products incur initial setup (or fixed) costs as well as routine transportation costs. When facility

failures occur due to disruptions, customers either are reassigned to survived facilities that may

require higher transportation costs, or experience service outages, which incur penalty costs reflect-

ing the service level. The RFL problem seeks the optimal contingency plan by determining facility

locations and customer assignments before the realization of disruptions and demands, in order to

minimize the expected overall network cost.

Addressing RFL problems in a data-driven setting is an important research question. As the

joint probability distribution of random disruptions and demands is usually unknown in practice,

the distributional information exploited from data is critical to contingency planning. For example,

before Hurricane Patricia hit Mexico’s coastline in 2015, IBM had received the forecast made by

the AI Watson using huge troves of weather and location data, and avoided catastrophic damages

by rerouting the inbound shipments of a production center in Guadalajara to the backups in the

US (Banker 2016). Nonetheless, most of the existing RFL models–namely, stochastic models (e.g.,

Snyder and Daskin 2005, Cui et al. 2010, Xie et al. 2019) and robust optimization models (e.g.,

An et al. 2014, Lu et al. 2015, Li et al. 2022)–often become restrictive in a data-driven setting, as

they rely on exact partial or even complete information of the data-generating distribution, which

is difficult to obtain in practice. Moreover, for computational tractability, demand uncertainty is

either ignored (e.g., Snyder and Daskin 2005, Cui et al. 2010, Lu et al. 2015) or only considered in a

stylized form (e.g., An et al. 2014, Li et al. 2022), which can be limiting in real-world applications.

The key to data-driven RFL problem is to reasonably approximate the unknown true expected

network cost in the objective function of the RFL problem, based on historical data of disruptions

and demands. A natural approach to this end is the well-known sample average approximation

(SAA), which estimates the true expected network cost by its sample mean. The SAA approach

is shown to be asymptotically optimal under some mild assumptions, as its optimal value and
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optimal solutions will converge almost surely to their counterparts of the underlying RFL problem

as the size of the data set tends to infinity (Kleywegt et al. 2002). However, one might need an

impractically large data set to reach such optimality. Even if a sufficiently large data set were

available, solving the SAA RFL model exactly would be prohibitive, as it is equivalent to solving a

mixed-integer linear program (MILP) that scales in the size of the data set. In the event that only

limited historical data can be acquired, the SAA tends to significantly underestimate the optimal

value of the RFL problem (Xie 2020), and display a poor out-of-sample performance.

To improve the performance of SAA, a recent approach is to apply the (type-∞) Wasserstein

distributionally robust optimization (DRO) framework to the RFL problem (Xie 2020). The objec-

tive of this framework is to minimize the expected network cost under a probability distribution

adversarially chosen from a neighborhood of the empirical distribution1. The neighborhood, termed

as the Wasserstein ambiguity set, consists of probability distributions whose distance from the

empirical distribution, measured by the type-∞ Wasserstein metric, is below a given threshold.

The Wasserstein DRO approach not only is asymptotically optimal, but also improves the SAA

estimation of the optimal value of the RFL problem with limited data. However, the pitfalls of this

approach are twofold. For one, it retains the same level of scalability of the SAA approach, which

leads to high computational cost when facing a large data set. Moreover, our results show that in

situations with relatively small data sets, the solution of the Wasserstein DRO RFL model can be

overly conservative, and thus too expensive to implement in practice (Section 5.1.1).

In this paper, we investigate an alternative data-driven approach to the RFL problem that

aims to achieve significant improvements on existing RFL models in both computational efficiency

and statistical performance. Our approach stems from the Kolmogorov DRO framework (Luo

and Mehrotra 2020), which is close in spirit to the Wasserstein DRO but uses the Kolmogorov

metric (instead of the Wasserstein one) to measure the distance between probability distributions.

However, when applied to the RFL problem directly, the Kolmogorov DRO yields an intractable

estimator of the true expected network cost (Proposition 1). By contrast, we approximate the true

expected network cost by using a tractable probabilistic upper bound (PUB) on the Kolmogorov

DRO estimator. Our model is guaranteed to be asymptotically optimal, and admits an MILP

formulation with attractive scalability. We also provide a theoretical finite sample performance

guarantee that can help improve the out-of-sample performance of our data-driven RFL design.

Below we summarize our main results in greater detail:

• A novel data-driven approach to the RFL problem: We address the RFL problem in

a generic setting where both disruptions and demands are random and governed by an unknown
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joint distribution. By using historical observations of disruptions and demands, we construct a

novel PUB estimator to approximate the objective function of the RFL problem (Definition 2).

In particular, the PUB estimator is derived by exploiting the unique structure of a cumulative

distribution function (CDF)-based representation of the Kolmogorov DRO estimator, where the

decision variable is the CDF of probability distributions, and the objective function is a linear

functional of the CDF (Lemma 2). In contrast to the intractable Kolmogorov DRO estimator, the

PUB estimator has an analytical form which can be evaluated in polynomial time (Lemma 3). The

data-driven RFL design is then obtained by minimizing the PUB estimator.

• Solution algorithm: We show that the PUB estimator is supermodular as a function of

the facility location decisions (Lemma 3). This leads to an MILP formulation of our data-driven

RFL model where the number of decision variables and constraints does not scale in the number

of data points (Theorem 1). We develop a constraint generation algorithm that can solve the

MILP formulation to optimality within practically reasonable time even when facing large networks

and large data sets. Numerical results show that our algorithm achieves superior computational

efficiency, compared with previous RFL models (Section 5.2).

• Theoretical justification: We present theoretical performance guarantees for our data-

driven RFL model. First, our approach is guaranteed to be asymptotically optimal (Theorem 2).

That is, under some mild assumptions, the optimal value and optimal solutions of our model will

converge almost surely to their counterparts of the RFL problem as more data are obtained. Sec-

ond, in situations where only limited data are available, the optimal value of our model will upper

bound the true expected network cost incurred by the data-driven RFL design with high proba-

bility (Theorem 3). In addition, we provide a practical approach that can efficiently determine the

parameters for our model to yield cost-efficient solutions.

• An extension that incorporates covariate information: Our data-driven RFL model can

be further extended to incorporate covariate information, which, if available, can indicate valuable

information of network uncertainty. To our knowledge, the RFL problem with covariate information

has drawn little attention from literature. We construct a generalized PUB estimator based on an

event-wise extension of the Kolmogorov DRO estimator, and provide a generalized version of our

previous theoretical results (Theorem 4). We believe that our approach offers a promising step

toward new data-driven approaches to a broader class of supply chain design problems.

1.1. Related Literature

Coping with supply chain disruptions has drawn unprecedented attention from academia, while a

rich body of mitigation strategies has been proposed in the literature. Snyder et al. (2016) provide
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a comprehensive review of the literature on supply chain disruptions and mitigation strategies.

According to their classification, existing disruption mitigation models fall into four major cate-

gories: (i) inventory models (e.g., Qi et al. 2009), (ii) sourcing and demand flexibility models (e.g.,

Shen et al. 2019), (iii) RFL models, and (iv) game models (e.g., Yang et al. 2009). This paper only

reviews the classical results and recent progresses in the RFL literature; for a detailed survey of the

other three categories, please refer to Snyder et al. (2016). In addition, we provide a brief review

of the related DRO studies.

We focus on two fast-growing streams of RFL models in the literature, namely, stochastic models

and robust optimization models. Stochastic models assume to have the knowledge of the complete

disruption distribution, i.e., either independent known marginal distributions (e.g., Snyder and

Daskin 2005, Cui et al. 2010), or mass probabilities for all possible scenarios (Xie et al. 2019), to

minimize the expectation of the overall network cost. In contrast, most of the robust optimization

models leverage limited marginal information of disruptions, such as the maximum number of

simultaneous disruptions (e.g., Church and Scaparra 2007, An et al. 2014, Cheng et al. 2018, 2021),

or moment information of disruption probabilities (Lu et al. 2015, Li et al. 2022). Their objective

is usually minimizing the overall cost incurred in the worst-case scenario, given partial information

of the disruption probability distribution.

A major limitation of the stochastic model is that the formulation relies heavily on a specific

structure of the disruption distribution. For example, the implicit formulation models, termed by

Lu et al. (2015), use the so-called “transitional probability” equations as constraints to denote the

probability of a customer to be served by a facility; see, for example, Snyder and Daskin (2005),

Berman et al. (2007), Cui et al. (2010), Chen et al. (2011), Shen et al. (2011), Aboolian et al.

(2013), Zhang et al. (2016). However, the “transitional probability” equations only hold by assum-

ing independent disruptions. Efforts have been made to relax this assumption. Xie et al. (2019)

convert the facility network under correlated disruptions to an equivalent virtual station network

with independent station disruptions. This enables an implicit formulation with transitional equa-

tions on the virtual station network. Nonetheless, if the disruptions are not subject to the “local”

correlations (i.e., correlations restricted within several local areas), the transformed virtual network

will potentially include an exponential number of supporting stations (Xie et al. 2015), leading

to a computationally prohibitive model. Another method to tackle non-independent disruptions

is the continuous approximation approach (Li and Ouyang 2010, Lim et al. 2013). However, this

approach may imply opposite or deviated results compared with discrete location models, which
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are more suitable for capturing real-world supply chain design problems (Lu et al. 2015). Further-

more, the stochastic model requires an accurate estimation of the joint distribution of disruptions

and demands, which can be challenging to obtain in practice.

Robust optimization models are designed for situations where only limited disruption information

is available, and concerned with the worst-case disruption scenario. For instance, the interdiction

median models, e.g., Church and Scaparra (2007), Liberatore et al. (2012), An et al. (2014), Cheng

et al. (2018, 2021), design reliable networks under the adversarial attacks disrupting up to a certain

number of facilities; the moment-based DRO model (Lu et al. 2015) and its variant (Li et al. 2022)

introduce ambiguity sets constructed by given marginal or higher-order moments of the disrup-

tion probability distribution. Nonetheless, limited discussions are provided to address the over-

conservatism of their solutions, which is a major criticism of robust optimization models. Efforts

have been made by Lu et al. (2015), who consider a weighted-average objective function combining

a robust optimization model and a traditional facility location model with no disruption, and Li

et al. (2022), who use higher-order distributional information such as cross-moments to downsize

the ambiguity set. However, the effectiveness of their approaches is only tested numerically, whereas

few theoretical performance guarantees are provided for their applications to data-driven problems.

Recently, a data-driven RFL model built by Xie (2020) applies the type-∞ Wasserstein DRO

framework, whose performance guarantees can be found in Bertsimas et al. (2022). Xie (2020)

derives an MILP formulation of the data-driven RFL model with variables growing linearly with

the size of data. This formulation, analogous to the SAA approach, will become computationally

expensive as when applied to large networks and data sets. In addition, it is known that the

conservatism of the type-∞Wasserstein DRO framework can be adjusted by varying the size of the

ambiguity set. However, as is shown in our numerical results, when applied to the RFL problem,

there are situations where the type-∞Wasserstein DRO model may fail to achieve low conservatism

if a certain performance guarantee is required.

The type-∞Wasserstein DRO falls into the category of the metric-based DRO, where the objec-

tive is to find a solution that achieves some goal under the worst-case distribution, chosen from a

set of distributions close to a reference distribution (e.g., the empirical distribution) with respect

to a statistical metric. Alternative statistical metrics in the metric-based DRO literature include

Prokhorov metric (Erdoğan and Iyengar 2006), φ−divergence (Ben-Tal et al. 2013, Hu and Hong

2013, Bayraksan and Love 2015, Jiang and Guan 2016), type-p Wasserstein metric (Pflug and Woz-

abal 2007, Wozabal 2012, Esfahani and Kuhn 2018) with p∈ [1,∞), Kolmogorov metric (Lim et al.

2006, Bertsimas et al. 2018a,b, Luo and Mehrotra 2020) among others. However, when applied
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to the NP-hard RFL problem, the major bottleneck of the metric-based DRO is the prohibitive

computational cost required to achieve a satisfactory performance. In the context of the RFL prob-

lem, the type-∞ Wasserstein DRO is possibly state-of-the-art in computational efficiency among

all metric-based DRO approaches studied to date.

By contrast, we present a data-driven approach outside the scope of, albeit closely related to,

the metric-based DRO to address the RFL problem. Our approach not only retains (and even

improves) the attractive statistical performance of the Wasserstein DRO, but also offers significant

computational benefits. In addition, our approach allows the flexibility of efficiently incorporating

covariate information to aid data-driven RFL design, which is a novel feature contributed to the

RFL literature.

1.2. Organization and Notation

The remainder of this paper is organized as follows. In Section 2, we present our data-driven

approach to the RFL problem, including preliminary results related to the Kolmogorov DRO, and

the derivation of our PUB estimator. In Section 3, we analyze the structural properties of our

model, and provide a constraint generation solution algorithm. In Section 4, we prove finite sample

guarantees and asymptotic optimality of our data-driven approach. In Section 5, we conduct a

thorough comparison of the numerical performance between our model and several important RFL

models. In Section 6, we present an extension of our model by incorporating the covariate informa-

tion. In Section 7, we summarize this paper. The proofs of all statements, several supplementary

results and the psuedocode of algorithms are provided in the online appendix.

Notation. We denote by R, R−, R+ and N the sets of real numbers, non-positive real num-

bers, non-negative real numbers, and positive integers, respectively. Let [n] denote the finite set

{0,1, . . . , n} for a non-negative integer n; in particular, let B the binary set [1] = {0,1}. If Ω is

a finite set, then 2Ω denotes the collection of all subsets of Ω. Let P{·}, F(·), and EP[·] denote a

probability measure, a CDF, and the expected value function under distribution P. Let I{·} be the

usual indicator function. Denote 1n and 0n as the n-dimensional vector of all ones and the one of

all zeros; for simplicity, we will omit the subscript n if their dimensions are clear according to the

context. Denote ein as the i-th standard unit vector in Rn; that is, an n-dimensional vector whose

i-th component is one while all others are zeros. We use a∧ b (or a∨ b) to denote the minimum (or

the maximum) value between a, b∈R, and a∧b (or a∨b) to denote the component-wise minimum

(or the component-wise maximum) vector between a,b∈Rn.
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2. Data-Driven Reliable Facility Location Model

We consider the problem of opening a subset of J candidate facilities to serve I customers. Let I

denote the customer set, and J the candidate facility set. For all i∈ I and j ∈J , let fj denote the

fixed cost of opening facility j, f = (fj)j∈J , and dij the distance between customer i and facility j

(or the unit transportation cost incurred by using facility j to serve customer). Define x= (xi)i∈I

as the facility location decision, where xj = 1 if facility j is opened, and xj = 0 otherwise.

The uncertainty in our problem is twofold. First, the facilities are under the risk of random

disruptions. Denote by ξ̃ = (ξ̃j)j∈J the disruption scenario, where ξ̃j = 0 if facility j is disrupted,

and ξ̃j = 1 if it is operational/not disrupted. Second, customer demands are random variables

that may be correlated with disruptions. For notational convenience, let −ζ̃ = (−ζ̃i)i∈I denote the

demand vector, where each random variable ζ̃i denotes the “negative” demand supported on a

bounded subset of R−. Define ω̃ := (ζ̃, ξ̃) as the network state vector, which is then supported on

a mixed-binary set Ω⊆RI−×BJ .

Given a facility location design x ∈ BJ and a realization ω ∈ Ω of the network state, either

each customer is served by an opened and operational facility, or the customer’s demand is lost.

Following the convention in the RFL literature (i.e., Cui et al. 2010, Lu et al. 2015), we use an

“emergency” facility j̄ /∈ J to denote an outside option for customers, and assign j̄ to customer

i if and only if customer i’s demand is lost. Let dij̄ denote the penalty cost of losing per unit of

customer i’s demand, and assume dij̄ ≥ dij for all i ∈ I and j ∈ J . In addition, we assume that

facility j̄ is always opened and operational, i.e., xj̄ ≡ 1 and ξ̃j̄ ≡ 1, and let fj̄ = 0 and J =J ∪{j̄}.

Then the operating cost, defined as the total transportation and penalty cost to serve customers,

is given by

φ(x,ω) := min
y

∑
i∈I

∑
j∈J

(−ζi)dijyij

∣∣∣∣∣∣
∑

j∈J yij = 1 ∀i∈ I
yij ≤ xjξj ∀i∈ I,∀j ∈J
y ∈RI(J+1)

+

=
∑
i∈I

(−ζi) min
j∈J :xjξj=1

dij. (1)

Let P? ∈ P(Ω) be the true probability distribution of the network state vector ω̃, where P(Ω)

denotes the set of probability distributions supported on Ω. The RFL problem is defined as the

following stochastic program that minimizes the fixed cost of locating facilities plus the expected

operating cost under distribution P?:

z? := min
x∈BJ

{
Z?(x) := f ᵀx+ Φ?(x)

∣∣∣Φ?(x) :=EP? [φ(x, ω̃)]
}
. (RFL)

Nonetheless, in most cases of practical interest, we do not precisely know the distribution P?,

so that Problem (RFL) cannot be solved exactly. Instead, we often have past realizations of the
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network state vector ω̃ which contain partial information of the true distribution P?. To be specific,

assume that we have N samples ω̂n ∈Ω, n∈N := {1,2, . . . ,N}, that are independently drawn from

the true distribution P?. Let ŜN := {ω̂n}n∈N ⊆Ω denote the training data set. We then consider to

obtain a data-driven RFL design for Problem (RFL) by solving the following problem

ẑN := min
x∈BJ

f ᵀx+ Φ̂N(x), (DD-RFL)

where Φ̂N(x) is an estimator constructed from ŜN to approximate the true expected operating cost

function Φ?(x).

In this paper, we propose a novel estimator Φ̂N(x) of the true expected operating cost function

such that the optimal value ẑN and any optimal solution x̂N of Problem (DD-RFL) satisfy the

following conditions:

(C1) Computational efficiency: For any given x∈BJ , the value of Φ̂N(x) can be obtained in time

that is linear in the size of the data set N and polynomial in the size of the problem. In

addition, the operating cost function Φ̂N(x) is equipped with favorable structural properties,

which facilitate a computationally efficient solution algorithm.

(C2) Asymptotic optimality: Provided that N →∞ as more data are obtained, the optimal value

ẑN and an optimal solution x̂N of Problem (DD-RFL) respectively converge to the optimal

value z? and an optimal solution x? of Problem (RFL) almost surely.

(C3) Finite sample guarantee: With probability at least 1−β, a data set ŜN is sampled such that

Φ?(x̂N)≤ ẑN , for the optimal value ẑN and any optimal solution x̂N of Problem (DD-RFL).

For the combinatorial optimization problem (DD-RFL), the computational efficiency in practice

can substantially affect the empirical performance of the obtained solutions. For instance, consider

an estimator with which the optimal solution x̂N and the optimal value ẑN of Problem (DD-RFL)

satisfy properties (C2) and (C3), but are difficult to obtain in a practically reasonable time. Then

in practice, we can only expect to derive some heuristic solution x̂′N of Problem (DD-RFL) and

its objective value ẑ′N , which do not necessarily provide good approximation of the true optimal

solution x? and optimal value z? (even though x̂N and ẑN do). Therefore, incorporating property

(C1) in addition to properties (C2) and (C3) is critical to the development of data-driven approaches

for the RFL problem, and is one of the distinguishable features of our work.

The remainder of this section will focus on the derivation of Φ̂N(x). We discuss structural

properties, complexity results and the solution algorithm related to (C1) in Section 3. The rigorous

analysis of properties (C2) and (C3) will be provided in Section 4. To begin the derivation of

Φ̂N(x), we first present several preliminary results concerning the Kolmogorov DRO RFL model

that are closely related to our approach.
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2.1. Preliminaries

In the context of the RFL problem, the Kolmogorov DRO model selects a facility location design

that minimizes the expected total cost under the distribution chosen by an adversary from the

Kolmogorov ambiguity set. Here the Kolmogorov ambiguity set contains all distributions close to

the empirical distribution with respect to the Kolmogorov metric, whose definition is presented as

follows.

Definition 1 (Kolmogorov Metric). Let P(Θ) be the set of all probability distributions

supported on Θ⊆Rm. The Kolmogorov metric K :P(Θ)×P(Θ)→ [0,1] is defined by

K (P1,P2) := sup
θ∈Rm

|P1{(−∞,θ]}−P2{(−∞,θ]}|= ‖F1−F2‖∞,

for all distributions P1,P2 ∈P(Θ), where Fk(θ) := Pk{(−∞,θ]} denotes the cumulative distribution

function (CDF) of Pk for k ∈ {1,2}.

The intuition is that the Kolmogorov metric measures the distance between two distributions by

using the largest absolute difference between their CDFs across all values in their support.

Let P̂N := 1
N

∑
n∈N δω̂n ∈P(Ω) denote the empirical probability distribution, where δω̂n denotes

the unit mass on ω̂n. Then the Kolmogorov DRO model generates data-driven RFL designs by

solving

ẑK
N := min

x∈BJ

{
ẐK
N(x) := f ᵀx+ Φ̂K

N(x)

∣∣∣∣∣Φ̂K
N(x) := sup

P∈P̂K
N

EP [φ(x, ω̃)]

}
, (KDRO-RFL)

where P̂K
N := {P ∈ P(Ω) : K (P, P̂N) ≤ εN} is the Kolmogorov ambiguity set with εN ∈ [0,1], and

Φ̂K
N(x) is the Kolmogorov DRO estimator of the true operating cost function. The Kolmogorov

metric enjoys the following measure concentration result, which implies a finite sample performance

guarantee for Problem (KDRO-RFL)2.

Lemma 1 (Measure Concentration, Naaman 2021). For any given ε > 0, N ≥ 1, let Θ̂N =

{θ̂n}n∈{1,2,...,N} ⊆Rm be a set of m-dimensional i.i.d. samples, each governed by distribution P. Let

P̂N be the empirical distribution produced by Θ̂N . Then we have

PΘ̂N

{
K (P, P̂N)> ε

}
≤m(N + 1)exp (−2Nε2). (2)

Unfortunately, Problem (KDRO-RFL) is challenging to solve exactly. Indeed, even evaluating

Φ̂K
N(x) for any given x is computationally demanding. The following proposition provides a method

to evaluate Φ̂K
N(x) when customer demands are continuous and bounded.

Proposition 1. Suppose ζ̃ is continuous and Ω ⊆ [ζ,0]× BJ for some ζ ∈ RI−. Then Φ̂K
N(x)

equals the optimal value of a linear program with O(NJ2I) decision variables and constraints.
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The details of the formulation for Φ̂K
N(x) are provided in the proof of Proposition 1. To

demonstrate the scale of this formulation, consider a small-scale problem instance with 10 cus-

tomers/candidate locations and 10 samples. Then Φ̂K
N(x) is the optimal value of a linear program

with approximately 1013 variables and constraints. Recognizing the intractability of Φ̂K
N(x), we are

thus motivated to develop a tractable surrogate for Φ̂K
N(x) that preserves the attractive properties

of the Kolmogorov DRO.

2.2. Our Approach

Our approach stems from an alternative formulation of Φ̂K
N(x). We first observe from Definition 1

that the Kolmogorov metric can be represented in a cleaner format in terms of CDFs rather than

the probability measures. Thus we consider to reformulate Φ̂K
N(x) as an equivalent optimization

problem where decision variables are CDFs. For expositional convenience, we define the following

notation. For any subset X ⊆ J and vector ξ ∈RJ , define ξ(X ) := (ξj)j∈X . Let F(Ω) denotes the

set of CDFs supported on Ω. Given a CDF F ∈ F(Ω), i ∈ I, and X ⊆J , let Fi,X be the marginal

CDF of random variables ζ̃i and ξ̃(X ). Then we have P ∈ PK
N if and only if F, the CDF of P, is a

member of

F̂K
N :=

{
F∈F(Ω)

∣∣∣∥∥∥F− F̂N
∥∥∥
∞
≤ εN

}
, (3)

where F̂N denotes the empirical CDF.

Next we reformulate the objective function EP[φ(x, ω̃)] as a function of F. Let X := {j ∈ J :

xj = 1} and X := X ∪ {j̄}. By (1), the operating cost φ(x,ω) can be decomposed as φ(x,ω) =∑
i∈I φi(x,ω), where φi(x,ω) := (−ζi)minj∈X :ξj=1 dij represents the operating cost incurred by

serving customer i. For each i ∈ I, we rearrange the facilities in X as a sequence of facilities

j(0), j(1), . . . , j(|X |) in an increasing order of the distance to customer i; that is, dij(0) ≤ dij(1) ≤ · · · ≤

dij(|X|)(= dij̄). We then define a random index r̃∗i := min{r ∈ [|X |] : ξ̃j(r) = 1}, so that j(r̃∗i ) denotes

the operational facility in X that is the closest to customer i. Thus we have

φi(x, ω̃) = (−ζ̃i)dij(r̃∗
i
)
, (4)

which leads to the following description of the expected value EP[φi(x, ω̃)].

Lemma 2 (CDF-Based Representation of Expected Operating Cost). Let x be any

given facility location design, X := {j ∈ J : xj = 1} and X := X ∪ {j̄}. For each i ∈ I, let

j(0), j(1), . . . , j(|X |) be a permutation of facilities in X in an increasing order of the distance to cus-

tomer i. Then, for any given distribution P∈P(Ω) with CDF F∈F(Ω), we have

EP[φi(x, ω̃)] =

|X |∑
r=0

(∆d)ir

∫
Ωi

Fi,X
r−1
i (ζ,0r)dζ (5)
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where (∆d)ir := dij(r) − dij(r−1)
, dij(−1)

:= 0, X r
i := {j(0), j(1), . . . , j(r)}, X−1

i := ∅, and Ωi := [ζ
i
,0] is

the support of ζ̃i.

An important implication of Lemma 2 is that for any given subset of facilities assigned to

a customer, the optimal way of determining their backup levels only depends on the distances

(or the transportation costs) from the customer to these facilities, regardless of their disrup-

tion risks. In particular, if facilities in X ∪ {j} are assigned to customer i, the optimal service

rule suggests to assign the r-th closest facility j(r) to serve the customer only if no closer facil-

ities j(0), j(1), . . . , j(r−1) are operational. The optimal expected operating cost is then equal to∑|X |
r=0

∑
ζi

(−ζi)dij(r)P
{
ζ̃i = ζi, r̃

∗
i = r

}
, whose CDF-based form is given by the right hand side of

Equation (5). This is referred to as the distance-based service rule, whose optimality was only

proved under the assumption of independent disruptions and deterministic demands (Snyder and

Daskin 2005, Cui et al. 2010), and seemed to fail if certain correlation is incorporated into disrup-

tions, e.g., under the “worst case disruption distribution” proposed by Lu et al. (2015). Nonetheless,

Lemma 2 extends the optimality of the distance-based service rule to the case where disruptions

and demands can be generally correlated, and thus reconciles the seemingly controversial results

in previous RFL works. In Online Appendix EC.2, we show the optimality of the distance-based

service rule under correlated disruptions as considered in Lu et al. (2015).

Having obtained the CDF-based ambiguity set (3) and the CDF-based objective function

(Lemma 2), we shall now present a CDF-based formulation for Φ̂K
N(x), which further implies a

tractable upper bound. In particular, we have

Φ̂K
N(x) = sup

F∈F̂K
N

∑
i∈I

|X|∑
r=0

(∆d)ir

∫
Ωi

Fi,X
r−1
i (ζ,0r)dζ (6)

≤
∑
i∈I

|X|∑
r=0

(∆d)ir

∫
Ωi

(
(F̂i,X

r−1
i

N (ζ,0r) + εN)∧ 1

)
dζ, (7)

where the CDF-based formulation (6) of the Kolmogorov estimator follows from (3) and Lemma 2,

and the inequality holds because ‖F− F̂N‖∞ ≤ εN and ‖F‖∞ ≤ 1 for all F ∈ F̂K
N , and (∆d)ir ≥ 0.

Indeed, the equality between (6) and (7) does not necessarily hold, as there might not exist a CDF

in F̂K
N whose marginal in (ζ̃i, ξ̃(X r

i )) equals (F̂i,X
r
i

N + εN)∧ 1 for all i and r. One can thus view (7)

as the upper bound obtained by solving a relaxation of Problem (6) which replaces the constraint

F∈F(Ω) with a looser one ‖F‖∞ ≤ 1.

Nonetheless, the upper bound (7) is not suitable for data-driven models, as the support Ωi of

each ζ̃i is usually unknown. By replacing each Ωi in (7) with a data-driven support [ζ̂
(1)
i , ζ̂

(N)
i ], where
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ζ̂
(1)
i := min{ζ̂ni : n ∈ {1,2, . . . ,N}} and ζ̂

(N)
i := max{ζ̂ni : n ∈ {1,2, . . . ,N}}, we obtain a surrogate

upper bound as follows:

(7)≈
∑
i∈I

|X|∑
r=0

(∆d)ir

∫ ζ̂
(N)
i

ζ̂
(1)
i

(
F̂i,X

r−1
i

N (ζ,0r) + εN

)
∧ 1 dζ (8)

≤
∑
i∈I

|X|∑
r=0

(∆d)ir

(∫ ζ̂i,1−εN

ζ̂
(1)
i

(
F̂i,X

r−1
i

N (ζ,0r) + εN

)
dζ +

∫ ζ̂
(N)
i

ζ̂i,1−εN

dζ

)

=
∑
i∈I

|X|∑
r=0

(∆d)ir

∫ ζ̂i,1−εN

ζ̂
(1)
i

F̂i,X
r−1
i

N (ζ,0r)dζ +
∑
i∈I

dijλ̂i,εN , (9)

where ζ̂i,1−εN := sup{ζ ∈ [ζ̂
(1)
i , ζ̂

(N)
i ] : F̂iN(ζ)≤ 1− εN},

λ̂i,εN := ζ̂
(N)
i − ζ̂i,1−εN (1− εN)− εN ζ̂(1)

i ,
(10)

and the inequality follows from the definition of ζ̂i,1−εN and that F̂i,XN (ζ,0|X |)+ εN ≤ F̂iN(ζ)+ εN ≤ 1

for all ζ ∈ [ζ̂
(1)
i , ζ̂i,1−εN ] and any given X ⊆ J . Note that (9) is not a strict upper bound but

rather a probabilistic upper bound (PUB) on Φ̂K
N(x), which will be rigorously proved in Lemma 5.

In addition, we call εN as the conservatism parameter of the PUB estimator. Analogous to the

Kolmorogov DRO estimator, a smaller εN suggests a less conservative PUB estimator of the true

expected operating cost. We then refer to the expression (9) as a PUB estimator, and formally

define it as follows.

Definition 2 (Probablistic Upper Bound Estimator). Given a facility location design

x∈BJ , a data set ŜN = {ω̂n = (ζ̂n, ξ̂n) : n∈ {1,2, . . . ,N}}, and a conservatism parameter εN ∈ [0,1],

the PUB estimator is defined as Φ̂N(x) :=
∑

i∈I
∑|X |

r=0(∆d)ir
∫ ζ̂i,1−εN
ζ̂
(1)
i

F̂i,X
r−1
i

N (ζ,0r)dζ+
∑

i∈I dijλ̂i,εN ,

where the definition of related notation can be found in Lemma 2 and (10).

In contrast to the Kolmogorov DRO estimator Φ̂K
N(x), which is implicitly defined by an optimiza-

tion problem, the PUB estimator Φ̂N(x) has an analytical form. This offers threefold advantages:

First, it is tractable to evaluate the value of Φ̂N(x) for any given facility location design x (see

Lemma 3 in Section 3). Second, the PUB estimator Φ̂N(x) preserves useful structural properties

of the true operating cost function Φ?(x), such as monotonicity and supermodularity (Lemma 3),

which facilitates efficient solutions (Section 3). Third, although Φ̂N(x) may be more conservative

than Φ̂K
N(x), the conservatism of Φ̂N(x) will disappear as more data are obtained. This is referred

to as the asymptotic optimality of Φ̂N(x), and will be discussed in Section 4. Moreover, even

when the number of samples are limited, using Φ̂N(x) to guide RFL designs is guaranteed to have

favorable out-of-sample performances (Section 4). In the remainder, we focus on describing results

concerning Problem (DD-RFL) with the PUB estimator Φ̂N(x) defined in Definition 2.
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3. Solution Algorithm

In this section, we provide tractability results for Problem (DD-RFL) with the PUB estimator.

Problem (DD-RFL) is an NP-hard problem, as it boils down to the NP-hard SAA version of the

RFL problem when εN = 0. Nonetheless, we can reformulate Problem (DD-RFL) as an MILP by

exploiting structural properties of Φ̂N(x), and develop a constraint generation algorithm to solve

it. Our results are based on the following properties of the PUB estimator Φ̂N(x).

Lemma 3 (Properties of Φ̂N(x)). The following assertions hold true:

(i) Given any x∈BJ , the value of Φ̂N(x) can be obtained in polynomial time.

(ii) Φ̂N(x) can be decomposed as Φ̂N(x) =
∑

i∈I Φ̂i,N(x), where each Φ̂i,N(x) :=∑|X |
r=0(∆d)ir

∫ ζ̂i,1−εN
ζ̂
(1)
i

F̂i,X
r−1
i

N (ζ,0r)dζ + dijλ̂i,εN is nonincreasing and supermodular3 in x.

By Assertion (ii) of Lemma 3, Problem (DD-RFL) can be rewritten as

ẑN = min
(x,γ)∈BJ×RI

{
f ᵀx+ 1ᵀγ : γi ≥ Φ̂i,N(x) for all i∈ I

}
. (11)

As each Φ̂i,N(x) is a nonincreasing supermodular function, the constraint γi ≥ Φ̂i,N(x) is equivalent

to a series of supermodular inequalities (see, e.g., lemma 1 of Nemhauser and Wolsey 1981). This

leads to the following MILP formulation.

Theorem 1 (Reformulation of Problem (DD-RFL)). Problem (DD-RFL) is equivalent to

the following MILP problem:

ẑN = min
(x,γ)∈BJ×RI

f ᵀx+ 1ᵀγ (12a)

s.t. γi ≥ Φ̂i,N(v) +
∑
j∈J

Φ̂i,N(j|v)xj ∀i∈ I, ∀v ∈BJ , (12b)

where Φ̂i,N(j|v) := Φ̂i,N(v ∨ejJ)− Φ̂i,N(v).

Problem (12) is an MILP with an exponential number of constraints, as the constraint (12b) is

enforced over BJ . It is noteworthy that the number of both decision variables and constraints of

Problem (12) does not scale in the number of data points4 N . Thus Problem (12) can be applied

to the setting of big data. A constraint generation algorithm is appropriate to solve this MILP.

Below we present the details of this algorithm.

To efficiently generate a feasible solution to Problem (12), we can instead solve a relaxation

where the constraint (12b) is enforced over a manageable subset Vi ⊂BJ for each i∈ I; that is, we

solve the following problem:

min
x∈BJ ,γ∈RI

{
f ᵀx+ 1ᵀγ

∣∣∣∣∣γi ≥ Φ̂i,N(v) +
∑
j∈J

Φ̂i,N(j|v)xj ∀i∈ I ∀v ∈ Vi

}
. (MP)
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Let x,γ be the incumbent solution. Thus the incumbent objective value f ᵀx + 1ᵀγ is a lower

bound on ẑN . To tighten the relaxation and obtain an improved bound, we can add a new vector

to each Vi (if necessary) and resolve Problem (MP). To identify such vector, for each i, we solve

the following subproblem:

max
v∈BJ

{
Φ̂i,N(v) +

∑
j∈J

Φ̂i,N(j|v)xj

}
. (SPi)

Although each subproblem (SPi) is a nonlinear integer problem, we can prove that it has a closed-

form solution by using the structural properties shown in Lemma 3.

Proposition 2 (Subproblem Solution). For each i ∈ I, the incumbent solution x and

Φ̂i,N(x) are an optimal solution and the optimal value of Problem (SPi). In addition, the optimal

value of Problem (SPi) can be obtained in polynomial time.

By Proposition 2, if γi ≥ Φ̂i,N(x) for all i∈ I, then it follows that γi ≥ Φ̂i,N(v)+
∑

j∈J Φ̂i,N(j|v)xj

for all i ∈ I and v ∈ BJ , and the incumbent solution is optimal to the original problem (12).

Otherwise, for those i with γi < Φ̂i,N(x), we add x to Vi to cut off the incumbent solution. We then

resolve Problem (MP), obtain a new solution x,γ, and start a new iteration of the algorithm. As

both BJ and I are finite sets, the algorithm will stop after a finite number of iterations. Below we

provide an outline of the constraint generation algorithm, whose computational performance will

be investigate in Section 5.

Initialization. Set Vi = {1J} for each i∈ I.

1. Solve Problem (MP) to obtain solution x,γ.

2. Set I ′ = {i∈ I : γi < Φ̂i,N(x)}.

3. If I ′ = ∅, terminate and return optimal facility location design x.

Else, set Vi←Vi ∪{x} for all i∈ I ′, and return to step 1.

4. Performance Guarantees

Having developed efficient algorithm for solving Problem (DD-RFL), we now investigate the per-

formance of the obtained data-driven RFL designs. We remark that although our approach is

developed by upper bounding the Kolmogorov DRO estimator Φ̂K
N , the focus of the analysis in

this section is on the gap between the PUB estimator Φ̂N and the true optimal expected operating

cost Φ? (rather than the gap between Φ̂N and Φ̂K
N), as Φ? is the primary goal that we intend to

approach. Our results are twofold: First, as more data are obtained, our approach can produce

data-driven solutions that are asymptotically optimal to the true RFL problem. Second, with finite

samples, we provide sufficient conditions for our approach to generate data-driven RFL designs
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whose out-of-sample cost can be bounded from above with high probability. In this section, we use

the notation x̂N and x? to denote the optimizers of Problems (DD-RFL) and (RFL), respectively.

4.1. Asymptotic Optimality

Essentially, Problem (DD-RFL) provides an approximation for the true RFL problem by using

limited information contained in the available data. However, provided that εN → 0 as more data

are obtained, it can be proved that the optimal cost and any optimal facility location design

generated by Problem (DD-RFL) will converge almost surely to those of the true RFL problem

(Theorem 2). This is referred to as the asymptotic optimality of Problem (DD-RFL). The practical

implication of this result is that any suboptimality of Problem (DD-RFL) disappears as long as

we have sufficient data.

Theorem 2 (Asymptotic Optimality of Problem (DD-RFL)). Let εN → 0 as N → ∞.

Then almost surely we have (i) ẑN → z? as N →∞, and (ii) any limit point of {x̂N}N∈N is an

optimal solution for Problem (RFL).

A key result to prove Theorem 2 is that we can construct both upper and lower bounds on

Φ̂N(x) by using the SAA operating cost

Φ̂SAA
N (x) :=

1

N

N∑
n=1

φ(x, ω̂n), (13)

which is asymptotically consistent with the true operating cost Φ?(x) (Kleywegt et al. 2002). We

highlight this result in the following lemma.

Lemma 4. Given any facility location design x∈BJ , we have that

φ
N
≤ Φ̂N(x)− Φ̂SAA

N (x)≤ φN ,

where {φ
N
}N∈N and {φN}N∈N are two sequences that both converge to 0 as N →∞.

By Lemma 4, Assertion (i) of Theorem 2 immediately follows by noting that φ
N
≤ ẑN− ẑSAA

N ≤ φN
and limN→∞ ẑ

SAA
N

a.s.
= z? (Kleywegt et al. 2002), where “a.s.” denotes “almost surely”. Then the

convergence result of {x̂N}N∈N presented in Assertion (ii) of Theorem 2 follows from Assertion (i)

by applying some well-known inequalities in the theory of limits.

4.2. Finite Sample Performance Guarantees

Next we focus on evaluating the performance of our data-driven RFL designs produced by using

a limited number of samples. Notably, we are concerned with the out-of-sample cost of the data-

driven RFL design x̂N , defined as Z?(x̂N) = f ᵀx̂N +EP? [φ(x̂N , ω̃)], the expected total cost under
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a new sample independent of the training data set. However, the exact value of Z?(x̂N) cannot be

computed because P? is unknown. We are thus hope to bound the out-of-sample cost Z?(x̂N) from

above based on the training data set. In particular, we demonstrate a finite sample guarantee that

the optimal value ẑN of Problem (DD-RFL), with a carefully chosen conservatism parameter, can

upper bound the out-of-sample cost of x̂N with high probability.

Recall that the training data set ŜN consists of N data points independently generated from

the true distribution P?. Thus, before its realization, the data set ŜN can be viewed as a random

“object” governed by the N -fold product distribution denoted by P?ŜN . Then, to retain mathemat-

ical rigor, our finite sample guarantee can be restated as follows: For any given β ∈ (0,1), there

exists an εN = εN(β) such that

P?ŜN {Z
?(x̂N)≤ ẑN} ≥ 1−β, (14)

where ẑN and x̂N are the optimal value and an optimizer of Problem (DD-RFL) with conservatism

parameter εN(β). In other words, ẑN provides a 1−β confidence upper bound on the out-of-sample

cost of x̂N . Note that similar bounds of type (14) are also used in the DRO literature for evaluating

different data-driven models (e.g., Esfahani and Kuhn 2018, Bertsimas et al. 2018a, Van Parys

et al. 2021). In (14), the parameter β ∈ (0,1) is termed as a significance parameter with respect

to the distribution P?ŜN , and the left-hand side of (14) is termed as the reliability of the optimal

value ẑN .

Before we proceed to prove that (14) holds for Problem (DD-RFL), we need the following lemma,

which shows that the PUB estimator can bound the Kolmogorov DRO estimator from above with

high probability.

Lemma 5. Assume that the probability distribution of each ζ̃i is supported on [ζ
i
,0] for some

ζ
i
∈R−, and the probability of the event ζ̃i = ζ is strictly positive for all ζ ∈ {ζ

i
,0} and i∈ I. Then

there exists ρ∈ (0,1) such that

P?ŜN
{

Φ̂N(x)≥ Φ̂K
N(x)

}
≥ 1− 2IρN ,

for any given x∈BJ and εN ∈ [0,1].

Combining the results of Lemma 5 and the previous measure concentration result (Lemma 1),

we obtain the following finite sample performance guarantee for Problem (DD-RFL).

Theorem 3 (Finite Sample Guarantee for Problem (DD-RFL)). Let the conditions of

Lemma 5 hold. Then there exists a constant ρ∈ (0,1) such that, for any given β ∈ (0,1), setting

εN(β) =

√
ln (2(I +J)(N + 1)β−1)

2N
∧ 1. (15)

implies the finite sample guarantee (14) for all N ≥ dln(β/4I)/ lnρe.
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Usually in practice, the parameter εN(β) given by (15) may be significantly larger than necessary

and thus yield overly conservative solutions. Note that the level of conservatism of ẑN reduces as

εN decreases. Given a data set Ŝ and a significance parameter β (or, equivalently, a performance

requirement 1−β), we can implement the following method to find the smallest ε̂(β) that achieves

reliability of at least 1− β. Below we use P̂Ŝ to denote the empirical distribution associated with

a data set Ŝ.

The algorithm is a combination of two procedures, namely, bootstrap and binary search. For

one, the algorithm independently bootstraps K training-test pairs from the original data set Ŝ,

where K is a pre-determined parameter. Here each training-test pair l ∈ {1,2, . . . ,L} consists of a

training data set Ŝ l, also termed as a resample, bootstrapped from Ŝ such that |Ŝ l|= |Ŝ|, and a test

data set S̃ l = Ŝ \ Ŝ l. For each l, we use the training data Ŝ to obtain the optimal value ẑl and the

optimal solution x̂l of Problem (DD-RFL), and the test data S̃ l to compute the out-of-sample cost

z̃l := f ᵀx̂l +EP̂S̃l [φ(x̂l, ω̃)] incurred by solution x̂l. Using the L training-test pairs, we can evaluate

whether a given radius ε ∈ [0,1] achieves the performance guarantee 1− β. That is, ε satisfies the

performance guarantee 1− β, if for at least d(1− β)Le training-test pairs, our model suggests an

optimal value that upper bounds the out-of-sample cost of its solution. Then, the algorithm applies

a binary search method to find the smallest radius ε̂(β) that satisfies the performance guarantee

1−β. The psuedocode of the proposed algorithm is presented in Algorithm 1 in Appendix EC.3.

5. Numerical Results

In this section, we demonstrate the practical value of using the PUB estimator in RFL design.

In particular, we analyze the effectiveness (Section 5.1) and computational efficiency (Section 5.2)

of our data-driven RFL model with the PUB estimator, compared with the following benchmark

RFL models:

1. Wass: The type-∞ Wasserstein DRO model of Xie (2020);

2. MM: The marginal moment-based RFL model of Lu et al. (2015);

3. CM: The cross moment-based RFL model used in the numerical experiments of Li et al.

(2022).

The subsequent experiments use the same network data set as in many RFL studies including

Snyder and Daskin (2005), Cui et al. (2010), Lu et al. (2015), and Li et al. (2022). This data

set contains information of facility locations, (deterministic) demand levels, fixed costs, and trans-

portation costs on networks based on the US map with up to 150 cities. Observations of random

demands and disruptions are generated synthetically. Details of the data-generating process as well

as other experiment settings will be discussed in the following. All the computational experiments
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are conducted using Gurobi 9.5 with Python API on an Ubuntu server equipped with 20 processors

and 40G RAM.

5.1. Effectiveness of the PUB Estimator

In this section, we conduct experiments to compare the performance of aforementioned models

when the size of the data set (of demands and disruptions) varies. All problem instances are based

on a fixed network with 10 locations of candidate facilities/customers. Problem instances on larger-

scale networks are presented in Section 5.2. We consider two types of demand distributions, namely,

high demand (denoted by H) and low demand (denoted by L), with different levels of expected

values. For a given number N , we generate N observations of the network state vector as follows.

We first generate N vectors ûn ∈RI+J , n∈ {1,2, . . . ,N}, independently drawn from a multivariate

normal distribution with mean 0 and a random covariance matrix5 Σ. Then we obtain N samples

of the network state vector ω̂n, n∈ {1,2, . . . ,N}, by

ζ̂ni =

{
−max{µi(ûni + 1.6),0} if H-type
−max{µi(ûni + 0.4),0} if L-type

and ξ̂nj = I
{
ûnI+j ≥ ρI+j,1/10

}
.

where µi is the demand at node i from the network data set, ρi,α is the α-quantile of the i-th

marginal distribution of the normal distribution N (0,Σ). In all benchmark models, Wass, CM,

and MM, we set the demand as d̂ni = −ζ̂ni . In addition, as suggested in Xie (2020), we use the

nomalized demand data d̂ni /maxn{d̂ni } ∈ [0,1] to ensure data consistency.

The remainder of the experiment settings is described as follows. Given the type of the underlying

distribution, we first generate a testing data set of size N out = 10000. Then for varying values of

N from 10 to 1000, we generate M = 100 training data sets of size N . For each training data set

s ∈ {1,2, . . . ,M}, we solve each model M ∈ {PUB,Wass,MM,CM} to obtain a facility location

design x̂M ,s
N and the associated objective value ẑM ,s

N . We then use the SAA cost of x̂M ,s
N over the

testing data set, defined by

Zout(x̂M ,s
N ) = f ᵀx̂M ,s

N +
1

N out

Nout∑
n=1

φ(x̂M ,s
N , ω̂out,n),

to estimate the out-of-sample cost of x̂M ,s
N . Furthermore, we solve the SAA RFL model for an

independent data set of size 106, and use its optimal value ẑ?(≈ z?) as the true optimum of the

RFL problem.

To evaluate the effectiveness, we compare each method M along the following metrics:

1. In-sample performance: The ratio of the average optimal value over the M training data

sets to the true optimum: M−1
∑M

s=1 ẑ
M ,s
N /ẑ?.
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2. Out-of-sample performance: The ratio of the average out-of-sample cost over the M train-

ing data sets to the true optimum: M−1
∑M

s=1Z
Out(x̂M ,s

N )/ẑ?.

3. Reliability: The percentage of realizations in the M training data sets for which the optimal

value does not underestimate the out-of-sample cost: M−1
∑M

s=1 I{ẑ
M ,s
N ≥ZOut(x̂M ,s

N )}.

5.1.1. PUB v.s. Wass. We first compare the performance between two data-driven RFL

models, i.e., PUB and Wass. The parameters of both models are determined by Algorithm 1 with

resample size L= 50, stopping criterion δ= 10−3, significance parameter β = 0.1, and computational

time limit T̄ = 750 seconds. We restrict the conservatism parameters of both models, εPUB
N and

εWass
N (the size of the Wasserstein ambiguity set), within [0,1]. This is because, by the formulation

of Xie (2020), Wass would suggest a trivial and overly-conservative solution x̂Wass
N = 0 (given any

data set) if setting εWass
N ≥ 1. Figure 1 summarizes the performance results for PUB and Wass under

both H-type and L-type underlying distributions.

In-sample performance. Figures 1a and 1d illustrate the attractive in-sample performance of

PUB, which is sufficiently close to the true optimum of the RFL problem, compared with the one of

Wass. More interestingly, we observe significant gaps between the in-sample performance of Wass

and the true optimum in both small-sample (N ≤ 25 under H and N = 10 under L) and large-

sample (N ≥ 100) scenarios. In the small-sample scenario, owing to the limited number of training

data, we find that there is a noticeable chance of an “extreme” event that the reliability of x̂Wass
N

cannot reach the required significance level 1−β, even though the conservatism parameter εWass
N is

sufficiently close to 1. In this event, Algorithm 1 sets εWass
N = 1, which yields the overly-conservative

solution x̂Wass
N = 0. Consequently, this leads to a considerable increase in the average in-sample

performance of Wass, which suggests that Wass can provide overly conservative estimate of the

true expected network cost when data size is small.

When the training data size grows, the chance of the aforementioned extreme event decreases.

Thus the in-sample performance of Wass becomes comparable with that of PUB. However, when

the data size continues increasing, e.g., N ≥ 100, we observe a sudden surge in the in-sample per-

formance of Wass. This is because the computational cost of solving Wass significantly increases

as data size grows, so that Algorithm 1 will be terminated way before finding the smallest con-

servatism parameter for Wass due to the time limit. Thus, the in-sample performance of Wass is

far away from its optimum. In particular, as is shown in Figures 1a, 1d, 1b, and 1e, solutions of

Wass for problem instances with data size N ∈ {500,750,1000} share (roughly) the same in-sample

and out-of-sample performances, identical to the ones of the trivial solution where no facility is

built. This is because solving Wass is so time-consuming that, for any training data set of size
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N , Algorithm 1 never completes the first iteration when reaching the time limit, and outputs

εWass
N = 1 as the “best” conservatism parameter. By contrast, solving PUB is computationally effi-

cient, which allows Algorithm 1 to always find the best conservatism parameter within the time

limit. Therefore, we can conclude that PUB consistently outperforms Wass with respect to the

in-sample performance for varying sizes of data sets.
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Figure 1 Performance comparison between PUB and Wass under H-type and L-type underlying distributions

Out-of-sample performance. Figures 1b and 1d show that, as the size of data set increases, PUB

can consistently generate more cost-efficient RFL designs compared with Wass. The extreme values

of Wass in both small-sample and large-sample scenarios can be explained by identical reasoning

as in the previous discussion of its in-sample performance.

Reliability. As observed from Figures 1c and 1f, the reliablity of both models are comparable in

general. In particular, PUB can achieve the required reliability (the black horizontal line in both

figures) in all problem instances, whereas Wass may fail in small-sample scenarios (e.g., when data

size is N = 10 under H).

5.1.2. PUB v.s. moment-based models. We then focus on the comparison between PUB

and two moment-based RFL models, MM and CM. As the latter two models are not originally
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designed to be data-driven, all moment information of disruptions are obtained using their empirical

estimation. Note that both MM and CM assumes deterministic demands. As a remedy, we use

their empirical means as surrogates in the following experiments. Figure 2 illustrates the results of

PUB, MM, and CM under both H-type and L-type distributions.

In-sample performance. The results in Figures 2a and 2d numerically verify the asymptotic

optimality of the PUB estimator, that is, the in-sample performance of PUB converges to 1 when

the data size increases. This equivalently suggests that the in-sample cost of PUB converges to the

true optimum as more data are obtained. However, the moment-based methods do not seem to be

asymptotically optimal. The in-sample performance of CM first increases as the data size grows,

then decreases to a level that can be even lower than the true optimum when data size is large (see

Figure 2d). This implies that CM can be sometimes too optimistic, and unnecessarily underestimate

the true optimal cost of the RFL problem. On the other hand, the in-sample performance of MM

constantly increases as more data are obtained, which indicates that MM can hardly benefit from

the increase of data size.

101 102 103

Data size

1.0

1.2

1.4

1.6

1.8

In
-s

am
pl

e 
Pe

rf
or

m
an

ce

MM CMPUB

(a) Average in-sample performance

(H)

101 102 103

Data size

1.00

1.02

1.04

1.06

1.08

O
ut

-o
f-

sa
m

pl
e 

Pe
rf

or
m

an
ce

MM CMPUB

(b) Average out-of-sample

performance (H)

101 102 103

Data size

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

MM CMPUB

(c) Reliability (H)

101 102 103

Data size

1.0

1.2

1.4

1.6

1.8

2.0

In
-s

am
pl

e 
Pe

rf
or

m
an

ce

MM CMPUB

(d) Average in-sample performance

(L)

101 102 103

Data size

1.00

1.02

1.04

1.06

1.08

1.10

O
ut

-o
f-

sa
m

pl
e 

Pe
rf

or
m

an
ce

MM CMPUB

(e) Average out-of-sample

performance (L)

101 102 103

Data size

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

MM CMPUB

(f) Reliability (L)

Figure 2 Performance comparison between PUB and moment-based models under H-type and L-type

distributions
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Out-of-sample performance. As is shown in Figures 2b and 2e, the out-of-sample performance

of both PUB and CM converge to the true optimum when we have more training data, whereas

the one of MM fails to exhibit such trend (see Figure 2e). Furthermore, PUB has the lowest

out-of-sample costs compared with MM and CM in nearly all problem instances.

Reliability. As the moment-based models are not originally developed to be data-driven, both

MM and CM is outperformed by PUB with respect to the reliability. As shown in Figures 2c and

2f, the PUB estimator can meet the reliability requirement in all cases, whereas the reliability of

MM or CM can be as low as 0.2 when the data size is N = 10. Under the H-type distribution,

the moment-based methods can achieve the required reliability only in the large-sample scenario.

Under the L-type distribution, the reliability of CM even decreases when the data size grows

beyond 100. We then conclude that, when applied to the RFL problem, the moment-based models

can not guarantee to provide reliable (or safe) estimates for the true expected cost of their RFL

designs.

5.2. Computational Efficiency of the PUB Estimator

In this section, we show the computational benefits of the PUB approach. We consider the problem

instances with network size I = J ∈ {10,20,50}, data size N ∈ {100,500,1000,5000,10000}. The

data generation process is similar to the one in Section 5.1. In addition, we only consider H-type

scenario, as the demand distribution does not essentially affect the evaluation of computational

efficiency.

Solution algorithms for all the models, namely, PUB, Wass, MM, and CM, are terminated at

either a 0.05% optimality gap or a maximum CPU time of 900 seconds in Gurobi Solver.6 To keep

the computational burden manageable, for a given network, the conservatism parameters of PUB

and Wass for data sets of larger sizes (N > 100) are assumed to be the same as the ones derived

for the data set of size N = 100 (by using Algorithm 1 with β = 0.1). Results are summarized in

Table EC.1.

It is observed from Table EC.1 that the in-sample and out-of-sample performances of our PUB

estimator are comparable with Wass, and noticeably better than those of CM and MM. This is

consistent with the observation on the large-sample performance for all the models in Section 5.1.

Moreover, to achieve such performance, PUB requires significantly lower computational cost, com-

pared with Wass and CM, especially when the network size or the data size is large. In particular,

the computational time of Wass and CM increases dramatically when the network size reaches 50.

Both models can not even be solved to optimality within the time limit when N ≥ 5000. Compared

with MM, the PUB considerably improves both in-sample and out-of-sample performance at a

practically reasonable computational cost.
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6. Extension: Data-Driven RFL Model with Covariate Information

In this section, we discuss how to extend our data-driven RFL model by incorporating covariate

information associated with both demand and disruptions. For example, in a network facing dis-

ruptions caused by natural disasters, the affected areas tend to exhibit different patterns under

different types of disasters. Figure 3 illustrates the trajectory of two different disasters, namely,

tornado and flood, across the U.S. mainland from 1950 to 2021. The red and blue points in Figure 3

highlight the locations of the disasters with estimated property damages exceeding 50,000 dollars.

The opacity of points denotes the severity of disasters; that is, a less transparent point represents

a disaster that caused a more severe damage. An obvious observation is that locations affected

by flood were more concentrated around big cities (see, for example, the areas near Washington,

D.C. in Figure 3b), while tornados were evenly distributed across the middle U.S. mainland. There

is growing evidence on the value of covariate information in data-driven decision-making (e.g.,

Hao et al. 2020, Chen et al. 2020). In the remainder, we first present the data-driven RFL model

based on an extended PUB estimator that incorporates covariate information, and then numerically

investigate its effectiveness.

(a) Tornado (b) Flood

Figure 3 Trajectory of Tornado and Flood with damage over 50,000 dollars in U.S. mainland during 1950-2021.

7

6.1. Model and Theoretical Results

Mathematically, we assume that there are random covariate variables associated with both dis-

ruptions and demands. We assume that all the covariates are finitely supported, and thus can be

denoted by a single random variable c̃ supported on C := {ck}k∈K, where K := {1,2, . . . ,K} and

c1 < c2 < · · · < cK . Note that for covariates with infinite supports, we can apply a wide range of

machine learning methods to partition the observations of those covariates into finite scenarios,
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and define a scenario-specific variable as a surrogate covariate (e.g., Hao et al. 2020, Chen et al.

2020).

The training data set is now defined as ŜN := {(ω̂n, ĉn)}n∈N ⊆ Ω× C constituting N samples

i.i.d. drawn from the true distribution P? ∈ P(Ω × C). We partition ŜN into K disjoint subsets

ŜkNk := {(ω̂kn, ck)}n∈Nk:={1,...,Nk}, k ∈K, where each ŜkNk contains all samples in ŜN whose covariate

value equals to ck. Thus we have N =
∑

k∈KNk, ŜN =
⋃
k∈K ŜkNk , and ŜkNk ∩Ŝ

k′
Nk′

= ∅ for all k, k′ ∈K

and k 6= k′. For any distribution P∈P(Ω×C) with a CDF F∈F(Ω×C), denote by Fc̃ the marginal

CDF of c̃ under F, and by Fω̃|ck the distribution of ω̃ conditioning on c̃= ck under F. In particular,

let Fi,X|ck denote the marginal CDF of random variables ζ̃i and ξ̃(X ) conditioning on the event

c̃= ck, for i∈ I and X ⊆J . We then extend our PUB estimator as follows

Φ̂Cov
N (x) :=

∑
i∈I

|X|∑
r=0

∑
k∈K

(∆d)irp̂
ε
k,N

(∫ ζ̂ki,1−εNk

ζ̂
k,(1)
i

F̂i,X
r−1
i |ck

Nk
(ζ,0r)dζ + λ̂ki,εNk

)
, (16)

where p̂εk,N := (Nk/N + εN)∧ 1, λ̂ki,εNk
:= ζ̂

k,(Nk)
i − εNk ζ̂

k,(1)
i − ζ̂ki,1−εNk (1− εNk), ζ̂

k,(Nk)
i := max{ζ̂kni :

n ∈ Nk}, ζ̂k,(1)
i := min{ζ̂kni : n ∈ Nk}, ζ̂ki,1−εNk := sup{ζ ∈ [ζ̂

k,(1)
i , ζ̂

k,(Nk)
i ] : F̂i|ckNk

(ζ) ≤ 1 − εNk}, and

εN , εNk , k ∈ K, are conservatism parameters. Intuitively, the estimator Φ̂Cov
N (x) is a probabilis-

tic upper bound on the event-wise Kolmogorov DRO-based operating cost function Φ̂K-Cov
N (x) =

supF∈F̂K-Cov
N

∫
Ω×C φ(x,ω)dF(ω), where

F̂K-Cov
N :=

F∈F(Ω×C)

∣∣∣∣∣∣
∥∥∥Fω̃|ck − F̂ω̃|ckNk

∥∥∥
∞
≤ εNk , ∀k ∈K∣∣Fc̃(ck)−Fc̃(ck−1)−Nk/N

∣∣≤ εN , ∀k ∈K
 . (17)

Then the data-driven RFL problem with covariate information is defined as

ẑCov
N := min

x∈BJ
f ᵀx+ Φ̂Cov

N (x). (DD-RFL-COV)

All of our previous results, including reformulation (Theorem 1) and performance guarantees

(Theorems 2 and 3), can be generalized when covariate information is incorporated. The following

theorem summarizes these results. An extended version of Algorithm 1, aiming to determine the

optimal conservatism parameters for Problem (DD-RFL-COV), is provided in Algorithm 2 in

Appendix EC.3.

Theorem 4. Let x̂Cov
N be the optimizer of Problem (DD-RFL-COV). The following statements

hold true:
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(i) Reformulation and solution algorithm: We have that Φ̂Cov
N (x) can be decomposed as

Φ̂Cov
N (x) =

∑
i∈I Φ̂Cov

i,N (x). Then x̂Cov
N minimizes the following MILP problem:

ẑCov
N = min

(x,γ)∈BJ×RI
f ᵀx+ 1ᵀγ

s.t. γi ≥ Φ̂Cov
i,N (v) +

∑
j∈J

Φ̂Cov
i,N (j|v)xj ∀i∈ I ∀v ∈BJ , (18)

which can be solved by a constraint generation algorithm.

(ii) Asymptotic optimality: Suppose that P?{c̃= ck}> 0 for all k ∈ K. As N →∞ and hence

Nk →∞ almost surely, let εN → 0 and εNk → 0 for all k ∈ K. Then almost surely we have

(i) ẑCov
N → z? as N →∞, and (ii) any limit point of {x̂Cov

N }N∈N is an optimal solution for

Problem (RFL).

(iii) Finite sample guarantee: For each k ∈ K and given c̃ = ck, assume that the conditional

probability distribution of each ζ̃i is supported on [ζk
i
,0] for some ζk

i
∈R−, and the conditional

probability of the event {ζ̃i = ζ|c̃= ck} is strictly positive for all ζ ∈ {ζk
i
,0} and i ∈ I. Then

there exist a constant ρ∈ (0,1) such that, for any given β ∈ (0,1), setting

εN(β) =

√
ln (2(K + 1)(N + 1)β−1)

2N
∧ 1.

and

εNk(β) =

√
ln (2(I +J)(K + 1)(Nk + 1)β−1)

2Nk

∧ 1 for all k ∈K

implies the following finite sample guarantee:

P?ŜN
{
Z?(x̂Cov

N )≤ ẑCov
N

}
≥ 1−β,

for all N ≥ dln(β/4IK)/ lnρe.

6.2. Benefits of Using the Extended PUB Estimator

We now show the benefits of the extended PUB estimator through numerical studies using the

synthetic data. We compare the performance of our model (denoted by PUB-COV) with the event-

wise marginal moment-based model (denoted by MM-COV) and the event-wise cross moment-based

model (denoted by CM-COV). The latter two models are event-wise extensions of MM and CM

in Section 5 to incorporate covariate information; see Appendix EC.5 for their formal definitions

based on the modeling techniques of Hao et al. (2020), Chen et al. (2020).

The experiments are conducted using the network with 10 nodes. Data for random disruptions

and customer demands are generated as follows. We consider a two-point distribution for the
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covariate variable, that is, P?{c̃= 1}= 1/3 and P?{c̃= 2}= 2/3. Given the data size N , we first

generate N realizations of c̃. Let Nk be the number of covariate realizations that equal to k ∈ {1,2}.

For each k, we randomly generate Nk intermediate vectors ûkn = (ûkni ) ∈ RI+J , n ∈ {1,2, . . . ,Nk}

governed by an (I+J)-dimensional normal distribution N (0,Σk) with a zero mean and a randomly

generated covariance matrix (which depends on k). Then we obtain (ζ̂kn, ξ̂kn) as

ζ̂kni =

{
−min{max{0, ûkni + 0.6},2}µi, if k= 1
−min{max{0, ûkni + 1.3},2}µi, if k= 2,

ξ̂knj =

{
I
{
ûknI+j >ρI+j,1/10

}
, if k= 1

I
{
ûknI+j >ρI+j,3/10

}
, if k= 2.

That is, we assume covariate-dependent joint distributions of disruptions and demands.

Figure 4 illustrates the results of PUB-COV, MM-COV, and CM-COV, including the in-sample

performance, out-of-sample performance, and the reliability. Compared with the results in Sec-

tion 5.1.2, Figures 4a and 4b demonstrate an even stronger dominance of our approach over the

moment-based approaches when utilizing the covariate information. In particular, PUB-COV out-

performs MM-COV and CM-COV with respect to both in-sample and out-of-sample costs for nearly

all problem instances. The only exception is the instance with N = 10, where the in-sample perfor-

mance of PUB-COV is slightly higher than the one of the moment-based approaches. Nonetheless,

this ensures that our approach satisfies the reliability requirement, as shown in Figure 4c, whereas

the low in-sample performance of the moment-based approaches leads to a poor reliability.
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Figure 4 Performance comparison between PUB-COV, MM-COV, and CM-COV

6.3. A Case Study

We close this section by comparing the performance of PUB-COV, MM-COV and CM-COV on

a 49-node network (I = J = 49), where demands and disruptions are simulated based on a real-

world severe weather data set retrieved from the Storm Prediction Center of the National Oceanic

and Atmospheric Administration (NOAA)8. This data set, referred to as the NOAA data set
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hereafter, contains the historical records of severe hazards from 1996 to 2021, and is also used

in Lu et al. (2015) and Shen et al. (2021) to simulate network disruptions. In particular, each

record in the NOAA data set documents the information of a single hazard including its type (e.g.,

Thunderstorm Wind, Hail, etc.), start and end times, trajectory, and estimated property damage. In

our experiment, each hazard with an estimated property damage over 500,000 dollars is recognized

as a severe hazard resulting in disruptions. We summarize the disruption states of all 49 locations

on a monthly basis. In each month, a location is disrupted if it lies within 150km of the center of

at least one severe hazard. We partition data into two groups (K = 2): For each data point in the

group labeled c1, at least one location is disrupted due to one of the “wind” type hazards, including

“Marine Thunderstorm Wind”, “Thunderstorm Wind”, and “Marine High Wind”; we label the

rest of data points as c2. In addition, we assume that the distribution of demand −ζ̂i at location

i depends on the local disruption state ξ̂i. In particular, given ξ̂i, let ζ̂i = µimax{min{ûi,0},3},

where the intermediate variable ûi is sampled from a normal distribution N (a,1) with a= 1/3 if

ξ̂i = 0 and a= 3 if ξ̂i = 1.

We consider 25 problem instances, indexed by 0,1,. . ., 24, each of which aims to design facility

locations for a year among 1997-2021. In particular, in each problem instance q ∈ {0,1, . . . ,24},

we solve each model to generate an RFL design using data in year 1996 + q as the training data

set, and evaluate the out-of-sample cost of the RFL design using the data in the year 1997 + q. In

implementing our model, we apply Algorithm 2 with β = 0.2 and L= 30 to determine conservatism

parameters for PUB-COV. The results are illustrated in Figure 5, and summarized in Table 1.

Table 1 Comparison of performance between PUB-COV, MM-COV, and CM-COV tested on 25 years of

real-world weather data (NOAA data)

Avg. out-of-sample Frequency of yielding
Model cost (106) Reliability least-cost RFL design

PUB-COV 1.21 0.88 0.64
MM-COV 1.25 0.8 0.12
CM-COV 1.23 0.8 0.24

We can observe from Table 1 that PUB-COV stands out as achieving lower average out-of-sample

cost and the highest reliability. The detailed cost comparison for each of the problem instances is

shown in Figure 5, which indicates that our PUB-COV estimator outperforms the moment-based

models in most of problem instances. In particular, as shown in the last column of Table 1, the

RFL design suggested by PUB-COV incurs the lowest out-of-sample cost for 64% of the 25 problem

instances, which is noticeably higher than the proportions of MM-COV and CM-COV.
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Figure 5 Comparison of out-of-sample cost in 25 problem instances over the years 1996-2021.

7. Conclusion

This paper studies the reliable uncapacitated facility location problem in a data-driven environment

where past observations of random demands and disruptions are available. As an extension, we

also investigate a novel situation in the context of RFL problem where covariate information is

considered.

We propose an innovative prescriptive model based on the PUB on the Kolmogorov DRO esti-

mator of the true operating cost, which is shown to be particularly effective in addressing the

RFL problem. We derive the PUB estimator based on a novel CDF-based reformulation of the

Kolmogorov DRO estimator. In contrast to the intractable Kolmogorov DRO estimator, our PUB

estimator is tractable, and has favorable structures that yield significant computational benefits in

obtaining data-driven RFL designs.

Our approach offers several attractive properties. Scalability : The data-driven RFL model with

the PUB estimator is equivalent to an MILP problem that does not scale in the number of data

points, and can be solved to optimality by a practically efficient constraint generation algorithm.

Performance guarantees: Our approach is proved to be asymptotically optimal, and offers a theoret-

ical guarantee for the out-of-sample performance in situations with limited samples. Extendibility :

Our approach as well as the associated properties can be extended to the case where covariate

information is incorporated.

We validate our theoretical results by thoroughly comparing the numerical performances between

our model and several state-of-the-art RFL models, including the Wasserstein DRO model, the
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marginal moment-based model, and the cross moment-based model. Compared with benchmark

RFL models, our model achieves not only better small-sample performance, but also considerably

higher computational efficiency especially when applied to large-size networks and data sets.

However, the application of our results to some of the closely related reliable network design

problems, including the capacitated RFL problem, the reliable location-inventory problem and the

reliable location-routing problem, is not immediate and will be possible directions of future research.

It is also of interest to investigate the gap between the PUB estimator and the Kolmogorov DRO

estimator, and how to incorporate continuous-valued covariates in our data-driven optimization

framework.
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Endnotes
1Note that the SAA approach can be viewed as a special case of the DRO where the ambiguity set is a singleton

that only contains the empirical distribution.

2The finite sample performance guarantee for Problem (KDRO-RFL) by following identical arguments as in the

proof of the theorem 3.5 of Esfahani and Kuhn (2018).

3We say a function ϕ(x), x ∈ BJ , is nonincreasing, if ϕ(x)≥ ϕ(x′) holds for all x≤ x′; ϕ(x) is supermodular, if

ϕ(j|x)≤ϕ(j|x∨ ekJ) holds for all x∈BJ and j, k ∈J such that xj = xk = 0, where ϕ(j|x) := ϕ(x∨ ejJ)−ϕ(x).

4Here the data size N only affects the efficiency of computing the coefficients of constraints, which can be obtained

efficiently as the time required for computing each coefficient is linear in N ; see the proof of Lemma 3.

5The matrix is generated using the python package “data sets.make spd matrix”

6Computational time shown in Table EC.1 of some methods may exceed 900 seconds because preprocessing time

in Gurobi is included.

7Data source: NOAA’s Storm Prediction Center. A point or a short line is obtained by linking start and the end

position of an event.

8NOAA data is downloaded from https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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