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Abstract

Using standard tools of harmonic analysis, we state and solve the problem
of moments for positive measures supported on the unit ball of a Sobolev space
of multivariate periodic trigonometric functions. We describe outer and inner
semidefinite approximations of the cone of Sobolev moments. They are the ba-
sic components of an infinite-dimensional moment-sums of squares hierarchy,
allowing to solve numerically non-convex polynomial optimization problems
on infinite-dimensional Sobolev spaces, with global convergence guarantees.
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1 Introduction

The moment-SOS hierarchy, also known as the Lasserre hierarchy, was originally
introduced in the early 2000s to solve globally finite-dimensional polynomial op-
timization problems (POP) [19, 21, 8, 26]. Then it was extended to polynomial
differential equations and their optimal control, see [16] for a recent overview of
applications and more references. The main technical ingredients on which the
moment-SOS hierarchy relies are sums of squares (SOS) representations of positive
polynomials (the so-called Positivstellensätze) [22] and its dual problem of moments
[29] providing conditions satisfied by moments of a positive measure supported on
a finite-dimensional set. These conditions are truncated to finite degrees, yielding
a converging hierarchy of semidefinite optimization problems of increasing size that
can be solved numerically using interior-point algorithms [24, 6].
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After more than two decades of research in polynomial optimization, the application
range of the moment-SOS hierarchy is now being extended to challenging noncon-
vex nonlinear optimization problems formulated on infinite-dimensional functional
spaces, e.g. problems of calculus of variations or partial differential equations. The
moment-SOS hierarchy has been recently extended to reproducible kernel Hilbert
spaces for polynomial optimization [28] or optimal transport [23]. Measures sup-
ported on infinite-dimensional spaces arise naturally as relaxed controls for infinite-
dimensional optimization [11]. Ambrosio’s superposition principle [2] whose finite-
dimensional Euclidean version was used in [15] to prove convergence of the moment-
SOS hierarchy for approximating the region of attraction of polynomial differential
equations, has been extended to infinite-dimensional Hilbert or Banach spaces [3].
Measures on infinite-dimensional spaces are also used in fluid dynamics, see e.g. [13]
or more recently [27] which presents itself as an infinite-dimensional extension of
the finite-dimensional SOS setup of [32]. The solution of the moment problem for
measures supported on infinite-dimensional spaces is more technically involved than
its finite-dimensional counterpart, see [18, 30] and references therein. The recent
reference [14] shows however that the heat equation with polynomial nonlineari-
ties can be solved numerically with the infinite-dimensional moment-SOS hierarchy,
with convergence guarantees provided by a recent solution of the moment problem
on nuclear spaces [17].

The present paper aims at contributing to the numerical solution of the infinite-
dimensional moment problem in a functional analytic framework which makes its
analysis as well as its numerical implementation as simple as possible. We use basic
tools from harmonic analysis to state and solve the moment problem on the Sobolev
space of periodic multivariate trigonometric functions. This allows us to construct an
infinite-dimensional moment-SOS hierarchy to solve various kinds of Sobolev POPs,
namely non-convex POPs on Sobolev spaces, with global convergence guarantees.

In order to keep this paper as short and elementary as possible, we do not describe
here potential applications of the moment-SOS hierarchy for solving non-linear cal-
culus of variations problems, or optimal control problem involving non-linear partial
differential equations. Such applications are certainly very promising, and they will
be reported in further communications.

The outline of the paper is as follows. In Section 2 we state our Sobolev moment
problem. In Section 3 we reformulate our Sobolev moment problem as a moment
problem in the Fourier coefficients. In Section 4 we propose inner and outer semidef-
inite approximations of the Sobolev moment cone. This allows us to solve different
types of Sobolev POPs with an infinite-dimensional moment-SOS hierarchy in Sec-
tion 5. Concluding remarks and potential extensions are mentioned in Sections 6
and 7.
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2 Sobolev moment problem

Consider the space of Sobolev functions on the n-dimensional unit torus T n whose
derivative up to order m are square integrable:

Hm(T n) := {f : T n → C : ‖f‖2Hm(Tn) <∞}

where the norm is defined as:

‖f‖2Hm(Tn) :=
∑
|a|≤m

∫
Tn
‖Daf(x)‖2dx

with a ∈ Nn, |a| =
∑n

i=1 ai and Da = ∂|a|

∂x
a1
1 ...∂xank

.

Let c0(Zn) denote the set of sequences consisting of a finite number of elements of
Zn, allowing repetitions. Let us consider the closed bounded unit ball of Hm(T n)

B := {f ∈ Hm(T n) : ‖f‖Hm(Tn) ≤ 1}.

Let µ be a measure supported on B, and let a ∈ c0(Zn). The moment of µ of index
a is defined as:

ya :=

∫
B

ma(f) dµ(f)

with
ma(f) :=

∏
a∈a

〈f, ea〉Hm(Tn)

the monomial of f of index a, for the scalar product

〈f, ea〉Hm(Tn) :=

∫
Tn
f(x)ea(x)dx, ea(x) := e−2πi〈a,x〉Rn . (1)

Note that since a ∈ c0(Zn), it follows that ma(f) is the product of finitely many
coefficients. The algebraic degree is da := # a, the cardinality of a, i.e. the number
of terms in the product defining ma(f). The harmonic degree is the integer δa :=
maxa∈a maxi=1,...,k |ai|.

Example 1. Let n = 2. The empty set a = {} = ∅ indexes the mass
∫
B
dµ(f),

a = {(0, 0)} indexes the first degree moment
∫
B
〈f, e(0,0)〉dµ(f), a = {(0, 0), (0, 0)}

indexes the second degree moment
∫
B
〈f, e(0,0)〉2dµ(f), a = {(1, 0), (0,−1), (0,−1)}

indexes the third degree moment
∫
B
〈f, e(1,0)〉〈f, e(0,−1)〉2dµ(f), etc.

We can now state the problem addressed in this paper.

Sobolev moment problem: Let N ∈ N. Given an index set A ∈ c0(Zn)N and a
vector (ya)a∈A ∈ CN , find a measure µ on B such that

ya =

∫
B

ma(f) dµ(f), for all a ∈ A. (2)
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Since we defined a monomial in Sobolev space, we can also define a polynomial p as
a linear combinations of monomials:

p(f) :=
∑

a∈spt p

pama(f)

where the support spt p ⊂ c0(Zn) is the index set of coefficients in the monomial
basis, the algebraic degree is d(p) := maxa∈spt p da and the harmonic degree is δ(p) :=
maxa∈spt(p) δa.

3 Fourier embedding

Let us reformulate our moment problem in the space of Fourier coefficients. The
following results are classical [1].

Define the Fourier transform F : L2(T n)→ `2(Zn), f 7→ c where c := (ca)a∈Zn and
ca := 〈f, ea〉Hm(Tn) is the Fourier coefficient of index a ∈ Zn of f . The adjoint of F is
the inverse Fourier transform F ∗ : `2(Zn)→ L2(T n), c 7→ f = 〈c, e〉`2 =

∑
a∈Zn cae−a

where e := (ea)a∈Zn .

Proposition 1. The space Hm(T n) admits an equivalent norm in terms of the
Fourier basis: ‖f‖2Hm(Tn) =

∑
a∈Zn wac

2
a, c = Ff and wa := (1 + 〈a, a〉Rn)m, a ∈ Zn.

Define the diagonal operator W : `2(Zn)→ `2(Zn), (ca)a∈Zn 7→ (cawa)a∈Zn .

Proposition 2. The space Hm(T n) is isomorphic to `2 via the operator F ∗W .
Namely, defining fc := F ∗c for any c ∈ `2(Zn), we have

Hm(T n) = {fc : c ∈ `2(Zn)}, ‖fc‖2Hm(Tn) = ‖c‖2W :=
∑
k∈Zn

wkc
2
k.

From this it follows that for any f ∈ Hm(T n) there exists a unique c ∈ `2(Zn) such
that f = F ∗Wc. Now define the set of Fourier coefficients

E := {Ff : f ∈ B} ⊂ `2(Zn).

Proposition 3. E is compact. Moreover B is one to one to E and in particular
B = {F ∗c : c ∈ E}.

Proof. E is the linear image of the closed unit ball B of Hm(T n). By definition
E = {FF ∗Wc : c ∈ `2(Zn)} = W`2(Zn). The compactness of E is obtained by
noting that 1/wa → 0 as |a| → ∞.

Geometrically, E is an ellipsoid in the space of Fourier coefficients, with coordinates
bounded by 1/wa for any a ∈ Zn.

Let
ν := F ∗#µ (3)
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denote the pushforward measure of µ through F ∗. For any a ∈ c0(Zn), the moment
ya of µ can then be expressed as a moment of ν in the space of Fourier coefficients:

ya =

∫
B

ma(f) dµ(f) =

∫
E

ca dν(c), ca :=
∏
a∈a

ca. (4)

Proposition 4. There is a solution to the Sobolev moment problem (2) on the ball
B if and only if there is a solution to the Fourier moment problem

ya =

∫
E

ca dν(c), ∀ a ∈ A (5)

on the ellipsoid E.

Proof. Since the ball B is one to one to the ellipsoid E and in particular B = {F ∗c :
c ∈ E}, then for any f ∈ B there exists a c ∈ E s.t.

〈f, ea〉Hm(Tn) = 〈F ∗c, ea〉`2 = waca.

Conversely, for any f ∈ B there exists a unique c ∈ E such that f = F ∗Wc.

4 Semidefinite approximations of the Sobolev mo-

ment cone

Given an index set A ⊂ c0(Zn)N , let us define the cone of Sobolev moments

C(A) := {(ya)a∈A : ya =

∫
B

ma(f) dµ(f) for some µ supported onB} ⊂ CN .

The Sobolev moment problem introduced previously is the membership oracle for
C(A), namely: does a given vector belong to this cone ? Despite being convex
and finite-dimensional, the cone C(A) is difficult to manipulate directly. It must be
approximated by linear sections and projections of a finite-dimensional convex cone
on which optimization can be carried out efficiently, namely the semidefinite cone.

4.1 Outer approximations

We can construct outer approximations, or relaxations of C(A), by projecting finite-
dimensional spectrahedra (i.e. linear sections of the semidefinite cone) of increasing
size. Let ΠA : `2(Zn) → CN , y 7→ (ya)a∈A denote the projection map onto the
subspace indexed by A. We use the Fourier embedding of the previous section to
express the Sobolev moment cone as the Fourier moment cone

C(A) = {(ya)a∈A : ya =

∫
E

ca dν(c) for some ν supported on E} ⊂ CN .

Let C[c] denote the set of complex polynomials of the indeterminate c. Elements of
C[c] can be expressed as linear combinations of monomials p(c) =

∑
a∈spt(p) pac

a with
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algebraic degree d(p) := maxa∈spt(p) da and harmonic degree δ(p) := maxa∈spt(p) δa.
We are particularly interested in Hermitian polynomials, i.e. elements of C[c] with
values in R.

Given r, ρ ∈ N, let C[c]r,ρ := {p ∈ C[c] : d(p) ≤ r, δ(p) ≤ ρ} and define the cone of
Hermitian polynomial sums of squares

Σr,ρ := {
∑
k

q∗kqk : qk ∈ C[c]r,ρ}

and the quadratic module

Qr,ρ := {p = s0 + s1(1− ‖c‖2W ) : s0, s1 ∈ Σr,ρ}.

Given a sequence y = (ya)a∈Zn ∈ `2(Zn), define the linear functional `y : C[c] →
C, p(c) :=

∑
a pac

a 7→ `y(p) :=
∑

a paya. Let dA := maxa∈A da denote the algebraic
degree of A, and let ρA := maxa∈A δa denote the harmonic degree of A. Finally,
define the following cone

Cout
r,ρ (A) := ΠA {y : `y(p) ≥ 0 for all p ∈ Qr,ρ} .

Proposition 5. For any r ≥ dA and ρ ≥ ρA, Cout
r,ρ (A) is a semidefinite representable

outer approximation of C(A).

Proof. To prove the outer approximation claim, let us a vector y ∈ C(A) and let
us prove that y ∈ Cout

r,ρ (A). Since y ∈ C(A), from Proposition 4 there exists a
measure ν supported on E such that ya =

∫
E
cadν(c). In particular, for any real

valued polynomial p(c) =
∑

a pac
a which is non-negative on E, vector y is such that

`y(p) =
∑

a paya =
∑

a pa
∫
E
cadν(c) =

∫
E
p(c)dν(c) is nonnegative. In particular

this holds for polynomials of the form p = q∗0q0 + q∗1q1(1 − ‖c‖2W ), and hence y ∈
Cout
r,ρ (A).

To prove the semidefinite representability claim, observe that the quadratic form
`y : C[c]→ R, q 7→ `y(q

∗q) can be expressed as a Hermitian matrix linear in y. Non-
negativity of the quadratic form is therefore equivalent to positive semidefinitess
of a matrix which is linear in y, i.e. as a linear matrix inequality. Testing non-
negativity of `y(p) for all p ∈ Qr,ρ amounts to testing non-negativity of q 7→ `y(q

∗q)
and q 7→ `y((1 − ‖c‖2W )q∗q). These quadratic forms are finite dimensional, so it
follows that testing membership in Cout

r,ρ (A) amounts to testing membership in the
projection of a spectrahedron, a finite-dimensional linear slice of the semidefinite
cone.

Proposition 6. Cout
∞,∞(A) = C(A).

Proof. According to Putinar’s Positivstellensatz – see e.g. [21, Thm. 3.20] or [19,
Thm. 2.14], every polynomial p which is strictly positive on E can be written as
p = s0 + s1(1 − ‖c‖2W ) for s0 and s1 sums of Hermitian squares of polynomials. So
the closure of the quadratic module Qr,ρ coincides with the cone of polynomials that
are non-negative on E.
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Proposition 7. For any r ≥ rA and ρ ≥ ρA, the Hausdorff distance dH between
C(A) and Cout

r,ρ (A) is bounded as follows

dH(C(A), Cout
r,ρ (A)) ≤ 9 (2ρA + 1)n

r2A
r2
. (6)

Proof. Any polynomial in C[c]r,ρ can be written as p(c) = w∗φ(c), for some w ∈ CN

and with φ : CN → CK , where N is the number of Fourier coefficients up to harmonic
degree ρ for functions on the torus T n, i.e. N = (2ρ+ 1)n, while K is the number of
Chebyshev polynomials up to degree r that we can build on CN , i.e. K =

(
r+N+1

r

)
.

This representation allow us to identify Cout
r,ρ (A) with K̂s with s = r and C(A) with

Ks and s = r from [5] and the use their Corollary 1 (note that we do not have a
scale factor 1/(2r + 1)d).

Denote by y(µ) ∈ CK the vector of all the moments of a measure µ supported on
the N Fourier coefficients up to algebraic degree r. By applying Corollary 1 of [5],
we have that for any ŷ ∈ Cout

r,ρ there exists a measure µ supported on the N Fourier
coefficients, such that

‖Π(rA)
r (ŷ − y(µ))‖Fro ≤

9Nr2A
r2

,

where Π
(rA)
r is a diagonal matrix such that (Π

(rA)
r )a,a = 1 iff a is the index of a

Chebyshev polynomial with algebraic degree less or equal to rA, otherwise it is
(Π

(rA)
r )a,a = 0. The proof is concluded by noting that C(A) = {Π(rA)

r y(µ) | µ ∈Mρ},
where Mρ is the set of measures supported on Fourier coefficients with maximum
harmonic degree ρ.

4.2 Inner approximations

Another approach consists of expressing measure ν as being absolutely continuous
with respect to some reference measure γ whose moments can be easily calculated,
e.g. the Gaussian measure on `2(Zn) [9].

Let

C inn
r,ρ (A) := {(ya)a∈A : ya =

∫
E

cap(c)dγ(c) for some p ∈ Qr,ρ}.

Proposition 8. For all r, ρ ∈ N, C inn
r,ρ (A) is a semidefinite representable inner

approximation of C(A).

Proof. The Radon-Nikodým derivative p of ν = pγ with respect to γ is constrained
to the quadratic module Qr,ρ, so that ν is non-negative on E. The proof is concluded
by observing that y and p are related linearly, with p belonging to the semidefinite
representable set Qr,ρ.

Proposition 9. C inn
∞,∞(A) = C(A).

Proof. As the proof of Proposition 6, according to Putinar’s Positivstellensatz, el-
ements of Qr,ρ can approximate as closely as desired any polynomial nonnegative
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on E, i.e. we can construct a sequence pr,ρ ∈ Qr,ρ such that ‖p − pk‖W → 0 when
r, ρ → ∞. It follows that for all a ∈ A,

∫
E
capr,ρ(c)dγ(c) →

∫
E
cap(c)dγ(c) = ya

when r, ρ→∞.

5 Solving Sobolev POPs

5.1 Harmonic Sobolev POP

We are now fully equipped to solve a harmonic Sobolev POP (polynomial optimiza-
tion problem) of the form

p∗ := inf
f∈B

p(f) (7)

where
p(f) =

∑
a∈A

pama(f)

is a given Hermitian polynomial in the indeterminate f ∈ B, of support A := spt p.
Problem (7) is called harmonic because the harmonic degree δ(p) is finite, and the
problem does not involve harmonics of degrees higher than δ(p). Note that the
infimum in (7) is always attained, since it is a finite-dimensional problem and B is
bounded.

Harmonic Sobolev POP (7) is equivalent to the linear problem

p∗ := min
µ∈P (B)

∫
B

p(f)dµ(f)

on P (B), the set of probability measures on the Sobolev ball B. Using the Fourier
embedding, harmonic Sobolev POP (7) is equivalent to the harmonic Fourier POP

p∗ := min
c∈E

p(c)

and the linear problem

p∗ := min
ν∈P (E)

∫
E

p(c)dν(c)

on P (E), the set of probability measures on the Fourier ellipsoid E. In turn, this is
equivalent to the linear problem

p∗ := min
y∈C(A)

∑
a∈A

paya s.t. y∅ = 1 (8)

on the cone of moments C(A).

Therefore we can design a moment-SOS hierarchy of lower bounds

poutr,ρ := min
y∈Cout

r,ρ (A)

∑
a∈A

paya

as well as a moment-SOS hierarchy of upper bounds

pinnr,ρ := min
y∈Cinn

r,ρ (A)

∑
a∈A

paya

for increasing algebraic resp. harmonic relaxation degrees r ≥ d(p), ρ ≥ δ(p).
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Theorem 1. For all r ≥ r′ ≥ d(p) and ρ ≥ ρ′ ≥ δ(p), it holds

poutr′,ρ′ ≤ poutr,ρ ≤ pout∞,∞ = p∗ = pinn∞,ρ ≤ pinnr,ρ ≤ pinnr′,ρ′ .

Proof. It follows readily by applying Propositions 5, 6, 8 and 9.

5.1.1 Example

Consider the harmonic Sobolev POP

p∗ = min
f∈B
〈f, e0〉4H0(T ) + (〈f, e1〉2H0(T ) − 1/4)2

on B ⊂ H0(T ), i.e. n = 1, m = 0 and harmonic degree ρ = 1. Observe that the
function to be minimized is non-convex in f .

The harmonic Sobolev POP is equivalent to the harmonic Fourier POP

p∗ = min
c−1,c0,c1

c40 + (c21 − 1/4)2 s.t. c2−1 + c20 + c21 ≤ 1.

Note that the Fourier coefficient c−1 does not appear in the objective function, and
hence without loss of generality it can be set to zero. Alternatively, it may be desir-
able to penalize the higher degree Fourier coefficients with a quadratic regularization
term.

With the outer moment-SOS hierarchy, at algebraic relaxation degree r = 2, we
obtain the two global minimizers c∗−1 = 0, c∗0 = 0, c∗1 = ±1/2 and the corresponding
functions f ∗(x) = ±e−2πix/2 achieving the global minimum p∗ = pout2,1 = 0.

5.2 Algebraic Sobolev POP

Another class of POP on Sobolev functions is

p∗ = inf
f∈B

L(p(f,Da1f, . . . , Dalf)) (9)

where p is a given real valued multivariate polynomial of degree dp of a function
f ∈ B and its derivatives Dajf , aj ∈ Nn, j = 1, . . . , l and L : L∞(T n) → R is a
given bounded linear functional. Coefficients of p are bounded functions in x. For
example

L(p(f)) =

∫
Tn

(p1(x)f(x) + p2(x)‖Df(x)‖22)dσ(x) (10)

where σ is a given probability measure on T n and p1, p2 are given real polynomials
of x.

Note that contrary to harmonic problem (7), the non-linearity hits directly the
function value f(x) and its derivatives, and hence problem (9) generally involves
infinitely many harmonics. Still, problem (9) is called algebraic because p is a finite
degree polynomial.

The following result guarantees that the non-linear functional defined above is well
defined on Hm(T n) with m large enough.
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Proposition 10. The functional of Sobolev POP (9) is bounded when f ∈ Hs+n/2+1
2 (T n)

where s = maxj=1,...,k |aj|.

Proof. By the Sobolev embedding theorem [1] in a bounded set Ω with Lipschitz

boundary in Rn, when f ∈ Hm+n/2+1
2 (Ω) then Daf is a Lipschitz function for any

a satisfying |a| ≤ m. Since now Dajf ∈ Lq(Ω) for any q ∈ [1,∞] (due to the
boundedness of Ω), the desired result is obtained by applying the Hölder inequality.

Let us express the objective function of (9) as a polynomial function of c, the Fourier
coefficients of f . Indeed, if f = 〈c, e〉`2 =

∑
a∈Zn cae−a then a monomial of degree

d ∈ N writes

fd = 〈c, e〉d`2 =
∑

a1,a2,...,ad∈Zn
ca1ca2 · · · cade−(a1+a2+...+ad)

and it follows that

L(fd) =
∑

a1,a2,...,ad∈Zn
ca1ca2 · · · cadz−(a1+a2+...+ad)

where za := L(ea) is the moment of index a ∈ Zn of linear functional L. Similarly,
successive derivatives of f will be expressed as linear functions of c, and hence
polynomials of these derivatives will be multivariate polynomials of c. Overall, the
objective function is a polynomial q in infinitely countably many variables with
finite algebraic degree d(q) = dp and infinite harmonic degree δ(q) = ∞. Algebraic
Sobolev POP (9) can therefore be written equivalently as the algebraic Fourier POP

p∗ = inf
c∈E

q(c) =
∑
a∈Zn

qac
a.

In order to apply the moment-SOS hierarchy, we reformulate this POP as a linear
problem

p∗ := min
ν∈P (E)

∫
E

q(c)dν(c)

on P (E), the set of probability measures on the Fourier ellipsoid E. In turn, this is
equivalent to the infinite-dimensional linear problem

p∗ := min
y∈C(Zn)

∑
a∈Zn

qaya s.t. y∅ = 1

on the full cone of moments

C(Zn) := {(ya)a∈Zn : ya =

∫
E

ca dν(c) for some ν supported on E} ∈ `2(Zn).

In contrast, the harmonic Sobolev POP of the previous section was reformulated as
the finite-dimensional linear problem (8) on a truncated cone of moments.
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As in the previous section, for every finite algebraic resp. harmonic degrees r and
ρ, we can define the outer approximations

Cout
r,ρ (Zn) := ΠA{(ya)a∈Zn : `y(q) =

∑
a∈Zn

qac
a ≥ 0 for all q ∈ Qr,ρ}

and inner approximations

C inn
r,ρ (Zn) := {(ya)a∈Zn : ya =

∫
E

caq(c)dγ(c) for some q ∈ Qr,ρ}

such that C inn
r,ρ (Zn) ⊂ C(Zn) ⊂ Cout

r,ρ (Zn) and asymptotically C inn
∞,∞(Zn) = C(Zn) =

Cout
∞,∞(Zn), but these are now infinite-dimensional cones that must be truncated to

be manipulated numerically.

Given algebraic resp. harmonic degrees r and ρ, let us consider the finite-dimensional
linear problem

p∗r,ρ := min
y∈C(Ar,ρ)

∑
a∈Ar,ρ

qaya s.t. y∅ = 1

on the finite-dimensional cone of moments C(Ar,ρ) indexed by

Ar,ρ := {a ∈ Zn : da ≤ r, δa ≤ ρ}.

We can design an outer moment-SOS hierarchy of lower bounds

poutr,ρ := min
y∈Cout

r,ρ (Ar,ρ)

∑
a∈Ar,ρ

qaya

as well as an inner moment-SOS hierarchy of upper bounds

pinnr,ρ := min
y∈Cinn

r,ρ (Ar,ρ)

∑
a∈Ar,ρ

qaya

for increasing algebraic resp. harmonic relaxation degrees r and ρ. Our convergence
result then follows immediately from the above considerations.

Theorem 2. For finite r, ρ it holds poutr,ρ ≤ p∗r,ρ ≤ pinnr,ρ . Asymptotically it holds
pout∞,∞ = p∗ = pinn∞,∞.

5.2.1 Example

Consider the algebraic Sobolev POP

p∗ = inf
f∈B

∫
T

(f(x)2 − 1/2)2dσ(x)

where σ is the Dirac measure at 0 on B ⊂ H0(T ), i.e. m = 0 and n = 1. Observe
that the function to be minimized is non-convex in f .
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Since f(0) =
∑

a∈Z ca, the moments za of the linear functional in the objective
function are equal to one for all a ∈ Z so the problem can be written as the algebraic
Fourier POP

p∗ = inf
c∈E

q(c)

with

q(c) =
1

4
−
∑

a1,a2∈Z

ca1ca2 +
∑

a1,a2,a3,a4∈Z

ca1ca2ca3ca4 .

With the outer moment-SOS hierarchy, at algebraic relaxation degree r = 2 and
harmonic relaxation degree ρ = 0, we obtain the two global minimizers c∗0 = ±

√
2/2

and the corresponding functions f ∗(x) = ±
√

2/2 achieving the global minimum
p∗ = pout2,0 = 0.

Note that for such problems it may be desirable to penalize the higher degree Fourier
coefficients with a quadratic regularization term.

5.3 Kernel Sobolev POP

While an algebraic Sobolev POP generally requires an infinite number of Fourier
coefficients to be expressed, actually there exists a better basis, based on kernel
methods [4], where the problem admits a representation in terms of a finite number
of coefficients. Since Hm(T n) is a reproducing kernel Hilbert space when m > n/2,
there exists a kernel function k : T n × T n → R such that k(x, y) = k(y, x), k(·, x) ∈
Hm(T n) for any x, y ∈ T n and more importantly, we have the reproducing property:
for any f ∈ Hm(T n) and any x ∈ T n, the following holds

f(x) = 〈f, k(·, x)〉Hm(Tn).

In particular, for the case of Hm(T n) the kernel is known in closed form in terms
of the Bessel function of the second kind, see [7, Sec. 7.4]. Then the powerful
and fundamental result in machine learning known as the Representer Theorem [31]
holds.

Theorem 3. The Sobolev POP

min
f∈Hm(Tn)

p(f(x1), . . . , f(xl)) (11)

for a given polynomial p is equivalent to the finite-dimensional POP

min
w∈Rl

p(〈c1, w〉Rl , . . . , 〈cn, w〉Rl) (12)

where cj := (k(xi, xj))i=1,...,l, j = 1, . . . , l. The first problem admits a solution and
only if the second problem admits a solution, and both problems have the same value.
In particular, denoting by f ∗ the solution of the first problem and w∗ the solution of
the second problem, we have

f ∗(·) =
l∑

j=1

w∗jk(·, xj).
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More generally, the Sobolev POP

min
f∈Hm(Tn)

p(〈g1, f〉Hm(Tn), . . . , 〈gl, f〉Hm(Tn)) (13)

for a given polynomial p and given gj ∈ H−m(T n) is equivalent to the finite-dimen-
sional POP (12) where cj = (〈gi, gj〉Hm(Tn))i=1,...,l, j = 1, . . . , l and

f ∗ =
l∑

i=1

w∗jgj.

Note that POP (11) is a particular case of POP (13) corresponding to the choice
gj(.) = k(., xj) since 〈f, k(., xj)〉Hm(Tn) = f(xj), j = 1, . . . , l.

Theorem 3 implies that for kernel Sobolev POPs of the form (13), we can apply the
standard finite-dimensional moment-SOS hierarchy [19] with convergence guaran-
tees.

Note that Theorem 3 also holds when p is any continuous function which is bounded
below (not necessarily a polynomial), for any measurable space X beyond T n, and
any space of functions on X that is a reproducing kernel Hilbert space, for exam-
ple any Sobolev space Hm(X) where X ⊆ Rn is a domain with locally Lipschitz
boundary and m > n/2.

5.3.1 Example

Revisiting Example 5.2.1, since the objective function is (f(0)2 − 1/2)2, i.e. p(t) =
(t2 − 1/2)2 and x1 = 0, l = 1 in Sobolev POP (11), it can be expressed equivalently

as the univariate POP minw1∈R (w2
1k(0, 0)2−1/2)2 whose solutions are w1 = ±

√
2

2k(0,0)
,

corresponding to the following minimizers f ∗(x) = ±
√
2k(x,0)
2k(0,0)

.

6 Solution recovery

When solving infinite-dimensional calculus of variations of control problems, we
may be faced with truncated moment problems on Sobolev spaces with an increas-
ing number of Fourier coefficients. When the number of Fourier coefficients goes
to infinity, we know that there is a single representing measure, i.e. the infinite-
dimensional moment problem is determinate.

Proposition 11. A mesure µ supported on B is uniquely determined by its infinite-
dimensional sequence of moments (ya)a∈c0(Zn).

Proof. The sequence of moments (ya)a∈c0(Zn) in (5) exists and is unique with re-
spect to ν, since ν is a measure defined on E which is a compact Hausdorff set,
and the function ma(c) is a monomial in the coefficients c. So we can apply the
Stone–Weierstrass theorem. To conclude, note that ν and µ are in one-to-one rela-
tion via the invertible linear map F , recall (3).
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Given a sequence of moments, we may want to recover the representing measure
on B. In the finite-dimensional case, the Christoffel-Darboux kernel can be used to
approximate the support of a measure given its moments [20]. It would be interesting
to extend this kernel to Sobolev spaces.

7 Conclusion

In this paper we address and solve numerically the moment problem for mea-
sures supported on the unit ball of a Sobolev space. We describe how the finite-
dimensional moment-SOS hierarchy can be extended to this infinite-dimensional
setup, allowing to solve numerically polynomial optimization problems on Sobolev
spaces while preserving approximation and convergence guarantees.

All our developments are done for a specific basis of complex exponentials (1), but
similar results could be achieved for any basis with good approximation proper-
ties for the Sobolev space Hm(T n) or other reproducing kernel Hilbert spaces, as
highlighted in Section 5.3.

Our approach can also be generalized with the exact same construction to other
spaces like Sobolev spaces on general domains, Besov or Triebel-Lizorkin spaces
and more generally quasi-Banach spaces where there exists a Schauder basis with
reasonable approximation properties.

Finally, applications of these techniques and the infinite-dimensional moment-SOS
hierarchy to the approximation of solutions of nonlinear calculus of variations prob-
lems or optimal control involving non-linear partial differential equations remain to
be investigated.
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