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Abstract 

The Fleet Sizing Problem (FSP) stands as a critical challenge within the realm of logistics and supply chain 

management, particularly in the context of Closed-Loop Supply Chains (CLSC). The significance of 

addressing the FSP lies in its direct impact on operational costs, resource utilization, and environmental 

sustainability. By effectively optimizing fleet size, organizations can streamline transportation operations, 

minimize fuel consumption, reduce carbon emissions, and ultimately enhance overall supply chain 

performance. Moreover, in CLSC management, where the coordination of forward and reverse logistics 

activities is paramount, tackling the FSP becomes even more crucial. Efficient fleet sizing enables 

businesses to effectively manage product returns, remanufacturing, and recycling processes, thereby 

fostering circular economy principles and maximizing resource utilization. 

In this study, we address the FSP and vehicle routing decisions within a CLSC context. We propose an 

MILP model and employ a multi-stage adjustable robust optimization (ARO) formulation to handle the 

nondeterministic nature of demand for new products and requests for pickups of used products. We 

reconfigure an exact oracle-based algorithm and a heuristic search algorithm to derive upper and lower 

bounds on the optimal solution of the ARO problem. Additionally, we introduce a metaheuristic algorithm 

to function as the oracle. Our numerical experiments demonstrate that our metaheuristic approach, which 

is integrated with the aforementioned methods, significantly enhances both the computational efficiency 

and solution quality. 

Keywords: Fleet sizing, Closed-loop supply chain, Uncertain demand, Adjustable robust optimization, 

Vehicle routing problem with simultaneous delivery and pickup. 

1 Introduction 

The Vehicle Routing Problem (VRP) stands at the intersection of optimization and logistics, aiming to 

efficiently plan and manage the delivery of goods or services using a fleet of vehicles. This challenging 

computational problem has significant implications for industries relying on transportation networks, 
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impacting operational costs, fuel consumption, and overall environmental sustainability. The roots of VRP 

can be traced back to the mid-20th century when logistics and supply chain optimization became critical in 

the face of expanding industrial activities [1]. 

With the rise of e-commerce, urbanization, and global supply chains, the significance of VRP has further 

intensified, making it a critical element in modern logistics and transportation management. Over the years, 

various types of VRP have been identified and categorized to address the specific industries and 

applications. Two common variations include the Capacitated VRP (CVRP), and the VRP with 

Simultaneous Delivery and Pickup (VRPSDP). While VRP primarily focuses on optimizing routes for the 

delivery of goods to customers, CVRP extends the concept by incorporating the constraint of vehicle 

capacity explicitly into the optimization process and VRPSDP introduces a transformative layer by 

seamlessly incorporating both delivery and pickup operations within a single logistical framework. 

In the context of Closed-Loop Supply Chains, where the management of reverse logistics and the 

integration of forward and reverse flows are paramount, VRPSDP becomes a natural progression. CLSCs 

involve not only the distribution of products to end-users but also the retrieval of items for recycling, 

remanufacturing, or proper disposal. VRPSDP, by accommodating simultaneous delivery and pickup, aligns 

with the intricacies of CLSCs, offering a more comprehensive approach to logistics optimization. The 

integration of VRPSDP into the CLSC framework addresses the holistic nature of modern supply chain 

challenges, where sustainability, cost-effectiveness, and operational efficiency are essential considerations. 

In realm of VRP, fleet sizing is one of the most important long-term decisions as it needs a major 

investment for whole horizon planning [2]. Typically, the demand of customers is faced with uncertainty 

and may vary in each period of horizon planning. So, the optimal fleet size will often be different on 

different periods but in practice companies need to buy or rent a fleet of vehicles for the horizon planning. 

Hence, determining the fleet size is an important and challenging decision that ensures an adequate number 

of vehicles are available to meet demand while minimizing acquisition costs. 

2 Literature review 

This section reviews the research streams related to this study: VRPSDP in CLSC and fleet sizing in 

VRP. By doing this, we indicate the research gaps. 

2.1 VRPSDP in CLSC 

In realm of VRPSD in CLSC management, Dethloff [3] proposes a deterministic mixed-integer linear 

programming (MILP) model, marking one of the initial works in this domain. Guo et al. [4], in their study 

of a CLSC for fresh food E-commerce enterprises, focus on VRPSDP with location decisions, aiming to 

minimize both cost and low-carbon emissions. 
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Non-linearity becomes a consideration in [5], where the authors propose a deterministic mixed-integer 

non-linear programming (MINLP) model for a single-product CLSC. This model integrates VRPSDP with 

location and inventory management decisions to minimize total costs within a single-period horizon. 

Addressing quality defects of returned products in a multi-product CLSC, Deng et al. [6] propose a 

deterministic VRPSDP model with the objective of minimizing costs over a multi-period horizon. 

Iassinovskaia et al. [7] tackle time windows in VRPSDP for a CLSC, presenting an MILP model for 

returnable transport items (RTIs) with inventory management decisions. This study extends to multi-

product and multi-objective CLSCs in subsequent studies [8, 9]. Previous research have considered 

homogeneous vehicles but, Qiu et al. [10] advocate for a heterogeneous fleet of capacitated vehicles. They 

investigate production planning and VRPSDP in a CLSC, proposing an MILP formulation with 

deterministic parameters. This formulation accounts for irreparable returned units during the 

remanufacturing step. 

Moreover, there are studies that consider uncertainty in Closed-Loop Supply Chain (CLSC) 

management. Yuchi et al. [11] investigate a single-period Closed-Loop Supply Chain (CLSC) with a 

manufacturer and multiple distribution and remanufacturing centers. They utilized a Vehicle Routing 

Problem (VRP) with a homogeneous fleet of vehicles in the distribution phase, aiming to minimize system-

wide costs. The proposed MINLP model considered random demand. In contrast, Pedram et al. [12] address 

a CLSC with a heterogeneous fleet responsible for distributing and collecting new and end-of-life products. 

They incorporated fuzzy and random uncertain data using fuzzy-stochastic mathematical programming. 

Multi-period CLSC optimization problems is addressed by Soysal [13] where a probabilistic MILP 

model is proposed to consider uncertainty in demand for returnable transport items (RTIs). Kumar et al. 

[14] present an MINLP model with a heterogeneous fleet for integrating RTIs and a CLSC of perishable 

products with uncertain demand. Shuang et al. [15] focus on profit-maximizing carbon emission control 

policies, utilizing a stochastic MILP model with a heterogeneous fleet in the home appliances industry. 

Nasiri et al. [16] develop an MINLP model minimizing lost sales, considering time windows and addressing 

demand uncertainty through stochastic programming. 

Several studies explored multi-objective approaches.  Gholizadeh et al. [17] develop a multi-period 

MILP model for a multi-product dairy CLSC, employing a static robust approach to handle uncertainty and 

considering both environmental and economic aspects. The issue of minimizing lost sales alongside cost 

received attention in [18], where VRPSDP with time windows and a heterogeneous fleet of vehicles was 

considered under uncertain conditions. Demand uncertainty in a CLSC of the cable and wire industry is 

addressed through a stochastic scenario-based approach in [19]. Additionally, the authors applied a carbon 

tax policy to reduce emissions and vehicle waiting times. Tavana et al. [20] address VRPSDV in a 
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sustainable CLSC by a multi-objective MILP model considering uncertain demand. Authors propose a 

fuzzy goal programming approach to solve the model. 

2.2 Fleet sizing in VRP 

As we've discussed, fleet sizing decision is crucial for businesses because they need to purchase or lease 

vehicles at the beginning of planning horizon to satisfy the uncertain demand in all periods of the horizon. 

One of the initial studies on fleet sizing is [21] where authors propose a deterministic MILP model to 

address the problem of routing a fleet of vehicles from a central depot to customers in which vehicle 

capacity is considered. Desrochers and Verhoog [22] improve the previous study by proposing a new 

heuristic method. The authors in [23-25] extend the previous study by considering Time windows in fleet 

sizing optimization. The authors enhanced existing heuristic methods and introduced a new metaheuristic 

approach for solving the problem. 

Belfiore and Yoshizaki [26] add split delivery to fleet size optimization. In this study, customer demand 

can be divided and served by more than one vehicle. Authors proposed a heuristic scatter-search approach 

to solve the problem. Hiermann et al. [27] apply fleet size optimization to electric vehicles and Recharging 

Stations considering time windows. The objective of this study is to serve the customer while minimizing 

acquisition costs and the total distance travelled. Authors proposed an MILP model along with a branch-

and-price algorithm and a hybrid heuristic to address the problem. 

Synchronized visits along with time windows is considered in [28] where authors address homecare 

givers in the healthcare sector. In synchronized Visits VRP each customer needs be visited by more than 

one vehicle in the same time. The authors propose an MILP model with objective function of minimizing 

the total acquisition and operational costs and develop a metaheuristic algorithm to solve the problem. Pasha 

et al. [29] extend the work by considering multi period planning and the objective is to find the best fleet 

size and routing to satisfy the customer demand over a set of periods. The Authors developed a heuristic 

algorithm based on tabu search to solve the problem. 

Multi depot problem in fleet size optimization is addressed in [30] where authors develop a bi-objective 

MILP model to concurrently minimize the transportation cost in the entire waste management system along 

with minimizing the lost capacity of transfer stations. These stations are depots which are used to store and 

sort wastes and send them to treatment or recycling centers. Schmidt et al. [31] propose another multi depot 

that take into account time interval to address traffic and congestion issues. The objective function is to 

minimize the sum of routing and fixed vehicle costs and the authors propose a metaheuristic algorithm to 

solve the problem. They show that this metaheuristic is more effective than the exact method in terms of 

solution quality and computational time. 
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In order to approach real-world applications, there are also studies in the literature that takes into 

account the uncertainty to the fleet sizing VRP. Vanga and Venkateswaran [32] address reusable articles 

with uncertain demand and develop analytical models for optimal fleet sizing. Chang et al. [33] delve into 

the topic of fleet sizing in post-disaster logistics. The authors consider uncertainty in demand and road 

network condition and propose a two-stage stochastic programming model. In the first stage, it optimizes 

the location of relief goods distribution centers and the number of allocated vehicles. The second stage 

focuses on determining optimal vehicle and inventory routing decisions during the critical initial time 

window following the revelation of random factors associated with the disaster. Lei et al. [2] develop a two-

stage robust optimization model for mobile facility fleet sizing and routing problem. This study accounts 

for uncertainty in demand within a multi-period planning framework. 

2.3 Research gaps and contributions 

To the best of our knowledge, no study has been conducted on fleet sizing VRP with simultaneous 

delivery and pickup in CLSC management considering uncertainty. In the realm of fleet sizing in Closed-

Loop Supply Chains (CLSC), existing studies have overlooked the adaptability of variables to uncertain 

parameters, despite the multi-stage nature of the problem within a multiperiod horizon. To fill these gaps, 

we introduce an ARO approach aimed at addressing uncertainties in CLSC. So, here are our contributions 

to the literature: 

• First, we propose a new deterministic MILP model to fleet sizing vehicle routing problem with 

simultaneous delivery and pickup in CLSC management. 

• Second, we develop a multi-stage adjustable robust optimization approach to address the 

uncertainty in the problem. 

• Additionally, we reconfigured the exact and heuristic methods from [34] to solve the ARO fleet 

sizing problem of our study.  

• Finally, we propose a metaheuristic approach based on simulated annealing (SA) algorithm to 

improve the computational time and solution quality of exact and heuristic approaches. 

The rest of the paper is organized as follows. Section 3 provides a detailed description of the problem. 

The formulation of deterministic and multi-stage ARO problems are presented in Sections 4 and 5, 

respectively. Section 6 contains the solution methods on the multistage ARO problem, where the 

customized metaheuristic method based on SA algorithm is explained. Numerical findings based on 

comparison among solution methods are discussed in Section 7, and we provide our conclusions in  

Section 8. 
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3 Problem description 

We consider a CLSC of a producer and its related retailers. One kind of product is produced at the 

production site. The producer uses homogenous fleet of vehicles with capacity 𝐶𝒦 to ship the new products 

to retailers and collect the used ones. 𝒩 is the set of all nodes where 𝒩\{0} is the set of all retailers (pickup 

and delivery locations) and {0} is the production site. 

We consider a time horizon 𝒯 divided into 𝑇 equal time periods, i.e., 𝒯 = {1, 2, …, 𝑇}, in each of which 

shipment of new and used products to/from retailers take place. At the beginning of the time horizon, the 

producer decides on the number of vehicles with the unit cost of 𝑐𝑃 to use for shipment activity in the time 

horizon. 

In each period 𝑡, the producer receives a demand for 𝑑𝑖𝑡 units of new products and a request to pick up 

𝑑′𝑖𝑡 units of used products from retailer 𝑖. In this study, we assume that 𝑑 and 𝑑′ are independent. Also, the 

demands across periods are independent. We have 𝑑𝑡 = [𝑑𝑖𝑡]𝑖∈𝒩\{0} ∈ 𝐷𝑡 ⊂ ℝ
|𝒩\{0}|, and   

𝑑𝑡
′ = [𝑑𝑖𝑡

′ ]𝑖∈𝒩\{0} ∈ 𝐷𝑡
′ ⊂ ℝ|𝒩\{0}|, where 𝐷𝑡 and 𝐷𝑡

′ are full-dimensional polytopes, 𝑡 ∈ 𝒯. 

We denote the CLSC network by 𝒢 = (𝒩,𝒜), where 𝒜 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗} is the set of routes 

connecting retailers and production site. When the demand is realized in each period, a fleet of vehicles is 

assigned to visit multiple retailers. Each vehicle starts its tour by leaving production site with the new 

products to satisfy the complete demand of chosen retailers and to pick up all the used products. 

Traveling each route incurs fixed and variable costs. Fixed cost, 𝐹𝑖𝑥𝐶, includes the costs that are 

independent of the route. The variable cost, 𝑐𝑖𝑗, is for traversing the route (𝑖, 𝑗), 𝑖, 𝑗, ∈ 𝒩 to deliver one unit 

of new product or collecting one unit of used product. At each stop at a retailer, once the new products 

which are demanded by the retailer are unloaded, all of the used products are picked up to be returned to 

the production site. At the end of each period, each vehicle finishes its tour by returning to the same 

production site where it started. 
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Figure 1. The schema of proposed CLSC 

 Figure 1 schematically illustrates the CLSC network. In this supply chain, there are two distinct 

echelons. The first echelon consists of the production site and the second echelon is made of retailers who 

demand new products and request pickups of used products. Production site and retailers are located in 

different geographical locations, and these locations are known. This figure also shows that homogenous 

vehicles may travel specific tours between production site and retailers. 

The producer needs to make three types of decisions: 

• the number of vehicles to be purchased at the beginning of the time horizon at production site, 

denoted by 𝑄; 

• whether each vehicle is assigned to travel the route (𝑖, 𝑗) ∈ 𝒜 during period 𝑡, denoted by 𝑥𝑖𝑗𝑡; 

• and the number of new and used products that each vehicle carries on the route (𝑖, 𝑗) ∈ 𝒜 during 

period 𝑡, denoted by 𝑣𝑖𝑗𝑡 and 𝑢𝑖𝑗𝑡, respectively. 

The summary of the notations and assumptions are provided below. 

Sets: 

𝒩: Set of all locations  including producer ({0}) and retailers (pickup and delivery locations) (𝒩\{0}), 
𝒩 = {0, 1, 2, … , |𝒩|} 

𝒜: Set of routes, 𝒜 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗} 

𝒢: Network of the CLSC,  𝒢 = (𝒩,𝒜) 

𝒯: Set of planning periods, 𝒯 = {1, 2,… , |𝒯|} 
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Parameters: 

𝐶𝒦: Capacity of homogenous vehicles 

𝑐𝑃: Unit purchasing cost of new vehicle 

𝐹𝑖𝑥𝐶: Fixed cost of using each vehicle on each route 

𝑐𝑖𝑗: Unit shipment cost over route (𝑖, 𝑗),  (𝑖, 𝑗 ∈ 𝒩) 

𝑑𝑖𝑡: Demand on new products from retailer 𝑖 in period 𝑡, (𝑖 ∈ 𝒩\{0}) 

𝑑′𝑖𝑡: Quantity of used products asked by retailer 𝑖 to be picked up in period 𝑡, (𝑖 ∈ 𝒩\{0}) 

Variables: 

𝑄: Number of purchased vehicles at the beginning of the time horizon 

𝑣𝑖𝑗𝑡: New products quantity shipped over route (𝑖, 𝑗) in period 𝑡,  (𝑖, 𝑗 ∈ 𝒩) 

𝑢𝑖𝑗𝑡: Used products quantity shipped over route (𝑖, 𝑗) in period 𝑡, (𝑖, 𝑗 ∈ 𝒩) 

𝑥𝑖𝑗𝑡: Binary variable, equal to 1 if route (𝑖, 𝑗) is traversed in period 𝑡, 0 otherwise, (𝑖, 𝑗 ∈ 𝒩) 

Assumptions: 

1. The locations of production sites and retailers are known. 

2. Demand for new products within a given period should be met entirely during that same period. 

3. Requests for pickups of used products within a given period should be met entirely during that same 

period. 

4. At each period, only one vehicle can visit a retailer to deliver the new products and pick up the used 

ones. 

5. The uncertainty sets are full-dimensional. 

6. Demand for new products and requests for pickups of used products are independent. 

Assumptions 1 to 4 are taken from the CLSC literature. Assumption 5 is a usual assumption in robust 

optimization (Bertsimas and Goyal 2012). Assumption 12 is practically relevant because without it, there 

would be no need for production. Assumption 6 is the only restrictive assumption due to a lack of 

information regarding the periods and retailers where customers return their used products. These factors 

can be further investigated in future research to relax this assumption.  
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4 Deterministic model 

In this section, we formulate a deterministic MILP model, where we assume that the demand for new 

products and requests for pickups of used products are exactly known for all periods. Given the notation, 

the deterministic problem is formulated as follows: 

(1)     ∑ ∑ 𝑐𝑖𝑗(𝑣𝑖𝑗𝑡 + 𝑢𝑖𝑗𝑡)
(𝑖,𝑗)∈𝒜𝑡∈𝒯

 𝑚𝑖𝑛 

(2) +∑ ∑ 𝐹𝑖𝑥𝐶𝑥𝑖𝑗𝑡
(𝑖,𝑗)∈𝒜𝑡∈𝒯

  

(3) + 𝑐𝑃𝑄  

(4) ∀𝑡 ∈ 𝒯, ∑ 𝑥0𝑖𝑡
𝑖∈𝒩\{0}

≤ 𝑄, 𝑠. 𝑡. 

(5) ∀𝑗 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯, ∑ 𝑥𝑖𝑗𝑡
𝑖≠𝑗∈𝒩

≤ 1,  

(6) ∀𝑖 ∈ 𝒩, 𝑡 ∈ 𝒯, ∑ 𝑥𝑖𝑗𝑡
𝑗≠𝑖∈𝒩

− ∑ 𝑥𝑗𝑖𝑡
𝑗≠𝑖∈𝒩

= 0,  

(7) ∀𝑖 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯, ∑ 𝑣𝑗𝑖𝑡
𝑗≠𝑖∈𝒩

− ∑ 𝑣𝑖𝑗𝑡
𝑗≠𝑖∈𝒩

= 𝑑𝑖𝑡 ,  

(8) ∀𝑖 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯, ∑ 𝑢𝑖𝑗𝑡
𝑗≠𝑖∈𝒩

− ∑ 𝑢𝑗𝑖𝑡
𝑗≠𝑖∈𝒩

= 𝑑𝑖𝑡
′ ,  

(9) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝒯, 𝑣𝑖𝑗𝑡 + 𝑢𝑖𝑗𝑡 ≤ 𝐶𝒦𝑥𝑖𝑗𝑡 ,  

(10)  𝑄 ≥ 0, 
 

(11) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝒯, 𝑣𝑖𝑗𝑡 , 𝑢𝑖𝑗𝑡 ≥ 0,  

(12) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝒯. 𝑥𝑖𝑗𝑡 ∈ {0,1},  

The objective function is to minimize the total costs including variable (1) and fixed (2) shipment costs 

and the purchasing cost of vehicles at the beginning of the time horizon (3). Constraints (4) determines the 

number of vehicles which can be utilized in each period. Constraints (5) ensures that at each period a retailer 

can only be served once. Constraint (6) assures that if a vehicle enters a retailer, it leaves that retailer. Also, 

if a vehicle leaves a production site it comes back to it to complete a tour. Constraints (7) and (8) are the 

flow conservation constraints for new and used products, respectively. They show the quantity of inflow 

and outflow of new and used products for each retailer. Constraint (9) ensures that the total quantity of new 

and used products traveling over a route does not exceed the capacity of the vehicle. Constraints (10) - (12) 

are to make sure that the decision variables belong to their corresponding domain. 
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5 Multi-stage adjustable robust formulation 

In this section, we describe the adjustable RO model formulation of the problem. According to the 

chronological sequence of events presented in Figure 2, in each period the first decision to be made is 

regarding the number of vehicles to be purchased. This decision variable is called ‘‘here-and-now’’ variable. 

Then, in each period, demand for new products and requests for pickups of used products are revealed. At 

the end of each period, based on the realized demand, shipment decisions are made. To formulate the multi-

stage ARO problem, we use 𝑑[𝑡] to denote the vector containing the demand for new products up to and 

including the period 𝑡 and we use 𝑑[𝑡]
′  to denote the vector containing the requests for pickups of used 

products up to and including the period 𝑡. Also, we denote the joint uncertain parameter up to the end of 

period 𝑡 by 𝜉[𝑡]; that is the vector of joint 𝑑[𝑡] and 𝑑[𝑡]
′  realized until the end of period 𝑡. The uncertainty set 

with respect to 𝜉[𝑡] is Ξ[𝑡] = ⨉𝑡̃=1
𝑡 (𝑑𝑡̃ × 𝑑𝑡̃

′) ⊂ ℝ2|𝒩\{0}|×𝑡, where ⨉ is the Cartesian product. 

 

Figure 2. Events occurrence schema 

In each period, the decisions are made based on the realization of demand for new products and requests 

for pickups of used products. As the value of variable 𝑣𝑖𝑗𝑡 depends on all past demand for new products, 

we restrict their ‘‘wait-and-see’’ formulation to depend on the realization of 𝑑, denoted by 𝑣𝑖𝑗𝑡(𝑑[𝑡]). This 

means 𝑣𝑖𝑗𝑡 depends on 𝑑𝑖𝑡 and 𝑣𝑖𝑗,𝑡−1. Furthermore, with the same logic, the ‘‘wait-and-see’’ variable 𝑢𝑖𝑗𝑡 

depends on the realization of 𝑑′, denoted by 𝑢𝑖𝑗𝑡(𝑑[𝑡]
′ ). Finally, the ‘‘wait-and-see’’ variable 𝑥𝑖𝑗𝑡  depends 

on the realization of both demand and pickup requests. Hence, they are denoted by 𝑥𝑖𝑗𝑡(𝜉[𝑡]). 

Before presenting the multi-stage ARO formulation, we need to avoid equality constraints containing 

uncertain parameters. Hence, two equality constraints (7) and (8) should be reformulated and replaced with 

inequality constraints. 
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Proposition 1. In the deterministic problem, constraint (7) can be replaced by 

(13) ∀𝑖 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯. ∑ 𝑣𝑗𝑖𝑡
𝑗≠𝑖∈𝒩

− ∑ 𝑣𝑖𝑗𝑡
𝑗≠𝑖∈𝒩

≥ 𝑑𝑖𝑡 , 

Proof. By definition, any solution of the deterministic problem satisfies the constraint (13). Now, we 

prove that any optimal solution of the revised deterministic problem, where (7) is replaced by (13), satisfies 

constraint (7). 

By contradiction, let us assume that in an optimal solution of the revised deterministic problem, 

constraint (7) is not satisfied. So, there exist 𝑖̅ ∈ 𝒩\{0} and 𝑡̅ ∈ 𝒯 such that 

(14)  ∑ 𝑣𝑗𝑖𝑡̅̅
𝑗≠𝑖∈̅𝒩

− ∑ 𝑣𝑖𝑗̅𝑡̅
𝑗≠𝑖∈̅𝒩

> 𝑑𝑖𝑡̅̅ . 

Now, let us construct a solution where all decisions are the same as the considered optimal solution except 

the quantity of new products shipped over routes. This variable in new solution is 

𝑣𝑗𝑖𝑡 = 

{
 
 

 
 
𝑣𝑗𝑖𝑡 −

𝑣𝑗𝑖𝑡̅̅ − (𝑑𝑖𝑡̅̅ + 𝑣𝑖𝑗̅′𝑡̅)

2
,          𝑖 = 𝑖,̅ 𝑡 = 𝑡̅, 𝑗 = {0} or a retailer before 𝑖 ̅in a tour which inclouds 𝑖,̅

                       𝑗′ = a retailer after 𝑖 ̅in a tour which inclouds 𝑖,̅
𝑣𝑗𝑖𝑡 ,                                                                                                                                                             otherwise.

 

Based on the construction, one can see that the new solution is feasible for the revised problem. The 

objective value of the new solution is strictly lower than the considered optimal solution, as it has fewer 

empty bottles in the inventory. This contradicts with the optimality of the considered solution. Therefore, 

any optimal solution to the revised problem satisfied (7), which concludes the proposition.                       

Proposition 2. In the deterministic problem, constraint (8) can be replaced by 

(15) ∀𝑖 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯. ∑ 𝑢𝑖𝑗𝑡
𝑗≠𝑖∈𝒩

− ∑ 𝑢𝑗𝑖𝑡
𝑗≠𝑖∈𝒩

≥ 𝑑𝑖𝑡
′ , 

Proof. Similar to proof of Proposition 1.                                                                                                  

As a result, by replacing constraints (7) and (8) with constraints (13) and (15), the multi-stage ARO 

formulation is: 

(16)     𝑐𝑃𝑄 𝑚𝑖𝑛 𝑍0 = 

(17)  + max
𝜉[1]∈Ξ[1]

𝑍1 (𝜉[1], 𝑄)   
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(18)  𝑄 ≥ 0, 𝑠. 𝑡.  

where, for any 𝑡 ∈ {1, 2, …, 𝑇 − 1}, we have 

 𝑍𝑡(𝜉[𝑡], 𝑄) = 

(19)     ∑ 𝑐𝑖𝑗 (𝑣𝑖𝑗𝑡(𝑑[𝑡]) + 𝑢𝑖𝑗𝑡(𝑑[𝑡]
′ ))

(𝑖,𝑗)∈𝒜

 𝑚𝑖𝑛  

(20) + ∑ 𝐹𝑖𝑥𝐶𝑥𝑖𝑗𝑡(𝜉[𝑡])
(𝑖,𝑗)∈𝒜

  
 

(21) + max
𝜉[𝑡+1]∈Ξ[𝑡+1]

𝑍𝑡+1 (𝜉[𝑡+1], 𝑄)   

(22)  ∑ 𝑥0𝑖𝑡(𝜉[𝑡])

𝑖∈𝒩\{0}

≤ 𝑄, 𝑠. 𝑡.  

(23) ∀𝑗 ∈ 𝒩\{0}, ∑ 𝑥𝑖𝑗𝑡(𝜉[𝑡])

𝑖≠𝑗∈𝒩

≤ 1,   

(24) ∀𝑖 ∈ 𝒩, ∑ 𝑥𝑖𝑗𝑡(𝜉[𝑡])

𝑗≠𝑖∈𝒩

− ∑ 𝑥𝑗𝑖𝑡(𝜉[𝑡])

𝑗≠𝑖∈𝒩

= 0,   

(25) ∀𝑖 ∈ 𝒩\{0}, ∑ 𝑣𝑗𝑖𝑡(𝑑[𝑡])

𝑗≠𝑖∈𝒩

− ∑ 𝑣𝑖𝑗𝑡(𝑑[𝑡])

𝑗≠𝑖∈𝒩

≥ 𝑑𝑖𝑡 ,   

(26) ∀𝑖 ∈ 𝒩\{0}, ∑ 𝑢𝑖𝑗𝑡(𝑑[𝑡]
′ )

𝑗≠𝑖∈𝒩

− ∑ 𝑢𝑗𝑖𝑡(𝑑[𝑡]
′ )

𝑗≠𝑖∈𝒱

≥ 𝑑𝑖𝑡
′ ,   

(27) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑣𝑖𝑗𝑡(𝑑[𝑡]) + 𝑢𝑖𝑗𝑡(𝑑[𝑡]
′ ) ≤ 𝐶𝒦𝑥𝑖𝑗𝑡(𝜉[𝑡]),   

(28) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑣𝑖𝑗𝑡(𝑑[𝑡]), 𝑢𝑖𝑗𝑡(𝑑[𝑡]
′ ) ≥ 0,   

(29) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑥𝑖𝑗𝑡(𝜉[𝑡]) ∈ {0,1},   

and 

 𝑍𝑇(𝜉[𝑇], 𝑄) = 

(30)     ∑ 𝑐𝑖𝑗 (𝑣𝑖𝑗𝑇(𝑑[𝑇]) + 𝑢𝑖𝑗𝑇(𝑑[𝑇]
′ ))

(𝑖,𝑗)∈𝒜

 𝑚𝑖𝑛  

(31) + ∑ 𝐹𝑖𝑥𝐶𝑥𝑖𝑗𝑇(𝜉[𝑇])
(𝑖,𝑗)∈𝒜

  
 

(32)  ∑ 𝑥0𝑖𝑇(𝜉[𝑇])

𝑖∈𝒩\{0}

≤ 𝑄, 𝑠. 𝑡.  

(33) ∀𝑗 ∈ 𝒩\{0}, ∑ 𝑥𝑖𝑗𝑇(𝜉[𝑇])

𝑖≠𝑗∈𝒩

≤ 1,   
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(34) ∀𝑖 ∈ 𝒩, ∑ 𝑥𝑖𝑗𝑇(𝜉[𝑇])

𝑗≠𝑖∈𝒩

− ∑ 𝑥𝑗𝑖𝑇(𝜉[𝑇])

𝑗≠𝑖∈𝒩

= 0,   

(35) ∀𝑖 ∈ 𝒩\{0}, ∑ 𝑣𝑗𝑖𝑇(𝑑[𝑇])

𝑗≠𝑖∈𝒩

− ∑ 𝑣𝑖𝑗𝑇(𝑑[𝑇])

𝑗≠𝑖∈𝒩

≥ 𝑑𝑖𝑇 ,   

(36) ∀𝑖 ∈ 𝒩\{0}, ∑ 𝑢𝑖𝑗𝑇(𝑑[𝑇]
′ )

𝑗≠𝑖∈𝒩

− ∑ 𝑢𝑗𝑖𝑇(𝑑[𝑇]
′ )

𝑗≠𝑖∈𝒱

≥ 𝑑𝑖𝑇
′ ,   

(37) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑣𝑖𝑗𝑇(𝑑[𝑇]) + 𝑢𝑖𝑗𝑇(𝑑[𝑇]
′ ) ≤ 𝐶𝒦𝑥𝑖𝑗𝑇(𝜉[𝑇]),   

(38) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗, 𝑣𝑖𝑗𝑇(𝑑[𝑇]), 𝑢𝑖𝑗𝑇(𝑑[𝑇]
′ ) ≥ 0,   

(39) ∀(𝑖, 𝑗) ∈ 𝒜, 𝑖 ≠ 𝑗. 𝑥𝑖𝑗𝑇(𝜉[𝑇]) ∈ {0,1},   

Figure 2 illustrates how the worst-case total cost is calculated based on the worst-case costs from the 

time period 𝑡 onward, i.e., for 𝑡 = 1, …, 𝑇, 𝑍𝑡(𝜉[𝑡], 𝑄), is the cost of making decisions at the 𝑡th time period 

plus incurred worst-case cost of the future. 

6 Solution methods for the ARO formulation 

In this section, we focus on how we can solve the multi-stage ARO problem of Section 5. We establish 

two exact methods (HBP and Heuristic) from [34] and develop a metaheuristic approach based on SA 

algorithm. The solutions are explained in two streams: upper bound solutions and lower bound 

solutions. 

6.1 Upper bound solutions 

In this section, two approaches are presented to calculate an upper bound on the optimal solution of the 

ARO problem. 

The first one is “U-HBP” technique. The HBP technique from [34] provides both upper and lower 

bounds on the optimal solution of an ARO problem. U-HBP focus on the upper bound part from HBP to 

increase the algorithm speed. The detailed algorithm of HBP technique has been presented in Section 

5.2.2 of  [34]. Based on HBP algorithm, the pseudocode of U-HBP technique is presented in Algorithm 1. 

At the beginning of this algorithm, the first general best upper bound is infinite and leftover polytope ξ in 

hand is (40). This algorithm will be terminated when a time limitation arises or when there are no new 

leftovers to split. 
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Algorithm 1 Algorithm of U-HBP technique 

1: 

2: 

3: 

4: 

 

5: 

 

6: 

7: 

 

8: 

Find inner and outer boxes related to set of leftover polytopes ξ in hand. 

Calculate upper corner points of all outer boxes from step 1. 

for each upper corner point from step 2 do 

solve the deterministic problem of Section 4 with that upper corner point (Using CPLEX as 

oracle). 

if the difference between the volume of the outer box and the corresponding inner box is greater 

than μ then, split the leftover polytope using its corresponding inner box. 

Set the maximum solution as best upper bound of step 3. 

if the best upper bound of step 3 is lower than general best upper bound then, set it as new general 

best upper bound. 

Consider all leftover polytopes from step 5 as new set of leftover polytopes ξ in hand and go to  

step 1. 

 

The second approach to calculate the upper bound is a customized SA metaheuristic algorithm which 

is integrated with U-HBP technique named “Meta-HBP”. In the following, the customized metaheuristic 

algorithm and the way it is merged with U-HBP is explained. 

6.1.1 Customized SA metaheuristic algorithm 

We develop a metaheuristic algorithm along with U-HBP to increase the speed of solving the ARO 

problem. In this section, we present our customized metaheuristic algorithm. Two parts are essential in a 

metaheuristic algorithm. The first one is generating an initial solution and the second one is generating the 

neighborhood solutions. 

Initial solution: 

The first step in implementing the metaheuristic algorithm is to find a feasible initial solution based on 

the objective function associated with the mathematical model of the problem. In this study, a heuristic 

method is used to find the feasible initial solution. 

Algorithm 2 Generating a feasible initial solution 

1: 

 

2: 

3: 

 

 

4: 

Sort retailers that have not been assigned to any vehicle in descending order based on their demand 

for new products. 

Select the first retailer from the sorted list. 

if the vehicle has enough capacity for delivering/picking up new/used products to/from selected 

retailer then, assign that retailer as the next destination for the vehicle; otherwise, remove that 

retailer from the list and go to step 2. 

if the vehicle's capacity is filled, and there are still unassigned retailers then, consider a new vehicle 

and go to step 1. 
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Algorithm 2 presents the pseudocode of generating a feasible initial solution. This algorithm ensures 

that the capacity of the vehicles is filled in descending order of the highest demand volumes. As a result, it 

maximizes the utilization of each vehicle's maximum capacity, leading to the deployment of fewer vehicles 

in each period. Example 1 shows a feasible initial solution based on steps of Algorithm 2. 

Example 1. Assume there are 10 retailers with the demand for new products and requests for pickups of 

used products in 1 period as follows: 

Table 1. Value of demand in Example 1 

Retailer New products Used products Retailer New products Used products 

1 16 21 6 17 10 
2 9 23 7 22 20 
3 21 25 8 11 11 
4 19 20 9 12 6 
5 17 17 10 21 7 

The demand is quantified in product unit, and the vehicle capacity is set at 100 product unit. In accordance 

with Table 1, Figure 3 illustrates a feasible initial solution. 

Tours Vehicles 

0 6 5 4 10 7 0 1 

0 2 8 9 1 3 0 2 
Figure 3. A feasible initial solution for Example 1 

Furthermore, Figure 4 depicts tours of the initial solution. In this figure, two vehicles have been 

allocated to satisfy the demand. The sequence of visiting retailers on each tour is specified. Additionally, 

the numbers on each arrow from left to right represent 𝑣𝑖𝑗𝑡 and 𝑢𝑖𝑗𝑡, respectively. 

 
* (Num 1, Num 2): (𝑣𝑖𝑗𝑡 , 𝑢𝑖𝑗𝑡) 

Figure 4. Initial solution tours of Figure 3 

Neighborhood solution: 

The second step in implementing the metaheuristic algorithm is to generate a neighborhood solution. 

The neighborhood creation algorithm in this study encompasses three scenarios to make variations in the 

initial solution. Each of these three scenarios is probabilistically selected. 
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Scenario 1: In this scenario, the string of retailers assigned to vehicles is merged as one string, and 

subsequently randomized to match the number of vehicles. Considering the initial solution in Example 1, 

at first, all tours of vehicles are consecutively arranged (Figure 5). 

2 8 9 1 3 6 5 4 10 7 
Figure 5. Merged string of retailers from initial solution of Example 1 

Following that, the string created in Figure 5 is randomly broken into segments to match the number of 

vehicles. For instance, Figure 6 illustrates a feasible neighborhood for the initial solution of Example 1. 

 Tours Vehicles 

  0 5 4 10 7 0 1 

0 2 8 9 1 3 6 0 2 
Figure 6. A feasible neighborhood for the initial solution of Figure 3 in Scenario 1 

Scenario 2: In this scenario, the positions of two retailers along the tour of a single vehicle are randomly 

swapped. For instance, Figure 7 depicts a feasible neighborhood for the initial solution of Example 1, in 

which the positions of retailers 10 and 5 along the tour of vehicle 1 have been exchanged. 

Tours Vehicles 

0 6 10 4 5 7 0 1 

0 2 8 9 1 3 0 2 
Figure 7. A feasible neighborhood for the initial solution of Figure 3 in Scenario 2 

Scenario 3: In this scenario, the positions of two retailers along the tour of two vehicles are exchanged. 

For example, Figure 8 illustrates a feasible neighborhood for the initial solution of Example 1, where the 

positions of sales centers 3 and 2 along the routes of vehicles 1 and 2 have been exchanged. 

Tours Vehicles 

0 6 5 4 9 7 0 1 

0 2 8 10 1 3 0 2 
Figure 8. A feasible neighborhood for the initial solution of Figure 3 in Scenario 3 

In the generation of a neighborhood solution, the feasibility of new solution is not guaranteed. 

Therefore, after generating a neighborhood, the new solution is examined for feasibility. If the new solution 

is not feasible, the process of generating a new neighborhood continues until a feasible solution is reached. 

6.1.2 Meta-HBP 

We integrate our customized SA metaheuristic algorithm with the HBP technique, naming it 

“Meta-HBP”. This implies that in Meta-HBP, instead of employing the exact solution provided by CPLEX, 

we utilize our metaheuristic algorithm for upper-bound calculations. More specifically, in Algorithm 1, our 

customized SA method is employed as an oracle in step 4. 
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6.2 Lower bound solutions 

In this section, two approaches are presented to calculate a lower bound on the optimal solution of the 

ARO problem. The first one is the heuristic search approach from [34]. In this study, we reconfigure this 

approach to effectively address and solve our problem. The detailed algorithm of heuristic search approach 

has been presented in Section 5.3 of  [34]. 

The heuristic search approach provides a lower bound on the optimal solution of the ARO problem but 

as it is explained in [34], this approach needs to calculate many upper bounds in each iteration of solution 

procedure as well. Due to the time-consuming nature of calculating upper bounds using exact methods, we 

present our second approach in this section to mitigate the solution time. 

The second approach is referred to as “MetaH-H” which is an integration of the heuristic search 

approach from [34] and our metaheuristic algorithm. We restructure the heuristic search approach to have 

the upper bound calculation performed by our metaheuristic algorithm rather than an exact method to 

expedite the calculation of these upper bounds. In the next section, the performance of the proposed solution 

methods in this section will be compared. 

7 Numerical experiments 

In this section, we show how our methods proposed in Section 6 can solve the multi-stage ARO fleet 

sizing problem in CLSC. The numerical experiments were run in a Virtual Machine with 8 processors 2.40 

GHz and 32 GB RAM running Windows 10. Modeling the deterministic problem is done with YALMIP 

toolbox [35] in MATLAB R2019a. All the deterministic mixed integer linear optimization problems have 

been solved using ILOG CPLEX Optimization Studio 12.9. 

7.1 Testbed 

We randomly generate 9 instances based on [34]. Each instance contains one random coordinate 

(𝒳0, 𝒴0) in [0,500]2 which represent the location of production site and |𝒩\{0}| random coordinates 

(𝒳𝑖, 𝒴𝑖) in [0,500]2 which represent the locations of retailers. We refer to these locations as nodes. 

We use the sets of 

(40)  Ξ𝑡 = {𝜉𝑡 ∈ ℝ
2|𝒩\{0}||

0 ≤ 𝜉𝑖𝑡 ≤ 𝜉𝑖̅𝑡 ,   ∀𝑖 ∈ 𝒩\{0}

∑ 𝜉𝑖𝑡𝑖∈𝒩 ≤ 𝜉𝑡̅ ,                           
} 

as the budget uncertainty set, where 𝜉𝑖̅𝑡 , 𝜉𝑡̅ ∈ ℕ
2 are the upper bounds of 𝜉𝑖𝑡 and ∑ 𝜉𝑖𝑡𝑖∈𝒩 , respectively, for 

𝑖 ∈ 𝒩\{0}, 𝑡 ∈ 𝒯. 

The unit of demand is generally referred to as a “product unit”. The unit shipment cost between two nodes 

𝑖 and 𝑗 is calculated as: 
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(41)  
c𝑖𝑗 =

1(
€
km
) × 𝐷𝑖𝑠𝑡𝑖𝑗 (km)

𝐶𝒦  (product unit)
     (

€

product unit
), 

where 

(42)  𝐷𝑖𝑠𝑡𝑖𝑗 = √(𝒳𝑖 −𝒳𝑗)
2
+ (𝒴𝑖 −𝒴𝑗)

2
     (km) 

is the Euclidean distance between two nodes 𝑖 and 𝑗, knowing (𝒳𝑖, 𝒴𝑖) is the location of 𝑖 ∈ 𝒩. 

A summary of the parameters considered in the testbed is presented in Table 2, where Uint(.) refers to 

the integer uniform distribution. 

Table 2. Value of parameters in the testbed 

Parameter Value Unit 

𝜉𝑖̅𝑡 Uint([5,25]2) product unit 

𝜉𝑡̅ max
𝑗∈𝒩\{0}

𝜉𝑖̅𝑡 product unit 

𝐶𝒦 100 product unit 

𝑐𝑃 50000 
€

vehicle
 

𝐹𝑖𝑥𝐶 50 
€

rout
 

c𝑖𝑗 
𝐷𝑖𝑠𝑡𝑖𝑗

𝐶𝒦
 

€

product unit
 

7.2 Results 

In this section, we elucidate the outcomes derived from addressing 9 randomly generated instances 

utilizing four distinct methods: U-HBP, Meta-HBP, heuristic, and MetaH-H, as introduced in Section 6, 

across two streams of upper and lower bound solutions. U-HBP and heuristic methods represent exact 

approaches, thus each instance is solved once using these methods. In contrast, Meta-HBP and MetaH-H 

are metaheuristic approaches; hence, we execute five runs for each instance, from which we derive the 

averages and standard deviations. 

 U-HBP and Meta-HBP are used to find an upper bound on the optimal solution of the ARO problem. 

Table 3 summarizes the results of applying these two methods to the instances. In this table, column ‘‘Ins’’ 

represents the instances’ numbers and column ‘‘N-T’’ shows the number of retailers-periods. 

Each method comprises two primary columns: “Time”, which includes “Full” and “Sol” columns, and 

the “Upper bound” column. “Sol Time” indicates the solution time within the constraint of |𝒩| × |𝒯| × 400 

seconds, while “Full Time” reflects the total algorithm runtime for each instance, encompassing solution 
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time along with modeling time. Modeling time refers to the duration required for the solver to model the 

problem, thus it is excluded from the solution time [34]. 

The “Deter gap” column in the U-HBP section represents the tolerance gap provided to the solver for 

solving deterministic problems. In the Meta-HBP section, the first number in each cell denotes the average 

value, and the second number, displayed within brackets, represents the standard deviation associated with 

runs on each instance. The final part of this table is the “Improvement”, where the numbers indicate the 

enhancement in time and upper bound that Meta-HBP achieves over U-HBP. Bold numbers in this table 

highlight the superior time and upper bound between the two methods. 

Table 3. Numerical results of upper bound solutions 

Ins N-T 

U-HBP Meta-HBP Improvement (%) 

Deter 

gap 

Time 
Upper bound 

Time 
Upper bound 

Time Upper 

bound Full Sol Full Sol Full Sol 

1 2-1 1e-04 3284.88 800 50296.9064 1219.19 [18.52] 800 [0] 50296.8658 [0] 62.88% 0.00% 0.0001% 

2 2-2 1e-04 7329.09 1600 50731.6537 1984.09 [17.03] 1600 [0] 50735.9738 [0] 72.93% 0.00% -0.0085% 

3 2-3 1e-04 11529.54 2400 50921.7577 2859.98 [16.06] 2400 [0] 50929.4664 [0] 75.19% 0.00% -0.0151% 

4 6-1 1e-04 6369.99 2400 51113.0652 3095.41 [22.85] 2400 [0] 51099.7844 [0] 51.41% 0.00% 0.0260% 

5 6-2 1e-04 7905.46 4800 52673.6016 5590.13 [22.42] 4800 [0] 52695.6374 [19.22] 29.29% 0.00% -0.0418% 

6 6-3 1e-04 11618.82 7200 102782.986 9789.57 [98.92] 7200 [0] 103346.3621 [3.8] 15.74% 0.00% -0.5481% 

7 10-1 0.015 11630.29 4000 101974.411 4491.7 [16.39] 4000 [0] 102014.0908 [4.78] 61.38% 0.00% -0.0389% 

8 10-2 0.015 11935.18 8000 104004.149 11519.69 [84.45] 8000 [0] 103659.9084 [22.91] 3.48% 0.00% 0.3310% 

9 10-3 0.015 12463.43 12000 107066.468 7263.11 [122.71] 6868.77 [115.55] 106958.4349 [106.54] 41.72% 42.76% 0.1009% 

10 20-5  0.1  45499.4 40000 218835.5894 45640.97114 [66.79] 40000 [0] 218622.9971 [155.02] -0.31% 0.00% 0.0971% 

Figure 9 illustrates the iterations of instance 1 solved by U-HBP and Meta-HBP. Part (a) demonstrates 

the descending trend towards the upper bound and convergence to the optimal solution based on solution 

time. It is evident that the metaheuristic algorithm, Meta-HBP, outperforms the exact method, U-HBP, given 

the limitations on solution time. Part (b) of this figure depicts the full time running of both methods. 

According to this figure, Meta-HBP demonstrates a 62.88% improvement in total runtime compared to U-

HBP. 
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           (a) (b) 

Figure 9. Solving Ins 1 using U-HBP and Meta-HBP ((a): Upper bound values, (b): Full Time) 

As Table 3 indicates, instances 1 through 9 demonstrate an improvement in full time. In instance 10, a 

“Deter gap” of 0.1 has been considered to enable U-HBP to solve the problem, thus resulting in a shorter 

full time compared to Meta-HBP. However, this has also allowed Meta-HBP to achieve a better upper bound 

within the specified time frame. Additionally, improvements in the upper bound are observed in instances 

1, 4, 8, 9, and 10, along with a noticeable enhancement in the solution time of instance 9. Instance 10 stands 

out as the sole instance that has achieved marginally better full time result in U-HBP. This can be attributed 

to the necessity of setting a “Dete gap” of 0.1, allowing U-HBP to solve the problem within the specified 

time limit. Figure 10 to Figure 12 depict the iterations of instances 4, 8, and 9. 

 
         (a) (b) 

Figure 10. Solving Ins 4 using U-HBP and Meta-HBP ((a): Upper bound values, (b): Full Time) 
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        (a) (b) 

Figure 11. Solving Ins 8 using U-HBP and Meta-HBP ((a): Upper bound values, (b): Full Time) 

 
       (a) (b) 

Figure 12. Solving Ins 9 using U-HBP and Meta-HBP ((a): Upper bound values, (b): Full Time) 

Heuristic and MetaH-H are used to find a lower bound on the optimal solution of the ARO problem. 

Table 4 summarizes the results of applying these two methods to the instances. This table shares the same 

columns and instances as Table 3, with the distinction of presenting lower bounds. 
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Table 4. Numerical results of lower bound solutions 

Ins N-T 
Deter 

gap 

Heuristic MetaH-H Improvement (%) 

Time Lower 

bound 

Time 
Lower bound 

Time Lower 

bound Full Sol Full Sol Full Sol 

1 2-1 1e-04 169.75 46.83 50296.315 149.2 [2.84] 38.38 [2.02] 50296.315 [0] 12.11% 18.04% 0.0000% 

2 2-2 1e-04 2483.16 577.25 50643.7226 2234.05 [42.66] 508.96 [39.62] 50643.7226 [0] 10.03% 11.83% 0.0000% 

3 2-3 1e-04 10615.58 2334.35 50806.2012 9346.95 [92.21] 2339.66 [52.03] 50806.2012 [0] 11.95% -0.23% 0.0000% 

4 6-1 1e-04 8008.48 2255.02 50608.9097 7345.59 [650.07] 2255.6 [185.98] 50608.9475 [0.05] 8.28% -0.03% 0.0001% 

5 6-2 1e-04 5710.7 1724.3 51305.4459 4027.02 [247.14] 964.2 [108.7] 51304.8451 [0.49] 29.48% 44.08% -0.0012% 

6 6-3 1e-04 23650.65 7200 51869.9201 19145.31 [1012.86] 5047.3 [369.08] 51871.4166 [1.49] 19.05% 29.90% 0.0029% 

7 10-1 0.015 705.11 127.08 51320.3628 684.17 [8.48] 122.31 [6.33] 51398.889 [46.23] 2.97% 3.75% 0.1530% 

8 10-2 0.015 17374.27 8000 52136.5334 11033.72 [735.06] 1431.84 [125.31] 52232.3311 [10.88] 36.49% 82.10% 0.1837% 

9 10-3 0.015 35873.81 12000 53109.4428 27977.04 [1372.49] 4371.18 [359.23] 53132.025 [13.43] 22.01% 63.57% 0.0425% 

10 20-5  0.1  42188.9 6117.76 61936.829 45440.75 [3258.52] 7908.48 [686.62] 62082.59 [20.66] -7.71% -29.27% 0.2353% 

Figure 13 illustrates the iterations of instance 1 solved by Heuristic and MetaH-H. Part (a) displays the 

upward trend towards the lower bound and the convergence to the optimal solution based on solution time. 

As it can be seen, the metaheuristic algorithm, MetaH-H, attains the lower bound established by the 

Heuristic method while enhancing solution time by 18.04%. Part (b) of this figure depicts the full time 

running of both methods. According to this figure, MetaH-H demonstrates a 12.11% improvement in total 

runtime compared to Heuristic. This trend is almost true for instances 2 and 5 as well.  

 
       (a) (b) 

Figure 13. Solving Ins 1 using Heuristic and MetaH-H ((a): Lower bound values, (b): Full Time) 

As evidenced in Table 4, improvements are observed in both the full time and solution time across 

instances 6 through 9, along with enhancements in the lower bound values. These improvements are 

illustrated in Figure 14 to Figure 17. Similar to Table 3, in Table 4, instance 10 has attained lower  full and 

solution times due to the larger "Deter gap" compared to all other instances, which was necessary for the 

Heuristic method to solve the problem. 
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       (a) (b) 

Figure 14. Solving Ins 6 using Heuristic and MetaH-H ((a): Lower bound values, (b): Full Time) 

 
       (a) (b) 

Figure 15. Solving Ins 7 using Heuristic and MetaH-H ((a): Lower bound values, (b): Full Time) 

 
       (a) (b) 

Figure 16. Solving Ins 8 using Heuristic and MetaH-H ((a): Lower bound values, (b): Full Time) 
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       (a) (b) 

Figure 17. Solving Ins 9 using Heuristic and MetaH-H ((a): Lower bound values, (b): Full Time) 

8 Conclusions and future research 

The Fleet Sizing Problem (FSP) emerges as a critical component in optimizing logistics and supply 

chain management, particularly in the realm of Closed-Loop Supply Chains (CLSC). Addressing the FSP 

directly impacts operational costs, resource utilization, and environmental sustainability, offering 

opportunities to streamline transportation operations, minimize fuel consumption, and enhance overall 

supply chain performance. 

In this paper, we have delved into the complexities of the FSP within a CLSC context, proposed a Mixed 

Integer Linear Programming (MILP) model, and employed a multi-stage adjustable robust optimization 

(ARO) formulation to handle the uncertainties associated with demand for new products and requests for 

pickup of used products. We have reconfigured an exact oracle-based algorithm and a heuristic search 

algorithm to derive upper and lower bounds on the optimal solution of the ARO problem. Additionally, we 

have introduced a metaheuristic algorithm based on simulated annealing (SA) algorithm to function as 

the oracle. Through numerical experiments, we have illustrated the efficacy of our approach, demonstrating 

significant improvements in both computational efficiency and solution quality when integrated with 

existing methods. 

For future research, considering environmental factors such as carbon emissions and sustainability 

metrics in fleet sizing decisions could contribute to more eco-friendly and socially responsible supply chain 

operations. Furthermore, beyond addressing the large number of deterministic problems tackled by our 

proposed method, the computation of leftover polytopes in large-scale problems remains a time-consuming 

part of the presented algorithm. Consequently, exploring more efficient methodologies to compute these 

leftovers necessitates further investigation in future research. Additionally, there is potential for research to 

extend beyond the current focus on CLSCs and encompass other echelons of the supply chain, including 
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suppliers, recovery centers, and disposal centers, to further enhance overall supply chain efficiency and 

sustainability. 
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