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Abstract

Global convergence of augmented Lagrangian methods to a first-order stationary point is
well-known to hold under considerably weak constraint qualifications. In particular, several
constant rank-type conditions have been introduced for this purpose which turned out to be
relevant also beyond this scope. In this paper we show that in fact under these conditions sub-
sequences of approximate Lagrange multipliers associated with accumulation points generated
by the algorithm remains bounded. This important stability property is associated with both
the practical effectiveness of the algorithm and also its computational complexity. In order to
obtain this result we introduce a relaxed version of the quasinormality constraint qualification
which adequately treats equality constraints by means of informative Lagrange multipliers, a
topic that has been extensively studied.

1 Introduction

In this paper we are interested in the general smooth nonlinear programming problem with equality
and inequality constraints. More specifically, we are interested in the properties of implementable
algorithms for solving the problem. Most algorithms are primal-dual, in the sense that they
build a sequence of primal iterates that hopefully converges to a solution, but they also build
approximations of Lagrange multipliers (dual solutions) to help guiding the algorithm towards a
solution. These sequences play different roles in the analysis as, for instance, boundedness of the
primal iterates may be guaranteed by adding large enough box constraints to the problem, while
the dual solutions may be unbounded.

The most well known approach for bounding the dual sequence generated by an algorithm is as-
suming the Mangasarian-Fromovitz constraint qualification (MFCQ) at the point of interest. This
is equivalent to saying that the set of Lagrange multipliers at the point is bounded. However, this
may be considered too stringent for practical purposes as, for instance, it does not allow redundan-
cies in the problem formulation; MFCQ always fails when an equality constraint is replaced by two
inequalities or when an equality constraint appears twice in the problem formulation. Of course,
these situations may sometimes be prevented by pre-processing the problem, but this may not be
possible or it may be very time consuming, especially when the optimization process appears in
the middle of a more complicated application.

Thus, we are interested in bounding the dual sequence generated by the algorithm even when
the primal sequence is converging to a point that fails to satisfy MFCQ. For instance, it has been

∗This work has been partially supported by CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants
2018/24293-0 and 2017/18308-2), CNPq (grants 306988/2021-6, 302000/2022-4, 407147/2023-3 and 309136/2021-
0), PRONEX - CNPq/FAPERJ (grant E-26/010.001247/2016), UNICAMP/PRP/FAEPEX (grant 3319/23) and
ANPCyT (grants PICT 2016-0921 and PICT 2019-02172).

†Department of Applied Mathematics, Universidade Estadual de Campinas, Campinas, SP, Brazil. Email:
andreani@ime.unicamp.br

‡Department of Applied Mathematics, University of São Paulo, São Paulo, SP, Brazil. Email:
ghaeser@ime.usp.br

§CONICET, Department of Mathematics, FCE, University of La Plata, La Plata, Bs. As., Argentina. Email:
schuverd@mate.unlp.edu.ar

¶Department of Applied Mathematics, Federal University of Esṕırito Santo, ES, Brazil. Email:
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shown in [19] that the popular interior point method IPOPT tends to find an unbounded dual
sequence when MFCQ fails, hindering its practical performance, in contrast with other interior
point methods [21].

In the context of augmented Lagrangian methods, several constraint qualifications have been
used to show that the primal iterate converges to a stationary point [15]. Although in previous
works it was not recognized whether dual sequences are bounded or not, an approximate KKT point
is achieved. Boundedness of the dual sequence has been shown only recently in [3, 17] under the
so-called quasinormality constraint qualification [20] (actually, only the subsequence associated
with the primal accumulation point is bounded), which is weaker than MFCQ, the constant
rank constraint qualification (CRCQ [22]), and the constant positive linear dependence condition
(CPLD [28]). These CQs were used in the original global convergence analysis of the popular
safeguarded augmented Lagrangian method Algencan [1], see [9]. However, global convergence
to a stationary point is known to hold under considerably weaker conditions. In [26], it has been
shown that equality constraints should be treated differently in the formulation of CRCQ, giving
rise to a relaxed variant of CRCQ (RCRCQ) which has essentially the same properties of the
original formulation. This approach has been exploited in the definition of a relaxed variant of
CPLD (RCPLD [7]), which later gave rise to the so-called constant rank of the subspace component
constraint qualification (CRSC [8]), the weakest of the constant rank-type constraint qualifications.
Besides global convergence of algorithms, several applications and extensions of these conditions
have been discussed in the literature, for instance, concerning second-order necessary optimality
conditions and a facial reduction procedure for removing redundancies in the problem formulation.
We refer to [4] and the references therein for a thorough discussion on this topic, specifically on
the central role played by CRSC in this context.

Condition CRSC and the relaxed variants of CRCQ and CPLD are not related with the
quasinormality constraint qualification, thus boundedness of dual sequences is not known under
these conditions. The purpose of this paper is to bridge the gap in terms of the global convergence
of the safeguarded augmented Lagrangian method to a stationary point and the boundedness of
the dual sequence associated with the primal accumulation point. In particular, we will define a
relaxed variant of the quasinormality constraint qualification that is implied by CRSC and that still
guarantees boundedness of the dual augmented Lagrangian sequences. The definition is inspired
by the well-known notion of an informative Lagrange multiplier [13] and the relaxed variants of
CRCQ and CPLD.

The quasinormality condition, introduced by Hestenes [20] and further studied and adapted
to different contexts [11, 12, 18, 23, 25, 30], has found several other applications such as in exact
penalty [13], computation of the value function [29], and error bound properties [27, 29]. Although
these applications are out of the scope of this paper, we believe that our version of quasinormality
adequately treats equality constraints in a similar fashion as the relaxed variants of CRCQ and
CPLD, preserving its properties, so that we expect these applications to be extended under relaxed
quasinormality.

This paper is organized as follows: Section 2 introduces the preliminary results and definitions.
In Section 3 we present the two main proofs that relaxed quasinormality implies boundedness
of dual augmented Lagrangian subsequences, whereas it is implied by CRSC. In Section 4 we
present some more refined results in terms of feasibility of the primal sequence and a more general
algorithm with a scaled criterion for solving the augmented Lagrangian subproblems. Section 5
presents some more refined comparisons with other constraint qualifications and Section 6 presents
some concluding remarks.

Notation We use R+ to denote the set of nonnegative real numbers. Given z ∈ Rr, z+ ∈ Rr
+ is

the vector whose i-th coordinate is max{0, zi}, i = 1, . . . , r. Given a function q : Rn → Rr, ∇q(x) is
the n×r matrix whose columns are the gradients ∇qi(x), i = 1, . . . , r at a point x ∈ Rn (transposed
Jacobian). We use ∥ · ∥2 and ∥ · ∥∞ to denote the Euclidean norm and the sup-norm, respectively.
When g : Rn → Rp and x ∈ Rn is such that g(x) ≤ 0, the set A(x) = {j ∈ {1, . . . , p} | gj(x) = 0}
is the set of indices of active inequality constraints at x. Given real sequences {ak} and {bk},
ak = o(bk) means that there is a sequence {mk} ⊂ R, mk > 0, converging to zero such that
|ak| ≤ mk|bk| for all k. Given a tuple (an ordered finite set) J = (j1, . . . , jℓ) ⊆ {1, . . . , r} and
z ∈ Rr, we define zJ = (zj1 , . . . , zjℓ) ∈ Rℓ. The number of elements in a tuple J is denoted by
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|J |.

2 Preliminaries

We consider the nonlinear programming problem

min f(x) s.t. h(x) = 0, g(x) ≤ 0, (P)

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously differentiable functions. We
denote by

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

p∑
j=1

µjgj(x)

the Lagrangian function associated with (P). A constraint qualification is any condition on the
description of the feasible set of (P) such that whenever x̄ ∈ Rn is a local minimizer of (P), there
exist so-called Lagrange multipliers (λ, µ) ∈ Rm × Rp

+ such that ∇L(x̄, λ, µ) = 0 with µi = 0 for
all i ̸∈ A(x̄), where the derivative is taken with respect to x. In other words, it must be the case
that −∇f(x̄) ∈ K(x̄; x̄) where

K(x; x̄) =


m∑
i=1

λi∇hi(x) +
∑

j∈A(x̄)

µj∇gj(x)
∣∣∣ µj ≥ 0 for all j ∈ A(x̄)

 .

When x = x̄, we may write K(x̄; x̄) = K(x̄), which is the polar of the linearized tangent cone at x̄.
It is easy to see that the set of Lagrange multipliers at x̄ is bounded if, and only if, the gradients
of equalities and active inequalities are positively linearly independent (that is, MFCQ holds):

m∑
i=1

λi∇hi(x̄) +
∑

j∈A(x̄)

µj∇gj(x̄) = 0, µ ≥ 0 implies λ = 0, µj = 0,∀j ∈ A(x̄).

In this paper we consider the (safeguarded) augmented Lagrangian method described in [2, 15]
whose implementation is known as Algencan1. Given the penalty parameter ρ > 0 and the
projected multipliers λ̄ ∈ Rm, µ̄ ∈ Rp

+, let us consider the Powell-Hestenes-Rockafellar (PHR)
augmented Lagrangian function

Lρ,λ̄,µ̄(x) = f(x) +
ρ

2

∥∥∥∥h(x) + λ̄

ρ

∥∥∥∥2
2

+

∥∥∥∥∥
(
g(x) +

µ̄

ρ

)
+

∥∥∥∥∥
2

2

 .

In Algencan, the iterate xk is obtained by minimizing Lρk,λ̄k,µ̄k(x) for fixed ρk, λ̄
k and µ̄k. The

projected multipliers sequences {λ̄k} and {µ̄k} are computed within a pre-defined box (safeguards).
The dual (approximate Lagrange multipliers) sequences generated by Algorithm 1 are defined

as
λk = λ̄k + ρkh(x

k) and µk = [µ̄k + ρkg(x
k)]+, k ≥ 1. (1)

The global convergence of Algorithm 1 was established and improved over several works, see
for example [2, 3, 5, 6]. Let us recall here one of the main conditions used in this analysis.

Definition 1 (CRSC [8]). A feasible point x̄ for (P) satisfies the constant rank of the subspace
component condition (CRSC) if the rank of the gradients

∇hi(x), i = 1, . . . ,m, ∇gj(x), j ∈ A−(x̄),

remains constant for all x in a neighbourhood of x̄, where

A−(x̄) = {j ∈ A(x̄) | −∇gj(x̄) ∈ K(x̄)}. (2)

1freely available at www.ime.usp.br/~egbirgin/tango

3

www.ime.usp.br/~egbirgin/tango


Algorithm 1 Safeguarded augmented Lagrangian method

The parameters are τ ∈ [0, 1), γ > 1, −∞ < λmin ≤ λmax < ∞, 0 ≤ µmax < ∞ and ρ1 > 0. Let
λ̄1 ∈ [λmin, λmax]

m, µ̄1 ∈ [0, µmax]
p and a sequence {εk} ⊂ R+ such that limk→∞ εk = 0. Initialize

k ← 1.

Step 1 (Solving the subproblem): Compute an approximate stationary point xk of Lρk,λ̄k,µ̄k(x),

that is, xk satisfying ∥∇Lρk,λ̄k,µ̄k(xk)∥∞ ≤ εk.

Step 2 (Updating the penalty parameter): Compute

V k = min

{
−g(xk),

µ̄k

ρk

}
.

If k = 1 or max{∥h(xk)∥∞, ∥V k∥∞} ≤ τ max{∥h(xk−1)∥∞, ∥V k−1∥∞}, set ρk+1 = ρk. Otherwise,
take ρk+1 ≥ γρk.

Step 3 (New projected multipliers): Choose λ̄k+1 ∈ [λmin, λmax]
m and µ̄k+1 ∈ [0, µmax]

p.

Step 4: Set k ← k + 1 and go to Step 1.

This condition improves several others [7, 22, 26, 28] by considering a single set of constraints to
have the constant rank property. Notice that when MFCQ holds, CRSC also holds with A−(x̄) = ∅.
Several applications of this condition have been found and we refer the interested reader to [4] and
the references therein. In particular, under CRSC, the constraints indexed in the set A−(x̄) behave
locally as equality constraints in the description of the feasible set; this procedure is known as facial
reduction [16] in the context of conic programming. Now let x̄ be a limit point of a sequence {xk}
generated by Algorithm 1. If x̄ is feasible and satisfies CRSC, then it was shown in [8] that x̄
is a stationary point of (P), however no information has been provided with respect to the dual
sequences (1). In order to provide such information, one relies on the quasinormality constraint
qualification, which is also weaker than MFCQ but it is independent of CRSC. The definition is
as follows:

Definition 2 (Quasinormality [20]). A feasible point x̄ of (P) satisfies the quasinormality (QN)
constraint qualification if there is no (λ, µ) ∈ Rm × Rp

+ such that

1. ∇h(x̄)λ+∇g(x̄)µ = 0;

2. (λ, µ) ̸= 0;

3. Defining the index sets

I̸= = {i | λi ̸= 0} and J+ = {j | µj > 0}, (3)

there is a sequence {xk} converging to x̄ such that, for all k, λihi(x
k) > 0, ∀i ∈ I ̸=, and

gj(x
k) > 0, ∀j ∈ J+.

We start by recalling the fact that CRSC and QN are independent conditions.

Example 1. Consider the constraint set defined by h1(x) = x and h2(x) = x2 at x̄ = 0 ∈ R. QN
does not hold since we can take λ1 = 0 and λ2 = 1 together with the sequence xk = 1/k where we
have that λ1∇h1(x̄) + λ2∇h2(x̄) = 0 with λ2h2(x

k) > 0 for all k. On the other hand, CRSC holds
since the set {∇h1(x),∇h2(x)} has full (constant) rank for all x nearby x̄. The reverse situation
occurs with the constraint set defined by g1(x) = −x1 and g2(x) = x1 − x2

2 at x̄ = (0, 0) ∈ R2.
The set K(x̄) is equal to R×{0} where A−(x̄) = {1, 2} but the rank of {∇g1(x),∇g2(x)} increases
from 1 at x̄ to 2 for x nearby x̄ with x2 ̸= 0. Thus CRSC fails. To see that QN holds, notice that
µ1∇g1(x̄) + µ2∇g2(x̄) = 0 with 0 ̸= µ ≥ 0 implies that µ1 = µ2 > 0. However if g1(x) > 0 for
some x, it must be the case that g2(x) < 0. Thus, no sequence satisfying item 3. in Definition 2
exists and QN holds.
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Under quasinormality, it was proved in [3, 19] that if x̄ is a feasible limit point of a sequence {xk}
generated by Algorithm 1, that is, limk∈K xk = x̄ for an infinite set of indexesK, then the sequences
of approximate Lagrange multipliers {λk}k∈K and {µk}k∈K as defined in (1) are bounded. In fact,
by Step 1 of the algorithm, a simple computation gives ∇L(xk, λk, µk)→ 0. Thus, assuming that
the dual sequences are not both bounded one arrives at a pair (λ, µ) ∈ Rm × Rp

+ such that items
1. and 2. of Definition 2 are satisfied. Now, by (1) it is easy to see that when λk

i → +∞ then,
since {λ̄k} is bounded, it must be the case that ρk → +∞ and hi(x

k) > 0 for sufficiently large k.
A similar analysis holds when λk

i → −∞ or µk
j → +∞ so that the sign condition given by item 3.

is also satisfied. Therefore, under quasinormality, no such sequence exists and the dual sequences
must be bounded.

An alternative motivation for the definition of quasinormality [20] comes from an enhanced
Fritz-John theorem, where it is shown that around a local minimizer there exists a sequence that
violates the constraints in a particular way. This inspired several different definitions of a Lagrange
multiplier with additional requirements concerning constraint violation. The most general of these
results is the following:

Theorem 1 ([13, Proposition 2.1]). Let x̄ be a local minimizer of (P). Then there is (σ, λ, µ) ∈
R+ × Rm × Rp

+ such that

1. σ∇f(x̄) +∇h(x̄)λ+∇g(x̄)µ = 0;

2. (σ, λ, µ) ̸= 0;

3. if I̸= ∪J+ ̸= ∅, where I ̸= and J+ are defined in (3), then there is a sequence {xk} converging
to x̄ such that, for all k,

(a) λihi(x
k) > 0, ∀i ∈ I ̸=, and gj(x

k) > 0, ∀j ∈ J+;

(b) |hi(x
k)| = o(w(xk)), ∀i ̸∈ I̸= and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+, where

w(xk) = min

{
min
i∈I ̸=
|hi(x

k)|, min
j∈J+

gj(x
k)+

}
. (4)

It is easy to see that item 3(a) of the above theorem implies the usual complementary slackness
µjgj(x̄) = 0 for all j = 1, . . . , p. Notice that Theorem 1 implies that QN is a constraint qualification,
since Definition 2 prevents the existence of a sequence satisfying items 1, 2 and 3(a) of Theorem 1
when σ = 0. Thus, at a local minimizer, QN implies that there exists a Lagrange multiplier
(λ, µ) with the additional constraint violation given by items 3(a-b) of Theorem 1. This has been
called an informative Lagrange multiplier in [13]. It was shown in [10] that this additional dual
information is not relevant for distinguishing a primal solution, that is, a feasible point for (P)
admits an informative Lagrange multiplier if, and only if, it admits a standard Lagrange multiplier.
However, this additional dual information will be crucial in our analysis. We start by noticing that
it is clear that Theorem 1 suggests a weaker definition of QN by incorporating also item 3(b) as
follows:

Definition 3. A feasible point x̄ for (P) satisfies the relaxed quasinormality (RQN) condition if
there is no (λ, µ) ∈ Rm × Rp

+ such that

1. ∇h(x̄)λ+∇g(x̄)µ = 0;

2. (λ, µ) ̸= 0;

3. There is a sequence {xk} converging to x̄ such that, for all k,

(a) λihi(x
k) > 0, ∀i ∈ I̸=, and gj(x

k) > 0, ∀j ∈ J+;

(b) |hi(x
k)| = o(w(xk)), ∀i ̸∈ I̸= and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+, where I ̸= and J+ are
defined as in (3) and w(xk) as in (4).

This definition has not been exploited yet in the literature and it will be the main focus in this
paper. It is clearly a constraint qualification since it implies that it must be the case that σ > 0
in Theorem 1. Recalling Example 1 with the constraint set defined by h1(x) = x and h2(x) = x2
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at x̄ = 0 ∈ R, notice that the sequence xk = 1/k with λ1 = 0 and λ2 = 1 fails to comply with item

3(b) in Definition 3. Indeed, it is not the case that |h1(x
k)| = o(|h2(x

k)|), that is, |xk|
(xk)2

̸→ 0. In

fact, this is the case for any sequence xk → x̄, xk ̸= x̄ and since items 1-2 of Definition 3 implies
that λ1 = 0 and λ2 ̸= 0, this shows that RQN holds.

It turns out that RQN will provide an adequate way of dealing with equality constraints,
in a similar way as it is done in the relaxed variants of CRCQ and CPLD. Namely, while QN
is implied by CRCQ and CPLD, it is independent of the weaker variants RCRCQ, RCPLD and
CRSC. We will show that CRSC (and all other constant rank-type constraint qualifications) strictly
implies RQN. This will give rise to a new stability property under constant rank-type constraint
qualifications as we will show that RQN will be enough for providing boundedness of the dual
augmented Lagrangian sequences associated with primal accumulation points.

3 Main results

Our first main result concerning RQN is the fact that it subsumes all constant-rank type CQs.
That is, we will show that CRSC implies RQN. Clearly, the implication is strict due to the second
constraint set defined in Example 1 where CRSC fails and QN (thus RQN) holds. We will make
use of the following lemma, which is a consequence of the inverse function theorem:

Lemma 1 ([9, Lemma 3.2]). Let x̄ ∈ Rn, V ⊆ Rn an open neighbourhood of x̄ and F : V → R.
Suppose that

∇F (x̄) =

r∑
j=1

αj∇cj(x̄)

for some C1 function c : V → Rr such that {∇cj(x̄)}j∈{1,...,r} is linearly independent. Also, suppose
that ∇F (x) is a linear combination of ∇cj(x), j = 1, . . . , r, for all x ∈ V. Then there exists an open
neighbourhood U ⊆ Rr of c(x̄) and a C1 function φ : U → R such that c(x) ∈ U and F (x) = φ(c(x))
for all x ∈ V, and

αj =
[
∇φ(c(x̄))

]
j
, j = 1, . . . , r.

Theorem 2. CRSC implies RQN.

Proof. Suppose by contradiction that the feasible point x̄ for (P) satisfies CRSC but not RQN.
Then, there exist (λ, µ) and {xk} satisfying items 1, 2 and 3 of Definition 3, that is,

1. ∇h(x̄)λ+∇g(x̄)µ = 0;

2. (λ, µ) ̸= 0;

3. limk x
k = x̄ and, for all k,

(a) λihi(x
k) > 0, ∀i ∈ I̸=, and gj(x

k) > 0, ∀j ∈ J+;

(b) |hi(x
k)| = o(w(xk)), ∀i ̸∈ I̸= and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+, where I ̸= and J+ are
defined as in (3) and w(xk) as in (4).

First, we affirm that µj = 0 for all j ̸∈ A−(x̄), or equivalently, J+ ⊆ A−(x̄). In fact, if µj > 0
then ∇h(x̄)λ+∇g(x̄)µ = 0 implies

−∇gj(x̄) =
1

µj

 m∑
i=1

λi∇hi(x̄) +
∑
ℓ ̸=j

µℓ∇gℓ(x̄)

 ∈ K(x̄),
which in turn implies j ∈ A−(x̄). Hence, item 1 takes the form

m∑
i=1

λi∇hi(x̄) +
∑

j∈A−(x̄)

µj∇gj(x̄) = 0. (5)
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Let I ⊆ {1, . . . ,m} and J ⊆ A−(x̄) be such that {∇hi(x̄)}i∈I ∪ {∇gj(x̄)}j∈J is a basis for
span {∇h(x̄),∇gA−(x̄)(x̄)}, the subspace generated by {∇hi(x̄)}mi=1∪{∇gj(x̄)}j∈A−(x̄). The CRSC
condition guarantees that the rank of the gradients of the equality constraints and inequality
constraints with indices A−(x̄) remains constant in a neighborhood of x̄, so

span {∇hI(x),∇gJ (x)} = span {∇h(x),∇gA−(x̄)(x)} for all x close to x̄. (6)

Now, let us define

F (x) = −
∑

i∈{1,...,m}\I

λihi(x)−
∑

j∈A−(x̄)\J

µjgj(x) (7)

and the C1 function c : Rn → R|I| × R|J | given by c(x) = (hI(x), gJ (x)). From (6), ∇F (x) ∈
span {∇hI(x),∇gJ (x)} for all x near x̄. In particular, from (5) and (7) we have

∇F (x̄) =

[
−

m∑
i=1

λi∇hi(x̄)−
∑

j∈A−(x̄)

µj∇gj(x̄)

]
+

∑
i∈I

λi∇hi(x̄) +
∑
j∈J

µj∇gj(x̄)

=
∑
i∈I

λi∇hi(x̄) +
∑
j∈J

µj∇gj(x̄).

So, we can apply Lemma 1 to obtain a C1 function φ : R|I| × R|J | → R such that

F (x) = φ(c(x)) = φ(hI(x), gJ (x)) ∀x near x̄ and (λI , µJ ) = ∇φ(hI(x̄), gJ (x̄)). (8)

Note that (hI(x̄), gJ (x̄)) = 0, φ(0) = F (x̄) = 0 and then the Taylor expansion of φ around the
origin gives

φ(z) = ∇φ(hI(x̄), gJ (x̄))T z + o(∥z∥∞).

Taking z = (hI(x
k), gJ (xk)+), which converges to (hI(x̄), gJ (x̄)) as x̄ is feasible J ⊆ A(x̄), the

above expression together with (8) imply

F (xk) =
∑
i∈I

λihi(x
k) +

∑
j∈J

µjgj(x
k)+ + wk (9)

for all k large enough, where

wk = o(∥(hI(x
k), gJ (xk)+)∥∞).

From (7), (9) and the fact that gj(x
k) > 0 when j ∈ J+ by item 3(a), we have

0 =

m∑
i=1

λihi(x
k) +

∑
j∈J

µjgj(x
k)+ +

∑
j∈A−(x̄)\J

µjgj(x
k) + wk

=
∑
i∈I̸=

λihi(x
k) +

∑
j∈J+

µjgj(x
k)+ + wk

(10)

for all k large enough.
We have

wk = o(∥( h(xk) , gJ (xk)+ , gA−(x̄)\J (xk)+ )∥∞)

since the term in parentheses is greater than or equal to ∥(hI(x
k), gJ (xk)+)∥∞. By item 3(b),

each sequence {|hi(x
k)|} and {gj(xk)+} such that i ∈ I̸= and j ∈ J+ asymptotically bound above

all such sequences with indices outside I ̸= or J+, which allow us to write

wk = o(∥( hI ̸=(x
k) , gJ+

(xk) )∥∞)

(remember that gj(x
k) > 0 when j ∈ J+). So, dividing (10) by ∥(hI ̸=(x

k), gJ+(x
k))∥∞ and passing

to the limit on a subsequence if necessary, we obtain

(h∗, g∗) = lim
k

( hI ̸=(x
k) , gJ+

(xk)+)

∥(hI ̸=(x
k), gJ+(x

k))∥∞
̸= 0

7



satisfying ∑
i∈I ̸=

λih
∗
i +

∑
j∈J+

µjg
∗
j = 0.

But this is impossible since by item 3(a), λih
∗
i ≥ 0, i ∈ I̸=, µig

∗
i ≥ 0, j ∈ J+, and thus the left-hand

side of the above expression is positive. We then conclude that RQN holds at x̄.

We now show that, similar to what is known about QN, the dual sequences generated by
Algorithm 1 are bounded under RQN.

Theorem 3. Let {xk} be a sequence generated by Algorithm 1 and x̄ a feasible limit point of it,
let us say, limk∈K xk = x̄. If x̄ satisfies RQN, then the associated dual subsequences {λk}k∈K and
{µk}k∈K given in (1) are bounded. In particular, all limit points of these sequences are Lagrange
multipliers associated with x̄.

Proof. Let {ρk}, {λ̄k}, and {µ̄k} be corresponding sequences produced by Algorithm 1 and suppose
that {Mk := ∥(1, λk, µk)∥∞} is unbounded. By (1), we have ρk → ∞ and then µk

i = 0 for all
i ̸∈ A(x̄). So, dividing the expression ∇L(xk, λk, µk)→ 0 as provided by Step 1 by Mk and taking
the limit over K, we arrive at

m∑
i=1

λi∇hi(x̄) +
∑

j∈A(x̄)

µj∇gj(x̄) = 0,

with (λ, µ) ̸= 0 and

λi = lim
k∈K

λ̄k
i + ρkhi(x

k)

Mk
, µj = lim

k∈K

[
µ̄k
j + ρkgj(x

k)
]
+

Mk

for all i, j. If λi ̸= 0, then we can extract a subsequence so that hi(x
k) always has the same sign of

λi (the same is valid for µj). Thus, passing to a subsequence if necessary, we can suppose without
loss of generality that,

for all k ∈ K, λihi(x
k) > 0 if λi ̸= 0 and gj(x

k) > 0 if µj > 0. (11)

Therefore, if all entries of (λ, µ) are non-null, then item 3(b) of Definition 3 holds trivially with
{xk}k∈K , contradicting the validity of RQN at x̄.

Now, suppose that λi ̸= 0 and λℓ = 0. Clearly limk∈K |ρkhi(x
k)| =∞ and, by (11), hi(x

k) ̸= 0
for all k ∈ K. For each k ∈ K, let us define

Ak :=
|λ̄k

ℓ + ρkhℓ(x
k)|

|ρkhi(xk)|
=

∣∣∣∣ λ̄k
ℓ

ρkhi(xk)
+

hℓ(x
k)

hi(xk)

∣∣∣∣ .
We affirm that lim infk∈K Ak = 0. In fact, if Ak ≥ ε > 0 for all k ∈ K large enough, we would
have |λ̄k

ℓ + ρkhℓ(x
k)| ≥ ε|ρkhi(x

k)| for all k ∈ K large enough and therefore

0 < ε|λi| = lim
k∈K

ε

∣∣∣∣ λ̄k
i + ρkhi(x

k)

Mk

∣∣∣∣ = lim
k∈K

ε
|ρkhi(x

k)|
Mk

≤ lim
k∈K

|λ̄k
ℓ + ρkhℓ(x

k)|
Mk

= |λℓ| = 0,

a contradiction. Hence, there is an infinite set of indices K1 ⊆ K such that

lim
k∈K1

|hℓ(x
k)|

|hi(xk)|
= lim

k∈K1

Ak = 0.

A similar argument is valid changing λi ̸= 0 to µj > 0, λℓ = 0 to µℓ = 0 and/or |hℓ(x
k)| to gℓ(x

k)+.
Thus, applying it successively we obtain an infinite set K∗ ⊆ · · · ⊆ K1 ⊆ K such that

lim
k∈K∗

|hℓ(x
k)|

w(xk)
= 0 if λℓ = 0 and lim

k∈K∗

gℓ(x
k)+

w(xk)
= 0 if µℓ = 0, (12)

where w(xk) is as in (4). Finally, from (11) and (12) we conclude that RQN at x̄ is violated using
the sequence {xk}k∈K∗ , and the proof is complete.
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Theorem 3 was known only under QN [3, 19]. The following example shows that when RQN fails,
the dual subsequences generated by Algorithm 1 corresponding to a convergent primal subsequence
may in fact be unbounded.

Example 2. Consider the problem

min f(x) = x2
1 + x2

2 s.t. x ∈ Ω

where
Ω = {x ∈ R2 | g1(x) = x3

1 − x2 ≤ 0, g2(x) = x3
1 + x2 ≤ 0, g3(x) = −x1 ≤ 0},

and its feasible point x̄ = (0, 0). We affirm that this point can be reached by Algorithm 1 with
unbounded associated multiplier sequences (1). In fact, let us consider the sequence xk = (1/ρak, 0),
ρk > 0, where a ∈ (1/5, 1/3) is a constant. For each k, take any µ̄k

1 = µ̄k
2 ≥ 0 and µ̄k

3 = 0. The
multipliers estimates (1) with these sequences are

µk
2 = µk

1 = µ̄k
1 + ρ1−3a

k , µk
3 = 0.

We have

∇Lρk,µ̄k(xk) =[ 2
ρa
k

0

]
+ (µ̄k

1 + ρ1−3a
k )

[ 3
ρ2a
k

−1

]
+ (µ̄k

1 + ρ1−3a
k )

[ 3
ρ2a
k

1

]
=

[
2
ρa
k
+

6µ̄k
1

ρ2a
k

+ 6
ρ5a−1
k

0

]

and

V k
2 = V k

1 = min

{
− 1

ρ3ak
,
µ̄k
1

ρk

}
= − 1

ρ3ak
, V k

3 = min

{
1

ρak
,
µ̄k
3

ρk

}
= 0.

If {ρk} remained constant for all k ≥ k0 then we would have ∥V k∥∞ = 1/ρ3ak > τ/ρ3ak−1 =

τ∥V k−1∥∞ for any τ ∈ [0, 1), k ≥ k0, contradicting Step 2. On the contrary, ρk → ∞ implies
∇Lρk,µ̄k(xk)→ 0 since a > 1/5. Therefore the sequence (xk, ρk, µ̄

k) with ρk →∞ can be generated
by Algorithm 1. In this case µk

2 = µk
1 →∞ since a < 1/3.

To see that RQN fails at x̄, just note that µ = (1, 1, 0) and xk = (1/k, 0) fulfill items 1, 2 and
3 of Definition 3.

Notice that x̄ = (0, 0) in Example 2 is a KKT point that satisfies a weak constraint qualification
called constant positive generators (CPG), as we will see in Section 5. Actually, we will show that
RQN and CPG are independent conditions.

4 Extensions

The result we presented related to the boundedness of dual augmented Lagrangian sequences
(Theorem 3) assumes that the limit point x̄ is feasible. This is not a serious drawback since the
algorithm tends to find feasible limit points, when they exist, as their limit points are stationary to
the problem of minimizing ∥h(x)∥22 + ∥g(x)+∥22 [1]. These points are feasible when the gradients of
equality constraints and violated or active inequality constraints are positively linearly independent,
what is known as Extended-MFCQ [24]. However no feasibility result is known under a condition
weaker than Extended-MFCQ. Let us show that the boundedness of the dual sequences is enough
for ensuring feasibility, and that this is obtained by an extension of RQN to infeasible points. The
definition is exactly the same as Definition 3, however it is simply not assumed that the point is
feasible; in particular, it reduces to RQN when the point is feasible. We opted to present a simpler
version of this result in Theorem 3 for clarity of exposition, but in fact this theorem is a particular
case of the result we prove next.

Definition 4. A point x̄ ∈ Rn, not necessarily feasible, satisfies the Extended-RQN condition if
there is no (λ, µ) ∈ Rm × Rp

+ and sequence xk → x̄ such that items 1, 2, 3a) of Definition 3 hold
and
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b’) |hi(x
k)| = o(w(xk)), ∀i ̸∈ I ̸= with hi(x̄) = 0 and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+ with
gj(x̄) ≤ 0, where I̸= and J+ are defined as in (3) and w(xk) as in (4).

Theorem 4. Let {xk} be a sequence generated by Algorithm 1 and x̄ a limit point of it, let us say,
limk∈K xk = x̄. If x̄ satisfies Extended-RQN, then x̄ is feasible and the associated dual subsequences
{λk}k∈K and {µk}k∈K given in (1) are bounded. In particular, all limit points of these sequences
are Lagrange multipliers associated with x̄.

Proof. Let {ρk}, {λ̄k}, and {µ̄k} be corresponding sequences produced by Algorithm 1.
If {ρk} is bounded, it remains constant after a certain iteration as it is non-decreasing from

Step 2. Thus, the test in Step 2 of Algorithm 1 ensures that max{∥h(xk)∥∞, ∥V k∥∞} → 0, which
implies that x̄ is feasible. As a consequence, the multiplier sequences given by (1), namely

λk = λ̄k + ρkh(x
k) and µk = [µ̄k + ρkg(x

k)]+, (13)

are bounded.
If ρk → ∞ and {Mk = ∥(1, λk, µk)∥∞}k∈K is bounded then by (13) and the boundedness of

{(λ̄k, µ̄k)} we also conclude that x̄ is feasible.
From now on, we suppose that ρk →∞ and {Mk}k∈K is unbounded. By (13), we have µk

i = 0
for all i with gi(x̄) < 0 and k ∈ K large enough. So, dividing ∇L(xk, λk, µk) → 0 by Mk and
taking the limit over K, we obtain (λ, µ) ̸= 0 such that

λi = lim
k∈K

λ̄k
i + ρkhi(x

k)

Mk
, µj = lim

k∈K

[
µ̄k
j + ρkgj(x

k)
]
+

Mk
(14)

for all i, j, and satisfying ∇h(x̄)λ+∇g(x̄)µ = 0.
Now, we analyse feasibility of x̄ with respect to each constraint in two cases: whether the

corresponding multiplier is zero or not. If λi = 0 and hi(x̄) ̸= 0, then

lim
k∈K

ρk
Mk

= 0 (15)

by (14) and the boundedness of {λ̄k
i }. As (λ, µ) ̸= 0, there is an index ℓ such that λℓ ̸= 0 or µℓ > 0.

However, due to (15), we would have

λℓ = lim
k∈K

[
λ̄k
ℓ

Mk
+

ρk
Mk

hℓ(x
k)

]
= 0 and µℓ = lim

k∈K

[
µ̄k
ℓ

Mk
+

ρk
Mk

gℓ(x
k)

]
+

= 0,

a contradiction. Therefore, hi(x̄) = 0 whenever λi = 0. We can prove that gj(x̄) ≤ 0 if µj = 0
analogously, since, in view of (14) and the boundedness of {µ̄k

j }, µj = 0 and gj(x̄) > 0 imply (15).
The case where λi ̸= 0 or µj > 0 follows the same steps in the proof of Theorem 3, as we can

conclude that this contradicts the validity of Extended-RQN at x̄ independently of the feasibility
of x̄. This completes the proof.

Theorems 3 and 4 can also be extended in a different direction, by considering a more
general variation of Algorithm 1. Namely, in Step 1, instead of computing xk such that
∥∇Lρk,λ̄k,µ̄k(xk)∥∞ ≤ εk for a sequence εk → 0, we do so for a sequence εk such that εk = o(Mk),

where Mk = ∥(1, λk, µk)∥∞ as defined in (1). A sequence of this type is computed when one
aims at achieving a scaled stopping criterion, so that the subproblems may be solved to a less
stringent accuracy, improving the efficiency without hindering its robustness. See the discussion
and numerical experiments in [6] and [14]. In other words, [14, Theorem 2.1] may be proved under
Extended-RQN, which we state below.

Theorem 5. Let x̄ be the limit of a subsequence {xk}k∈K as generated by Algorithm 1 that
satisfies Extended-RQN where the subproblem tolerance εk is such that εk = o(Mk), where Mk =
∥(1, λk, µk)∥∞ as defined in (1). Then x̄ is feasible and {Mk}k∈K is bounded. In particular, all
limit points of these sequences are Lagrange multipliers associated with x̄.

Proof. The proof is essentially the same as the ones presented previously. In the proof of Theorem 3,
notice that the first step is to divide ∥∇L(xk, λk, µk)∥∞ ≤ εk by Mk and use that the right-hand
side goes to zero. This remains to be the case under our assumptions.
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5 Relationship between RQN and other known CQs

In this section we analyse the relationship between RQN and other known CQs from the literature
besides CRSC and QN. Next, we recall the AL-regular CQ (or AL-regularity condition), which is
associated with the sequences generated by Algorithm 1 [5]. To this end, we consider the function
KAL : Rn+1 → Rn defined by

KAL(x, ρ) = ∇h(x)[ρh(x)] +∇g(x)[ρg(x)]+.

Let x̄ be a feasible point for (P). The upper limit of KAL(x, ρ) as x→ x̄ and ρ→∞ is the set

lim sup
x→x̄,ρ→∞

KAL(x, ρ)

=
{
ȳ ∈ Rn | ∃{(xk, yk)} → (x̄, ȳ), ∃{ρk} → ∞ s.t. yk = KAL(xk, ρk) ∀k

}
.

We have K(x̄) ⊆ lim supx→x̄,ρ→∞KAL(x, ρ) [5], but the contrary inclusion is not always true.
AL-regularity is exactly that.

Definition 5. A feasible x̄ for (P) satisfies the AL-regularity condition (or it is an AL-regular
point) if

lim sup
x→x̄,ρ→∞

KAL(x, ρ) ⊆ K(x̄).

The AL-regularity condition is in some sense the weakest possible property that guarantees
that any feasible limit point of Algorithm 1 satisfies the KKT conditions.

Theorem 6. Let x̄ be a feasible limit point of a sequence generated by Algorithm 1. If x̄ satisfies
the AL-regularity condition then x̄ satisfies the KKT conditions. Conversely, if for every objective
function that attains a constrained local minimum at x̄, the KKT conditions are satisfied, then x̄
is an AL-regular point.

Proof. The statement follows from [5, Theorems 1 and 6].

The above theorem implies that, indeed, AL-regularity is a constraint qualifications since every
local minimizer is the limit point of a sequence generated by Algorithm 1 [5, Theorem 2] (actually,
it implies Abadie’s constraint qualification [5, Theorem 9]). This fact also gives an alternative
proof that RQN is a constraint qualification.

Theorem 7. RQN implies AL-regularity.

Proof. The statement follows directly from Theorems 3 and 6, as the boundedness of the multiplier
sequence associated with a primal accumulation point of Algorithm 1 implies the validity of the
KKT conditions.

Another CQ of interest is the constant positive generators (CPG), which we recall next. Let
us consider the set

K(x; x̄, I,J ) =∑
i∈I

λi∇hi(x) +
∑
j∈J

µj∇gj(x) +
∑

j∈A+(x̄)

µj∇gj(x)
∣∣∣ µj ≥ 0 for all j ∈ A+(x̄)

 ,

where I ⊆ {1, . . . ,m}, J ⊆ A−(x̄), A+(x) = A(x)\A−(x) and A−(x) is given in (2). In this set,
inequality constraints with indices in J are treated as equalities in the sense that their associated
multipliers are free of sign.

Definition 6 (CPG [8]). A feasible point x̄ for (P) satisfies CPG if there are index sets I ⊆
{1, . . . ,m} and J ⊆ A−(x̄) such that the gradients within K(x̄; x̄, I,J ) are positively linearly
independent (that is, the unique way to 0 ∈ K(x̄; x̄, I,J ) is taking (λ, µ) = 0) and

K(x; x̄) ⊆ K(x; x̄, I,J )

for all x in a neighbourhood of x̄.
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It is known that CRSC implies CPG [8], which in turn implies AL-regularity [5]. However,
CPG and RQN are independent of each other, as the next examples show.

Example 3 (CPG does not imply RQN). Let Ω = {x ∈ R2 | g(x) ≤ 0} where [8]

g1(x) = x3
1 + x2, g2(x) = x3

1 − x2, g3(x) = x3
2, g4(x) = x1

and x̄ = (0, 0) ∈ Ω, for which A(x̄) = {1, 2, 3, 4}. It is easy to see that A−(x̄) = {1, 2, 3}, so
A+(x̄) = {4}. We have ∇g1(x̄) = (0, 1), ∇g2(x̄) = (0,−1) and ∇g3(x̄) = (0, 0), which lead us to
take J = {1} in Definition 6. Also, K(x; x̄) = R+×R = K(x; x̄, ∅,J ) for all x, and therefore CPG
holds at x̄.

To show that RQN does not hold at x̄, it is enough to consider µ = (0, 0, 1, 0) and xk =
(−1/k1/3, 1/k) for all k ≥ 1. In fact, we have limk x

k = x̄, µ1∇g1(x̄) + µ2∇g2(x̄) + µ3∇g3(x̄) +
µ4∇g4(x̄) = 0 and, for all k ≥ 1, µ3g3(x

k) = 1/k3 > 0 and (g1(x
k))+ = (g2(x

k))+ = (g4(x
k))+ =

0 = o(w(xk)).

Example 4 (RQN does not imply CPG). As in Example 1, consider the constraints g1(x) =
−x1 ≤ 0, g2(x) = x1 − x2

2 ≤ 0 and the point x̄ = (0, 0). It was shown previously that QN
holds at x̄, so RQN also holds. On the other hand, CPG is not valid at x̄. In fact, we have
A−(x̄) = {1, 2}. It can not be J = {1, 2} since ∇g1(x̄) and ∇g2(x̄) are not positively linearly
independent. Furthermore, for any δ ̸= 0 we have (1,−3δ2) ∈ K((0, δ); x̄)\K((0, δ); x̄, ∅, {1}) and
(−1, 0) ∈ K((0, δ); x̄)\K((0, δ); x̄, ∅, {2}), so CPG does not hold at x̄.

We summarize all the relations discussed in this section in Figure 1, which brings several known
CQs from the literature not considered in this work. The reader is refereed to [5] and references
therein for details.

LICQ

Mangasarian-Fromovitz CQ

MFCQ

Constant positive linear dependence

CPLD

Constant rank CQ

CRCQ

Linear/affine constraints

Relaxed-CRCQ

RCRCQ
Relaxed-CPLD

RCPLD

Constant rank of the subspace component

CRSC

Constant positive generators

CPG

Pseudonormality

Quasinormality

Relaxed-quasinormality

RQN
AL-regularity

Abadie’s CQ Guignard’s CQ

Figure 1: Landscape of constraint qualifications for nonlinear programming problems.

6 Conclusions

Weak constraint qualifications (in particular, those weaker than MFCQ and LICQ) have been
largely used for several different purposes in nonlinear programming and more general optimization
problems; namely for studying stability properties, error bound estimates, differentiability of the
value function, global convergence of algorithms, among other applications. In particular, several
studies have appeared related with constant rank-type constraint qualifications, which are the most
well known of these conditions. On the other hand, the quasinormality constraint qualification has
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appeared in the context of enhanced Fritz-John conditions connected with the notion of a more
precise (enhanced) class of Lagrange multipliers.

In some sense, constant rank constraint qualifications introduced in the recent years dictate that
equality constraints should be treated differently than inequality constraints, with the exception
of some inequalities that behave like equalities. In this paper we proposed a similar relaxation of
the quasinormality condition, which turned out to be connected with the notion of informative
Lagrange multipliers, where a Lagrange multiplier that vanishes must also somehow conform to a
sign constraint with respect to how the constraints may be violated nearby the point of interest.

Concerning the global convergence properties of a safeguarded augmented Lagrangian method,
several constraint qualifications have been used for this purpose but only the strongest ones
were known to provide boundedness of dual sequences. This property is particularly relevant for
complexity analysis and for applications where a dual solution is actually sought (such as in energy
pricing applications, among others). In this paper we showed that our relaxed quasinormality
condition is enough for ensuring this result, which implies that all constant rank-type constraint
qualifications also inherit this property. This is particularly relevant due to the pivotal role played
by the so-called constant rank of the subspace component condition (CRSC).

Other applications and extensions have been discussed, in particular connected with attaining a
feasible limit point and the use of a scaled stopping criterion. We expect future research to expand
the applicability of relaxed quasinormality to other areas where quasinormality was previously
used.
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