
Mixed-Integer Linear Optimization
for Semi-Supervised Optimal Classification Trees

Jan Pablo Burgard, Maria Eduarda Pinheiro, Martin Schmidt

Abstract. Decision trees are one of the most famous methods for solving
classification problems, mainly because of their good interpretability proper-
ties. Moreover, due to advances in recent years in mixed-integer optimization,
several models have been proposed to formulate the problem of computing
optimal classification trees. The goal is, given a set of labeled points, to split
the feature space with hyperplanes and assign a class to each partition. In
certain scenarios, however, labels are exclusively accessible for a subset of the
given points. Additionally, this subset may be non-representative, such as in
the case of self-selection in a survey. Semi-supervised decision trees tackle the
setting of labeled and unlabeled data and often contribute to enhancing the
reliability of the results. Furthermore, undisclosed sources may provide extra
information about the size of the classes. We propose a mixed-integer linear
optimization model for computing semi-supervised optimal classification trees
that cover the setting of labeled and unlabeled data points as well as the overall
number of points in each class for a binary classification. Our numerical results
show that our approach leads to a better accuracy and a better Matthews cor-
relation coefficient for biased samples compared to other optimal classification
trees, even if only few labeled points are available.

1. Introduction

Decision trees are among the most popular approaches for supervised classifica-
tion (Breiman et al. 1984; Quinlan 1986). One of the main reasons for this is that
they are easy to interpret compared to other machine learning models. The core
idea is to recursively partition the feature space, according to branching rules, and
assign a label to each resulting part of the partition.

One way to partition the data is to use hyperplanes involving a single feature,
which then leads to so-called univariate trees; see, e.g., Kotsiantis (2014) and Yildiz
and Dikmen (2007). In a multivariate tree, these hyperplanes involve more than one
feature and some approaches for this setting are given in Altincay (2007), Bennett
and Blue (1996), and Orsenigo and Vercellis (2003). In many algorithms for uni-
variate or multivariate trees, each separate hyperplane is generated by minimizing
a local impurity function, i.e., they do not build the tree by solving just a single
optimization problem.

In recent years, due to the advancement of algorithms for mixed-integer program-
ming (MIP), many strategies for computing optimal classification trees (OCT) by
globally solving an optimization problem using MIP techniques have been proposed.
Some techniques are discussed in the recent surveys by Carrizosa et al. (2021) and
Gambella et al. (2021). The first approaches were proposed by Bertsimas and Dunn
(2017). They present two mixed-integer linear programming (MILP) models based
on univariate and multivariate trees. Verwer and Zhang (2019) propose a binary

Date: January 17, 2024.
2020 Mathematics Subject Classification. 90C11, 90C90, 90-08, 68T99.
Key words and phrases. Semi-supervised learning, Optimal classification trees, Mixed-integer

linear optimization.

1

2 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

linear formulation in which the problem size is largely independent of the size of
the training data. MIP approaches that consider support vector machines (Cortes
and Vapnik 1995) to split the tree also have been explored, as can be seen in Blanco
et al. (2022a), Blanco et al. (2022b), and D’Onofrio et al. (2023).

Besides the MIP models to solve an OCT, Blanquero et al. (2021) proposed a
nonlinear optimization approach to compute an optimal “randomized” classification
tree. In their approach, each data point is assigned to a class only with a given
probability. The model uses oblique cuts with the goal of utilizing fewer predictor
variables in the splits of the tree. Furthermore, Blanquero et al. (2019) aggregate
local and global sparsity in the randomized tree by means of regularization with
polyhedral norms.

All the strategies presented so far exclusively focus on labeled data. However,
acquiring labels for every unit of interest can be expensive—in particular if classic
surveys are used to obtain the labels. In this case, it would be beneficial to train the
decision tree on only partly labeled data. This yields a semi-supervised learning
setting (Zhu and Goldberg 2009). Algorithms for semi-supervised learning have
already been proposed for SVM (Chapelle et al. 2006; Melacci and Belkin 2009),
neural networks (Lee 2013; Nguyen et al. 2023; Oliver et al. 2018), and logistic
regression (Amini and Gallinari 2002; Bzdok et al. 2015).

In the field of semi-supervised decision trees, Kim (2016) splits internal nodes by
utilizing the structural characteristics of the data for subspace partition. Moreover,
Kocev et al. (2017) consider minimizing a local impurity function and Tanha et al.
(2017) propose self-training as base learners. Recently, Santhiappan and Ravindran
(2021) consider a maximum mean discrepancy to estimate the class ratio at every
splitting rule in a univariate decision tree. Furthermore, Zharmagambetov and
Carreira-Perpinan (2022) present a graph Laplacian approach to deal with the un-
labeled data. Hence, although they present different ideas, none of the approaches
considers globally solving a single optimization problem.

Moreover, in many cases, external sources provide information about the total
amount of elements in each class within a population. For example, in some busi-
nesses, the number of positive labels might be available, but the identification of
which customer has a positive or negative label is unknown. An intuitive example
is a supermarket for which the amount of cash payments is known. However, this
information is not attributable to the individual customers ex-post. Another exam-
ple is population surveys, where statistics agencies can provide how many people
are employed. For logistic regression, the idea of aggregating this extra informa-
tion is proposed by Burgard et al. (2021), who develop a cardinality-constrained
multinomial logit model. In the SVM setting, Burgard et al. (2023) present a mixed-
integer quadratic optimization model and iterative clustering techniques to tackle
cardinality constraints for each class. Our contribution here is to propose to add
this aggregated additional information to a multivariate OCT model by imposing
a cardinality constraint on the predicted labels for the unlabeled data.

We develop a big-M -based MILP to solve the semi-supervised optimal classi-
fication tree (S2OCT) problem that deals with the cardinality constraint for the
unlabeled data. The cardinality constraint helps to account for biased samples
since the number of predictions in each class on the population is bounded by the
constraint. This paper is organized as follows. In Section 2 we present preliminary
concepts and our optimization problem. Afterward, the big-M -based MILP formu-
lation is presented in Section 3. In Section 4, numerical results are reported and
discussed and we conclude in Section 5.

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 3

1

2

4 5

3

6 7

(ω1)>xi − γ1 ≤ −1

(ω2)>xi − γ2 ≤ −1 ≥ 1

(ω1)>xi − γ1 ≥ 1

(ω3)>xi − γ3 ≤ −1 ≥ 1

A B A B

Figure 1. A classification tree with depth D = 2

2. Preliminary Concepts

Let X ∈ Rp×N = [Xl, Xu] be the data matrix with labeled data Xl = [x1, . . . , xn]
and unlabeled data Xu = [xn+1, . . . , xN]. Hence, we observe xi ∈ Rp for all i ∈
[1, N] := {1, . . . , N}. We set m := N − n, U := [n+ 1, . . . , N], and c ∈ {A,B}n as
the vector of class labels for the labeled data.

In a multivariate optimal classification tree, each decision consists of a linear
combination of the p components of a point xi. Considering only the labeled data,
the goal is to split the feature space into distinct regions to correctly classify each
point. However, in many applications, aggregated information on the labels is
available, e.g., from census data. In the following, we know the total number
λ ∈ N of unlabeled points that belong to the class A and adapt the idea of optimal
classification trees such that we can use the unlabeled data as well as λ as additional
information.

Given a depth D ∈ N, a classification tree has 2D+1−1 nodes, categorized in two
types; the branch nodes TB = [1, 2D − 1] and the leaf nodes TL = [2D, 2D+1 − 1].
Each branch node b ∈ TB provides a hyperplane parameterized by (ωb, γb) that
splits the feature space into half-spaces. As suggested by Bertsimas and Dunn
(2017), if a point xi, i ∈ [1, N], satisfies (ωb)>xi − γb ≤ 0, then xi follows the left
branch of the node b. If (ωb)>xi − γb > 0 holds, the point xi follows the right
branch of the node b. For an optimization formulation, the strict inequality needs
to be re-written as (ωb)>xi − γb ≥ ε for a sufficiently small ε > 0. However, a very
small value of ε might lead to numerical instabilities. To avoid this, we replace
(ωb)>xi− γb ≤ 0 by (ωb)>xi− γb ≤ −1, and (ωb)>xi− γb ≥ ε by (ωb)>xi− γb ≥ 1.
Note that this change is always possible except for the rare cases that a data point
actually lies on a hyperplane.

In each leaf node, t ∈ TL, all points xi, i ∈ [1, N], are classified as A or B. In
a simple example with D = 2, the classification tree has TB = [1, 3] and TL =
[4, 7]; see Figure 1. Regarding the classification at the leaf nodes, let T AL = {t ∈
TL : t is even} be the set of leaf nodes that are classified as A and T BL = {t ∈
TL : t is odd} be the set of leaf nodes that are classified as B. For the classification
tree with D = 2, see Figure 1 again, T AL = {4, 6} and T BL = {5, 7} holds.

For each leaf node t ∈ TL, define NR(t) as the index set of the branch nodes in
which the right or “greater than” branch is traversed to reach leaf t. Moreover, we
define NL(t) as the index set of the branch nodes in which the left or “less than”

4 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

branch is traversed to reach leaf t. For the classification tree in Figure 1 we have

NL(4) = {1, 2}, NR(4) = ∅, NL(5) = {1}, NR(5) = {2},
NL(6) = {3}, NR(6) = {1}, NL(7) = ∅, NR(7) = {1, 3}.

Given a fixed depth D, a point xi, i ∈ [1, n], with ci ∈ {A,B}, is correctly
classified if all inequalities from the root to the leaf node are satisfied for some leaf
node t ∈ T ciL . Hence, a point xi is correctly classified if

∨
t∈T ci

L

 ∧
b∈NR(t)

[(
ωb
)>
xi − γb ≥ 1

]∧
 ∧
b∈NL(t)

[(
ωb
)>
xi − γb ≤ −1

]
 .

(1)
is satisfied.

In our running example with D = 2, a point xi with ci = A is correctly classified
if {[(

ω1
)>
xi − γ1 ≤ −1

]
∧
[(
ω2
)>
xi − γ2 ≤ −1

]}
∨
{[(

ω1
)>
xi − γ1 ≥ 1

]
∧
[(
ω3
)>
xi − γ3 ≤ −1

]}
holds.

An unlabeled point xi, i ∈ [n+ 1, N], is classified as A if

∨
t∈T AL

 ∧
b∈NR(t)

[(
ωb
)>
xi − γb ≥ 1

]∧
 ∧
b∈NL(t)

[(
ωb
)>
xi − γb ≤ −1

]
 (2)

is true. Thus, our goal is to find ω and γ such that Expression (1) is satisfied for all
labeled data points xi, i ∈ [1, n], and such that the number of unlabeled points xi,
i ∈ [n+ 1, N], that satisfy Expression (2) is as close as possible to λ.

For doing so, we first need to define suitable error measures that then have to
be minimized. For this purpose, we define the branch and leaf error according to
the decision error and leaf error proposed by Bennett and Blue (1996). The first
error is related to branch nodes. For each labeled point, at each branch node, we
consider the inequality that must be satisfied and then measure by how much it is
violated.

Definition 1 (Branch Error). Given a labeled point xi, i ∈ [1, n], in any branch
node b ∈ TB, the branch errors

(
yRb
)
i
and

(
yLb
)
i
are defined by(

yRb
)
i

:=
[
−
(
ωb
)>
xi + γb + 1

]+
and

(
yLb
)
i

:=
[(
ωb
)>
xi − γb + 1

]+
with [v]+ := max{0, v}.

The definition above can be interpreted as follows. If the point xi satisfies
(ωb)>xi − γb ≥ 1, and therefore follows the right branch in some node b ∈ TB , it
holds (yRb)i = 0 and (yLb)i > 0. However, if the point follows the left branch in some
node b ∈ TB , i.e., if (ωb)>xi − γb ≤ −1 holds, we obtain (yRb)i > 0 and (yLb)i = 0.

The next definition represents the error in each leaf node t. For each labeled
point, we sum over the branch errors along the path from the root to the leaf
node t.

Definition 2 (Leaf Error). The leaf error of a labeled point xi, i ∈ [1, n], at a leaf
node t ∈ TL is defined by

LE(xi, t) :=
∑

b∈NR(t)

(
yRb
)
i
+

∑
b∈NL(t)

(
yLb
)
i
. (3)

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 5

Note that LE(xi, t) is a linear expression and for each labeled point xi, i ∈ [1, n],
Expression (1) is satisfied if LE(xi, t) = 0 for some t ∈ T ciL . Additionally,
LE(xi, t) ≥ 0 holds for all t ∈ TL. Hence, each labeled point xi is correctly classified
if the minimum value of all leaf errors is zero, i.e., if

min
t∈ci

{
LE(xi, t)

}
= 0

holds. Besides that, we want to classify λ unlabeled points as A, which means λ
unlabeled points must end up in some t ∈ T AL .

To sum up, given the data matrix X ∈ Rp×N and λ ∈ N as well as some
s > 0, our goal is to find optimal parameters ω ∈ Rp×2D−1, γ ∈ R2D−1 as well as
yR, yL ∈ R2D−1×n and ξ ∈ R that solve the optimization problem

min
ω,γ,yR,yL,ξ

n∑
i=1

min
t∈T ci

L

{LE(xi, t)}+ Cξ (P1a)

s.t.
(
yRb
)
i
≥ −

(
ωb
)>
xi + γb + 1, b ∈ TB , i ∈ [1, n], (P1b)(

yLb
)
i
≥
(
ωb
)>
xi − γb + 1, b ∈ TB , i ∈ [1, n], (P1c)

− s ≤ ωbj ≤ s, b ∈ TB , j ∈ [1, p], (P1d)(
yRb
)
i
,
(
yLb
)
i
≥ 0, b ∈ TB , i ∈ [1, n], (P1e)

λ− ξ ≤
N∑

i=n+1

∑
t∈T AL

(
ψ(xi, t)

)
≤ λ+ ξ, (P1f)

ξ ≥ 0 (P1g)

where LE(xi, t) is defined in (3) and

ψ(xi, t) =

{
1, if xi ends in the leaf node t,
0, otherwise.

(4)

Note that the objective function in (P1a) models a compromise between minimizing
the classification error for the labeled and unlabeled data. The penalty parame-
ter C > 0 aims to control the importance of the slack variable ξ. Constraints (P1b)
and (P1c) enforce on which branch (left or right) the labeled point xi should tra-
verse in branch node b. Constraint (P1d) defines the domain of each variable ωb.
This constraint is not necessary for the correctness of the model but will serve as a
big-M -type parameter that is later used for deriving certain bounds; see Section 3.
Constraint (P1f) ensures that the number of unlabeled data classified as A is as
close to λ as possible.

The functions min{LE(xi, t) : t ∈ T ciL } in the objective function (P1a) and
ψ(xi, t) in Constraint (P1g) are discontinuous, which means that Problem (P1)
cannot be solved easily by standard solvers as such. Hence, we will present a
mixed-integer linear programming (MILP) formulation using binary variables to
re-model the objective function (P1a) and to count the classification of unlabeled
points.

3. The MILP Model

We start the development of a MILP model by using classic SOS1-techniques
(Beale and Tomlin 1969) and McCormick inequalities (McCormick 1976) to re-
phrase a min min problem as an MILP formulation.

6 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

Lemma 1. Consider a set of continuous functions fk : Rp → R, k ∈ [1, d], for
some d ∈ N, and let Ω ⊆ Rp be given. Suppose further that there exist values
uk > 0 such that

0 ≤ fk(x) ≤ uk
holds for all x ∈ Ω and k ∈ [1, d]. Then, x∗ ∈ Rp is a solution to the problem

min
x

min
k∈[1,d]

fk(x) (5a)

s.t. x ∈ Ω (5b)

if and only if there exist α∗, β∗ ∈ Rd such that (x∗, α∗, β∗) is a solution to the
problem

min
x,α,β

d∑
k=1

βk (6a)

s.t. x ∈ Ω, (6b)
d∑
k=1

αk = 1, (6c)

αk ∈ {0, 1}, k ∈ [1, d], (6d)
βk ≤ ukαk, k ∈ [1, d], (6e)
βk ≤ fk(x), k ∈ [1, d], x ∈ Ω, (6f)
βk ≥ fk(x)− uk(1− αk), k ∈ [1, d], x ∈ Ω, (6g)
βk ≥ 0, k ∈ [1, d]. (6h)

Proof. By introducing the binary variables αk, we obtain that x∗ is a solution to
Problem (5) if and only if (x∗, α∗) is a solution of the problem

min
x,α

d∑
k=1

αkfk(x)

s.t. (6b)–(6d).

Besides that, for any (x∗, α∗) solution of the problem above, if α∗k = 0 holds for
some k ∈ [1, d], Constraints (6e) and (6h) enforce that β∗k = 0 = αkfk(x∗). On the
other hand, if α∗k = 1 holds, by Constraints (6f) and (6g), we obtain β∗k = α∗kfk(x∗).

Hence, x∗ is a solution to Problem (5) if and only if (x∗, α∗, β∗) exists such that

β∗k = α∗kfk(x∗), k ∈ [1, d],

is a solution to Problem (6). �

To apply the previous lemma to Problem (P1) it is necessary that LE(xi, t) has
lower and upper bounds, which are given in following proposition. Here and in
what follows, ‖ · ‖ denotes the Euclidean norm.

Proposition 1. Given [x1, . . . , xN] with xi ∈ Rp for all i ∈ [1, N] and s > 0, every
optimal solution (ω, γ, yR, yL, ξ) to Problem (P1) satisfies

|(ωb)>xi − γb| ≤ ηs
√
p, i ∈ [1, N], b ∈ TB ,

and
(yRb)i ≤ ηs

√
p+ 1, (yLb)i ≤ ηs

√
p+ 1, i ∈ [1, n], b ∈ TB ,

where η := maxi,k∈[1,N] ‖xi − xk‖. Moreover,

0 ≤ LE(xi, t) ≤ B(s), t ∈ i ∈ [1, n], t ∈ TL,
holds with

B(s) := D(ηs
√
p+ 1). (7)

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 7

Proof. Let H be the set of hyperplanes that separates [x1, . . . , xN] into two sets,
and let the hyperplane (ωb, γb) ∈ H be the hyperplane with the minimal maximum
distance to any point in X. Then, according to Blanco et al. (2022a), the maximum
distance from a point xi, i ∈ [1, N], to (ωb, γb) is η, i.e.,

|(ωb)>xi − γb|
‖ωb‖

≤ η.

Moreover, Constraint (P1d) enforces that ‖ωb‖ ≤ s√p. Hence,

|(ωb)>xi − γb| ≤ ηs
√
p, i ∈ [1, N], b ∈ TB ,

holds and

−
(
ωb
)>
xi + γb + 1 ≤ ηs√p+ 1 as well as

(
ωb
)>
xi − γb + 1 ≤ ηs√p+ 1

are satisfied for all b ∈ TB and i ∈ [1, n].
Note further that Problem (P1) is a minimization problem and LE(xi, t) is a

sum of the D non-negatives terms yRb and yLb . Thus, Constraints (P1b) and (P1c)
imply that

(yRb)i ≤ ηs
√
p+ 1, (yLb)i ≤ ηs

√
p+ 1, i ∈ [1, n], b ∈ TB ,

and
0 ≤ LE(xi, t) ≤ B(s), t ∈ TL,

holds. �

Note that Constraint (P1d) is decisive for obtaining the upper bound B(s) in
the previous lemma. Finally, to overcome the discontinuity of the function ψ(·)
defined in (4), we also add binary variables and use SOS techniques again to turn
on or off the enforcement of a constraint. More formal, by introducing the matrices
β ∈ Rn×2D−1

, α ∈ {0, 1}n×2D−1

, z ∈ {0, 1}m×2D−1, and δ ∈ {0, 1}m×2D−1

of binary
variables, we can reformulate the optimization problem (P1) as follows:

min
ω,γ,yR,yL,ξ,α,β,z,δ

n∑
i=1

∑
t∈T ci

L

βit + Cξ (P2a)

s.t. (P1b)–(P1e),∑
t∈T ci

L

αit = 1, i ∈ [1, n], (P2b)

αit ∈ {0, 1}, i ∈ [1, n], t ∈ T ciL , (P2c)

βit ≤ LE(xi, t), i ∈ [1, n], t ∈ T ciL , (P2d)

βit ≥ LE(xi, t)−B(s)(1− αit), i ∈ [1, n], t ∈ T ciL , (P2e)

0 ≤ βit ≤ B(s)αit, i ∈ [1, n], t ∈ TL, (P2f)

(ωb)>xi − γb ≤ zbiM − 1, b ∈ TB , i ∈ U , (P2g)

(ωb)>xi − γb ≥ −(1− zbi)M + 1, b ∈ TB , i ∈ U , (P2h)

zbi ∈ {0, 1}, b ∈ TB , i ∈ U , (P2i)

δti ≤ zbi , b ∈ NR(t), t ∈ T AL , i ∈ U , (P2j)

δti ≤ −zbi + 1, b ∈ NL(t), t ∈ T AL , i ∈ U , (P2k)

δti ≥
∑

b∈NR(t)

zbi +
∑

b∈NL(t)

(−zbi + 1)− (D − 1), t ∈ T AL , i ∈ U ,

(P2l)

8 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

δti ∈ {0, 1}, t ∈ T AL , i ∈ U , (P2m)

λ− ξ ≤
N∑

i=1+n

∑
t∈T AL

δti ≤ λ+ ξ, (P2n)

ξ ≥ 0, (P2o)

where M needs to be chosen sufficiently large. The constraints in (P2c) enforce
that the minimum value of LE(xi, t) is selected for each xi ∈ [1, n] and Con-
straints (P2d)–(P2f) ensure

βit = αitLE(xi, t), i ∈ [1, n], t ∈ TL.
As zbi is binary, Constraints (P2g) and (P2h) lead to

(ωb)>xi − γb ≥ 1 =⇒ zbi = 1, b ∈ TB , i ∈ U ,

(ωb)>xi − γb ≤ −1 =⇒ zbi = 0, b ∈ TB , i ∈ U .

Furthermore, as δti is binary as well, for all i ∈ U and t ∈ T AL , Constraints (P2j)–
(P2l) lead to

δti =

{
1, if zbi = 1 for b ∈ NR(t) and zbi = 0 for b ∈ NL(t),

0, otherwise,

i.e.,

δti =

{
1, if xi ends up in the leaf node t,
0, otherwise.

Constraint (P2n) ensures that the number of unlabeled data classified as A is as
close to λ as possible. Reformulation (P2) is an MILP. We refer to this problem
as S2OCT. As usual in mixed-integer optimization, the big-M -value is crucial as
is the choice of s in Constraint (P1d). However, precisely based on s we have an
exact value for M , as discussed in the following theorem.

Theorem 2. Consider η := maxi,k∈[1,N] ‖xi − xk‖. Any feasible point for Prob-
lem (P2) satisfies (P2g) and (P2h) for M = ηs

√
p+ 1.

Proof. Note that if zbi = 1 for some i ∈ U and b ∈ TB , Constraints (P2g) and (P2h)
imply

M − 1 ≥ (ωb)>xi − γb ≥ 1.

Moreover, since (ωb)>xi − γb ≥ 0, because of Proposition 1, we get

(ωb)>xi − γb ≤ ηs
√
p.

This means that M = ηs
√
p+ 1 does not cut off any feasible solution.

On the other hand, if zbi = 0 holds for some i ∈ U and b ∈ TB , due to Con-
straint (P2g) and (P2h), we obtain

1−M ≤ (ωb)>xi − γb ≤ −1,

and, similarly, M = ηs
√
p+ 1 does not cut of any feasible solution as well. �

4. Numerical Results

In this section, we present and discuss our computational results that exemplify
the advantages of considering the known total amount of each class. We analyze
this on different test sets from the literature. The test sets are discussed in Sec-
tion 4.1, while the computational setup is described in Section 4.2. The evaluation
criteria are depicted in Section 4.3. Finally, the numerical results are discussed in
Section 4.4.

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 9

4.1. Tests Sets. For the computational analysis of the proposed approach, we
consider the subset of instances presented by Olson et al. (2017) that are applicable
to classification problems and that have at most three classes. Repeated instances
are eliminated, and all instances are reduced to complete cases only. If an instance
contains three classes, we convert them into two classes, such that the class with
label 1 represents the class A and the other two classes represent the class B. This
results in a final test set of 97 instances, as listed in Table 1. To avoid numerical
instabilities, all data sets are scaled as follows. For each coordinate j ∈ [1, p], we
compute

lj = min
i∈[1,N]

{
xij
}
, uj = max

i∈[1,N]

{
xij
}
, mj = 0.5 (lj + uj)

and shift each coordinate j of all data points xi via x̄ij = xij −mj . Furthermore, if
a coordinate j of the re-scaled points is still large, i.e., if l̃j = lj −mj < −102 or
ũj = uj −mj > 102 holds, it is re-scaled via

x̃ij = (v̄ − v)
x̄ij − l̃j
ũj − l̃j

+ v̄

with v̄ = 102 and v = −102. The corresponding 10 instances that we re-scale are
marked with an asterisk in Table 1.

Table 1: Overview over the entire test set with number of
points (N) and dimension (p)

ID Instance N p

1 prnn_synth 250 2
2∗ analcatdata_asbestos 73 3
3∗ lupus 87 3
4 analcatdata_boxing1 120 3
5 analcatdata_boxing2 132 3
6 haberman 289 3
7 analcatdata_happiness 60 3
8∗ analcatdata_aids 50 4
9 analcatdata_lawsuit 263 4
10 iris 147 4
11 hayes_roth 93 4
12 balance_scale 625 4
13 parity5 32 5
14∗ bupa 341 5
15 irish 470 5
16 phoneme 5349 5
17 tae 110 5
18 new_thyroid 215 5
19∗ analcatdata_bankruptcy 50 6
20∗ analcatdata_creditscore 100 6
21 mux6 64 6
22 monk3 357 6
23 monk1 432 6
24 monk2 432 6
25 appendicitis 106 7
26 prnn_crabs 200 7
27∗ penguins 333 7
28 postoperative_patient_data 78 8

10 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

29∗ biomed 209 8
30∗ pima 768 8
31∗ cars 392 8
32 analcatdata_japansolvent 52 9
33 glass2 162 9
34 breast_cancer 272 9
35 saheart 462 9
36 threeOf9 512 9
37 profb 672 9
38 breast_w 463 9
39 tic_tac_toe 958 9
40 xd6 512 9
41 cmc 1425 9
42 analcatdata_cyyoung9302 92 10
43 analcatdata_cyyoung8092 97 10
44 breast 691 10
45 flare 315 10
46 parity5+5 1024 10
47 magic 18905 10
48 analcatdata_fraud 42 11
49 heart_statlog 270 13
50 heart_h 293 13
51 hungarian 293 13
52∗ cleve 302 13
53∗ heart_c 302 13
54 wine_recognition 178 13
55∗ australian 690 14
56∗ adult 48790 14
57∗ schizo 340 14
58∗ buggyCrx 690 15
59 labor 57 16
60 house_votes_84 342 16
61 hepatitis 155 19
62∗ credit_g 1000 20
63 gametes_e_0.1H 1599 20
64 gametes_e_0.4H 1600 20
65 gametes_e_0.2H 1600 20
66 gametes_h_50 1592 20
67 gametes_h_75 1599 20
68∗ churn 5000 20
69∗ ring 7400 20
70 twonorm 7400 20
71 waveform_21 5000 21
72 ann_thyroid 7129 21
73 spect 228 22
74 horse_colic 357 22
75 agaricus_lepiota 8124 22
76∗ hypothyroid 3086 25
77∗ dis 3711 29
78∗ allhypo 3709 29
79∗ allbp 3711 29
80∗ breast_cancer_wisconsin 569 30

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 11

81 backache 180 32
82 ionosphere 351 34
83 chess 3196 36
84 waveform_40 5000 40
85 connect_4 67557 42
86 spectf 267 44
87∗ tokyo1 959 44
88 molecular_biology_promoters 106 57
89∗ spambase 4210 57
90 sonar 208 60
91 splice 2903 60
92 coil2000 8380 85
93∗ Hill_Valley_without_noise 1212 100
94∗ clean1 476 168
95∗ clean2 6598 168
96 dna 3002 180
97 gametes_e_1000atts 1600 1000

In our computational study, we aim to emphasize the significance of cardinality
constraints, particularly in the context of non-representative biased samples. Biased
samples are frequently observed in non-probability surveys, which are surveys where
the inclusion process is not monitored and, hence, the inclusion probabilities are
unknown as well. Therefore, correction methods like inverse inclusion probability
weighting are not applicable. For an understanding of inverse inclusion probability
weighting, see Skinner and D’arrigo (2011) and references therein.

To simulate this scenario, we create 5 biased samples with 10 % of the data being
labeled for each instance. In contrast to a simple random sample, where each point
has an equal probability of being chosen as labeled data, in the biased sample the
labeled data are chosen with probability 85 % for being on class A. Then, for each
instance, with a time limit of 7200 s each, we apply the methods listed in Section 4.2.

Additionally, in Appendix B, we provide the results under simple random sam-
pling, which produces unbiased samples. We see that the results from the proposed
methods are similar to OCT-H (Bertsimas and Dunn 2017) in this setting. Despite
the extra computational costs, we do not observe any drawbacks by using S2OCT
in more simple survey designs.

4.2. Computational Setup. For each one of the 485 instances described in Sec-
tion 4.1, the following approaches are compared:

(a) OCT-H as described in Bertsimas and Dunn (2017), where only labeled
data are considered.

(b) S2OCT as given in Problem (P2) with B(s) as in Expression (7) and M as
given in Theorem 2.

Our comparison has been implemented in Julia 1.8.5 and we use Gurobi 9.5.2 and
JuMP (Dunning et al. 2017) to solve OCT-H as well as Problem (P2). All computa-
tions were executed on the high-performance cluster “Elwetritsch”, which is part of
the “Alliance of High-Performance Computing Rheinland-Pfalz” (AHRP). We used
a single Intel XEON SP 6126 core with 2.6 GHz and 64 GB RAM.

To give the same importance to labeled and unlabeled data, we set the parameter
C = 1 in S2OCT. Furthermore, we set the complexity parameter α = 0 in OCT-H.
Also, as required by OCT-H, all points xi belong to [0, 1]d. For this to hold, we

12 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

re-scaled the data as discussed in Section 4.1, with the difference that l̃j < 0 and
ũj > 1.

Theorem 2 establishes a relationship between s and M . To keep M at least 500
and s sufficiently large, from preliminary numerical tests we set, in S2OCT,

s =

max{10, 499/(η

√
d)}, if N ∈ [1, 650),

max{20, 499/(η
√
d)}, N ∈ [650, 1500).

max{40, 499/(η
√
d)}, otherwise.

By default, MIP solvers such as Gurobi aim to achieve a balance between explor-
ing new feasible solutions and verifying the optimality of the current solution. In
preliminary numerical tests, we observed that the solver required significant time
to find feasible solutions. Therefore, we selected Gurobi’s parameter MIPFocus = 1,
i.e., the solver focuses more on finding feasible solutions. Moreover, D in OCT-H
and in S2OCT are fixed as

D =

{
2, if N ∈ [1, 1000),

3, otherwise.

4.3. Evaluation Criteria. The first evaluation criterion is the run time of OCT-H
and S2OCT. To compare run times, we use empirical cumulative distribution func-
tions (ECDFs). Specifically, for S being a set of solvers (or approaches as above)
and for P̄ being a set of problems, we denote by tp̄,s ≥ 0 the run time of the ap-
proach s ∈ S applied to the problem p̄ ∈ P̄ in seconds. If tp̄,s > 7200, we consider
problem p̄ as not being solved by approach s. With these notations, the perfor-
mance profile of approach s is the graph of the function γs : [0,∞) → [0, 1] given
by

γs(σ) =
1

|P̄ |
∣∣ {p̄ ∈ P̄ : tp̄,s ≤ σ

} ∣∣.
Furthermore, since the true labels of all points are known in the simulation, we
categorize them into four distinct categories: true positive (TP) or true negative
(TN) if the point is classified correctly in classes A or B, respectively, as well as false
positive (FP) if the point is misclassified in the class A and as false negative (FN)
if the point is misclassified in the class B. Using this information, we calculate two
classification metrics. The first one is accuracy (AC). It measures the proportion
of correctly classified points and is given by

AC :=
TP + TN

TP + TN + FP + FN
∈ [0, 1]. (8)

Observe that for AC the greater the value, the better the classification. The sec-
ond metric is Matthews correlation coefficient (MCC). It measures the correlation
coefficient between the observed and predicted classifications and is computed by

MCC :=
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
∈ [−1, 1]. (9)

As for accuracy, the higher the MCC, the better the classification. The main
question is the following: For a specific instance, does S2OCT or OCT-H have a
higher accuracy and MCC? Hence, we compute the instance-wise difference of the
accuracy and MCC according to

AC := ACS2OCT −ACOCT-H MCC := MCCS2OCT −MCCOCT-H, (10)

where ACOCT-H and ACS2OCT are computed as in (8), and MCCOCT-H and
MCCS2OCT as in (9). To keep the numerical results section concise, we report
on precision and recall in Appendix A.

4.4. Numerical Results.

MILP FOR SEMI-SUPERVISED OPTIMAL CLASSIFICATION TREES 13

Table 2. Different quantile values for the number of continuous
and binary variables

Continuous Binary

OCT-H S2OCT OCT-H S2OCT

min 31 43 42 151
25 % 61 195 123 846
50 % 97 366 226 1843
75 % 319 3028 1451 16 469
max 14 039 121 910 54 373 695 835

Figure 2. ECDFs for run times (in seconds).

4.4.1. Run Time. The number of continuous and binary variables is an important
property for comparing different approaches. For this purpose, we computed the
number of these variables for all instances presented in Section 4.1. Table 2 provides
a quantile analysis of these quantities.

Observe that S2OCT has more variables than OCT-H. Therefore, it can be
expected that OCT-H solves more instances than S2OCT within the time limit.
However, note that the two approaches are designed for different purposes. Our
approach considers labeled and unlabeled points together with the respective car-
dinality constraint, while OCT-H only deals with labeled points. Figure 2 shows
ECDFs of run times of OCT-H and S2OCT. OCT-H solved 86 % of the instances
within the time limit, while S2OCT does so for 58 %. As expected, OCT-H has
significantly shorter run times.

4.4.2. Accuracy and MCC. Note that for both metrics, AC and MCC, a value
greater than zero indicates that S2OCT had a better result than OCT-H and lower
than zero indicates that OCT-H had a better result than S2OCT. Moreover, the
box in the boxplot depicts the range of the medium 50 % of the values; 25 % of the
values are below and 25 % are above the box. As can be seen in Figure 3, the AC
values are greater than zero in 75 % of the results (rows 1 and 2). Therefore, our
proposed method takes advantage of the additional information on the total number
of cases for the classes and has a better accuracy than OCT-H. When comparing all
instances (column 1), the negative outliers indicate worse accuracy for S2OCT than
OCT-H in some cases. This happens because in some instances our method does not
terminate within the time limit while OCT-H does. Since for those instances that

14 J. P. BURGARD, M. E. PINHEIRO, M. SCHMIDT

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

Figure 3. First row: Comparison of accuracy AC as described
in (10) for the entire data set. Second row: Comparison of AC
for unlabeled data. Third row: Comparison of precision MCC as
described in (10) for the entire data set. Last row: Comparison
of MCC for unlabeled data. Left: Comparison for all instances.
Right: Comparison only for those instances for which both ap-
proaches terminate within the time limit.

REFERENCES 15

terminate within the time limit (column 2), we have few outliers in accuracy (rows
1 and 2), we expect that the number of instances with lower precision will decrease
if we would increase the time limit. Figure 3 also shows that the MCC values are
greater than zero in most cases (rows 3 and 4), especially when comparing only the
instances that terminate in the time limit (column 2). This means that our method
has a better MCC than OCT-H. The consequences of the results so far are that
using the unlabeled points as well as the cardinality constraint allows to correctly
classify the points with higher accuracy and better MCC than with the optimal
decision tree approach OCT-H. Moreover, further numerical tests revealed that if
the percentage of labeled points is decreased, OCT-H tends to decrease in accuracy
and MCC, while the deterioration for S2OCT is much less pronounced. This is
especially relevant as in typical social surveys the sample proportion is seldomly
over 1 % of the population.

5. Conclusion

In many classification problems, acquiring labels for the entire population of
interest can be expensive. Fortunately, external sources oftentimes can provide
aggregated information on how many points are in each class. For this context,
we proposed an MILP model for semi-supervised multivariate OCTs that considers
the setting of labeled and unlabeled data points as well as additional aggregated
information for the unlabeled data for a binary classification.

Under the condition of simple random sampling, our proposed approach has a
slightly better accuracy and a better MCC than the conventional optimal classi-
fication tree. In many applications, however, the available data is coming from
non-probability samples, where the data collection mechanism is largely unknown.
Assuming simple random sampling in this setting is at least optimistic. Conse-
quently, there is the risk of obtaining biased samples. Our numerical results show
that our model has better accuracy, MCC, and precision than the existing approach
from the literature, even with a small number of labeled points and biased samples.
As expected, the drawback of introducing the cardinality constraint is that we get
larger computational costs.

For future work, we will adapt our approach to a multiclass OCT. Furthermore,
more research is needed to further reduce the computational burden.

Acknowledgements

The authors thank the DFG for their support within RTG 2126 “Algorithmic
Optimization”.

References

Altincay, H. (2007). “Decision trees using model ensemble-based nodes.” In: Pattern
Recognition 40, pp. 3540–3551. doi: 10.1016/j.patcog.2007.03.023.

Amini, M.-R. and P. Gallinari (2002). “Semi-Supervised Logistic Regression.” In:
Proceedings of the 15th European Conference on Artificial Intelligence. ECAI’02.
Lyon, France: IOS Press, pp. 390–394.

Beale, E. and J. Tomlin (1969). “Special facilities in a general mathematical pro-
gramming system for nonconvex problems using ordered sets of variables.” In:
Operational Research 69, pp. 447–454.

Bennett, K. P. and J. A. Blue (1996). “Optimal Decision Trees.” In: Rensselaer
Polytechnic Institute Math Report 214.

Bertsimas, D. and J. Dunn (2017). “Optimal classification trees.” In: Machine
Learning 106.7, pp. 1039–1082. doi: 10.1007/s10994-017-5633-9.

https://doi.org/10.1016/j.patcog.2007.03.023
https://doi.org/10.1007/s10994-017-5633-9

16 REFERENCES

Blanco, V., A. Japón, and J. Puerto (2022a). “Robust optimal classification trees
under noisy labels.” In: Advances in Data Analysis and Classification 16.1,
pp. 155–179. doi: 10.1007/s11634-021-00467-2.

Blanco, V., A. Japón, and J. Puerto (2022b). “A mathematical programming ap-
proach to SVM-based classification with label noise.” In: Computers & Industrial
Engineering 172, p. 108611. doi: 10.1016/j.cie.2022.108611.

Blanquero, R., E. Carrizosa, C. Molero-Río, and D. Romero Morales (2019). “Spar-
sity in optimal randomized classification trees.” In: European Journal of Opera-
tional Research 284.1, pp. 255–272. doi: 10.1016/j.ejor.2019.12.002.

– (2021). “Optimal randomized classification trees.” In: Computers & Operations
Research 132, p. 105281. doi: 10.1016/j.cor.2021.105281.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification
and Regression Trees. Monterey, CA: Wadsworth and Brooks.

Burgard, J. P., J. Krause, and S. Schmaus (2021). “Estimation of regional transition
probabilities for spatial dynamic microsimulations from survey data lacking in
regional detail.” In: Computational Statistics & Data Analysis 154, p. 107048.
doi: 10.1016/j.csda.2020.107048.

Burgard, J. P., M. E. Pinheiro, and M. Schmidt (2023). Mixed-Integer Quadratic
Optimization and Iterative Clustering Techniques for Semi-Supervised Support
Vector Machines. arXiv: 2303.12532v2 [math.OC].

Bzdok, D., M. Eickenberg, O. Grisel, B. Thirion, and G. Varoquaux (2015). “Semi-
Supervised Factored Logistic Regression for High-Dimensional Neuroimaging
Data.” In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates,
Inc.

Carrizosa, E., C. Molero-Río, and D. R. Morales (2021). “Mathematical optimiza-
tion in classification and regression trees.” In: TOP: An Official Journal of the
Spanish Society of Statistics and Operations Research 29.1, pp. 5–33. doi: 10.
1007/s11750-021-00594-1.

Chapelle, O., M. Chi, and A. Zien (2006). “A Continuation Method for Semi-
Supervised SVMs.” In: Proceedings of the 23rd International Conference on Ma-
chine Learning. ICML ’06. New York, NY, USA: Association for Computing
Machinery, pp. 185–192. doi: 10.1145/1143844.1143868.

Cortes, C. and V. Vapnik (1995). “Support Vector Networks.” In: Machine Learning
20, pp. 273–297. doi: 10.1007/BF00994018.

D’Onofrio, F., G. Grani, M. Monaci, and L. Palagi (2023). Margin Optimal Classi-
fication Trees. arXiv: 2210.10567 [math.OC].

Dunning, I., J. Huchette, and M. Lubin (2017). “JuMP: A Modeling Language
for Mathematical Optimization.” In: SIAM Review 59.2, pp. 295–320. doi: 10.
1137/15M1020575.

Gambella, C., B. Ghaddar, and J. Naoum-Sawaya (2021). “Optimization problems
for machine learning: A survey.” In: European Journal of Operational Research
290.3, pp. 807–828. doi: 10.1016/j.ejor.2020.08.045.

Kim, K. (2016). “A hybrid classification algorithm by subspace partitioning through
semi-supervised decision tree.” In: Pattern Recognition 60, pp. 157–163. doi:
10.1016/j.patcog.2016.04.016.

Kocev, M. C. D., J. Levatić, and S. Džeroski (2017). “Semi-supervised classification
trees.” In: Journal of Intelligent Information Systems 49, pp. 461–486. doi: 10.
1007/s10844-017-0457-4.

Kotsiantis, S. (2014). “A hybrid decision tree classifier.” In: Journal of Intelligent
& Fuzzy Systems: Applications in Engineering and Technology 26, pp. 327–336.
doi: 10.3233/IFS-120741.

https://doi.org/10.1007/s11634-021-00467-2
https://doi.org/10.1016/j.cie.2022.108611
https://doi.org/10.1016/j.ejor.2019.12.002
https://doi.org/10.1016/j.cor.2021.105281
https://doi.org/10.1016/j.csda.2020.107048
https://arxiv.org/abs/2303.12532v2
https://doi.org/10.1007/s11750-021-00594-1
https://doi.org/10.1007/s11750-021-00594-1
https://doi.org/10.1145/1143844.1143868
https://doi.org/10.1007/BF00994018
https://arxiv.org/abs/2210.10567
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/10.1016/j.patcog.2016.04.016
https://doi.org/10.1007/s10844-017-0457-4
https://doi.org/10.1007/s10844-017-0457-4
https://doi.org/10.3233/IFS-120741

REFERENCES 17

Lee, D.-H. (2013). “Pseudo-Label : The Simple and Efficient Semi-Supervised Learn-
ing Method for Deep Neural Networks.” In: ICML 2013 Workshop : Challenges
in Representation Learning (WREPL).

McCormick, G. P. (1976). “Computability of Global Solutions to Factorable Non-
convex Programs: Part I – Convex Underestimating Problems.” In: Mathematical
Programming 10.1, pp. 147–175. doi: 10.1007/BF01580665.

Melacci, S. and M. Belkin (2009). “Laplacian Support Vector Machines Trained
in the Primal.” In: Journal of Machine Learning Research 12. doi: 10.48550/
ARXIV.0909.5422.

Nguyen, T. N. N., B. Veeravalli, and X. Fong (2023). “A Semi-Supervised Learn-
ing Method for Spiking Neural Networks Based on Pseudo-Labeling.” In: 2023
International Joint Conference on Neural Networks (IJCNN), pp. 1–7. doi: 10.
1109/IJCNN54540.2023.10191317.

Oliver, A., A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow (2018). “Re-
alistic Evaluation of Deep Semi-Supervised Learning Algorithms.” In: Advances
in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc. doi:
10.48550/arXiv.1804.09170.

Olson, R. S., W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore
(2017). “PMLB: a large benchmark suite for machine learning evaluation and
comparison.” In: BioData Mining 10.36, pp. 1–13. doi: 10.1186/s13040-017-
0154-4.

Orsenigo, C. and C. Vercellis (2003). “Multivariate classification trees based on
minimum features discrete support vector machines.” In: IMA Journal of Man-
agement Mathematics 14.3, pp. 221–234. doi: 10.1093/imaman/14.3.221.

Quinlan, J. R. (1986). “Induction of Decision Trees.” In: Machine Learning 1,
pp. 81–106. doi: doi.org/10.1007/BF00116251.

Santhiappan, S. and B. Ravindran (2021). “A Semi-Supervised Approach to Grow-
ing Classification Trees.” In: Proceedings of the 3rd ACM India Joint Interna-
tional Conference on Data Science & Management of Data (8th ACM IKDD
CODS & 26th COMAD). CODS-COMAD ’21. Bangalore, India: Association for
Computing Machinery, pp. 29–37. doi: 10.1145/3430984.3431009.

Skinner, C. J. and D’arrigo (2011). “Inverse probability weighting for clustered
nonresponse.” In: Biometrika 98.4, pp. 953–966. doi: 10.1093/biomet/asr058.

Tanha, J., M. van Someren, and H. Afsarmanesh (2017). “Semi-supervised self-
training for decision tree classifiers.” In: International Journal of Machine Learn-
ing and Cybernetics 8, pp. 355–370. doi: 10.1007/s13042-015-0328-7.

Verwer, S. and Y. Zhang (2019). “Learning Optimal Classification Trees Using a
Binary Linear Program Formulation.” In: vol. 33. AAAI Press, pp. 1625–1632.
doi: 10.1609/aaai.v33i01.33011624.

Yildiz, O. and O. Dikmen (2007). “Parallel Univariate Decision Trees.” In: Pattern
Recognition Letters 28, pp. 825–832. doi: 10.1016/j.patrec.2006.11.009.

Zharmagambetov, A. and M. A. Carreira-Perpinan (2022). “Semi-Supervised Learn-
ing with Decision Trees: Graph Laplacian Tree Alternating Optimization.” In:
Advances in Neural Information Processing Systems. Vol. 35, pp. 2392–2405.

Zhu, X. and A. B. Goldberg (2009). Introduction to Semi-Supervised Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers. doi: 10.2200/S00196ED1V01Y200906AIM006.

Appendix A. Further Numerical Results

Besides the measures of accuracy and MCC, we compare two further measures
that, depending on the application, can be highly relevant. The first metric is
precision (PR). It measures the proportion of correctly classified points among all

https://doi.org/10.1007/BF01580665
https://doi.org/10.48550/ARXIV.0909.5422
https://doi.org/10.48550/ARXIV.0909.5422
https://doi.org/10.1109/IJCNN54540.2023.10191317
https://doi.org/10.1109/IJCNN54540.2023.10191317
https://doi.org/10.48550/arXiv.1804.09170
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1093/imaman/14.3.221
https://doi.org/doi.org/10.1007/BF00116251
https://doi.org/10.1145/3430984.3431009
https://doi.org/10.1093/biomet/asr058
https://doi.org/10.1007/s13042-015-0328-7
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1016/j.patrec.2006.11.009
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

18 REFERENCES

positively classified points and is thus defined as

PR :=
TP

TP + FP
∈ [0, 1]. (11)

This quantity is important in some application such as for fraud detection systems,
where identifying legitimate transactions as fraudulent is better than identify fraud-
ulent transactions as legitimate. Moreover, precision can be higher when there are
more positives in the dataset.

Second, we consider recall (RE), which quantifies the proportion of positive
instances that are correctly classified as positive. It is formally given by

RE :=
TP

TP + FN
∈ [0, 1]. (12)

This quantity is important in some applications such as in cancer diagnosis, where
evaluating recall is relevant as it is more significant to identify potential cancer
cases than to do not. Different from precision, recall can be higher when there are
more negatives in the dataset.

As accuracy and MCC, the main question is how much better precision and
recall of S2OCT are compared to the one of the OCT-H. Hence, we compute the
difference of the precision and recall according to

PR := PRS2OCT − PROCT-H RE := RES2OCT − REOCT-H, (13)

where PROCT-H and PRS2OCT are computed as in (11) for the OCT-H and S2OCT,
respectively. In the same way, REOCT-H and RES2OCT are computed as in (12) for
the OCT-H and S2OCT. Note that as in Section 4, for both PR and RE, a value
greater than zero indicates that S2OCT has a better result than OCT-H and lower
than zero indicates that S2OCT has a worse result than OCT-H. As can be seen
in Figure 4, the PR values are greater than zero in more than 75 % of the results
(rows 1 and 2). This means that S2OCT classifies the points with higher precision
than OCT-H. Hence, OCT-H has more false-positive results. The negative outliers
most likely are due to the same reason as those for the respective AC and MCC
values.

On the other hand, Figure 4 also show that RE is, in general, lower than 0. This
means that OCT-H has better recall than our method. The results of precision
and recall can be justified by the fact that the biased sample is more likely to have
labeled data in class A and having no information about the unlabeled data, the
OCT-H ends up classifying points on the positive side.

Appendix B. Numerical Results for Simple random samples

Our computational study in Section 4 focuses on the analysis of non-
representative biased samples. The typical baseline scenario for evaluating the
performance of estimators is to apply them on simple random samples. Therefore,
to complement our numerical results, we also present the results under simple
random sampling. In a simple random sampling, each unit in the data set has the
same probability πi = n/N to be included in the sample of labeled data of size n.
The instances are the same as described in Section 4.1. The computational setup
follows the description in Section 4.2. As before, the used evaluation criteria are
AC and MCC as in (10) and PR and RE as in (13).

Figure 5 shows that for all the instances (column 1), AC (rows 1 and 2) and MCC
(rows 3 and 4) have value greater than 0 and lower than 0 in 50 % of the cases.
This means both approaches have similar accuracy and MCC. However, when
comparing only those instances that terminate within the time limit (column 2), it
can be seen that S2OCT has slightly better accuracy and MCC, but not as much
as for biased samples; see Section 4.4.2. This is expected because the sample is not

REFERENCES 19

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1

−0.5

0

0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4. First row: Comparison of precision PR as described
in (13) for the entire data set. Second row: Comparison of PR
for unlabeled data. Third row: Comparison of recall RE as de-
scribed in (13) for the entire data set. Last row: Comparison of
RE for unlabeled data. Left: Comparison for all instances. Right:
Comparison only for those instances for which both approaches
terminate within the time limit.

20 REFERENCES

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1.5

−1

−0.5

0

0.5

−1.5

−1

−0.5

0

0.5

−1.5

−1

−0.5

0

0.5

−1.5

−1

−0.5

0

0.5

Figure 5. First row: Comparison of accuracy AC as described
in (10) for the entire data set. Second row: Comparison of AC
for unlabeled data. Third row: Comparison of precision MCC as
described in (10) for the entire data set. Last row: Comparison
of MCC for unlabeled data. Left: Comparison for all instances.
Right: Comparison only for those instances for which both ap-
proaches terminate within the time limit.

REFERENCES 21

biased. Consequently, the cardinality constraint, which aims to balance the class
distribution, does not introduce additional meaningful information to the problem.
As can be seen in Figure 6, precision and recall are similar for both approaches.
Therefore, for the simple random samples, our approach has almost the same results
as OCT-H, with slight improvements in accuracy and MCC.

(J. P. Burgard) Trier University, Department of Economic and Social Statistics,
Universitätsring 15, 54296 Trier, Germany

Email address: burgardj@uni-trier.de

(M. E. Pinheiro, M. Schmidt) Trier University, Department of Mathematics, Univer-
sitätsring 15, 54296 Trier, Germany

Email address: pinheiro@uni-trier.de
Email address: martin.schmidt@uni-trier.de

22 REFERENCES

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

Figure 6. First row: Comparison of precision PR as described
in (13) for the entire data set. Second row: Comparison of PR
for unlabeled data. Third row: Comparison of recall RE as de-
scribed in (13) for the entire data set. Last row: Comparison of
RE for unlabeled data. Left: Comparison for all instances. Right:
Comparison only for those instances for which both approaches
terminate within the time limit.

	1. Introduction
	2. Preliminary Concepts
	3. The MILP Model
	4. Numerical Results
	4.1. Tests Sets
	4.2. Computational Setup
	4.3. Evaluation Criteria
	4.4. Numerical Results

	5. Conclusion
	Acknowledgements
	References
	Appendix A. Further Numerical Results
	Appendix B. Numerical Results for Simple random samples

