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This paper investigates the bounds on the expectation of combinatorial optimization given moment informa-

tion for each individual random variable. A popular approach to solving this problem, known as the marginal

moment model (MMM), is to reformulate it as a semidefinite program (SDP). In this paper, we investigate

the structure of MMM with up to fourth-order marginal moments and reformulate them as second-order

cone programs (SOCP). Additionally, we establish that this SOCP formulation is equivalent to a convex

optimization problem over the convex hull of the feasible region of the original combinatorial optimization,

presenting closed-form expressions for both the objective function and its derivative. These reformulations

enable more efficient computation of the bounds and persistency value. In addition, we explore two types of

ambiguity sets characterized by incomplete moment information. We further discuss the relationship between

the aforementioned MMMs and another widely-used model, the marginal distribution model (MDM). Beyond

bounding the worst-case expectations, our approaches can be modified to bound the worst-case conditional

value at risk (CVaR) of the combinatorial optimization.

Building on this theoretical advancement, we explore two applications. First, we consider the project

crashing problem, wherein both the means and variances of activity durations can be controlled through

effort. We demonstrate that the distributionally robust project crashing problem, incorporating up to fourth-

order moment information, can be reformulated as either an SOCP or a convex minimization over a simple

polytope. Numerical analysis reveals that MMM with fourth moment information yields tighter bounds on

expected delays and requires a significantly smaller budget than the mean-variance model for a fixed delay

guarantee. Second, we apply our reformulations to solve the distributionally robust newsvendor problem with

moment information, extending the well-known Scarf’s model. We derive several new closed-form solutions

and explore how the optimal order quantities depend on skewness and kurtosis. Numerically, we show that

incorporating additional moment information can lead to better performance, especially in the high service

level regime.

Key words : marginal moment model, persistency, skewness, kurtosis, project management, newsvendor

problem
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1. Introduction

The study of combinatorial optimization problems under uncertainty has been an active and chal-

lenging area of research in operations research and related fields. These problems encompass a

broad range of real-world applications, including supply chain, transportation, scheduling, and

network design, where uncertainty is an inherent aspect of the decision-making process.

In general, a combinatorial optimization problem under uncertainty can be written as:

Zmax(c̃) =max
{
c̃Tx :x∈X

}
. (1)

where the feasible region is X ⊆ {0,1}n and random objective coefficients c̃. The most common

approach in the literature is the stochastic approach, which assumes that c̃ adheres to a known

distribution, θ. Numerous applications have thoroughly explored the problem of evaluating the

expected objective value, i.e., Eθ [Zmax(c̃)]. Examples of such applications include estimating the

expected project completion time (Bertsimas et al. 2006a), calculating the expected order statistics

(Bertsimas et al. 2006b), and determining the conditional value at risk (Rockafellar et al. 2000).

Nonetheless, calculating the expected optimal objective value based on the distribution of c is

generally challenging. For example, the longest path problem in a directed acyclic graph has been

demonstrated by Hagstrom (1988) to be a #P -complete problem.

In addition to determining the expected objective value, another important problem involves

calculating the persistency of binary variables (see, e.g., Bertsimas et al. 2006a). The persistency

of a binary variable xi refers to the probability that the variable takes a value of one in the optimal

solution, expressed as Pr [x∗
i (c̃) = 1] or, equivalently, E [x∗

i (c̃)], where

x∗(c)∈ argmax
x∈X

{
cTx

}
. (2)

Persistency extends the concepts of criticality index in project networks and choice probability in

discrete choice models. As expected, computing persistency values could be more difficult. Even

in cases where each objective coefficient has only two potential values, Bertsimas et al. (2006a)

showed that the problem can be NP-hard.

Besides the computational complexity, the stochastic approach faces another challenge in real-

world scenarios: the lack of knowledge about the distribution of c̃. Instead, we often have access

to samples of random variables. To address this distributional ambiguity, the moment model is

commonly employed. It estimates moment information, such as mean and variance, from histor-

ical samples. By doing so, the moment model (as discussed in works like Bertsimas et al. 2006a,

Natarajan et al. 2009, Li et al. 2014) aims to find an upper bound for E[Zmax(c̃)] across all distri-

butions that are consistent with these estimated moments. The moment model encompasses two
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key variants: the marginal moment model (MMM) (Bertsimas et al. 2006a), which considers the

first k-th marginal moment information of each random variable, and the cross moment model

(CMM) (Mishra et al. 2012), which incorporates the mean and covariances of the random vector.

Under certain conditions, the distributionally robust bounds can be reformulated as semi-definite

programs (SDPs). Moreover, by solving these SDPs, we can compute the persistency under the

worst-case distribution.

In most applications, although SDP formulation of the general marginal moment model (MMM)

is available, the mean-variance model remains the most widely used approach. This is primarily

due to the tractability of the mean-variance model, which can be formulated as an SOCP or a sim-

ple convex optimization problem without incorporating moment information into the constraints.

However, it is widely recognized that the inclusion of third and fourth order moments provides

additional valuable information beyond mean and variance alone. In particular, Skewness captures

the asymmetry of a distribution, while kurtosis reveals its tailedness. Even in the fundamental

newsvendor problem, the asymmetry and tailedness of the demand distribution play crucial roles

(as demonstrated in works like Natarajan et al. 2018, Das et al. 2021). It is therefore acknowl-

edged that considering skewness and kurtosis, rather than relying solely on mean and variance,

can provide a more comprehensive understanding of the underlying distribution.

This paper attempts to address this dilemma by providing two types of reformulation techniques

for the marginal moment model with up to fourth moment. The first approach reformulate the

problem into an SOCP, while the second approach leads to minimizing a convex function over the

convex hull of X . Consequently, solving fourth-order MMM is as easy as solving the corresponding

mean-variance models. These reformulations facilitate the adoption of the fourth-order MMM in

applications compared to the SDP form.

Building on the theoretical advancement mentioned, we delve into two specific applications that

leverage its potential. Firstly, we focus on the project crashing problem, which involves the ability

to control both the means and variances of activity durations through dedicated efforts. For this

problem, we showcase that the distributionally robust project crashing problem can be effectively

reformulated using second-order cone programming (SOCP) or convex minimization over a sim-

ple polytope, when considering up to fourth-order moment information. Through comprehensive

numerical analysis, we discover that employing the third and fourth moment in the distributionally

robust project crashing problem yields tighter bounds on expected delays. Furthermore, it demands

a considerably smaller budget compared to the mean-variance model, while ensuring a fixed delay

guarantee.

Secondly, we employ the reformulations to address the distributionally robust newsvendor prob-

lem with moment information, which expands upon the well-known Scarf’s mean-variance model.
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By incorporating additional moment information, we derive several novel closed-form solutions.

The closed-form solutions enable us to analytically explore the dependence of the optimal order

quantity on the critical ratio, skewness, and kurtosis. Through extensive numerical simulations, we

demonstrate that integrating higher moments’ information can result in improved performance,

particularly when the requirement for service level is high. This signifies the potential benefits of

considering a wider range of statistical moments beyond mean and variance.

The structure of the remaining sections in this paper is outlined as follows. Section 2 provides

a review of the relevant literature and covers the necessary preliminaries, including discussions on

moments, skewness, kurtosis, moment problems, and a summary of existing results for the MMM.

In Section 3.1, we present a new SOCP reformulation of 4-MMM which incorporating the first

to the fourth order moments. We demonstrate its equivalence to a convex optimization problem

over the convex hull of the feasible region with a closed-form objective function. In Section 3.2 we

explore two extensions: the 124-MMM and 14-MMM, which account for scenarios where certain

moments may be missing. Addition, we explored the relationship between the previously mentioned

MMMs and MDM in Section 3.3 and the extend our approach to computing of CVaR in Section

3.4. Section 4 and 5 focus on two applications of our reformulations to two optimization problems:

the project crashing problem and the newsvendor problem. Lastly, in Section 6, we conclude the

paper.

2. Preliminaries and Related Literature

In this section, we review the relevant literature related to marginal moment models, including some

technical details. The methodologies of these models will be thoroughly explored, and essential

preliminaries will be provided to facilitate a comprehensive understanding of our results.

2.1. Moments and Moment Problems

Let c̃ be a random variable and α be a real number, the α-th moment of c̃ is defined as mα =E [c̃α].

For a d-dimensional random vector c̃= (c̃1, · · · , c̃d) and a real power vector α= (α1, · · · , αd), the

α-moment of c̃ is defined as mα =E
[∏d

i=1 c̃
αi
i

]
. Typically, the powers α or α are assumed to be

positive integers. In this work, we are particularly interested in the cases where α= 1,2,3,4.

It is clear that when α= 1, the first moment is the mean of the random variable: E[c̃] = µ. The

α-th central (standardized) moment is defined as the α-th moment with respect to the mean, that

is, m′
α = E [(c̃−µ)

α
]. The second-order central moment is the variance of the random variable:

V [c̃] = σ2. The skewness and the (excess) kurtosis of the random variable are defined as follows.

Skewness: S[c̃] =
E
[
(c̃−µ)

3
]

σ3
= γ; Kurtosis: K[c̃] =

E
[
(c̃−µ)

4
]

σ4
− 3 = κ.

(3)
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It is not difficult to see that µ,σ2, σ3γ, and σ4κ, are polynomials of the first to fourth moments.

Conversely, for n= 1, · · · ,4, n-th moment can also be presented as polynomials of µ,σ2, σ3γ, and

σ4κ.

µ=m1, m1 = µ,

σ2 =m2 −m2
1, m2 = σ2 +µ2,

σ3γ =m3 − 3m1m2 +2m3
1, m3 = σ3γ+3µσ2 +µ3,

σ4κ=m4 − 4m3m1 − 3m2
2 +12m2m

2
1 − 6m4

1; m4 = σ4κ+4µσ3γ+3σ4 +6µ2σ2 +µ4.

When σ = 0, the distribution is a degenerate distribution and the random variable becomes

deterministic. The skewness and kurtosis satisfy κ − γ2 + 2 ≥ 0, which is known as Pearson’s

inequality (see, e.g., Pearson 1905). When κ−γ2+2= 0, the distribution is a two point distribution.

To avoid triviality, in the remainder of this paper, we assume that σ > 0 and κ− γ2 +2> 0.

One important topic related to moments is the moment problem, which aims to determine

whether a probability distribution exists for a given sequence of moments1 (Schmüdgen 2017).

If such a distribution exists, the sequence of moments is referred to as feasible; otherwise, it is

termed infeasible. Depending on the sample spaces involved, moment problems can be classified

into various types. The Hamburger moment problem deals with the sample space R, the Stieltjes

moment problem focuses on the sample space R+, and the Hausdorff moment problem pertains

to the sample space [0,1]. Additionally, when only the first k-th moment is provided, the prob-

lem is known as the k-th order truncated moment problem. This paper primarily focuses on the

fourth-order truncated Hamburger moment problem.

It is not difficult to see that all feasible moment sequence forms a convex cone. Therefore, we

aim to characterize Mk (Ω), the closure of the k-th order truncated moment cone, which is defined

as:

Mk(Ω) =
{
y ∈Rk+1 : y= y0

(
1,E[c̃], · · · ,E

[
c̃k
])

for some c̃ with sample space Ω and y0 ≥ 0
}
.

(4)

It is well known that the moment cones for all previous three types of moment problems can be

represented using positive semidefinite constraints (see, e.g., Lasserre 2002, Bertsimas et al. 2006a).

In particular, the positive semidefinite representation of the closure of M2k(R) is

M2k(R) = {y :Hk(y)⪰ 0}

where

Hk(y) =


y0 y1 · · · yk
y1 y2 · · · yk+1

...
...

. . .
...

yk yk+1 · · · y2k

 (5)

1 The distribution can also be the limit of a sequence of distributions that satisfy the given moments
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is called the Hankel matrix of y.

In the n-dimensional case, the (n,k,Ω)-moment problem aims to determine the existence of a

probability distribution on the sample space Ω that follow a specified series of moments mα, where

α belongs to the set {α : αi ∈Z+,
∑n

i=1αi ≤ k}. When k = 2, the closure of the (n,2,Rn)-moment

cone can be represented as a positive semidefinite cone. Similarly, the closure of the (n,2,Rn
+)-

moment cone can be represented using a completely positive program (refer to Natarajan et al.

2011 for more details).

2.2. Moment Models

Besides the moment problem, another important problem regarding moments is the moment model,

which aims to bound the expectation of Zmax with moments. Among the moment models, the

most popular one is the marginal moment model (MMM), which posits that only marginal moment

information is available. In the context of the 0-1 integer problem 1, where the optimal solution

x∗(c̃) is assumed to be unique almost surely, Bertsimas et al. (2006a) proposed the following

k-MMM:

Z∗
MMM = sup

θ∈Θk

Eθ [Zmax(c̃)]

where Θk =
{
θ : θi ⊂P (Ωi) ,

(
Eθ[c̃i], · · · ,Eθ

[
c̃ki
])

= (mi,1, · · · ,mi,k) ,∀i∈ {1, · · · , n}
}
,

(6)

where θ represents the joint distribution of c̃, and θi represents the marginal distribution c̃i. The

distribution set Θk encompasses all possible distributions whose marginal distributions satisfy the

given moment information. Assume that the convex hull of X is characterized by a set of linear

constraints Ax ≤ b. According to Theorem 1 in Bertsimas et al. (2006a), the problem can be

expressed as:

Z∗
MMM =max

n∑
i=1

wi1

s.t. wi +vi =mi, ∀i∈ {1, · · · , n}

A (w1,0,w2,0, · · · ,wn,0)≤ b

wi,vi ∈Mk (R), ∀i∈ {1, · · · , n},

(7)

where wi = (wi,0,wi,1, · · · ,wi,k), vi = (vi,0, vi,1, · · · , vi,k). By leveraging the results of the Hamberger

moment problem, the moment cones Mk (R) can be represented using positive semidefinite con-

straints on Hankel matrices, enabling the reformulation of the problem as an SDP. Here, wi and

vi represent the conditional moments of the distribution of variable ci conditional on x∗
i = 1 and

0. Moreover, the persistency of variable ci, (i.e., the expectation of optimal x∗
i (c) in (2)) is exactly

wi,0 in the optimal solution.

Natarajan et al. (2009) conducted further studies on the k = 2 case where only the first and

second marginal moments are given. In this situation, the marginal moment vector is denoted
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as mi = (1,mi,1,mi,2). This 2-MMM is commonly referred to as the mean-variance model (MV),

characterized by a mean mi,1 and a variance σ2
i = mi,2 −m2

i,1. Notably, the constraints wi,vi ∈
M2 (R) can also be expressed as SOC constraints, as demonstrated below:(

wi,0 wi,1

wi,1 wi,2

)
⪰ 0 ⇔ w2

i,1 ≤wi,0wi,2.

Therefore, MV can be further reduced to following SOCP:

Z∗
max =max

n∑
i=1

(mi,1xi +σiyi) .

s.t. Ax≤ b,

y2
i ≤ xi (1−xi) ∀i∈ {1, · · · , n}.

(8)

Moreover, it is clear that the SOCP reformulation (8) can be further transformed into the following

concave maximization problem with only the convex hull constraint:

Z∗
max =max

n∑
i=1

(
mi,1xi +σi

√
xi(1−xi)

)
s.t. Ax≤ b.

(9)

Due to the simplicity of both formulations, the mean-variance model is the most popular momemt

model. Until now, the literature has been unclear about the existence of such convenient formu-

lations for higher marginal moment cases. In this paper, however, we take a step forward and

demonstrate that these convenient formulations do exist for marginal moment information up to

the fourth order. Moreover, our results can be extended to scenarios where some orders of moments

are missing (see section 3.2). These findings significantly enhance the modeling analysis when

higher-order moment information is available.

In addition to studying the information of marginal distributions, researchers have also delved

into moment models that incorporate the covariance information of random variables. This is

known as the cross moment model (CMM). Mishra et al. (2012) provided an SDP approach to

bound the optimization problem when the feasible region is described by a finite set of points.

They also constructed an extremal distribution based on the optimal solution. Natarajan et al.

(2011) developed a completely positive programming reformulation for mixed 0-1 linear programs.

Subsequently, Natarajan and Teo (2017) further reduced the size of the SDP, enhancing the model’s

computational tractability.

Beyond bounding the expectation of the objective Zmax in (1), related works in this domain have

also investigated bounding other expected cost functions (Shapiro and Kleywegt 2002, Delage and

Ye 2010), bounding probabilities (Vandenberghe et al. 2007, He et al. 2010), and bounding risk

measures (Chen et al. (2011)). Recently, Guo et al. (2022) explored bounding functional expecta-

tions given generalized moment information. All these problems are special cases of the generalized
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moment problem (Birge and Wets 1987). In Section 3.4 of this paper, we also extend our results

to bound the conditional value at risk of Zmax in (1), providing a solution technique to a class of

generalized moment problem.

3. Fourth-Order Marginal Moment Models: Reformulation and Analysis

This section provides a comprehensive exploration of marginal moment models up to the fourth

order. We start by presenting the key findings, highlighting that the 4-MMM (the MMM with the

first four marginal moments) retains advantages akin to those of the mean-variance (MV) model.

Specifically, the 4-MMM can be reformulated as both a second-order cone program and a convex

optimization problem over the convex hull. Additionally, we demonstrate that the 4-MMM can be

equivalently derived from the marginal distribution models (MDM) and delve into the properties

of the marginal distributions. We also extend our analysis to the 124-MMM and 14-MMM models,

where certain moment information is absent.

3.1. Complete Moment Information Case

In this subsection, we study the 4-MMM, i.e., the MMM with all the first four marginal moments

are available, defined as:

Z∗
4−MMM = sup

θ∈Θ4

Eθ (Zmax(c̃))

where Θ4 =
{
θ : θi ⊂P (R) ,

(
Eθ[c̃i], · · · ,Eθ

[
c̃4i
])

= (mi,1, · · · ,mi,4)
}
.

(4-MMM)

First, we show that 4-MMM can be reformulated as an SOCP in which the mean and variance of

c̃i are the linear coefficients in the objective.

Theorem 1. The 4-MMM problem (4-MMM) can be reformulated as the following SOCP:

Z∗
4−MMM =max

x,y,z

n∑
i=1

(µixi +σiyi)

s.t. y2
i ≤ xi

(
xi + γiyi + zi

√
κi − γ2

i +2
)

∀i∈ {1, · · · , n}

y2
i ≤ (1−xi)

(
1−xi − γiyi + zi

√
κi − γ2

i +2
)

∀i∈ {1, · · · , n}

x2
i + y2

i + z2i ≤ xi ∀i∈ {1, · · · , n}

A (x1, x2, · · · , xn)≤ b.

(10)

Moreover, the persistency of variable ci is xi in the optimal solution.

The proof of this theorem is highly non-trivial and contains three main steps. Firstly, we introduce

a substitution for w, v, and m in (7). Subsequently, by fixing the variable of persistency x, we

delve into the subproblems (40) and discuss them across several cases to incorporate degenerate

distributions. In this step, most decision variables are eliminated, and the simplified subproblem
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becomes a univariate optimization problem. Finally, we integrate these simplified subproblems

back into the primary problem (7), demonstrating that it can be concisely formulated as an SOCP

problem. A detailed proof can be found in Appendix B.

It is not difficult to see that if the skewness γi and kurtosis κi are free variables, we can always

let γi =
1−2xi

yi
and zi = 0 for any positive yi. Then the problem precisely becomes the SOCP form

of MV in formulation (8), which is consistent with the result of the mean-variance model.

Another noteworthy aspect of Theorem 1 is that the objective function in the optimization

problem incorporates the means and standard deviations of random variables as linear coefficients.

Meanwhile, the constraints involve only skewness and kurtosis. This characteristic presents the

possibility of further optimizing the mean and variance by manipulating the location and scale

of the random coefficient c̃i after applying duality. In Section 4, we utilize this technique in the

context of the robust project crashing problem, where the manager has the ability to simultaneously

influence the mean and variance of activities.

Based on the SOCP formulation, we further show that 4-MMM can also be reformulated as a

concave maximization problem, where the feasible region is the convex hull of X .

Theorem 2. Assume that κi−γ2
i +2> 0, the 4-MMM problem (7) can be reduced to the following

convex optimization problem:

Z∗
4−MMM =max

n∑
i=1

(µixi +σiyγi,κi
(xi))

s.t. A (x1, x2, · · · , xn)≤ b,

(11)

where yγi,κi
(x) is defined as:

yγi,κi
(x) =


fκi

(x,γi), x≤ 1

2

(
1− γi√

γ2
i +4

)
,

fκi
(1−x,−γi), x >

1

2

(
1− γi√

γ2
i +4

)
,

(12)

and fκ(x,γ) is the largest real root2 of the following quartic function:

Q(y) =
(
y2 − γxy−x2

)2
+x2

(
κ+2− γ2

)
y2 −x3(1−x)

(
κ+2− γ2

)
.

In addition, the persistency of variable ci is xi in the optimal solution.

Proof of Theorem 2: We only need to prove that, for any fixed xi, the function yγi,κi
(xi) matches

the objective to the optimization problem:

2 The closed form expression of fκ is presented in Appendix A.
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max
yi,zi

yi

s.t. y2
i ≤ xi

(
xi + γiyi +

√
κi − γ2

i +2zi

)
y2
i ≤ (1−xi)

(
1−xi − γiyi +

√
κi − γ2

i +2zi

)
x2
i + y2

i + z2i ≤ xi.

(13)

For brevity, we omit the subscript of the function yγi,κi
(xi) and the index i of all variables in

subsequent discussions. The constraints can be rephrased as follows:√
x(1−x)− y2 ≥ y2 −xγy−x2

x
√
κ+2− γ2

=Q1(y)√
x(1−x)− y2 ≥ y2 +(1−x)γy− (1−x)2

(1−x)
√
κ+2− γ2

=Q2(y).

(14)

Here, Q1 and Q2 are upward-opening quadratic functions, and the left hand side of each con-

straint is a circular curve centered at (0,0) with radius
√

x(1−x). It is clear that both Q1(0) and

Q2(0) are negative. However, at
√
x(1−x), we find that,

Q1

(√
x(1−x)

)
=

1− 2x− γ
√
x(1−x)√

κ+2− γ2
;

Q2

(√
x(1−x)

)
=

2x− 1+ γ
√

x(1−x)√
κ+2− γ2

=−Q1

(√
x(1−x)

)
.

This indicates that one of the constraints is redundant given x.

Case 1: x≤ 1
2

(
1− γ√

γ2+4

)
When γ ≥ 0, we have

Q1

(√
x(1−x)

)
≥Q1

(
1√

γ2 +4

)
= 0.

When γ < 0, we have

Q1

(√
x(1−x)

)
≥


0, x≤ 1

2

Q1

(
1√

γ2 +4

)
= 0, x≥ 1

2
.

Therefore, in this case, Q1

(√
x(1−x)

)
≥ 0 while Q2

(√
x(1−x)

)
= −Q1

(√
x(1−x)

)
≤ 0,

which means the second constraint in (14) is redundant. Consequently, the optimal y∗ is the solution

of equation

Q1(y) =
√

x(1−x)− y2

which is exactly the largest real root of the following quartic equation that aligns with y(x) = f(x,γ)

as defined in Theorem 2.

Q1(y)
2 + y2 −x(1−x) = 0.
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Case 2: x> 1
2

(
1− γ√

γ2+4

)
.

The analysis parallels Case 1, and the final quartic equation will be

Q2(y)
2 + y2 −x(1−x) = 0.

Noticing that this equation is equivalent to that in Case 1 by substituting x with 1− x and γ

with −γ, we have y(x) = f(1−x,−γ).

Lastly, we establish the concavity of y(x). Since x becomes variable in following discussion, we

denote the right hand side of each constraint in (14) as Q1(x, y) and Q2(x, y), respectively and

denote the right hand side of each constraint in (14) as C(x, y). It is not hard to see that Q1 and

Q2 are convex with respect to (x, y) and C is concave with respect to (x, y). Therefore, for any

α∈ (0,1) and two different x1 and x2, (x0, αy(x1)+ (1−α)y(x2)) is also feasible for constraints (14).

Thus y(x0)≥ αy(x1) + (1−α)y(x2), which means y(x) is concave. The initial objective function’s

concavity results from its separability. □

The proof utilizes the reformulation from Theorem 1. The key idea of the analysis is to justify

that only one of the first two constraints in subproblem with respect to index i is active. For the

detailed expression of the function yγi,κi
(x), please refer to the Appendix A. Furthermore, this

function is both continuous and differentiable, with its derivative also admitting a closed form

expression, as demonstrated below. To simplify notation, we shall abbreviate yγi,κi
(x) as yi(x) and

suppress the subscript i.

Proposition 1 (Differentiability of the Objective Function). When κ − γ2 + 2 > 0, the

function y(x), as defined in Theorem 2, is continuous and differentiable on the interval (0,1).

Moreover, the derivative has the following closed-form expression

y′(x) =


H(x,γ) x≤ 1

2

(
1− γ√

γ2 +4

)
,

−H(1−x,−γ), x >
1

2

(
1− γ√

γ2 +4

)
,

(15)

where

H(x,γ) =
y(x)

x
+

y(x)2 − γxy(x)−x2

2γ(1−x)x2 − 2y(x)(x(2− 3x)− y(x)2)
.

In addition, limx→0 y
′(x) =+∞ and limx→1 y

′(x) =−∞.

The formulation in (11) shares several similarities with the MV formulation (9). First, the objec-

tive functions in both formulations are convex with respect to x. Second, the constraints in both

cases are identical, corresponding to the convex hull of X . Third, the coefficients µi and σi appear

exclusively in the objective function. Fourth, the objective functions possess closed-form deriva-

tives, making them suitable for first-order optimization algorithms, such as gradient descent (Boyd

and Vandenberghe 2004). Finally, the derivatives in both cases tend to infinity as x approaches

the boundary, implying that the optimal solutions lie within the interior of the feasible region.
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3.2. Incomplete Moment Information

In this subsection, we extend the results for 4-MMM to encompass scenarios where certain lower-

order moment information is absent. Specifically, we examine two types of moment ambiguity

sets: one considering the marginal mean, second-order central moment, and fourth-order central

moment (referred to as ΘC
124), and another with only the marginal mean and the fourth-order

central moment (referred to as ΘC
14). The definitions of these two ambiguity sets are presented

below:

ΘC
124 =

{
θ : θi ⊂P (R) ,E[c̃i] = µi,E

[
(c̃i −µi)

2
]
= σ2

i ,E
[
(c̃i −µi)

4
]
= σ4

i (κi +3)
}
,

ΘC
14 =

{
θ : θi ⊂P (R) ,E[c̃i] = µi,E

[
(c̃i −µi)

4
]
=m′

i,4

}
.

(16)

Similar ambiguity sets has been studied in literature. He et al. (2010) has studied the moment

ambiguity sets knowing first, second and fourth moment. Das et al. (2021) and Guo et al. (2022)

study moment ambiguity set prescribed by the mean and fourth order moment. Here we highlight

that ΘC
124 and ΘC

14 in this section differ from the literature by studying the centralized moment

instead of the raw moment. We refer to the moment models considering the ambiguity sets ΘC
124

or ΘC
14 as 124-MMM or 14-MMM, respectively. We start with the results on 124-MMM.

Theorem 3. The 124-MMM problem can be reformulated as the following SOCP:

Z∗
124−MMM =max

x,y,z

n∑
i=1

(µixi +σiyi)

s.t. y2
i ≤ xi

(
xi +

√
κi +2zi

)
∀i∈ {1, · · · , n},

y2
i ≤ (1−xi)

(
1−xi +

√
κi +2zi

)
∀i∈ {1, · · · , n},

x2
i + z2i ≤ xi ∀i∈ {1, · · · , n},

yi ≤ zi ∀i∈ {1, · · · , n}

A (x1, x2, · · · , xn)≤ b.

(17)

Furthermore, it is equivalent to the following convex optimization problem:

Z∗
124−MMM =max

x

n∑
i=1

(µixi +σiyκi
(xi))

s.t. A (x1, x2, · · · , xn)≤ b,

(18)

where yκi
(xi) is a continuous and concave function defined as follows

yκ(x) =



√
x2 +x

√
x(1−x)(κ+2), x <

1

2

(
1−

√
κ+2

κ+6

)
;

√
x(1−x),

1

2

(
1−

√
κ+2

κ+6

)
≤ x≤ 1

2

(
1+

√
κ+2

κ+6

)
;

√
(1−x)2 +(1−x)

√
x(1−x)(κ+2), x >

1

2

(
1+

√
κ+2

κ+6

)
.
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In addition, the persistency of variable ci is xi in the optimal solution.

Theorem 3 provides both an SOCP reformulation and a convex optimization interpretation for

124-MMM, analogous to those of 4-MMM. The following theorem establishes the convex optimiza-

tion interpretation for 14-MMM.

Theorem 4. The 14-MMM problem can be reformulated as the following convex optimization prob-

lem

Z∗
14−MMM =max

n∑
i=1

(
µixi +

(
m′

i,4x
3(1−x)3

1− 3x(1−x)

) 1
4
)

s.t. A (x1, x2, · · · , xn)≤ b.

(19)

In addition, the persistency of variable ci is xi in the optimal solution.

Theorem 4 is derived based on Theorem 3 and the fact σ4 (κ+3)=m′
4. When m′

4 > 0, it is not hard

to verify that the derivative of yκ and

(
m′

i,4x
3(1−x)3

1−3x(1−x)

) 1
4

approaches +∞ or −∞ when x approaches

0 or 1, which is consistent with 4-MMM and MV.

Note that for all aforementioned ambiguity sets, the objective function with respect to index

i in the convex optimization formulations (9), (2), (18), and (19) shares a common form xiµi +

YΘ,i(xi). Specifically, for the MV, 4-MMM, 124-MMM, and 14-MMM models, YΘ,i assumes the

forms σi

√
xi(1−xi), σiyγi,κi

, σiyγi , and

(
m′

i,4x
3(1−x)3

1−3x(1−x)

) 1
4

, respectively. To compare different models,

Figure 1 depicts the function YΘ,i for the 4-MMM, 124-MMM, 14-MMM, and MV models when

µ= 0, σ = 1, γ = 1, κ= 0, and m′
i,4 = 3. The YΘ,i curves for the 4-MMM and 124-MMM models

lie below those of the MV and 14-MMM, indicating tighter bounds when additional moments are

included. Additionally, the function YΘ4,i is no longer symmetric, unlike the other models, due to

the incorporation of skewness information. Moreover, the objective curve in the 124-MMM model

is not always continuously differentiable, differing from the other cases.

3.3. Connection with the Marginal Distribution Model

A model closely related to the moment models is the marginal distribution model (MDM) (see,

for instance, Natarajan et al. 2009, Mishra et al. 2014), wherein the assumption is that we have

knowledge of the marginal distributions of random variables while allowing for an arbitrary cor-

relation structure. MDM is a special case of the well-known Fréchet problem (Hoeffding 1940,

Fréchet 1951), which concerns the aggregation of several random variables with information only

on the marginal distribution of each individual random variable. The earliest investigations into

MDM were conducted by Nadas (1979), Meilijson and Nádas (1979), Klein Haneveld (1986) in the

context of project management problems. They proposed to determine the worst-case expected

completion time through the solution of a convex optimization problem.
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Figure 1 Objectives of different marginal moment models

If the marginal distribution is known precisely, the MDM can be represented as:

Z∗
MDM = sup

θ∈Θ

Eθ (Zmax(c̃))

where Θ= {θ : c̃i ∼ Fi(c),∀i= 1, ..., n} ,
(20)

where Fi denotes the marginal distribution function of c̃i. The distribution set Θ encompasses all

conceivable multivariate joint distributions with prescribed marginal distributions. Natarajan et al.

(2009) demonstrated that the MDM is equivalent to a concave maximization problem expressed

as follows:

Z∗ =max
n∑

i=1

(∫ 1

1−xi

F−1
i (t)dt

)
s.t. Ax≤ b.

(21)

From the modeling standpoint, MDM requires complete information on the marginal distri-

butions, while MMM necessitates only the marginal moments. However, Natarajan et al. (2009)

demonstrated that the MV is equivalent to a special case of MDM (see 21) when the marginal

distributions are t-distributions. This result establishes the first connection between MDM and

MMM and provides an alternative interpretation for the solution produced by MV.

Here, building upon Theorem 2, we demonstrate that 4-MMM, 124-MMM, 14-MMM can all be

regarded as special cases of MDM with specific marginal distributions.

Proposition 2. The aforementioned three marginal moment models are equivalent to MDM (20)

with the marginal inverse CDF of random variable c̃i defined as follows.
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• For 4-MMM:

F−1
i (x) = µi +σiy

′
γi,κi

(1−x) .

• For 124-MMM:

F−1
i (x) =



µ− σyκ(x)

x
+σ

yκ(x)
2 −x2

4x(1−x)yκ(x)
, x <

1− ρκ
2

,

µ+
2x− 1

2
√
x(1−x)

,
1− ρκ

2
≤ x<

1+ ρκ
2

,

µ+
σyκ(x)

1−x
−σ

yκ(x)
2 − (1−x)2

4x(1−x)yκ(x)
, x≥ 1+ ρκ

2
,

where ρκ =
√
(κ+2)/(κ+6).

• For 14-MMM:

F−1
i (x) = µ+

3(2x− 1)(1− 2x(1−x))m′
4

1
4

4(1−x)
1
4x

1
4 (1− 3x(1−x))

5
4

.

Proof of Proposition 2: Given the separability of objectives in both MMM (in convex optimiza-

tion forms) and MDM, alongside identical constraints, it suffices to show that for any specific i

and feasible xi, the objective’s component corresponding to xi aligns in both models.

As the objectives of both 4-MMM and 14-MMM in the convex optimization form are continuously

differentiable, a direct comparison of the formulations in (11) and (19) with (21) illustrates the

equivalence. Specifically, the inverse CDF in MDM mirrors the derivative of MMM’s objective at

1−xi.

For 124-MMM model, the objective of (18) is continuously differentiable over three intervals

divided by the points at 1
2

(
1±

√
κi+2
κi+6

)
albeit subdifferentiable at these two points. Therefore, we

have

µixi +σiyκi
(xi) =

∫ 1

1−xi

(
µi +σiŷ

′
κi
(t)
)
dt,

where ŷ′
κi
(t) can take any value at 1

2

(
1±

√
κi+2
κi+6

)
and ŷ′

κi
(t) = y′

κi
(t) at any other points in (0,1).

Since the CDF of a random variable is a right-continuous, monotone increasing function, we let

the value of ŷ′
κi

to be the left derivative of yκ at points 1
2

(
1−

√
κi+2
κi+6

)
such that ŷ′

κi
(t) is a valid

inverse CDF.

The final results are available by computing the derivative and sub-derivative. □

With a slight abuse of notation, we note the MDM corresponding to 4-MMM, 124-MMM, 14-

MMM, and MV as 4-MDM 124-MDM, 14-MDM, and 2-MDM, respectively. Figure 2 shows the

probability density function (PDF) and the cumulative distribution function (CDF) of the marginal

distribution in aforementioned MDMs when the choice of µ,σ, γ and κ is the same as that in Figure

1.
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Figure 2 PDFs and CDFs of marginal distributions in different MDMs

As shown in the figure, the distribution in 4-MDM is an asymmetric bimodal distribution and

the CDF of 14-MDM is a symmetric bimodal distribution. The CDF of 124-MDM is a symmetric

but discontinuous distribution, encompassing three continuous sections. Due to the incorporation

of higher order moment information, 4-MDM, 124-MDM and 14-MDM have thinner tails than

2-MDM.

It is worth noting that Proposition 2 does not imply that the worst-case distribution in MMM

coincides with the distribution outlined in Proposition 2. In fact, these distributions do not even

belong to the ambiguity sets for the corresponding MMM; that is, the marginal moments of these

distributions are likely to differ from the prescribed marginal moments. Nevertheless, for each pair

of MMM and MDM, they yield the same optimal objectives and solutions, regardless of the feasible

region X .

3.4. Extention to the Analysis of Conditional Value at Risk

In many instances, statistical characteristics of the objective value Zmax(c̃), beyond mere expec-

tation, are important. A prevalent strategy in this context involves minimizing the risk measure,

commonly linked to the likelihood of unfavorable outcomes. The conditional value at risk (CVaR)

is one of the most popular risk measures in risk management. CVaR quantifies the mean value over

designated intervals in scenarios worse than a specific threshold. This section will illustrate how,

with a slight modification, our model can be extended to minimize the worst-case CVaR.
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Definition 1. The β-VaR and β-CVaR of a random variable z̃ which follows distribution θ are

defined as:
VaRθ

β(z̃)
def
= inf {z ∈R;Pθ [z̃ ≤ z]>β} ;

CVaRθ
β(z̃)

def
=

1

1−β

∫ 1

1−β

VaRθ
t (z̃)dt.

Given the aforementioned moment based ambiguity set Θ, we would like to consider the worst-

case CVaR, that is,

sup
θ∈Θ

CVaRθ
β (Zmax(c̃)) . (22)

The following proposition introduces a optimization approach to assess the worst-case CVaR

(22).

Proposition 3. The worst-case β-CVaR of Zmax(c̃) with ambiguity set Θ ∈ {Θ4,Θ
C
124,Θ

C
14} is

given by the following optimization problem.

max
n∑

i=1

(
xiµi +

YΘ,i ((1−β)xi)

1−β

)
s.t. Ax≤ b.

(23)

The proof of this proposition is presented in Appendix B. This proposition illustrates that the

only distinction between computing CVaR and calculating the expectation lies in the rescaling of

the objective and the convex hull constraint. Consequently, the benefits of our reformulation will

be largely applicable to CVaR scenarios as well.

4. Application: Project Crashing

In this section, we apply the theoretical results developed in Section 3 to project crashing, an

important problem in project management. In project management, estimating the completion

time (or makespan) of a project, which consists of multiple activities each with random durations,

is crucial (Elmaghraby 1977). Even when the durations are assumed to follow simple distributions,

the expected completion time may not be easy to compute. For instance, Hagstrom (1988) demon-

strated that computing the expected project makespan is #P-hard when the activity durations

are independent discrete random variables. A prevalent method to compute this expectation is

through the use of Monte Carlo simulation methods (Van Slyke 1963, Burt Jr and Garman 1971).

Moreover, in practical scenarios, the underlying distribution for project duration is typically not

available. Instead, estimating the moment information from historical data can be straightforward

(see, e.g., Williams 1992, Chapman and Ward 2003). Hence, distributionally robust optimization

has been embraced to examine the worst-case expected makespan based on moment information in

project management. References such as Birge and Maddox (1995), Bertsimas et al. (2004, 2006a),



Author: Article Short Title
18 Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Natarajan et al. (2011), and Natarajan and Teo (2017) have leveraged these approaches, addressing

both the intractability of the problem and the ambiguity of the project duration distribution.

In addition to evaluating the makespan, another important question is how to shorten the project

makespan by allocating resources to reduce the time of some activities. This task is called the

project crashing. In the literature, robust optimization methods were typically applied to solve

such problems (see, e.g., Chen et al. 2007, Cohen et al. 2007, Wiesemann et al. 2012) where the

activity durations are assumed in some uncertainty sets. However, robust optimization may be

overly conservative as it focuses on the worst-case scenario only. Also, estimating the uncertain

parameters in the uncertainty set is usually challenging.

Instead of planning based on the worst-case makespan, several attempts have been made to

allocate resources such that the expectation of the makespan is reduced under the worst-case distri-

bution in a distributional ambiguity set prescribed by some statistical characteristics of the random

variables. This is referred to as the distributionally robust project crashing problem. Goh and Hall

(2013) proposed an ambiguity set based on the support, mean, and correlation of the project dura-

tions, and approximated the corresponding distributionally robust project crashing problem using

linear and piecewise linear decision rules. Ahipasaoglu et al. (2019) studied the distributionally

robust project crashing problem with mean, variance, and partial correlation information.

While prior literature primarily focuses on the covariance of activities, in this section, we study

the distributionally robust project crashing problem with higher-order marginal moments. This

approach is particularly relevant in scenarios where individual activity information is more readily

accessible than covariance information, a situation frequently encountered when activity data are

collected from different projects or at varied frequencies or time scale.

4.1. Solution approaches

Assume that the project is represented by an activity-on-arc network G(V,E) where V = {1, · · · , n}
is the set of nodes denoting the events and E ∈ {(j, k) : j, k ∈ V} is the set of edges denoting the

activities. The total number of edges is |E|=m. Each edge (j, k) has a random length t̃j,k, which

denotes the duration of the corresponding activity. The completion time of the project is equal to

the length of the longest path (also referred to as the critical path) of the project network G(V,E)
from node 1 to node n. We use x = (xj,k)(j,k)∈E ∈ {0,1}m to denote any possible path with xj,k

equal to 1 if and only if the activity is included in the critical path. The set of feasible x can be

represented as X = CH (X ) ∩ {0,1}m where CH (X ) is the convex hull of the feasible region X ,

defined as (see Natarajan et al. 2009):

CH (X ) =

x :
∑

k:(j,k)∈E

xj,k −
∑

k:(k,j)∈E

xk,j =

 1, j = 1
0, j = 2,3, · · · , n− 1, xj,k ∈ [0,1],∀(j, k)∈ E

−1, j = n

 .

(24)
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Assuming that the mean, variance, skewness, and kurtosis of each t̃j,k are known as µj,k, σj,k,

γj,k, and κj,k, we denote the fourth-order moment ambiguity set as

Θ(µ,σ,γ,κ) =

θ :

Eθ

[
t̃ij
]
= µj,k,

Vθ

[
t̃j,k
]
= σ2

j,k,

Sθ

[
t̃j,k
]
= γj,k,

Kθ

[
t̃j,k
]
= κj,k,

∀(j, k)∈ E

 . (25)

Now suppose that the project manager can influence activity completion time by allocating

additional resources such as equipment, budget, and manpower. We assume that the resources can

influence the mean and variance of each activities t̃ij, which is a reasonable assumption in practical

setting. For example, the manager can let the staff work on holidays or allocate more manpower

to an activity by increasing staff expenditure. In the first case, working overtime on one unit time

will decrease the completion time by a certain amount. In the latter case, assigning more staffs

to the activity can improve efficiency proportionately and make the new completion time become

α
α′ t̃i, where α and α′ are the initial and new efficiency, respectively. In both cases, the skewness

and kurtosis would not be affected.

We denote the feasible region for the means and variances of random lengths as (µ,σ)∈M. One

possible formulation for the distributionally robust project crashing problem can be to select the

means and variances to minimize the total project makespans, which is stated as follows:

min
(µ,σ)∈M

sup
θ∈Θ(µ,σ,γ,κ)

Eθ

[
max
x∈X

t̃Tx
]
. (26)

Alternatively, assuming that each targeted means and variances will incur a certain cost c(µ,σ),

we can also consider a budget minimization problem subject to the worst-case expected completion

time is less than T :

min
(µ,σ)∈M

c(µ,σ)

s.t. sup
θ∈Θ(µ,σ,γ,κ)

Eθ

[
max
x∈X

t̃Tx
]
≤ T.

(27)

For convenience, from this point, let N be the total number of edges, and we reindex the edges

(j, k) ∈ E as i= 1, ...,N . Following this notation, x now becomes {x1, ..., xN}. Assume CH (X ) =

{x :Ax≤ b}. The inner problem of (26) and (27) can be written as an SOCP according to Theorem

1, which satisfies weak Slater’s condition since we can always let yi = zi = 0. Therefore, the strong

duality holds. By taking the duality of (10), we obtain the following reformulations.
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Proposition 4. Let C denote an SOC-representable set containing elements (u,v,w,x,y,z,ξ)

which satisfy the following constraints:

w
(1)
i − 2w

(2)
i − 2xi +2yi − zi +(ATξ)i = µi, ∀i∈ {1, · · · ,N},

γi(v
(2)
i −u

(2)
i + yi −xi)− 2(u

(1)
i + v

(1)
i )− 2w

(3)
i = σi, ∀i∈ {1, · · · ,N},√

κi +2− γ2
i (u

(2)
i + v

(2)
i +xi + yi)+ 2w

(4)
i = 0, ∀i∈ {1, · · · ,N},

∥ui∥ ≤ xi, ∀i∈ {1, · · · ,N},

∥vi∥ ≤ yi, ∀i∈ {1, · · · ,N},

∥wi∥ ≤ zi, ∀i∈ {1, · · · ,N},

ξ≥ 0.

(28)

Then the distributionally robust project crashing problem (26) is equivalent to

min
µ,σ,u,v,w,x,y,z,ξ

N∑
i=1

(
w

(1)
i +2yi + zi

)
+ bTξ,

s.t. (u,v,w,x,y,z,ξ)∈ C,

(µ,σ)∈M.

(29)

Similarly, the distributionally robust crash budget minimization problem (27) is equivalent to

min
µ,σ,u,v,w,x,y,z,ξ

c(µ,σ),

s.t.
N∑
i=1

(
w

(1)
i +2yi + zi

)
+ bTξ≤ T,

(u,v,w,x,y,z,ξ)∈ C,

(µ,σ)∈M.

(30)

When M is a second-order cone, the problem (29) becomes an SOCP. In addition, if cost function

c(µ,σ) has an SOCP representation, (30) is also an SOCP. Next, we show that when M is a convex

set, the distributionally robust project crashing problems can also be reformulated as the following

convex optimization problems.

Proposition 5. The distributionally robust project crashing problem (26) is equivalent to:

min
λ,µ,σ

n∑
i=1

(
σiφi

(
µi −aT

i λ

σi

)
− bTλ

)
,

s.t. λ≥ 0,

(µ,σ)∈M,

(31)
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where φi(·) is the convex conjugate of the −yi(·) and ai is the i-th column vector of A. Similarly,

the distributionally robust crash budget minimization problem (27) is equivalent to

min
λ,µ,σ

c(µ,σ),

s.t.
n∑

i=1

(
σiφi

(
µi −aT

i λ

σi

)
− bTλ

)
≤ T

λ≥ 0,

(µ,σ)∈M.

(32)

Proposition 4 and 5 demonstrate that the distributionally robust project crashing problem under

the first four marginal moments are almost as easy as the corresponding mean-variance model. If

some moment information is missing, similar results can be obtained based on Theorem 3 and 4.

4.2. Numerical study

Subsequently, we consider a service system as an example to examine the performance of our

proposed models. A similar problem has been studied by Mak et al. (2015), who optimize the

appointment schedule to minimize total waiting and overtime costs with information on marginal

means and variances. In contrast, we aim to allocate additional resources to the existing schedule

to reduce the final delay given marginal moments up to fourth degree.

Assuming the system consists of four individuals who are scheduled to arrive sequentially at

times 0, 10, 20, and 30, each requiring a service duration of 10 units. Any service begins upon a

client’s arrival and the completion of the previous client’s service. Additionally, the first service can

only begin after time 0. If the system adheres to the predetermined schedule, the service completion

time will be 40 units, with no delay.

We now introduce random perturbations to arrival times and service times. Assume that the

perturbation terms for arrival and service times are identical and independent triangular distribu-

tions. Specifically, let the perturbation term be defined as s(εm − (1 +m)/3), where s represents

the scale parameter and εm follows a standard triangular distribution with a minimum of 0, a

maximum of 1, and a mode of m. The inclusion of the term −(1 +m)/3 serves to standardize

the mean of the perturbation to 0. With the inclusion of random perturbations, the completion

time, denoted by T̃ , becomes a random variable. Our focus is now on the system’s expected delay

compared to the scheduled completion time, represented by (T̃ − 40)+. The system is illustrated

in Figure 3, where ãi and t̃i represent the random arrival and service times of client i.

We first approximate the expected delay by utilizing three different methods: Monte Carlo sim-

ulation (with one million samples), 2MMM and 4MMM. Then we set the target expected delay as

half of the mean delay obtained from the Monte Carlo simulation. We assume that the decision
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Figure 3 Service system with four clients

maker is able to improve the effeciency with efforts. In particular, the new service time becomes

(1−αi)t̃i, with different cost functions presented in Table 1. Note that all these cost functions have

SOCP representations. The performance is measured by the budget ratio between 4-MMM and

MV (indicated as B4/B2 in Table 2) in order to accomplish the target expected completion time

T .

Table 1 Cost functions

Cost function C1 C2 C4 CI CI2

Expression
∑4

i=1αi

∑4

i=1α
2
i

∑4

i=1α
4
i

∑4

i=1
αi

1−αi

∑4

i=1

(
αi

1−αi

)2

We conducted tests with different scales (2,3,4,5) and modes (0.2,0.5,0.8). The resulting esti-

mated expected delays and budget ratios are presented in Table 2.

Table 2 Estimated expected delays and budget ratios under different cost functions

Estimated Delay∗ B4/B2
Mode Scale MCS 4-MMM MV C1 C2 C4 CI CI2

0.2 2 0.704 1.291 1.477 0.590 0.303 0.089 0.527 0.268
3 1.057 1.936 2.216 0.606 0.322 0.100 0.525 0.271
4 1.408 2.582 2.954 0.621 0.340 0.112 0.524 0.273
5 1.760 3.227 3.693 0.634 0.356 0.123 0.524 0.275

0.5 2 0.650 1.200 1.396 0.514 0.235 0.055 0.456 0.205
3 0.976 1.800 2.094 0.530 0.251 0.062 0.454 0.208
4 1.300 2.400 2.792 0.544 0.267 0.070 0.453 0.210
5 1.623 3.001 3.489 0.557 0.281 0.078 0.453 0.211

0.8 2 0.673 1.204 1.477 0.426 0.163 0.027 0.370 0.138
3 1.010 1.806 2.216 0.442 0.176 0.031 0.368 0.139
4 1.348 2.408 2.954 0.456 0.189 0.035 0.367 0.140
5 1.685 3.010 3.693 0.470 0.201 0.040 0.367 0.141

∗ For the original system

In Table 2, the left part details the mode and scale parameters for random perturbations. For each

pair of parameters, the middle section displays the estimated delays for the original system derived
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from different methods and the right section outlines the budget ratios associated with various cost

functions. This table demonstrates that 4-MMM provides tighter bounds on expected delay than

MV. Moreover, the Monte Carlo simulation results reveal that mode 0.2 incurs greater delay than

mode 0.8. This property is captured by 4-MMM but not by MV, as their mean and variance remain

the same. Consequently, in the crash budget minimization problem, 4-MMM requires significantly

less budget than MV due to its better approximation. Even in the case of linear cost (C1), 4-

MMM achieves a budget reduction of approximately 40%. In the case of quartic cost (C4), 4-MMM

requires only 10% of the budget needed by MV.

5. Application: Newsvendor Problem

In this section, we study the distributionally robust newsvendor problem with moment information

up to the fourth degree. The newsvendor problem has been extensively studied since its introduc-

tion (see, e.g., Arrow et al. 1951, Arrow et al. 1958, and Iglehart 1963). While the mainstream

setting of the newsvendor problem assumes that the demand distribution is known, an important

stream of literature focuses on making the newsvendor decision with only moment information in a

distributionally robust optimization (DRO) setting. Scarf (1958) considered all distributions having

the same mean and variance, representing the earliest DRO newsvendor framework. Ben-Tal and

Hochman (1976) extended this result to develop a closed-form optimal order quantity when the

mean and mean absolute deviation are known. Natarajan et al. (2018) consider all distributions

with a given mean, variance, and semi-variance. Ardestani-Jaafari and Delage (2016) studied a

newsvendor problem with given mean and first-order partial moments (specifically, the conditional

expectation of an upside or downside tail with respect to a threshold). Das et al. (2021) extended

Scarf’s model to a case where the ambiguity set is determined by the first and α-th moment.

Govindarajan et al. (2021) studied the multilocation inventory polling problem with an ambiguity

set determined by mean and covariance.

It is worth noting that, besides optimizing worst-case profit, distributionally robust regret mini-

mization problems with moment information are also considered in the literature. Yue et al. (2006)

assumed that the demand distribution belongs to the class of distributions with given mean and

variance. Perakis and Roels (2008) extended this approach by incorporating additional demand

information such as median, unimodality, and symmetry.

5.1. Closed-form solutions

Given the order quantity decision q and the random demand d̃, the newsvendor profit function is

expressed as pmin{d, q}− cq, where p and c are the selling price and purchasing cost, respectively.
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The seller’s objective is to maximize the expected profit by determining the optimal order quantity

q, that is

max
q

E
[
pmin

{
d̃, q
}
− cq

]
. (33)

If the demand distribution is exactly known, the optimal order quantity equals the quantile

of the so-called critical ratio η = p−c
p
. More specifically, assume that the cumulative distribution

function (CDF) of d̃ is F , the optimal order quantity is q∗ = infq {q : F (q)≥ η}.

In cases where the exact demand distribution is not known, distributionally robust optimization

models that consider partial distribution information are widely applied. Denote the distributional

ambiguity set, which contains all possible demand distributions, as Θ. The distributionally robust

newsvendor (DR-NV) problem is formulated as:

max
q

inf
θ∈Θ

Eθ

[
pmin

{
d̃, q
}
− cq

]
. (DR-NV)

The seminal (DR-NV) was introduced by Scarf (1958), which assumed that only the mean and

variance of the demand are known and derived a succinct, closed-form solution for the optimal

order quantity. This result is presented in the following proposition.

Proposition 6 (Scarf 1958). If Θ contains all distributions with a given mean µ and standard

deviation σ, then the optimal solution to (DR-NV) is

q∗2 = µ+σ
1− 2η

2
√

η(1− η)
. (34)

The significance of this model lies not only in its computational efficiency but also in its managerial

insights. It has two important implications: First, the order quantity is larger than the mean

demand if the critical ratio η is greater than half and smaller than the mean otherwise. Second,

for a fixed η, the order quantity is linear in both the mean µ and standard deviation σ.

Das et al. (2021) extended Scarf’s classic result by considering the mean and α-order moment,

where α > 0 is a positive real number. Their primary focus was on the heavy-tail case where the

variance may not exist. Guo et al. (2022) further extended this result and proposed a new model

considering the mean and the exponential moment. Both of these papers focus mainly on the

distributionally robust bound and the worst-case demand distribution.

In this section, we extend Scarf’s result by incorporating moments up to the fourth order and

provide closed-form solutions. In particular, we consider three different DR-NV models with ambi-

guity sets presented as follows.

1. 4-NV: Θ=
{
θ : Eθ

[
d̃
]
= µ, Vθ

[
d̃
]
= σ2, Sθ

[
d̃
]
= γ, Kθ

[
d̃
]
= κ
}
.
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2. 124-NV: Θ=
{
θ : Eθ

[
d̃
]
= µ, Vθ

[
d̃
]
= σ2, Kθ

[
d̃
]
= κ
}
.

3. 14-NV: Θ=

{
θ : Eθ

[
d̃
]
= µ, Eθ

[(
d̃−µ

)4
]
=m′

4

}
.

Note that the newsvendor objective involves taking the minimum of demand and inventory, which

is a simple combinatorial optimization problem. We can convert the inner part of the newsvendor

problem into 4-MMM, 124-MMM, and 14-MMM and obtain closed-form solutions under the DRO

framework based on Theorems 2, 3, and 4. It turns out that the optimal newsvendor solutions are

closely related to the MDM formulation developed in Section 3.3.

Proposition 7 (Closed-form solutions). The optimal solutions to 4-NV, 124-NV and 14-NV

are the same as the optimal solutions of the stochastic newsvendor problem with demand distribu-

tions defined in Proposition 2. Specifically, the closed-form optimal inventory level are presented

as follows.

1. The optimal solution of 4-NV is

q∗4 = µ+σy′(1− η), (35)

where the closed-form expression of y′ is given in Proposition 1.

2. The optimal solution of 124-NV is

q∗124 =



µ− σyκ(η)

η
+σ

yκ(η)
2 − η2

4η(1− η)yκ(η)
, η <

1− ρκ
2

,[
µ− σ(ρ2κ + ρκ +1)√

1− ρ2κ(1+ ρκ)
, µ− σρκ√

1− ρ2κ

]
, 3 η=

1− ρκ
2

,

µ+
2η− 1

2
√

η(1− η)
σ,

1− ρκ
2

< η <
1+ ρκ

2
,[

µ+
σρκ√
1− ρ2κ

, µ+
σ(ρ2κ + ρκ +1)√
1− ρ2κ(1+ ρκ)

]
, η=

1+ ρκ
2

,

µ+
σyκ(η)

1− η
−σ

yκ(η)
2 − (1− η)2

4η(1− η)yκ(η)
, η >

1+ ρκ
2

,

(36)

where the function yκ is defined in Theorem 3 and ρκ =
√

(κ+2)/(κ+6).

3. The optimal solution of 14-NV is

q∗14 = µ+
3(2η− 1)(1− 2η(1− η))m′

4

1
4

4(1− η)
1
4 η

1
4 (1− 3η(1− η))

5
4

. (37)

3 All values in the interval are optimal.
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Proof of Proposition 7: We first proof the result for 4-NV. We assume, without loss of generality,

that p= 1, p− c= η. According to Theorem 2, the 4-NV problem can be reformulated as

min
q

sup
θ∈Θ

Eθ

[
max

{
−d̃,−q

}]
+(1− η)q

=min
q

max
x∈[0,1]

−(1−x)µ+σy−γ,κ(1−x)−xq+(1− η)q

=min
q

max
x∈[0,1]

(µ− q)x+σyγ,κ(x)+ (1− η)q−µ

=min
q

σφ

(
µ− q

σ

)
− (1− η)(µ− q)− ηµ,

(38)

where φ represents the convex conjugate of −y(x). The optimal q∗ satisfies φ′
(

µ−q∗

σ

)
= 1− η.

According to the property of convex conjugate, we have

µ− q∗

σ
=−y′

(
φ′
(
µ− q∗

σ

))
=−y′ (1− η) .

Therefore, q∗4 = µ+σy′ (1− η).

The results of q∗124 and q∗14 follow the same argument. For 124-NV, we only need to replace

function y(x) with yκ(x) and use the sub-derivative instead of the derivative. For 14-NV, we only

need to replace σy(x) with
(

x3(1−x)3m′
4

1−3x(1−x)

) 1
4

.

Finally, it is not hard to verify that the optimal distributionally robust Newsvendor solutions are

the same as the optimal solution of the stochastic newsvendor problem with demand distributions

defined in Proposition 2. □

Proposition 7 provides closed-form solutions for the newsvendor problem under different ambi-

guity sets, enabling the derivation of new managerial insights. In Scarf’s model, the order quantity

exceeds the mean demand µ if the critical ratio is greater than 0.5, and is less if the ratio is smaller.

This property also holds true for 124-NV and 14-NV. However, for 4-NV, when incorporating

skewness information, this may not necessarily apply.

Let η0(γ,κ) represent the critical ratio where µ is exactly an optimal solution for the 4-NV, given

skewness γ and kurtosis κ. Given that the function y in (35) is concave, the optimal order quantity

in 4-NV increases with the critical ratio η. Clearly, η0 serves as the threshold at which the optimal

order quantity either exceeds or falls below µ. We now explore some theoretical properties related

to η0.

Proposition 8. Given skewness γ ≤ 0, η0(γ,κ) increase from 1
2
+ γ

2
√

γ2+4
to 1

2
as kurtosis κ

increase from γ2 − 2 to +∞. Given skewness γ ≥ 0, η0(γ,κ) decrease from 1
2
+ γ

2
√

γ2+4
to 1

2
as

kurtosis κ increase from γ2 − 2 to +∞.

This proposition implies that regardless of the kurtosis, if the skewness γ ≤ 0 and the critical

ratio η ≥ 0.5, then q∗4 ≥ µ. Conversely, when the skewness γ ≥ 0 and the critical ratio η ≤ 0.5, it

follows that q∗4 ≤ µ.
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5.2. Numerical study

To demonstrate the benefits of incorporating higher-order moments information, we conduct

numerical experiments to evaluate different distributionally robust newsvendor solutions against

several ground-truth demand distributions. We assess our 4-NV, 124-NV, and 14-NV solutions in

comparison with Scarf’s MV model (34). The demand distributions selected for testing include

exponential, log-normal (with shape parameter 0.5), and gamma (with shape parameter 5) distri-

butions. If a model suggests a negative order quantity, we simply set the order quantity to 0. The

product’s price p is constant, and the cost varies from 0 to p, causing the critical ratio to shift from

1 to 0. The results are depicted in Figure 4.
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Figure 4 Expected Profit loss under different moment based newsvendor solution

The upper part of Figure 4 depicts the profit loss relative to the optimal solution across the

entire range of the critical ratio η, whereas the lower part focuses on the high service-level regime,

namely when η approaches 1. In terms of overall performance, the 4-NV model excels compared

to other models, likely due to its inclusion of higher-order moment information. It is notable

that MV performs better than 14-NV in the mid-range of the critical ratio, despite both models
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incorporating information from two moments. This highlights the significance of incorporating

variance information. The 124-NV model’s solutions coincide with those of MV within the mid-

range of the critical ratio; however, the performance of 124-NV is comparable to that of 14-NV as

the critical ratio nears 0 or 1.

As the critical ratio approaches to one, the models 4-NV, 124-NV, and 14-NV significantly

surpass MV in performance. This enhanced performance may be due to their ability to capture

the tail behavior of distributions, which is more accurately captured by higher-order moments.

We also evaluate our proposed 4-NV solution in a data-driven context, comparing it with the

MV model and the sample average approximation (SAA) method. Our focus is on the high service

level regime where the critical ratio is set to 0.99. The assessment encompasses varying sample sizes

from 10 to 100, with each scenario replicated 2000 times. For these evaluations, the underlying

demand distributions are assumed to be exponential, log-normal (with shape parameter 0.5 and

1), and gamma (with shape parameter 5) distributions. The results of these tests are illustrated in

the subsequent figure.
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Figure 5 Expected Profit loss under different newsvendor solution
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In Figure 5, the box plot illustrates the 25th percentile, median, and 75th percentile of the profit

loss relative to the true optimal solution. This figure provides several insights. First, moment-

based methods outperform the SAA method in high service level regimes. This advantage arises

because estimating tail quantiles may require more samples than those near the distribution’s

mode (Zielinski 2004). The MV method shows benefits with small sample sizes, likely due to

the relative simplicity of estimating the mean and variance. However, its performance becomes

erratic with increasing sample sizes, alternating between the best and worst outcomes among the

methods. Conversely, methods that incorporate the fourth-order moment, such as 4-NV and 14-

NV, consistently outperform SAA across a range of sample sizes and generally surpass the MV

method. An intriguing observation is that 14-NV often outperforms 4-NV, despite using fewer

moments. This might be attributed to the increased estimation errors introduced by employing

four estimated moments compared to two, indicating a potential trade-off between the number of

utilized moments and the precision of moment estimation. In conclusion, within a high service level

regime, the MV model is suitable for small data samples. For larger sample sizes, decision-makers

should consider the 4-NV or 14-NV methods to better capture the tail behavior of the demand

distribution. In scenarios with ample data, although not depicted in the figure, the SAA method

becomes preferable, consistently converging to the optimal decision with sufficiently large sample

sizes.

6. Conclusion

This paper introduces reformulations of the fourth-order marginal moment model into a as an

SOCP and a convex optimization problem. These new formulations are notably more succinct

than the existing SDP formulation, enhancing their ease of implementation and suitability for

analytical exploration. Leveraging these reformulations, we further analytically study scenarios

where information on the mean, variance, and fourth-order central moment is available, as well as

cases where only the mean and fourth-order central moment are known. Through applications of

project crashing and the newsvendor problem, we demonstrate the practicality and insightful nature

of our reformulations. Specifically, in the project crashing problem, we illustrate that incorporating

information on marginal higher-order moments such as skewness and kurtosis can be almost as easy

as applying the mean-variance model. In the newsvendor problem, we derive closed-form solutions,

which are challenging to obtain with existing methodologies.
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Appendix

A. Closed Form of Function fκ

According to the well known result of roots of a quartic equation (see, e.g., Smith 2012), the

function fκ takes the largest real value of the following complex expression.

fκ(x,γ) =
γx

2
+

1

2

√
g1 +

g2
g3

+ g3 +

√√√√2g1 −
g2
g3

− g3 −
2γPx3√

g1 +
g2
g3

+ g3
,

P =κ− γ2 +2,

g1 =

(
γ2 − 2κ

3

)
x2,

g2 =
x3

9

(
x (κ+6)

2 − 12P
)
.

g3 =
1

3

(
P 3x6 +

(
4+ γ2

)3
x6 +3P 2

(
12+ γ2x− 14x

)
x5 +3P

(
4+ γ2

) (
4x+ γ2x− 6

)
x5

+6
√
3xPx4

√
P 3(1−x)+P 2x (8− 3x (8− γ2(1−x)− 5x))− (4+ γ2)

2
x5 +(4+ γ2)

3
x6(1−x)

+Px2

(
3(1−x) ((4+ γ2)x− 3)

2
+19x− 2γ2x− 11

)) 1
3

.

Here, the square root and the cubic root in g3 can be arbitrarily chosen. The two square-root

operators take all possible values, while the value of
√

g1 +
g2
g3

+ g3 that appears twice in the formula

is always consistent. Therefore, there are 4 different complex values given by fκ. As shown in the

proof of Theorem 2, we will always take the largest real value.

B. Proofs

Proof of Theorem 1:

Step 1:

Firstly, we introduce a mapping f :{
(1,m1,m2,m3,m4)∈M4 (R)

}
f−→
{
(ζ1, ζ2, ζ3, ζ4)∈R4 : ζ2 ≥ 0, ζ4 ≥ 0

}
.

The rule for mapping is defined as follows:

ζ1 =m1,

ζ2 =m2 −m2
1 =

∣∣∣∣ 1 m1

m1 m2

∣∣∣∣ ,
ζ3 =m3 − 3m1m2 +2m3

1,

ζ4 =
(
m2 −m2

1

)
m4 −m3

2 +2m1m2m3 −m2
3 =

∣∣∣∣∣∣
1 m1 m2

m1 m2 m3

m2 m3 m4

∣∣∣∣∣∣ .
(39)
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We now show that this mapping becomes a bijection by slightly modifying the domain and

codomain as:

{
(1,m1,m2,m3,m4)∈M4 (R),m2 >m2

1

}
f−→
{
(ζ1, ζ2, ζ3, ζ4)∈R4 : ζ2 > 0, ζ4 ≥ 0

}
.

We can see that mi can also be represented by ζi

m1 = ζ1 = g1,i(ζ1),

m2 = ζ2 + ζ21 = g2,i(ζ1, ζ2),

m3 = ζ31 +3ζ1ζ2 + ζ3 = g3,i(ζ1, ζ2, ζ3),

m4 =
1

ζ2

(
ζ41ζ2 +6ζ21ζ

2
2 + ζ32 +4ζ1ζ2ζ3 + ζ23 + ζ4

)
= g4(ζ1, ζ2, ζ3, ζ4).

By checking all principal minors of

∣∣∣∣∣∣
1 g1,i(ζ1) g2,i(ζ1, ζ2)

g1,i(ζ1) g2,i(ζ1, ζ2) g3,i(ζ1, ζ2, ζ3)
g2,i(ζ1, ζ2) g3,i(ζ1, ζ2, ζ3) g4(ζ1, ζ2, ζ3, ζ4)

∣∣∣∣∣∣, We can find that this

matrix is positive semidefinite. So in this case, f is a one-to-one correspondence.

Step 2:

Given wi0 = x∈ [0,1], consider the following subproblem:

w∗
i1 = sup

wi,vi

wi1,

s.t. wi +vi =mi,

wi,vi ∈Mk (R),

wi0 = x.

(40)

In this step, we would like to show that the subproblem 40 is equivalent to the following problem:

w∗
i1 = sup xζ1 +

√
x(1−x)ζ2t

s.t., (1−x)ζ22 t
2 −xζ22 − ζ3

√
x(1−x)ζ2t≤

√
x(1−x)ζ2ζ4 (1− t2),

xζ22 t
2 − (1−x)ζ22 + ζ3

√
x(1−x)ζ2t≤

√
(1−x)xζ2ζ4 (1− t2),

0≤ t≤ 1,

(41)

where ζ1, ζ2, ζ3, ζ4 are defined in (39).

We first assume that mi,2 −m2
i1 > 0 and wi0 = x ∈ (0,1). we will discuss the problem in several

cases.

Case 1: w2
i1 <wi0wi,2 and v2i1 < vi0vi,2.
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Let (ζ1, ζ2, ζ3, ζ4) = f (1,mi1,mi,2,mi,3,mi4), (ω1, ω2, ω3, ω4) = f
(
1, wi1

x
,
wi,2

x
,
wi,3

x
, wi4

x

)
and

(ν1, ν2, ν3, ν4) = f
(
1, vi1

1−x
,
vi,2
1−x

,
vi,3
1−x

, vi4
1−x

)
. The problem becomes

sup xω1,

s.t. ζ1 = xω1 +(1−x)ν1

ζ2 + ζ21 = x(ω2 +ω2
1)+ (1−x)(ν2 + ν2

1),

ζ31 +3ζ1ζ2 + ζ3 = x(ω3
1 +3ω1ω2 +ω3)+ (1−x)(ν3

1 +3ν1ν2 + ν3),

1

ζ2

(
ζ41ζ2 +6ζ21ζ

2
2 + ζ32 +4ζ1ζ2ζ3 + ζ23 + ζ4

)
=

x

ω2

(
ω4
1ω2 +6ω2

1ω
2
2 +ω3

2 +4ω1ω2ω3 +ω2
3 +ω4

)
,

+
(1−x)

ν2

(
ν4
1ν2 +6ν2

1ν
2
2 + ν3

2 +4ν1ν2ν3 + ν2
3 + ν4

)
,

ω2, ν2 > 0,

ω4, ν4 ≥ 0.
(42)

It is not hard to see that we can always get an objective value of xζ1 by assigning ωi = xmi and

ν = 0. Therefore, the optimal objective is large or equal to with out loss of generality, let

ω1 = ζ1 +

√
(1−x)ζ2

x
t, t≥ 0,

ω2 = ε > 0.

Notice that each of the four equality constraints in (42) contains only a linear term of ν1, · · · , ν4,

respectively. We can solve each νi successively and represent them with ζ1, · · · , ζi and ω1, · · · , ωi.

Therefore, the feasibility is equivalent to finding t, ε,ω3 and ω4 such that ν2 > 0 and ν4 ≥ 0.

Substituting ω1 and ω2 into the first two constraints of (42), we have

ν2 =
(1− t2)ζ2 −xε

1−x
.

Since ω2 = ε > 0 and ν2 > 0, we have

ε <
ζ2(1− t2)

x
and t < 1. (43)

Then, represent ν4 with ζ1, ζ2, ζ3, ζ4, t, ε,ω3 and ω4. There is only one term that contains ω4,

which is − xν2ω4
(1−x)ε

. Therefore, we can write ν4 in the form of

ν4 = h(t, ε,ω3)−
xν2ω4

(1−x)ε
. (44)

For a given pair of (t, ε) satisfying (43), it is feasible if and only if there exists a pair of (ω3, ω4)

such that ω4 ≥ 0 and h(t, ε,ω3)− xν2ω4
(1−x)ε

≥ 0, which is equivalent to
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max
ω3∈R,ω4≥0

{
h(t, ε,ω3)−

xν2ω4

(1−x)ε

}
=max

ω3∈R
h(t, ε,ω3)−min

ω4≥0

xν2ω4

(1−x)ε
≥ 0 (45)

Because xν2
(1−x)ε

> 0, xν2ω4
(1−x)ε

takes the minimum value 0 when ω4 = 0. On the other hand, we can find

that h is a quadratic function of ω3 where the coefficient of ω2
3 is − 1−t2

(1−x)2ε
< 0. So maxω3∈R h(t, ε,ω3)

takes the maximum value when ω3 is on the axis of symmetry of h. Then we have the following

equations by computing the optimal ω3 (noted as ω∗
3(t, ε)) and substituting it back to h.

ω∗
3(t, ε) =

(1−x)ζ3 −
√

(1−x)ζ2
x

t (xε+2ζ2 − 3xζ2 − (1−x)ζ2t
2)

(1−x)(1− t2)ζ2
ε

h(t, ε,ω∗
3(t, ε)) =C0

[
x(1−x)

(
1− t2

)
ζ2ζ4 −

(
(1−x)ζ22 t

2 +xεζ2 −xζ22 − ζ3
√
x(1−x)ζ2t

)2
]
.

Here,

C0 =
ν2

xζ2(1−x)2 (xε+(1−x)ν2)
> 0.

Therefore, any pair of (t, ε) satisfying (43) is feasible if and only if

−
√
x(1−x)ζ2ζ4 (1− t2)≤ (1−x)ζ22 t

2 +xζ2ε−xζ22 − ζ3
√

x(1−x)ζ2t≤
√
x(1−x)ζ2ζ4 (1− t2).

In addition, since 0< ε< ζ2(1−t2)

x
, t∈ [0,1) is feasible if and only if

(1−x)ζ22 t
2 −xζ22 − ζ3

√
x(1−x)ζ2t <

√
x(1−x)ζ2ζ4 (1− t2);

xζ22 t
2 − (1−x)ζ22 + ζ3

√
x(1−x)ζ2t <

√
(1−x)xζ2ζ4 (1− t2).

It is not difficult to see that above two constraints are convex. Therefore, we can replace the

supreme with maximum and let all constraints be closed. Then, we obtain the expression (41).

Case 2: w2
i1 =wi0wi,2 and v2i1 = vi0vi,2.

Let (ζ1, ζ2, ζ3, ζ4) = f (1,mi1,mi,2,mi,3,mi4). Assume wi1 = xζ1 +
√
x(1−x)ζ2t, vi1 = (1− x)ζ1 −√

x(1−x)ζ2t.

Due to the fact that

m2 = ζ2 + ζ21 =wi,2 + vi,2 =
w2

i1

x
+

v2i1
1−x

= ζ2t
2 + ζ21

We can get solution t=±1. Then we can show that this case only happens when

m3 =
w3

i1

x2
+

v3i1
(1−x)2

= ζ31 +3ζ1ζ2 +
(±1∓ 2x)ζ22√
x(1−x)ζ2

m4 =
w4

i1

x3
+

v4i1
(1−x)3

= ζ41 +6ζ1ζ
2
2 +(

1

x(1−x)
− 3)ζ32 +

4(±1∓ 2x)ζ1ζ
2
2√

x(1−x)ζ2
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So we must have

ζ3 =
(±1∓ 2x)ζ22√
x(1−x)ζ2

ζ4 = 0

If t=−1, it cannot be the optimal solution because there is always a feasible solution that has an

objective value xζ1. If t= 1, both sides of the first and second constraint in (41) to be 0, which

means that the constraints still hold thus this case is incorporated by (41).

Case 3: w2
i1 =wi0wi,2 but v2i1 > vi0vi,2.

Firstly we must have wij =
w
j
i1

xj−1 for j = 2,3,4. We still let (ζ1, ζ2, ζ3, ζ4) = f (1,mi1,mi,2,mi,3,mi4)

and (ν1, ν2, ν3, ν4) = f
(
1, vi1

x
,
vi,2
x
,
vi,3
x
, vi4

x

)
. The problem 40 becomes

sup xω1

s.t. ζ1 =wi1 +(1−x)ν1

ζ2 + ζ21 =
w2

i1

x
+(1−x)(ν2 + ν2

1)

ζ31 +3ζ1ζ2 + ζ3 =
w3

i1

x2
+(1−x)(ν3

1 +3ν1ν2 + ν3)

1

ζ2

(
ζ41ζ2 +6ζ21ζ

2
2 + ζ32 +4ζ1ζ2ζ3 + ζ23 + ζ4

)
=

w4
i1

x3
+

(1−x)

ν2

(
ν4
1ν2 +6ν2

1ν
2
2 + ν3

2 +4ν1ν2ν3 + ν2
3 + ν4

)
ν2 > 0

ν4 ≥ 0.
(46)

Assume wi1 = xζ1 +
√

x(1−x)ζ2t and represent ν1, · · · , ν4 with ζ1, · · · , ζ4 and t. t is feasible if and

only if

ν2 =
1− t2

1−x
ζ2 > 0

ν4 =
x(1−x) (1− t2) ζ2ζ4 −

(
(1−x)ζ22 t

2 −xζ22 − ζ3
√
x(1−x)ζ2t

)2

xζ2(1−x)3
≥ 0

Similarly, we have

w∗
i1 =max xζ1 +

√
x(1−x)ζ2t

s.t. (1−x)ζ22 t
2 −xζ22 − ζ3

√
x(1−x)ζ2t≤

√
x(1−x)ζ2ζ4 (1− t2)

− (1−x)ζ22 t
2 +xζ22 + ζ3

√
x(1−x)ζ2t≤

√
(1−x)xζ2ζ4 (1− t2)

0≤ t≤ 1.

(47)

The only difference between the optimization problem (47) and (41) is the second constraint. Notice

that [
−(1−x)ζ22 t

2 +xζ22 + ζ3
√

x(1−x)ζ2t
]
−
[
xζ22 t

2 − (1−x)ζ22 + ζ3
√
x(1−x)ζ2t

]
= (1− t2)ζ22 ≥ 0
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We can claim that the optimal objective value of ( 40) with a ∈ (0,1) when w2
i1 =wi0wi,2 will not

exceed the value in the case when w2
i1 <wi0wi,2.

Case 4: v2i1 = vi0vi,2 but w2
i1 >wi0wi,2.

Let (ζ1, ζ2, ζ3, ζ4) = f (1,mi1,mi,2,mi,3,mi4) and (ω1, ω2, ω3, ω4) = f
(
1, wi1

x
,
wi,2

x
,
wi,3

x
, wi4

a

)
. Assume

wi1 = xζ1 +
√

x(1−x)ζ2t. Then vi1 = (1 − x)ζ1 −
√
x(1−x)ζ2t. Similar with previous proof, we

have
w∗

i1 =max xζ1 +
√
x(1−x)ζ2t

s.t. −xζ22 t
2 +(1−x)ζ22 − ζ3

√
x(1−x)ζ2t≤

√
(1−x)xζ2ζ4 (1− t2)

xζ22 t
2 − (1−x)ζ22 + ζ3

√
x(1−x)ζ2t≤

√
x(1−x)ζ2ζ4 (1− t2)

0≤ t≤ 1.

(48)

The only difference between the optimization problem (48) and (41) is the first constraint. Similarly,

because [
−xζ22 t

2 +(1−x)ζ22 − ζ3
√
x(1−x)ζ2t

]
−
[
(1−x)ζ22 t

2 −xζ22 − ζ3
√
x(1−x)ζ2t

]
= (1− t2)ζ22 ≥ 0

We can also conclude that the optimal objective value of (40) with a∈ (0,1) when v2i1 = vi0vi,2 will

not exceed the case when v2i1 < vi0wi,2.

So far, we have shown that when mi,2−m2
i1 > 0, for any x∈ (0,1), the optimization problem (40)

is equivalent to (41). When x= 0 or 1, we must have wi1 = 0 or mi1. When mi,2 =m2
i1 (i.e.ζ2 = 0),

the distribution set only contains a degenerate distribution. We must have wi1 = xζ1. In these

cases, the inequality still holds. Therefore, the optimization problem (40) is equivalent to (41) for

all x∈ [0,1] with any valid input mi.

Step 3: Then we show that Z∗
max can be reformulated as an SOCP. Let (1, ζi,1, ζi,2, ζi,3, ζi,4) =

f(1,mi,1,mi,2,mi,3,mi,4). Using the result we proved above, we have

Z∗
max =max

xi,ti

n∑
i=1

(
xiζi1 +

√
xi(1−xi)ζi,2ti

)
,

s.t. (1−xi) ζ
2
i,2t

2
i −xiζ

2
i,2 − ζi,3

√
xi(1−xi)ζi,2ti ≤

√
xi(1−xi)ζi,2ζi4 (1− t2i ), ∀i∈ {1, · · · , n},

xζ2i,2t
2
i − (1−xi)ζ

2
i,2 + ζi,3

√
xi(1−xi)ζi,2ti ≤

√
(1−xi)xiζi,2ζi4 (1− t2i ), ∀i∈ {1, · · · , n},

A (x1, x2, · · · , xn)≤ b,

0≤ ti ≤ 1, ∀i∈ {1, · · · , n}.

Let yi =
√
xi(1−xi)ti and zi =

√
xi(1−xi)(1− t2i ). When xi = 0 or 1, ti = 0 coincides with the

constraints of the optimization problem. When xi ∈ (0,1), constraint 0 ≤ ti ≤ 1 is equivalent to

y2
i +z2i = xi−x2

i and yi, zi ≥ 0. Then time x and 1−x at both side of the first and second constraint.
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We can check that this will not affect the result of the problem when x= 0 or 1. So the problem

is equivalent to

Z∗
max = max

xi,yi,zi

n∑
i=1

(
xiζi1 +

√
ζi,2yi

)
s.t. ζ2i,2y

2
i ≤ xi

(
ζ2i,2xi + ζi,3

√
ζi,2yi +

√
ζi,2ζi4zi

)
, ∀i∈ {1, · · · , n},

ζ2i,2y
2
i ≤ (1−xi)

(
ζ2i,2(1−xi)− ζi,3

√
ζi,2yi +

√
ζi,2ζi4zi

)
, ∀i∈ {1, · · · , n},

x2
i + y2

i + z2i = xi, ∀i∈ {1, · · · , n},

A (x1, x2, · · · , xn)≤ b,

0≤ yi, zi ∀i∈ {1, · · · , n}.

(49)

Then, we will show that the third equality constraint in (49) can be relaxed with “≤” constraint.

Firstly, for any optimal solution of the relaxed version problem such that x∗2
i +y∗2

i +z∗2i <x∗
i , we can

always replace z∗i with a larger ẑi satisfying x∗2
i + y∗2

i + ẑ2i <x∗
i . In this case, the objective remains

the same and the first two constraints still hold because the left hand side of each constraint is

unchanged while the right hand side is nondecreasing.

Finally, we show that the last non-negativity constraints of yi and zi are ignorable. If we relax

the non-negativity constraint of yi, it will always be nonnegative when taking the optimal value.

On the other hand, if a negative zi appears in the solution. We can replace it with its absolute

value |zi| and keep other variables unchanged, and the new solution is still feasible. Since zi does

not appear in the objective function, the non-negativity of zi is redundant. Therefore, the problem

is reformulated as the SOCP problem (10). □

Proof of Proposition 1: It is not difficult to see that y(x) is a continuous function. So, we only

prove the differentiability here. We first assume that 0< x < 1
2
− γ

2
√

γ2+4
. According to the proof

of Theorem 1, we have √
x(1−x)− y(x)2 =

y(x)2 −xγy(x)−x2

x
√
κ+2− γ2

. (50)

For any fixed x0 and an x1 in the neighborhood of x0, we have

y(x0)
2 +(κ+2− γ2)

(
y(x0)

x0

− γy(x0)−x0

)2

= x0 −x2
0;

y(x1)
2 +(κ+2− γ2)

(
y(x1)

x1

− γy(x1)−x1

)2

= x1 −x2
1.

For simplicity, we denote y0 = y(x0), y1 = y(x1), and p=
√
κ+2− γ2. Subtracting the two equa-

tions above, we will have
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(y1 − y0)

[
y0 + y1 + p

y0 + y1
x0

(
y2
0

x0

+
y2
1

x1

− γy0 − γy1 −x0 −x1

)]
=(x1 −x0)

[
1−x0 −x1 + p

(
y2
0

x0x1

+1

)(
y2
0

x0

+
y2
1

x1

− γy0 − γy1 −x0 −x1

)]
According to Theorem 2, we know that

y20
x0

− γy0 −x0 and
y21
x1

− γy1 −x1 are nonnegative. So, we

have

lim
x1→x0

y(x1)− y(x0)

x1 −x0

= lim
x1→x0

1−x0 −x1 + p
(

y20
x0x1

+1
)(

y20
x0

+
y21
x1

− γy0 − γy1 −x0 −x1

)
y0 + y1 + py0+y1

x0

(
y20
x0

+
y21
x1

− γ1y0 − γy1 −x0 −x1

)
=

1
2
−x0 + p

(
y(x0)

2

x20
+1
)(

y(x0)
2

x0
− γy(x0)−x0

)
y(x0)+ 2py(x0)

x0

(
y(x0)2

x0
− γy(x0)−x0

)
=H(x0, γ).

Therefore, the function y(x) is differentiable in

(
0, 1

2
− γ

2
√

γ2+4

)
and the derivative is H(x,γ).

Similarly, we can prove that y(x) is differentiable in

(
1
2
− γ

2
√

γ2+4
,1

)
and the derivative is −H(1−

x,−γ).

Lastly, we prove that the left and right derivatives are the same when x= 1
2
− γ

2
√

γ2+4
. According

to Theorem 2,

y

(
1

2
− γ

2
√
γ2 +4

)
=

1√
γ2 +4

.

Then we have

H(
1

2
− γ

2
√
γ2 +4

, γ) =−H(
1

2
+

γ

2
√
γ2 +4

,−γ) = γ.

Therefore, the function y(x) is differentiable on (0,1).

Lastly, we prove the derivative approaches to infinity when x approaching to 0 or 1. When x→ 0,

it is equivalent to prove that y(x)/x→+∞ since y(0) = 0. The equation 50 is equivalent to

p

√
1−x

x
−
(
y(x)

x

)2

=

(
y(x)

x

)2

− γ
y(x)

x
− 1.

So, y(x)/x → +∞ due to the fact that limx→0+(1 − x)/x = +∞. Symmetrically, we have

limx→1− y′(x) =−∞. □

Proof of Theorem 3: Giving the first-order moment, the second-order central moment and the

fourth-order central moment is equivalent to giving the mean µi, the standard deviation σi and the

kurtosis κi. The third-order central moment exists since the fourth-order central moment exists.
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The feasible region of skewness γi is
[
−
√
γi +2,

√
γi +2

]
due to Pearson’s inequality. Therefore,

directly adopting the SOCP form of 4-MMM (10) and letting γi ∈
[
−
√
γi +2,

√
γi +2

]
be a decision

variable provides an optimization formula of 124-MMM.

To simplify the problem, we first assume that x is given. Then the problem is separable, so we

can omit the index i and study the decoupled inner problem which presented as follows:

max
y,z,γ

y

s.t. y2 ≤ x
(
x+ γy+

√
κ− γ2 +2z

)
y2 ≤ (1−x)

(
1−x− γy+

√
κ− γ2 +2z

)
x2 + y2 + z2 ≤ x

−
√
γ+2≤ γ ≤

√
γ+2.

(51)

When
(
1−

√
(κ+2)/(κ+6)

)
/2 ≤ x ≤

(
1+

√
(κ+2)/(κ+6)

)
/2, we can always let γ = (1−

2x)/
√
x(1−x) ∈

[
−
√
γ+2,

√
γ+2

]
, such that 1

2
− γ

2
√

γ2+4
= x. From the proof of Theorem 2, we

know that in the convex optimization form of 4-MMM, when x= 1
2
− γ

2
√

γ2+4
, y(x) =

√
x(1−x).

Due to the third constraint of (51), y=
√

x(1−x) is the optimal objective value of (51).

When x<
(
1−

√
(κ+2)/(κ+6)

)
/2, we always have x< 1

2
− γ

2
√

γ2+4
. Recall the proof of Theo-

rem 2, the second constraint of (51) is redundant. Then the problem becomes:

max
y,z,γ

y

s.t. y2 ≤ x
(
x+ γy+

√
κ− γ2 +2z

)
x2 + y2 + z2 ≤ x

−
√
γ+2≤ γ ≤

√
γ+2.

(52)

Noted that

y2 −x2 ≤ x
(
γy+

√
κ− γ2 +2z

)
≤ x

2

√
κ+2

x(1−x)

(
y2 + z2

)
+

x

2

√
x(1−x)

κ+2

(√
κ− γ2 +2

2
+ γ2

)
≤ x

2

√
κ+2

x(1−x)
x(1−x)+

x

2

√
x(1−x)

κ+2
(κ+2)

= x
√
x(1−x)(κ+2).

The first and third inequality is due to the first and second constraint of (52); the second

inequality is because of the Cauchy-Schwarz inequality. Therefore, we get an upper bound of y ≤√
x2 +x

√
x(1−x)(κ+2). This bound is tight if we let
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γ =

√√√√ x

1−x
+

√
x(κ+2)

(1−x)

√
κ+2

z =

√
x(1− 2x)−x

√
x(1−x)(κ+2).

When x >
(
1+

√
(κ+2)/(κ+6)

)
/2, the proof is similar to the case x <(

1−
√
(κ+2)/(κ+6)

)
/2. The maximum y is

√
(1−x)2 +(1−x)

√
x(1−x)(κ+2).

When x=
(
1−

√
(κ+2)/(κ+6)

)
/2, value of

√
x2 +x

√
x(1−x)(κ+2) and

√
x(1−x) are both

1/
√
κ+6. When x =

(
1+

√
(κ+2)/(κ+6)

)
/2, the result is similar. Therefore, the function is

continuous. The concavity of yκ(x) in each segment is not difficult to verify by computing the

second-order derivative. When x=
(
1−

√
(κ+2)/(κ+6)

)
/2, we have

d
√
x2 +(1−x)

√
x(1−x)(κ+2)

dx
=
−(κ+2)

3
2 +4

√
κ+6+ (κ+2)

√
κ+6

8

≥
√
κ+2

2
=

d
√
x(1−x)

dx
.

When x=
(
1+

√
(κ+2)/(κ+6)

)
/2, we have a symmetric result. Therefore, yκ is concave.

So far, we have completed the proof of the convex optimization formula. For the SOCP formula,

we just need to relax
√

x(1−x) as a decision varible z. It is not difficult to verify that formulation

(17) and (18) give out the same result. □

Proof of Theorem 4: The existence of the fourth-order central moment guarantees the existence

of variance and skewness. Similarly to the proof of Theorem (3), we assume that x is given and study

the decoupled inner problem ignoring the index i. We can adopt the formula (18) of 124-MMM

and let σ and κ be decision variables with extra constraints σ≥ 0, κ≥−2, and σ4 (κ+4)=m′
4. we

want to study the following problem.

max
σ,κ

σyκ(x)

s.t. σ4 (κ+3)=m′
4

σ≥ 0

κ≥−2

(53)

where yκ(x) is defined the same as in Theorem (3). Noting that now x is fixed and κ is a variable,

we reformulate yκ(x) as a function of κ, that is
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yx(κ) =



√
x2 +x

√
x(1−x)(κ+2), x≤ 1

2
, −2≤ κ<

1− 6x(1−x)

x(1−x)
;√

x(1−x), κ≥ 1− 6x(1−x)

x(1−x)
;√

(1−x)2 +(1−x)
√

x(1−x)(κ+2), x >
1

2
, −2≤ κ<

1− 6x(1−x)

x(1−x)
.

When x≤ 1
2
, κ < 1−6x(1−x)

x(1−x)
. Let u=

√
1/(κ+3), v =

√
1−u2 =

√
(κ+2)/(κ+3). The objective

can be rewritten as follows.

σyκ(x) = x

√
σ2 +σ2

√
(1−x)

x
(κ+2)

= xm′
4

1
4

√√√√√ 1

κ+3
+

√
(1−x)(κ+2)

x(κ+3)

= xm′
4

1
4

√
u+

√
(1−x)

x
v.

(u, v) belongs to an arc with radius 1 and satisfies
√

x(1−x)/(1− 3x(1−x))< u≤ 1, v ≥ 0. In

addition, the derivative of v with respect to x satisfies

dv

du
=− u√

1−u2
<−

√
x(1−x)

1−3x(1−x)√
1− x(1−x)

1−3x(1−x)

=−
√
x(1−x)

1− 2x
≤−

√
x

1−x
.

Therefore, letting u=
√
x(1−x)/(1− 3x(1−x)) provides an upper bound of the objective.

σyκ(x)<x3m′
4

1
4

√√√√√ x(1−x)

1− 3x(1−x)
+

√
(1−x)

x

1− 4x(1−x)

1− 3x(1−x)
=

(
x3(1−x)3m′

4

1− 3x(1−x)

) 1
4

. (54)

When x> 1
2
, κ< 1−6x(1−x)

x(1−x)
, the upper bound (54) also holds due to the symmetry.

On the other hand, for any x∈ (0,1), one can always let κ= 1−6x(1−x)

x(1−x)
, such that

σyκ(x) =

(
m′

4

κ+3

) 1
4 √

x(1−x) =

(
x3(1−x)3m′

4

1− 3x(1−x)

) 1
4

Therefore, the optimal value of (53) is always
(

x3(1−x)3m′
4

1−3x(1−x)

) 1
4

, which completes the formula (19).

In addition, the second-order derivative of
(

x3(1−x)3m′
4

1−3x(1−x)

) 1
4

is

d2
(

x3(1−x)3m′
4

1−3x(1−x)

) 1
4

dx2
=−3(1−x)x(1− 4(1−x)x(2− 5(1−x)x))

16(1− 3(1−x)x)3( (1−x)3x3

1−3(1−x)x)
)
3
4

≤ 0,
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which implies the objective is concave. □

Proof of Proposition 3: Denote Gi(xi) = xiµi +YΘ,i(xi). Given the combinatorial optimization

problem (1) with distributional uncertainty set Θ, assume that the worst-case CVaR (22) is V .

Consider the following extended problem:

sup
θ∈Θ

Eθ

[
Zmax(c̃, c̃n+1)

]
= sup

θ∈Θ

Eθ [max{Zmax(c̃), c̃n+1}] , (55)

where Θ contains all possible joint distributions of (c̃1, · · · , c̃n, c̃n+1) c̃i such that (c̃1, · · · , c̃n) belongs

to uncertainty set Θ and the marginal distribution of c̃ is a two point distribution which takes

value V + ε, ε > 0, with probability β and takes value −A with probability 1 − β. Zmax(c̃) =

max
{
c̃Tx+ c̃n+1xn+1 : (x, xn+1)∈X

}
and X is the new feasible region which defined as

X := {(x,0) :x∈X}∪{(0,1)} .

It is not hard to see that the convex hull of X is

CH
(
X
)
= {(x, xn+1) :Ax≤ (1−xn+1)b, xn+1 ∈ [0,1]} .

In addition, since the two point distribution can be characterized by giving mean, variance,

skewness and kurtosis, the problem (55) is equivalent to the following problem.

max
n+1∑
i=1

Gi(xi)

s.t. Ax≤ (1−xn+1)b

xn+1 ∈ [0,1],

where

Gn+1(x) =

{
V x+ εx, x≤ β;

βV+βε−A(x−β), x > β.
(56)

Assume that x∗ is the optimal solution of (23) and A is larger than sup
∑n

i=1 |G′
i(x

∗
i )|, where G′

i

is the subderivative of Gi. We would like to show that the optimal xn+1 in (56) is β.

Since (x∗, β) is in the convex hull CH
(
X
)
, we can always find a series of positive a with

summation 1− β such that (x∗, β) =
∑

x∈X ax(x,0) + β(0,1). Similarly, for any feasible (x̂, x̂n+1)

satisfying x̂n+1 >β. We have a series of positive â with summation 1− x̂n+1, such that (x̂, x̂n+1) =∑
x∈X âx(x,0)+ x̂n+1(0,1).

The direction from (x∗, β) to (x̂, x̂n+1) is
∑

x∈X (âx−ax)(x,0)+(x̂n+1−β)(0,1) and
∑

x∈X (âx−

ax) = β− x̂n+1. Therefore, the derivative of this direction is negative due to our choice of A.
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On the other hand, if there exist a optimal solution (x̂, x̂n+1) satisfying x̂n+1 < β, according to

the definition of persistency, we must have

sup
θ∈Θ

Eθ

[
Zmax

]
≤x̂n+1V + x̂n+1ε+(1− x̂n+1) sup

θ∈Θ

CV aRθ
x̂n+1

(Zmax(c̃))

≤x̂n+1V + x̂n+1ε+(1− x̂n+1) sup
θ∈Θ

CV aRθ
β (Zmax(c̃))

=V + x̂n+1ε.

(57)

However, assume that the optimal distribution in (22) is θ∗ and V aRθ
β(Zmax(c̃)) is Cθ∗ . We can

let c̃n+1 = V + ε when Zmax(c̃) > Cθ∗ ; c̃n+1 = −A when Zmax(c̃) < Cθ∗ . If P [Zmax(c̃) =Cθ∗ ] ̸= 0,

c̃n+1 = V + ε with probability (P [Zmax(c̃)≤Cθ∗ ]− β)P [Zmax(c̃) =Cθ∗ ] and c̃n+1 =−A otherwise.

Denote this joint distribution as θ
∗
. It is not hard to see that in this case, Eθ

∗ [max{Zmax(c̃), c̃n+1}] =
(1−β)V +β(V + ε) = V +βε, which conflicts the optimality of (x̂, x̂n+1).

When the optimal x̂n+1 = β, using the same argument of (57), we know that supθ∈ΘEθ

[
Zmax

]
≤

V +βε, which means V +βε is exactly the optimal objective of (55). Finally, we have

V +βε=max
n∑

i=1

Gi(xi)+βV +βε

s.t. Ax≤ (1−β)b,

which directly leaeds to (23). □

Proof of Proposition 5: Using the Theorem 2, the problem becomes the following.

min
µ,σ

max
x

n∑
i=1

(µixi +σiyi(xi))

s.t. Ax≤ b

(µ,σ)∈M.

The inner problem is a convex optimization with linear constraint, thus it satisfies the weak

Slater’s condition and the strong duality holds. The Lagrangian function of the inner problem is

L(x,λ) =
n∑

i=1

(µixi +σiyi(xi))− (Ax− b)
T
λ

=
n∑

i=1

σi

((
µi −aT

i λ

σi

)
xi + yi(xi)

)
+ bTλ.

Therefore, the Lagrangian dual function is

inf
x
L(x,λ) =

n∑
i=1

(
σiφi

(
µi −aT

i λ

σi

)
− bTλ

)
,

where φi is the convex conjugate of −yi. The Lagrangian dual function is jointly convex in µ,σ and

λ due to the joint convexity of the perspective of a convex function. Replacing the inner problem

with its duality, we get the convex optimization formula in Proposition 5. □
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Proof of Proposition 8: We focus on the proof for γ ≤ 0. The case for γ ≥ 0 can be derived with

similar argument.

For κ= γ2−2, yγ,κ degenerate to a piece-wise linear function and all points in [µ+
γ−
√

γ2+4

2
, µ+

γ+
√

γ2+4

2
] is optimal, when η= 1

2
+ γ

2
√

γ2+4
. So it is clear that η0 =

1
2
+ γ

2
√

γ2+4
.

When κ> γ2 − 2, yγ,κ is concave and continuous differentiable, thus q∗4 is unique and increasing

with respect to η. At η= 1
2
+ γ

2
√

γ2+4
, q∗4 = µ+ σγ

2
≤ µ, indicating that η0 ≥ 1

2
+ γ

2
√

γ2+4
.

On the other hand, setting η= 1
2
yields the optimal solution:

q∗4 = µ+
1− 16y(x)4

2y(x)(1− 4y(x)2)− γ
,

which is ≥ µ as y(x)≤ x(1−x)≤ 1
4
. Therefore, we have η0(γ,κ)∈ [ 1

2
+ γ

2
√

γ2+4
, 1
2
].

We further demonstrate that given γ, η0 will increase to 1/2 as κ increases to infinity. Given γ

and κ, denote η0(γ,κ) as η̂0 and yγ,κ(η̂0) as ŷ. From Proposition 1 and Proposition 7, we know that

the optimal order quantity given µ, σ, γ and κ when η= η̂0 is

q̂∗4 = µ+σ

[
ŷ

1− η̂0
+

ŷ2 − γ(1− η̂0)ŷ− (1− η̂0)
2

2γη̂0(1− η̂0)2 − 2ŷ(1− η̂0)(3η̂0 − 1)+2ŷ3

]
= µ. (58)

If the kurtosis increase to κ> κ, the new optimal order quantity given µ, σ, γ and κ when η= η̂0

becomes

q∗4 = µ+σ

[
y

1− η̂0
+

y2 − γ(1− η̂0)y− (1− η̂0)
2

2γη̂0(1− η̂0)2 − 2y(1− η̂0)(3η̂0 − 1)+2y3

]
, (59)

where y= yγ,κ(η̂0).

To show that η0(γ,κ)≥ η̂0, it is sufficient to show that q∗4 ≤ µ. According to (59), we have

q∗4 ≤ µ

⇐⇒ y

1− η̂0
+

y2 − γ(1− η̂0)y− (1− η̂0)
2

2γη̂0(1− η̂0)2 − 2y(1− η̂0)(3η̂0 − 1)+2y3 ≤ 0

⇐⇒ 2γη̂0(1− η̂0)
2y− 2y2(1− η̂0)(3η̂0 − 1)+2y4 + y2(1− η̂0)− γ(1− η̂0)

2y− (1− η̂0)
3 ≥ 0

⇐⇒ 2y4 +(1− η̂0)(1− 2η̂0) (3y− γ(1− η̂0))y− (1− η̂0)
3 ≥ 0.

(60)

The third inequality is because that

2γη̂0(1− η̂0)
2 − 2y(1− η̂0)(3η̂0 − 1)+2y3 = 2γ(1− η̂0)

2η̂0 − 2y
(
1− η̂0 +3η̂0(1− η̂0)+ y2

)
< 0.

Similarly, according to (58) we have

2ŷ4 +(1− η̂0)(1− 2η̂0) (3ŷ− γ(1− η̂0)) ŷ− (1− η̂0)
3 = 0.

Recall that in Theorem 4-MMM, larger κ leads to larger feasible region, we will have y≥ ŷ hence

the last inequality in (60) holds.

In addition, when κ → ∞, we know that yγ,κ(x) →
√

x(1−x) and thus the optimal order

quantity converges to that in mean and variance model, which means η0 approaches to 1
2
. □
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