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Omnichannel services, such as buy-online-pickup-in-store, curbside pickup, and ship-from-store, have shifted

the order-picking tasks that used to be completed by in-store customers doing their own shopping to the

responsibility of retailers. To fulfill these orders, many retailers have deployed a store fulfillment strategy,

where online orders are picked from inventory in brick-and-mortar stores. As store fulfillment is currently a

labor-intensive operation, we propose an innovative approach that relies on the assistance of in-store cus-

tomers for item extraction from the store shelves and a fleet of collaborative robots to collect and transport

them to a designated station. While collaborative robots are manageable by the store, the arrival of in-store

customers who are willing to assist a collaborative robot at a given location in the store is out of the store’s

control, and therefore, uncertain. We model the stochastic order-picking problem with uncertain synchro-

nization times of in-store customers and collaborative robots as a Markov Decision Process to determine

how a retailer should dynamically assign tasks to a set of collaborative robots and dedicated pickers. We

develop a heuristic solution framework that generates a set of initial assignments and routes for picking

resources and dynamically updates them as the actual synchronization times between collaborative robots

and in-store customers unfold. We analyze multiple strategies to generate the initial set of task assignments

and routes as well as update such decisions based on the system state. We test our proposed approaches

using actual online grocery data. Computational results illustrate the potential for collaborative robots and

in-store customers to achieve equivalent pick rates as systems with only dedicated pickers. Lastly, our solu-

tion approach is capable of generating high-quality solutions at a pace suitable for practical settings.

Key words : Dynamic Decision making, Order Picking, Retail, Markov Decision Process, Collaborative

Robots

1. Introduction

The retail industry, in general, and the grocery sector in particular, have seen the popularity of

e-commerce rise both for curbside pickup and home delivery (Mayumi Brewster 2022). During

the stay-at-home orders associated with the COVID-19 pandemic, about 40% of Americans (or

approximately 39.5 million households) in 2020 tried an online grocery service, resulting in a year-
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over-year increase of 193% (Brick Meets Clicks 2020). The demand for online grocery services is

still at higher than the pre-pandemic levels (Shen et al. 2022) and is expected to continue growing

in the coming years (Aull et al. 2022).

Store fulfillment, in which the same inventory on store shelves is used for both online and in-store

customers, is a popular way that retailers are meeting the growing demand for online grocery services

(Eriksson et al. 2022). While there are advantages to using store fulfillment methods, including

pooling demand from both online and in-store channels, being in closer proximity to customers,

and utilizing a retailer’s existing facilities and supply chain infrastructure, the industry is currently

facing significant challenges (Brittain Ladd 2023). A store on average achieves a profit margin of

$4.40 on a typical $100 basket of groceries when the in-store customer does their own shopping

and these margins become negative when the store is responsible for picking the items (McKinsey

2022). Thus, even without last mile delivery responsibilities, and even after charging a service fee of

$4-7, many stores incur negative margins for their curbside pickup services (Repko 2020). Another

issue is the current and projected labor shortages (Stephanie Ferguson 2023, Roy Maurer 2023),

as well as rising labor costs (U.S. Bureau of Labor Statistics 2023). As a result, more companies

are deploying automated resources to meet demand requirements (Begley et al. 2019). However, in

terms of pick rates, reliability, and product range, robotic piece-level extraction still lags behind

human benchmarks (Christensen et al. 2021, Yu et al. 2020, Correll et al. 2016). Instead, a specific

type of collaborative robots (cobots) that work side by side with humans (Franklin et al. 2020),

known as autonomous mobile robots (AMRs) has become a promising option for order fulfillment

tasks in distribution centers. As shown in Figure 1(b), these cobots can autonomously move around

a facility and wait at a pick location, where human employees then extract requested items from

shelves and put them in the cobot’s order totes (Locus Robotics 2023).

In this work, we consider the potential to deploy AMRs in a retail store for store fulfillment. In

the proposed store fulfillment policy, participating in-store shoppers assist the cobots by picking

items off store shelves and placing them in a cobot’s tote. Specifically, a set of cobots would travel

the shopping aisles, stopping and waiting in front of store shelves, each displaying on its monitor a

request to pick specific item(s). When a participating in-store customer travels near the cobot, that

person can pick the requested items from store shelves, scan them on the cobot’s scanner, and drop

them in the designated tote on the cobot. Immediately, the cobot’s monitor will show a QR code

that a customer can scan to get compensated via store credit. To meet online order deadlines, stores

would also employ dedicated pickers to also be conducting order picking tasks in the retail store.

These dedicated pickers would have their own order picking carts and do not need to interface with

the cobots nor the in-store customers.
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As in-store customers will have traveled to the store and are traversing the store’s aisles to conduct

their own shopping, by utilizing in-store customers, in conjunction with cobots, this approach has

the potential to reduce the marginal costs of store fulfillment operations. Yet, in-store customers are

a unique picking resource, not controlled by the store. Given a store must meet service commitments

on online orders, a challenge with this policy is that there is uncertainty in in-store customer arrivals

at places where a cobot is waiting for help. Due to the random nature of customer arrivals to different

parts of the store, the time a cobot in front of a store shelf must wait until a participating in-store

customer arrives (referred to as the synchronization time) is stochastic. This leads to open questions

about how best should a store deploy cobots and dedicated pickers in the face of the uncertainty

of participating in-store customer arrivals to synchronize with cobots. This environment requires

the store to make concurrent assignment and routing decisions for the set of cobots and the set

of dedicated pickers that balance the need to meet demand-side service commitments with limited

resources in an uncertain retail environment. Furthermore, to maintain a high level of service, a cobot

might need to move to another location in the store instead of waiting for a participating in-store

customer to arrive at the current location. Thus, the central challenge of formulating this problem

is that the store does not have prior knowledge on when an in-store customer will arrive to help a

cobot. This motivated us to develop a dynamic decision-making approach, i.e., as new information

becomes available in the system, the store has an opportunity to update its next decision. The

contributions of this work can be summarized as follows:

• We introduce a new store fulfillment concept that deploys dedicated pickers and autonomous

mobile robots (AMRs) and utilizes a previously untapped set of resources, in-store customers, to

help pick online orders in a retail store environment.

• We formalize the decision-making process of dynamic resource-to-item assignments, as well as

sequencing (routing) and abandonment decisions of picking resources in a time-constrained envi-

ronment as a Markov Decision Process (MDP). Uncertainty arises from in-store customers being

an uncontrollable picking resource, and hence, stochastic synchronization times occur with the

cobots.

• We develop a heuristic solution framework that allows for exploration of alternative policy designs

in terms of initial sequencing decisions, abandonment strategies, and picking assignment reallo-

cation, as well as dynamically updating such decisions as new information is revealed.

• We provide insights into the operational design of the proposed store fulfillment concept through

a set of computational experiments based on actual online orders and empirical consumer shop-

ping behavior data, by answering: (1) What is the potential benefit of deploying dynamic vs.

static assignment policies? (2) In which situations is there value in a store deploying a cobot

abandonment policy? (3) How does the allowed number of reallocation of stopping points impact



Bhowmick, Pazour, and Dayarian: Dynamic Store Fulfillment with Collaborative Robots and In-Store Customers
4

picking performance? (4) How are picking tasks distributed among the dedicated pickers and the

cobots? (5) How does the participation rate of in-store customers affect such policies? (6) Are

our solution approaches computationally tractable for decision-making in practical settings? (7)

Which policy should a store utilize? (8) How many cobots are needed to replace one dedicated

picker? And lastly, (9) Is the proposed approach economically viable?

2. Literature Review

Order picking with the help of cobots in distribution centers is an emerging research area (Fragapane

et al. 2021, Azadeh et al. 2019, Boysen et al. 2019, Jacob et al. 2023, Lorson et al. 2023, Löffler et al.

2023). A recent focus of research has been on how to design operational policies having collaborative

robots, coupled with either humans (Azadeh et al. 2020, Ghelichi and Kilaru 2021, Meller et al.

2018, Löffler et al. 2021, 2023, Zou et al. 2019, Yokota 2019, Pasparakis et al. 2021, Winkelhaus

et al. 2022, Srinivas and Yu 2022, Fager et al. 2021, Žulj et al. 2022, Zhang et al. 2021, Zhu et al.

2022) or with other robotic resources (Lee and Murray 2019, Wang et al. 2020) to perform order

picking tasks. These papers deploy a wide range of methodologies, primarily deterministic integer

programming models to decide on routing, order batching, zoning, and sequencing in a warehouse

setting. Additionally, existing work has explored tractable heuristic solution approaches, queuing-

based models to capture resource congestion impacts on performance metrics, simulation models to

assess validity of such policies, Markov Decision Processes to choose between strategies, and physical

lab experiments to understand collaborative behaviors. The most closely related paper is a recent

one by Löffler et al. (2023) who studies how to route AMRs and human pickers in a distribution

center order fulfillment process. Similar to our work, they also consider the need for AMRs and

human pickers to synchronize, yet, as both AMRs and human resources are controllable, in contrast

to this work, they develop a static, deterministic integer programming model to make coordinated

routing decisions, and present heuristic methods to solve the problem. To the best of our knowledge,

all of the above referenced papers use cobots for distribution center order fulfillment, where all

picking resources are controlled by the warehouse and thus, none captures stochastic picking tasks.

While dynamic decision making in a stochastic warehouse environment has been an area of interest

(Bukchin et al. 2012, Lu et al. 2016, Gong and De Koster 2008, Han et al. 2022, Azadeh et al. 2020),

the sources of uncertainty arise primarily from incoming orders, not from the picking process and

thus these works do not update decisions due to uncertain synchronization times.

Another emerging and related area is research on store fulfillment operations (Hübner et al.

2022, Bayram and Cesaret 2021, Lin et al. 2021, Gallino and Moreno 2014, Gao and Su 2017, He

et al. 2021, Jin et al. 2018, Li 2020, Yang and Zhang 2020). Past research focuses on inventory

management (Chen et al. 2019), store allocation decisions (Das et al. 2023, Vazquez-Noguerol et al.
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2022, Dethlefs et al. 2022), cost of service (He et al. 2020, Liu et al. 2023, Ni et al. 2019), and

customer satisfaction (Wang et al. 2022). Notably, operational decisions inside the store have been

largely ignored; exceptions include (MacCarthy et al. 2019, Masel and Mesa 2018, Zhang et al. 2019,

Zhang and Pazour 2019, Mou 2022a, Difrancesco et al. 2021), but none use in-store customers or

cobots. Only limited research has explored the intralogistic tasks of order picking in stores (Seghezzi

et al. 2022, Salgado 2015, Pietri et al. 2021, Neves-Moreira and Amorim 2023, Mou 2022b), and

all are manual operations without the use of automation. No previous work explores the use of

cobots in order picking processes in a store environment. Related is work that investigates deploying

cobots for intralogistics tasks in a store environment for inventory replenishment (Caporaso et al.

2022). Additionally, crowdsourced order picking has been explored where in-store customers pick

items while doing their own shopping (Dayarian and Pazour 2022). However, this paper focuses

on assignment of orders (not routing of a set of resources), nor does it consider the utilization of

cobots. Therefore, this is the first paper to consider the use of cobots for store fulfillment in a retail

setting and is also the first to study cobots within a crowdsourced setting. The contribution of this

work is thus in modeling and developing a solution approach for resource dispatching, routing, and

abandonment capturing the salient features of this unique order fulfillment environment.

3. Problem Statement

We consider a store that receives online orders spontaneously over time. Each online order consists

of a set of items found on the store’s shelves and is expected to be available for last-mile delivery

or curbside pickup at a designated dropoff station, denoted as vp, within a given service guarantee

(e.g., in 2 hours, next day). To fulfill these online order requests, the store uses a collaborative

process where in-store customers extract items from store shelves and place them in waiting cobots

to transport the picked items back to the dropoff station. To ensure high service levels, the store

also deploys a set of dedicated pickers to help pick and transport items from store shelves. The

store has control over the dedicated pickers and the cobots, and these resources can be instructed

to complete specific tasks in a specific sequence. This is in contrast to the in-store customers, who

help with the picking process but the store does not have control over their actions. Thus, a store

has a set K of fulfillment resources available and under their control, K = C ∪D, where C is the

set of cobots and D is the set of dedicated pickers.

As is common in warehousing order fulfillment operations (Ardjmand et al. 2018, Liang et al.

2020, Rasmi et al. 2022), the store deploys a wave system, which splits the workday into discrete,

equally spaced time periods, known as waves each of length T . The store fulfillment process is

segregated into three separate work processes, each with its own dedicated resources that run in

parallel. These processes include (1) receiving and dispatching online orders (including performing
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a check of requested items versus point-of-sale inventory levels and determining suitable substitute

products in case of out-of-stock items), (2) traveling to, picking, and transporting requested items

from store shelves to a dropoff station, and (3) sorting, packing, quality control, and interfacing

with customers for order pickup. The focus of this paper is on optimizing the second process step.

The store collects online order requests that have arrived at the store over the previous wave(s) and

are made available to be assigned to the set of controllable picking resources in a future wave based

on meeting service deadlines. This means at the beginning of a wave the store has a known set of

items, all with the same urgency that needs to be retrieved from store shelves and returned to the

dropoff station by the end of the wave (i.e., within the wavelength T ).

The store fulfillment problem using cobots and dedicated pickers can be defined on a graph

G = {V,E}, where V = V s ∪ vp ∪ vg are the sets of nodes and E are the set of edges of the graph.

The store has a set of designated stopping points V s where the cobots will travel to and from and

wait (see Figure 1(a)). Each stopping point covers a specific shelf area around them, and thus,

collectively across all stopping points in the store, all items in the store are covered by the set of

stopping points, V s. All picking resources, k ∈K, will start their picking route from the idle station

vg, and end their wave’s route at the dropoff station, vp. The travel times along the edges of the

graph depend on the picking resource type, with tDij and tCij being the travel time of a dedicated

picker and a cobot along edge (i, j)∈ E , respectively. During a given wave, all stopping points may

not need to be visited; thus, the set of stopping points required to be visited during the next wave

is denoted as V r ⊆ V s. Hence, V̂ = V r ∪vp∪vg is the subset of nodes of graph G that are present in

the targeted wave. The number of items required to be picked from stopping point v ∈ V r is denoted

by nv, and collectively across all V r the number of items required to be picked in a given wave is

denoted by N =
∑

v∈V r nv.

When a cobot k ∈ C reaches a stopping point v ∈ V r, the cobot will stop and wait for a par-

ticipating in-store customer’s arrival which we refer to as waiting time. If a participating in-store

customer arrives at the covered area of a v ∈ V r where a cobot is waiting, a synchronization of a

cobot and in-store customer with the completion of nv picks occurs. Thus, the wait time of a cobot

k ∈C at a stopping point v ∈ V r before being synchronized with an in-store customer is a random

value denoted by ω̄kv. Simultaneously, the fleet of dedicated pickers is deployed by the store to pick

a subset of items in V r and then transport them to vp, but they do not need any synchronization

requirement to complete their picks (i.e., ω̄kv = 0 for k ∈D). The random service time at a given

stopping point v ∈ V r that captures the picking time per item is denoted by s̄v.

The purpose of the stochastic order-picking problem with uncertain synchronization times of in-

store customers and collaborative robots is to identify a set of routes starting at vg and ending

at vp for the set of dedicated pickers and the set of cobots such that the total number of items
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picked is maximized and the picking resources are back to vp within the wavelength T . To achieve

this objective, the store adopts a centralized decision-making mechanism to determine how best to

utilize its controllable picking resources during a given wave.

Figure 1 From left to right (a) example store layout with stopping points (b) Commercially available AMR collabo-

rative robot (source: Locus Robotics)

4. Modeling as Markov Decision Process
We model our problem setting as a Markov Decision Process (MDP) with the objective to maximize

the total expected number of picked items returned back to vp within T , given the set of resources

k ∈K and uncertain arrival times of in-store customers. We are interested in determining, over the

horizon of a wave, a picking policy, which consists of a set of sequential decisions about which cobots

and which dedicated pickers should be deployed to pick which items, and in what order, and when

such resources should abandon their current stopping point, and when they should return back to

the dropoff station. In the next subsections, we describe the elements of the MDP model.

4.1. Decision Epochs

The system makes a decision based on the updated information at every decision epoch, which

occurs anytime one of the triggering events (τu) in (1) takes place.

τu =



τ I the initial trigger, which occurs at the beginning of the wave;
τ ck when an in-store customer has dropped nv items into a k ∈C’s tote at any v ∈ V r;
τdk when a dedicated picker k ∈D completes picking nv items at any v ∈ V r;
τak whenever a cobot k ∈C needs to consider abandoning at any v ∈ V r;
τ rk whenever any k ∈K needs to travel to vp to meet the wave deadline;
τ f when all k ∈K reaches vp.

(1)
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Given a finite number of these events can occur over the wavelength, we have a finite set of discrete

decision epochs, which are revealed dynamically during a wave. Let E = {e1, e2, ...., e|E| = τ f} be

the set of decision epochs.

4.2. Rewards

Whenever the system reaches a state se ∈ S at epoch e ∈E, an action is chosen and an immediate

reward is accrued. This reward, denoted as β(se, α), is a function of two elements - the state of the

system at epoch e and the type of action taken.

4.3. States

The state of the system se ∈ S at decision epoch e ∈ E can be described by a tuple, i.e., se =

〈te,
(
lke

)
k∈K ,

(
zve

)
v∈V r〉. Element te is the time at which the decision epoch e ∈ E was triggered,

lke is the locations of picking resources k ∈K in the store at epoch e ∈E, and zve is the status of

stopping point v ∈ V r at te, which we denote using a binary parameter defined as

zve =

{
0 if the assigned nv items have all been picked at v ∈ V r;

1 if a picking resource has not been assigned to pick at v ∈ V r.
(2)

4.4. Actions

When a new decision epoch, e ∈ E, is triggered, an action α is taken that causes the system to

transition from the current state se to the next state se+1. There are four types of actions:

α=



α1 send the triggered picking resource k ∈K to a v ∈ V r that has its zve = 1 at any
τ ck , τdk , or τak ;

α2 send the triggered picking resource k ∈K to vp at any τ rk ;

α3 send all picking resources to their first assignments at epoch e1 (i.e., τ I);
α4 keep the triggered picking resource k ∈K waiting at current v ∈ V r at any

τak .

(3)

We assume that no two stopping points v ∈ V r would change their status from zve = 1 to zve = 0

at the same time. Additionally, we assume the set of actions occur assuming all picking resource(s)

have reached their previously made decisions (we do not allow resources en route to be diverted by

an action). Also, actions that assign more than one picking resource to a stopping point at the same

time are prohibited.

4.5. Transition Probabilities

Depending on the state and action, the system transitions from state se at epoch e to another state,

se+1 at epoch e + 1. We break down this transition into two separate steps: (1) a post-decision

state, and (2) a pre-decision state. First, from se, the system transitions to a post-decision state
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sαe reflecting (but not yet reached) three aspects: the new assignment(s) (i.e., new locations of

the picking resources), time when the triggered picking resource will reach its new location, and

the status of v ∈ V r. From the post-decision state sαe , the system transitions to a pre-decision

state se+1 at epoch e+1 in a probabilistic manner, i.e., the probability that one of the triggering

events (τ ck , τdk , τ rk , τak ) occur before the others. Such transition probabilities have been categorized

and defined in Appendix A.

4.6. Objective Function and Optimal Policy

The objective of our problem is to maximize the number of items picked and transferred to vp

within T . As there are a finite set of states S as well as a finite set of actions at each decision epoch

e, an optimal deterministic Markovian policy is existent (Puterman 2014). A policy π here can be

defined as a sequence of actions for each decision epoch in the wave. An optimal policy π∗ ∈ Π

would therefore take the form of Equation (4) that refers to achieving the maximum expected sum

of rewards given the initial state of se1 where απe denotes actions following policy π at epoch e.

π∗ = arg maxπ∈ΠE
[ e|E|∑
e=e1

β
(
se, α

π
e

)
|se1

]
(4)

5. Solution Approach
MDPs are notorious for being computationally expensive for most practical problems (Ulmer et al.

2020). Thus, we develop a heuristic solution approach framework that decomposes the problem into

tractable decision stages. This approach also enables us to explore the impact on picking performance

of alternative methods for the different stages (see Section 6 for computational results across the

resulting 12 different solution variants).

Our solution approach is designed so all cobots and dedicated pickers have an initial set and

sequence of stopping points and return times, and cobots have an expected amount of time to wait

before abandoning their currently assigned stopping point. Due to the high levels of uncertainty

associated with cobot and in-store customer synchronization times, a key feature of the heuristic is

to update these decisions as new information becomes available. Thus, in subsections that follow,

we first describe the approach to initialize the set, sequence, wave-time, and abandon triggers of

stopping points for each of the resources, and then how decisions are updated during the wave in

the face of the materialized synchronization times.

5.1. Initialization

As shown in Figure 2, the initialization block uses a decomposition approach where we first decide on

the assignment of stopping points to the set of resources. We then determine each resource’s initial

sequence of the assigned stopping points. Based on these sequences, we determine the wave-time

triggers for all resources, and the abandon triggers for all cobots. Lastly, we deploy the resources to

their first assignments.
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Figure 2 Initialization block for the heuristic approach

5.1.1. Determine Initial Picking Assignments: We take a holistic view of the wave’s pick-

ing tasks and different types of resources to determine the initial assignment of picking points to

resources that (i) balances the expected workload across picking resources, and (ii) captures that

cobots require different expected synchronization time for different stopping points, while dedicated

pickers require no synchronization time. To do so, at τ I(te = 0), we find the (initial) cluster of

stopping points v ∈ V r that each resource k ∈ K should visit by solving the Linear Integer Pro-

gram in (7)-(13). This program minimizes the maximum time expected to travel, wait, and pick all

items across the stopping points v ∈ V r and return back to the dropoff station. As minimizing the

exact traveling times within a cluster is computationally expensive (Nascimento et al. 2010), this

formulation is motivated by the MIP-Diameter problem (Sağlam et al. 2006), which minimizes the

maximum traveling distance within a cluster.

Inputs to our model include for each picking resource k ∈K, their expected waiting time ωkv (an

approximation of ω̄kv), their expected picking time at stopping point v ∈ V r denoted by svnv (sv is

an approximation of s̄v), and a surrogate travel time. The surrogate travel time, thkv, is calculated

as the average travel time spent by picking resource k ∈K from a v ∈ V r to all required stopping

points and stations V̂ \ {v} using equation (5) and (6).

thkv =

∑
j∈V̂ \{v} t

C
vj

|V̂ | − 1
∀v ∈ V r, k ∈C (5) thkv =

∑
j∈V̂ \{v} t

D
vj

|V̂ | − 1
∀v ∈ V r, k ∈D (6)

We define decision variables xkv having value 1 if picking resource k ∈K will initially be assigned

to visit v ∈ V r and 0 otherwise. Decision variables tMk express the expected amount of time by

picking resource k ∈K for their combined waiting, picking, and surrogate traveling, and decision

variable Z∆ expresses the expected amount of time the last resource will return back to the dropoff

station after completing their picking assignments.

min Z∆ (7)

s.t. Z∆ ≥ tMk ; ∀k ∈K; (8)

tMk =
∑
v∈V r

xkvωkv +
∑
v∈V r

xkvsvnv +
∑
v∈V r

thkvxkv; ∀k ∈K; (9)∑
k∈K

xkv = 1; ∀v ∈ V r; (10)
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xkv ∈ {0,1}; ∀v ∈ V r, k ∈K; (11)

tMk ≥ 0; ∀k ∈K; (12)

Z∆ ≥ 0. (13)

The objective function in (7) minimizes the maximum expected pick completion time across all

resources by enforcing in (8) that Z∆ be greater than or equal to tMk ∀k ∈K. The expected completion

time of each resource is a function of which v ∈ V r are assigned to which resource, as enforced

in (9). Constraints (10) ensure that each stopping point is assigned to one and only one picking

resource. Lastly, constraints set (11) ensure that all xkv hold only binary values, constraints set (12)

and (13) ensures non-negative values. After solving (7) - (13), we define the initial non-sequenced

assignments of stopping points for each picking resource k ∈K, denoted by V Λ
k , using (14).

V Λ
k = {v ∈ V r|xkv = 1} ∀k ∈K (14)

5.1.2. Determine Initial Sequences: We consider two alternatives to determine the initial

sequence of the assignments in V Λ
k ∀k ∈K. The first one prioritizes minimizing travel time ∀k ∈K

and the second alternative prioritizes visiting lower synchronization time points earlier ∀k ∈C.

Alternative 1: TSP-Based: The first alternative minimizes the travel time for each k ∈K by

solving a separate Traveling Salesman Problem (TSP) that sequences V Λ
k in terms of the minimum

travel time of their route that starts at vg and ends at vp.

Alternative 2: Ranking-Based: The ranking-based alternative sequences stopping points for

cobots in a descending manner of bvnv (or equivalently ascending order of expected wait times per

pick) for each v ∈ V Λ
k ∀k ∈C. Because all dedicated pickers have zero wait time, their sequences are

determined using a TSP-based approach (similar to alternative 1).

For both alternatives, the output is a sequenced set of stopping points denoted by Rk(te) =

{Rk1(te),Rk2(te), ...}∀k ∈K, where Rki(te) is the ith stopping point in the sequence updated at te.

We also define θk(te) as the current assignment for resource k updated at te in (15).

θk(te) =Rk1(te) ∀k ∈K (15)

5.1.3. Determine Initial Wave-Time Triggers: We set the wave time triggers for each

picking resource k ∈K so that all picking resources return to the dropoff station, vp, by T but no

earlier (unless all items have been picked). To do this, we denote the wave-time trigger for picking

resource k ∈K updated at time te as τ rk (te). This is set using equation (16) and (17), where tCθp and

tDθp are the travel time required from the current assignment θk(te) to vp for a cobot (tCθp), and a

dedicated picker (tDθp), respectively.

τ rk (te) = T − (tCθp) ∀k ∈C (16) τ rk (te) = T − (tDθp) ∀k ∈D (17)



Bhowmick, Pazour, and Dayarian: Dynamic Store Fulfillment with Collaborative Robots and In-Store Customers
12

Therefore, when the time τ rk (te) is reached at epoch e + 1, θk(te+1) is set to vp; that is, the

corresponding picking resource is sent to the dropoff station to ensure the resource arrives back by

the wavelength.

5.1.4. Determine Abandon Policy Triggers: As a result of stochasticity in synchronization

times, a cobot might end up waiting for a long period of time which reduces the time available to

retrieve the remaining items in the cobot’s sequence. To mitigate this risk, we create an abandonment

policy, where a cobot may abandon their current point because leaving and going to the next

stopping point provides a higher expected value of items picked and returned to the vp by T . To

quantify the value of such an abandon policy, we explore two solution approach variants: one with

and one without an abandon policy.

Alternative 1: Using Abandon Policy

To decide on the maximum waiting time a given cobot k ∈C should continue waiting at their current

stopping point θk(te), we develop a constrained optimization model that is solved independently

for each k ∈C. The decision variables are the allowable waiting times at stopping point v ∈Rk(te)

denoted as tϵv. Input parameters are nv, T , and te.

max
∑

v∈Rk(te)

Fvnv (18)

s.t.
∑

v∈Rk(te)

tϵv ≤ T − te; (19)

tϵv ≥ 0; ∀v ∈Rk(te). (20)

The objective function in (18) maximizes the expected number of items picked and returned

given the remaining time in the wave. Here, Fv denotes a function to calculate the probability of

at least one participating customer showing up within tϵv amount of time. In (19), the total waiting

allowed for all stopping points remaining in the resource’s sequence is the time remaining in the

wave. Lastly, constraints (20) enforce a non-negative waiting time at each v ∈Rk(te). Thus, at τ I ,

we solve (18)-(20) for all k ∈C and set the abandon trigger following equation (21).

τak (te) = te+ tϵθk(te) ∀k ∈C (21)

Alternative 2: No Abandon Policy: When the framework does not use an abandon policy,

we simply set the initial abandon triggers to the wavelength (i.e., τak (te) = T ∀k ∈C), and do not

update them during the wave.

5.1.5. Deploy Resources: The last step in initialization is to send all resources k ∈K to their

first assigned point, θk(τ I). This is action α3 which occurs at epoch e1. Then the solution approach

waits for a new triggering event.
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Figure 3 Updating decisions block for the heuristic approach

5.2. Updating Decisions

Whenever any triggering event occurs, we update decisions depending on which triggering event

was observed (see Figure 3). We denote the triggered resource at time te as kψ(te).

5.2.1. Triggered by a Pick Completion (τ ck or τdk ) :

After a pick completion trigger, the approach considers whether or not to move not-yet visited

picking locations among the set of resources. If the system reaches a pick completion trigger (i.e.,

τu = τ ck or τdk for any k ∈ K) at epoch e ∈ E, we first remove the picked stopping point from

the sequence of kψ and leave the other resources’ sequences as is. This results in the pre-decision

sequences Rq
k(te) given in equation (22).

Rq
k(te) =

{
Rk(te−1) \ {θk(te−1)} if k= kψ

Rk(te−1) if k ̸= kψ
(22)

Next, we follow the below-mentioned steps to transition from pre-decision sequences, Rq
k(te) to

post-decision sequence, Rk(te).

Step 1: Using equation (23) and (24), we calculate the expected pick completion time, tσk , for

each k ∈K, which is the sum of the travel time, the expected waiting time, and the expected picking

time at each v ∈Rq
k(te), added to the epoch’s trigger time te. Let, Rq

kN(te) denote the last stopping

point to visit in the sequence of k ∈K. Also, we calculate tQk , the slack time for each k ∈K, using

equation (25).

tσk =

R
q
k,N−1

(te)∑
i=R

q
k1

(te)

R
q
kN

(te)∑
j=R

q
k2

(te)

tCij +
∑

v∈Rq
k
(te)

ωkv +
∑

v∈Rq
k
(te)

svnv + te ∀k ∈C (23)

tσk =

R
q
k,N−1

(te)∑
i=R

q
k1

(te)

R
q
kN

(te)∑
j=R

q
k2

(te)

tDij +
∑

v∈Rq
k
(te)

ωkv +
∑

v∈Rq
k
(te)

svnv + te ∀k ∈D (24)
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tQk =max
k∈K

(tσk) − tσk ∀k ∈K (25)

Step 2: Identify two disjoint sets of resources: (i) resources to consider adding stopping points

(denoted as the set KH) and (ii) resources to consider removing stopping points (denoted as the set

Km). Any resource not in Km are resources with the potential for add stopping point(s), which we

define as KH =K \Km. The associated stopping points in the sequences of Km is denoted by V m

and defined by V m =
⋃

k∈Km
Rq
k(te) and the stopping points of KH is denoted by V H and defined by

V H =
⋃

k∈KH

Rq
k(te)

Km =

{
argmax
k∈K

(tσk) if |{k ∈K : tσk >T}|= 0

{k ∈K|tσk >T} if |{k ∈K : tσk >T}| ≥ 1
(26)

Step 3: Define set G which represents the set of detour positions within each sequence of a

resource k ∈KH . For instance, for any k ∈KH , the first detour position will be in between Rq
k1(te)

and Rq
k2(te).

Step 4: Solve the multi-objective Mixed-Integer Linear Programming (MILP) model in (27) to

(37) to determine the decision variable values: (i) xij which is 1 if stopping point i∈ V m is inserted

into position j ∈ G and 0 otherwise; (ii) tϕk which denotes the updated expected pick completion

time for picking resource k ∈K; and (iii) ZΓ which denotes the maximum value among all tϕk . Input

parameters are Bjk, which is 1 if stopping point j ∈G is in the sequence of k ∈KH and 0 otherwise, t+ij
which expresses the amount of additional expected time to account for adding stopping point i∈ V m

in the position j ∈G, (i.e., the expected detour time) which includes additional traveling, waiting

and picking time after insertion, and t−ik which denotes the amount of expected pick completion time

to be deducted from the sequence of picking resource k ∈Km if stopping point i∈ V m is moved to

another resource’s sequence.

min ZΓ (27)

min
∑
k∈K

tϕk (28)

s.t.
∑
i∈Vm

∑
j∈G

xijt
+
ijBjk ≤ tQk ; ∀k ∈KH ; (29)∑

i∈Vm

xij ≤ 1; ∀j ∈G; (30)∑
j∈G

xij ≤ 1; ∀i∈ V m; (31)∑
i∈Vm

∑
j∈G

xij ≤ 1; ; (32)

tϕk = tσk +
∑
i∈Vm

∑
j∈G

xijt
+
ijBjk; ∀k ∈KH ; (33)
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tϕk = tσk −
∑
i∈Vm

∑
j∈G

xijt
−
ik; ∀k ∈Km; (34)

tϕk ≤ZΓ; ∀k ∈K; (35)

tϕk ≥ 0; ; (36)

ZΓ ≥ 0. (37)

The primary objective function (27) minimizes ZΓ, which in conjunction with constraint set

(35) minimizes the maximum tϕk . When there are multiple optimal solutions all achieving the same

primary objective function value, then we prioritize solutions using the secondary objective function

(28), which minimizes the sum of all tϕk . Constraint set (29) ensures that the expected pick completion

time addition to picking resource k ∈KH does not exceed the limit of tQk . Constraint set (30) ensures

that each detour position is filled by at most one stopping point from V m. Similarly, constraints

set (31) ensures that each stopping point in V m is reallocated into at most one detour position.

The set of constraints (32) limits the amount of total reallocations performed to only one and this

constraint is our source of creating alternative methods. The updated expected pick completion

time is calculated in constraint set (33) for the resources in KH and (34) for resources in Km.

Lastly, inequalities (36) and (37) ensure non-negative values of decision variables. In our solution

framework, we consider three different alternatives:

• Alternative 1: S: Single Reallocation: We use constraints (32) to limit the total number

of reallocations to one.

• Alternative 2: M: Multiple Insertion: We do not use constraints (32) to allow for more

than one reallocations.

• Alternative 3: Z: Zero Updates: No reallocations are made.

After solving, the MILP (27) - (37), we get the optimal values of xij. For each values of xij = 1, we

perform two operations: (i) we insert i∈ V m to the position of j ∈G and (ii) we remove i∈ V m from

the corresponding sequence of k ∈Km to reconstruct the pre-decision sequences, Rq
k(te) ∀k ∈K, and

achieve post-decision sequences Rk(te) ∀k ∈K. Lastly, we update the abandon triggers τak (te)∀k ∈C

where Rk(te) ̸= Rq
k(te) by solving the constrained optimization model in (18) - (20) and then set

τak (te) following equation (21). Additionally, the wave-time triggers τ rk (te) for kψ(te) are also updated

following equation (16) or (17).

5.2.2. Triggered by wave-time trigger τ rk : Whenever the picking system reaches a wave-

time trigger τu = τ rk for any picking resource k ∈K, kψ(te) is instructed to return to vp, hence θk(te)

= vp for kψ(te). Here, kψ(te) not only has to travel to vp if it was waiting there for synchronization

but also if it was in the process of picking item(s). Therefore, a stopping point v ∈Rk(te) may have

a fraction of nv picked by a resource.
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5.2.3. Triggered by abandon trigger τak (te): Whenever τu = τak for any k ∈ C, we update

the amount of time we should wait at θk(te−1) for kψ(te) based on the abandon policy in Section

5.1.4 and update τak following equation (38). Additionally, Rk(te) for kψ(te) also gets updated using

equation (39). This is then followed by updating the current assignment θk(te) of resource kψ(te)

using equation (15) and updating the wave-time trigger using equation (16) or (17). If the cobot is

instructed to stop waiting at Rk1(te−1) (i.e., tϵv = 0), the abandoned stopping point, denoted by va(te)

gets added to the end of any picking resource’s sequence providing the least increase of maximum

expected pick completion time, following equation (40). And we do not recalculate the abandon

trigger after adding this point (as this stopping point had already been given the opportunity to

synchronize).

τak (te) =

{
te+ tϵv|v=Rk1(te−1) if tϵv > 0|v=Rk1(te−1)

te+ tϵv|v=Rk2(te−1) if tϵv = 0|v=Rk1(te−1)
(38)

Rk(te) =

{
Rk(te−1) if tϵv > 0|v=Rk1(te−1)

Rk(te−1) \Rk1(te−1) if tϵv = 0|v=Rk1(te−1)
(39)

Rk(te) =Rk(te−1)∪ va : min
(
max(tσk∀k ∈K) at te−max(tσk∀k ∈K) at te−1

)
(40)

5.2.4. Triggered by pick finish trigger τ f : This trigger is only set off when all picking

resources are assigned to travel to the dropoff station, whether by completing all the assigned picks

for the wave, N , or being sent to vp as a result of one or more τ rk . For any of these two scenarios,

when the algorithm finds θk(te) = vp ∀k ∈K, we terminate the algorithm.

6. Computational Experiments

We design our computational experiments to answer the following questions a store might have prior

to deploying a cobot fulfillment strategy: (1) How much advantage is there to deploying dynamic

vs static assignment policies? (2) In which situations is there value in a store deploying a cobot

abandon policy? (3) How does the allowed number of reallocation of stopping points impact picking

performance? (4) How are picking tasks distributed among the dedicated pickers and the cobots?

(5) How does the participation rate of in-store customers affect such policies? (6) Are our solution

approaches computationally tractable for decision-making in practical settings? (7) Which policy

should a store utilize? (8) How many cobots are needed to replace one dedicated picker? And lastly,

(9) Is the proposed approach economically viable?

To answer these questions, we evaluate the performance of our policy variants on a set of compu-

tational experiments that integrate actual online order data, store layouts and empirical consumer

shopping behavior data. Our primary performance indicator is calculated by ρ = nP

N
representing

the percentage of items released at the beginning of the wave that are picked and returned back to
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the vp by the end of the wave. Here, nP denotes the number of total items picked and returned to

vp within T across all resources.

We use a three-letter acronym to denote each of the policy variants, with the first letter referring

to the initial sequencing alternative (R - Ranking, T - TSP) (Section 5.1.2), the second letter for

abandon policy (A - Abandon policy, N - No abandon policy) (Section 5.1.4), and the third letter

for the updating alternative (S - Single Insertion, M - Multiple Insertion, Z - Zero updates) (Section

5.2.1). This leads to 12 different policy variants (See Table 1 for a summary of these variants and

their features). Notably, the variants ending with NZ are static variants that make initial decisions

at the beginning of the wave and do not update these decisions throughout the wave.

The computational experiments use the grocery store layout described in Hui et al. (2009), and

empirical online order data from Instacart (2017). We map the product categories in the Instacart

data set to the zones in Hui et al. (2009)’s store layout, and assume each of the 134 product

categories corresponds to a stopping point (i.e., |V s|= 134) (see Appendeix C). We set 0.6 m/s (Lee

and Murray 2019) as the traveling speed of the dedicated human pickers traveling with a picking

cart. For the cobots, in a warehouse environment usually 0.9-1.0 m/s is considered safe (Barcoding

Inc. 2019); however, as our cobots will be operating in a retail environment, we set 0.4 m/s as the

average cobot traveling speed. Combining these speeds with the layout and distances in Hui et al.

(2009), we obtain tCij and tDij . Furthermore, we consider the mean per item picking time to be the

same for all product categories and set sv = 25 seconds ∀v ∈ V s,∀k ∈K, which captures both the

searching and picking time once a dedicated or in-store customer is at the stopping point (Zhang

et al. 2023, Tompkins et al. 2010). Finally, we set the wavelength to be 30 minutes, i.e., T = 1800

seconds.

We generate 10 different order profile instances (see Appendix D), using actual online order data

from Instacart (2017). These instances represent multiple different orders that have been assigned

to be picked in a wave. The instances have varying levels of items to be picked, and we arranged

them in ascending order of N (i.e., instance 1 has the lowest N and instance 10 the highest). In

addition to differences in variations in the number of items to pick N , each instance differs in the

set of stopping points to be visited (V r) and the number of items to be picked from each stopping

point (nv).

The mean arrival rates of in-store customers willing to help with fulfillment at stopping point

v ∈ V s, denoted by λv is given in (41). This assumes in-store customers arrive at the store and

then visit subsequent stopping points for their own shopping following a Poisson process. Here, nζ

is the average number of customer arrivals to the store, bv is the average purchase rate by in-store

customers at stopping point v ∈ V r, and f denotes the estimated average participation rate from

in-store customers in helping the cobots. We use (42) to estimate the expected waiting time for
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a cobot at a stopping point, ωkv, which also relies on input dv, the average dwell time of in-store

customers at the area covered by v ∈ V r. Here, nζ is estimated to be about 192 customers per hour

on average for Walmart stores (Thomas Ozbun 2023, Walmart 2023b, Kelly Tyko 2021), and bv and

dv are estimated from empirical data in Hui et al. (2009).

λv =
nζfbv
T

∀v ∈ V r (41)

ωkv =
1

λv
− dv ∀v ∈ V r, k ∈K (42)

Thus, we transform Fv in (18) in the abandon policy as Fv = 1−eλvt
ϵ
v which is the Poisson Cumu-

lative Distribution Function for at least one participating in-store customer showing up. This makes

(18)-(20) a non-linear programming model, which we solve using the Sequential Least Squares Pro-

gramming (SLSQP) method (Kraft 1988). This is a gradient-based method that has been shown to

produce high quality solutions quickly (Sahin 2019). This non-linear optimization approach requires

an initial solution, and we set the initial solution using equation (43).

tηv =
( bvnv∑

v∈Rk(te)
bvnv

)
(T − te) ∀v ∈Rk(te) (43)

We consider different rates of participating customers, specifically, considering 100, 125, 150, and

175 expected participating customers out of the 192 mean arrival of customers to the store. This

results in 4 levels of f = 52%,65%,78%, and 91%. For each level of f , we generate 100 random

instances of in-store customer arrival to each v ∈ V s.

We solve TSPs for cobots (Section 5.1.2) following a column generation method where at each

iteration a master problem as well as a subproblem is solved optimally following a bidirectional

labeling algorithm with dynamic halfway points (Tilk et al. 2017) which had quick convergence.

As dedicated pickers get assigned more v ∈ V r compared to cobots as a result of no waiting time,

following the same method had slow convergence. Thus, we followed a compound method where we

take the best result out of an algorithm described by Santini et al. (2018) and Clarke and Wright

saving algorithm (Clarke and Wright 1964) to determine the initial sequence for dedicated pickers.

Lastly, we ran our experiments on a computer with processor Intel(R) Core(TM) i7-10510U CPU

@1.80GHz to 2.30 GHz, 32.0 Gb of memory, Windows 11 Pro 64-bit, solver version Gurobi 10.0.1,

and Python 3.11.5.

6.1. Benchmarks

For comparison purposes, we provide the pick performance achieved when a store does not deploy

any cobots, but instead has 1, 2, 3, or 4 dedication pickers (denoted as a resource mix C0D1, C0D2,

C0D3, and C0D4, respectively). To determine the results with only dedicated pickers, we determine
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the initial picking assignments as described in Section 5.1.1 and then sequence them using the TSP-

based initial sequencing policy in Section 5.1.2. These decisions do not require updating because,

with dedicated pickers, the work is controllable and does not change over the wave. As shown in

Table 2, 1 dedicated picker (C0D1) is unable to achieve ρ= 100% in any of the instances. As we

increase the number of dedicated pickers we can achieve ρ= 100% for the lower N instances only. To

achieve ρ= 100% across all instances requires 4 dedicated pickers. To deploy the same total number

of resources and to answer our first seven questions, in the next subsections we utilize a resource

mix with 3 cobots and 1 dedicated picker (i.e., a C3D1 mix). And in Table 2 we also display the

average percent picked (i.e., ρ) across each of the 10 instances, and for each of 12 variants.

Variants
Decision Stage Alternatives RAS RAM RAZ RNS RNM RNZ TAS TAM TAZ TNS TNM TNZ

Initial
Sequencing

Ranking(R) x x x x x x
TSP(T) x x x x x x

Abandon
Policy

Yes(A) x x x x x x
No(N) x x x x x x

Updating
Sequences

with reallocation(s)

Single(S) x x x x
Multiple(M) x x x x
Zero(Z) x x x x

Table 1 Decision alternatives and resulting variants

K C0D1 C0D2 C0D3 C0D4 C3D1
Instances RAM RAS RAZ RNM RNS RNZ TAM TAS TAZ TNM TNS TNZ
1 75.00% 100.00% 100.00% 100.00% 99.27% 99.33% 93.22% 99.23% 99.30% 93.22% 95.52% 95.48% 90.60% 94.98% 94.89% 90.05%
2 61.11% 100.00% 100.00% 100.00% 99.58% 99.65% 95.42% 99.56% 99.65% 95.42% 96.30% 96.47% 93.52% 96.29% 96.47% 93.57%
3 62.96% 95.06% 100.00% 100.00% 96.77% 98.21% 91.11% 96.77% 98.21% 91.11% 93.72% 93.65% 87.81% 93.60% 94.02% 87.77%
4 64.71% 95.29% 100.00% 100.00% 94.78% 96.55% 87.75% 94.59% 96.48% 87.75% 88.30% 89.55% 77.26% 87.64% 88.52% 75.44%
5 49.44% 94.38% 100.00% 100.00% 95.15% 96.88% 86.84% 95.13% 96.85% 86.84% 94.76% 93.80% 81.35% 94.66% 96.12% 80.10%
6 60.00% 92.00% 100.00% 100.00% 92.73% 94.54% 86.33% 92.69% 94.50% 86.33% 92.41% 86.00% 79.87% 92.15% 90.21% 78.90%
7 44.34% 84.91% 100.00% 100.00% 84.36% 85.77% 78.08% 84.28% 85.74% 78.08% 81.03% 81.50% 70.97% 80.87% 80.75% 70.00%
8 54.70% 85.47% 100.00% 100.00% 91.93% 93.48% 84.43% 91.90% 93.45% 84.43% 88.79% 90.61% 75.44% 88.67% 90.41% 74.57%
9 44.00% 74.40% 96.80% 100.00% 81.39% 81.37% 81.52% 81.08% 81.16% 81.52% 78.48% 76.60% 73.34% 77.75% 76.51% 71.34%
10 41.35% 74.44% 95.49% 100.00% 78.70% 81.81% 77.20% 78.58% 81.72% 77.20% 73.79% 71.58% 71.33% 73.32% 72.75% 70.14%
Overall 55.76% 89.60% 99.64% 100.00% 91.46% 92.76% 86.19% 91.38% 92.71% 86.19% 88.31% 87.52% 80.15% 87.99% 88.07% 79.19%

Table 2 Average percent picked (ρ) for dedicated only benchmark policies and for the 12 solution variants with 3

cobots and 1 dedicated picker.

6.2. Effect of a Dynamic vs. a Static Policy

First, we explore the impact of a store dynamically updating its resource allocation decisions within

a wave. To do so, in Figure 4(a), we display the difference in the performance of a dynamic policy

(i.e., the variants that end in either S or M which make updates after a pick completion trigger τ ck

or τdk ) to their static counterpart that make and fix decisions at the beginning of the wave (i.e.,

the variants that end in Z). A positive difference means the dynamic reallocation policy performs

better than its static counterpart. In Figure 4(a), all differences are positive, which means that a

dynamic update of resource allocation is always beneficial. On average, a dynamic approach can

provide improvements of 5.10% (across all instances) and is more valuable when a TSP-based initial
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sequencing policy is used versus a ranking-based initial sequencing policy. In addition to variant

influences, the characteristics of the instances also influence the improvement values, and we find

that improvement across all instances can range from 0.25% to 16.02%.

INSIGHT 1: Picking performance rates can be increased on average by 5.10% by dynamically

updating decisions at each pick completion triggering event, rather than only making assignment

decisions at the beginning of each wave, and the improvements are more pronounced for policies that

use a TSP-based initial sequencing policy rather than a ranking-based one.

Figure 4 From left to right, change in ρ of (a) dynamically updating resource allocations, and (b) using a cobot

abandon policy.

6.3. Effect of Cobot Abandon Policy

In Figure 4(b) we plot the improvement of performance from policies with an abandonment policy

(second letter A) minus those without an abandonment policy (second letter N). For the R-variants,

the decision to abandon or not has little impact on ρ. However, for the T-variants the impact is

higher and the highest positive impact is achieved for TAZ-TNZ (with around a 0.95% average

improvement). Such performance is significantly more efficient if the abandon policy is coupled with

a dynamic reallocation after pick completion trigger policy (i.e., S or M) as TAM and TAS both

have higher ρ than TAZ in Table 2. The number of abandon triggers as well as abandonment events

are low in general, but more abandonment events occur for T-variants (TAZ-3578, TAM-884, TAS

- 762) than R-variants (RAM - 775, RAS - 420, RAZ - 0). The numbers are for total abandonment

events across all instances, which represents 4,000 waves, and thus, even the variant with the highest

number of abandonment events had fewer than one event per wave.

INSIGHT 2: A cobot abandonment policy impacts the picking performance if the store deploys

resources in a way that prioritizes minimizing travel distances (e.g., for policies using TSP for initial

sequencing) and when such abandonment policies are combined with updating resource allocation

after pick completion events. Yet, if a store deploys resources that prioritize cobot synchronization

times, an abandonment policy is so seldom needed that its implementation is likely not practically

warranted.
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Figure 5 Effect of reallocation number at pick completion trigger for C3D1

6.4. Effect of Number of Reallocations at Pick Completion Trigger

Next, we explore the impact on pick performance of allowing single versus multiple reallocations of

stopping points among picking resources after a pick completion trigger, i.e., after a τ ck or τdk trigger.

This is captured by the third letter in our variants, where a single insertion (S) allows at most one

stopping point to be moved from a picking resource to another picking resource (see (32)), whereas

(M) allows unlimited reallocations (as (32) is removed from the optimization model). To capture

the effect of these contrasting policies we plot in Figure 5 the average ρ of the single(S) variant

minus its multiple(M) counterpart variant; thus, positive values mean the S-variant performed better

than its M-variant counterpart. S-variants perform better when coupled with ranking-based initial

sequencing. Yet, multiple insertions are preferred when coupled with a TSP-based initial sequencing

and an abandon policy (TAS-TAM). In the case of no abandonment policy and a TSP-based initial

sequencing (TNS-TNM), multiple and single reallocations perform similarly.

INSIGHT 3: Exchanging only a single picking point among resources after a pick completion

trigger provides performance benefits compared to multiple reallocation alternatives when coupled with

ranking-based initial sequencing. On the contrary, allowing multiple picking points to be exchanged

is beneficial after a pick completion trigger if coupled with a TSP-based initial sequencing approach

and a cobot abandon policy.

6.5. Workload Distribution Among Resources

Next, to better understand how cobots are utilized, we explore how work is distributed among the

dedicated picker and the cobots. To do so, in Figure 6, we plot the cobot’s picking utilization, which

is the ratio of items picked by all k ∈C and the total items picked in a wave by all k ∈K, and the

cobot’s visiting utilization, which is the ratio of v ∈ V r visited by all k ∈ C and all v ∈ V r visited

by all k ∈K. The complement of these values is the utilization for the single dedicated resource.
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Figure 6 Utilization of cobots across all variants for C3D1 mix

f RAM RAS RAZ RNM RNS RNZ TAM TAS TAZ TNM TNS TNZ
52% 88.89% 90.00% 85.31% 88.84% 89.95% 85.31% 83.21% 82.45% 72.55% 82.90% 82.01% 71.75%
65% 90.52% 92.04% 86.19% 90.50% 91.99% 86.19% 86.69% 85.95% 79.66% 86.36% 86.77% 78.95%
78% 92.69% 94.32% 87.12% 92.55% 94.28% 87.12% 92.19% 91.32% 85.43% 92.01% 92.32% 84.66%
91% 93.76% 94.67% 86.14% 93.63% 94.59% 86.14% 91.15% 90.37% 82.97% 90.69% 91.17% 81.39%

Table 3 Effect of increasing participation rate across variants

Across the variants, the three cobots were used to pick around 60% of all items by visiting around

40% of the stopping points. As our variants prioritize cobots being assigned to stopping points with

high number of picks and low expected waiting time, across all variants, cobot’s picking utilization

is higher than it’s visiting utilization. This leads to our next insight:

INSIGHT 4: Stores can expect a significant amount of the picking tasks to be accomplished by

cobots synchronizing with in-store customers: on average, across our experiments, three cobots picked

around 60% of the items, resulting in the dedicated picker’s workload to be the remaining 40%.

6.6. Effect of Participation Rate of In-Store Customers

In this section, we explore the impact of participating in-store customers on the variants’ achieved

picking performance. Table 3 breaks down ρ by participation rate. As the rate of participating

customers increases, the picking rate also increases. And for the R-variants with dynamic reallocation

policies after pick completion trigger (RAS, RAM, RNS, RNM), we observe an increase of picking

performance as f increases. However, for the other 8 variants when f = 91% the ρ values decrease

slightly compared to f = 78%. For variants prioritizing minimizing traveling times or ones that do

not make dynamic updates (i.e., reallocations), with such high participation rates, their decisions

are made expecting a low average cobot synchronization time, but due to the uncertainty in the

system, this, in many instances, is too optimistic, resulting in lower average picking performance.

However, when R-variants are coupled with dynamic reallocation of stopping points, this risk is

avoided and so increased expected participation rates, does not hurt ρ values.

INSIGHT 5: Ranking-based initial sequencing policies with dynamic reallocation methods are rec-

ommended for high in-store customer participation rates.
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Figure 7 Boxplots of solving time in seconds for C3D1 instances across all 12 variants, broken down by decision stage.

6.7. Computational Time

We capture the computational time in seconds for five decision stages - clustering, sequencing, pick

completion trigger, abandon trigger, and wave-time trigger (see Figure 7). Except for sequencing,

the other four stages gets solved under a second, regardless of variant type. The sequencing stage

requires the highest computational effort and there are large differences in computational time based

on which variant is used. Even with sequential computations for each resource, the computational

time for sequencing is less than 7 seconds for the R-variants, and less than 14 seconds for the T-

variants. If further reductions are needed, parallel processing across resources can further reduce

computational times.

INSIGHT 6: The proposed solution approaches are computationally tractable for deployment in

practical settings.

6.8. Recommended Policy Variants

RAS achieves the highest average pick rate and is the best variant in 9 out of 10 instances (see

Table 2). This is a policy that creates initial cobot sequences based on ranking stopping points in

descending order of expected per-pick waiting times, uses an abandonment policy, and reallocates

the best single stopping point dynamically. The R-variants consistently achieve improved ρ values

compared to their counterpart T-variants, with average improvements ranging from 0.32% to 12.31%

across the instances. As previously discussed, the store can expect a higher pick rate with this policy

when there are higher rates of customers willing to participate or more customers in the store.

INSIGHT 7: Ranking-based initial sequencing policies of cobot assignments where waiting time

per pick is arranged in an ascending manner results in higher pick rates than ones that create initial

sequences based on minimizing total travel time.

Thus, in the remaining computational experiments, we utilize the best-performing variant, RAS.
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Figure 8 Pick performance comparison with and without cobots

6.9. Reduction in Labor Requirements with Cobots

While a store should not expect to achieve the same level of performance by replacing a dedicated

picker with a cobot (due to slower travel times and stochastic synchronization times), stores can

expect high performance in systems where multiple cobots augment the work of a single dedicated

picker (see Table 2). Our next set of experiments are interested in understanding how many cobots

are needed to replace one dedicated picker. To do so, we are interested in determining how many

cobots are needed to augment the work of a single dedicated worker to achieve the same level of ρ as a

system with 2 dedicated pickers but no cobots (i.e., with C0D2). Thus, we run additional experiments

deploying the RAS variant with the previously defined 10 order profile instances, considering the 4

f levels, and for 100 different customer arrival patterns. Figure 8 plots ρ for different cobot levels

and different in-store customer rates f . As we increase the number of cobots to assist with the

picking task of one dedicated picker, the ρ value increases. A system with 2 dedicated pickers (and

no cobots) achieved ρ= 87.45%. This performance can be matched with one less dedicated picker

and 2 cobots if f = 91% or with 3 cobots if participating rates are lower. A similar observation

about C3D1 achieving equivalent performance can also be made by looking at ρ values across 10

instances (see Appendix B)

INSIGHT 8: Three cobots and a single dedicated picker can achieve equivalent picking performance

as two dedicated pickers.

6.10. Economic Analysis

Lastly, we explore the economic benefit of deploying C3D1 resource mix instead of C0D2 resource

mix and identify after what time period C3D1 is more beneficial than C0D2. While robotic solutions

tend to have high initial costs (Marc Wulfraat 2023), there are now subscription services for cobots,
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Figure 9 Economic analysis of deploying only dedicated pickers versus investing in cobots via either direct purchase

or a subscription model.

where the store would not have to pay large upfront investment costs (Forrester Research 2019). We

consider both investment scenarios: (i) a store purchases the cobots upfront and (ii) a store utilizes

a subscription model. For the first option, we consider a per cobot purchasing cost of $35,000(Marc

Wulfraat 2023), and annual maintenance of 20% of purchase cost (Lucas Systems 2020). For the

second option, we consider a monthly subscription of $950 per cobot (Forrester Research 2019). For

both options, we also consider a one time deployment fee of $75,000 and a one time integration

costs of $50,000, as well as 2 hours of required training per year for each of the 12 cross-trained

employees (average small team size) responsible for interacting with the cobot (Drew Holler 2021),

and risk adjusted discount of 10% (Forrester Research 2019). For the dedicated pickers, we consider

a hourly wage of $17.50 (Walmart 2023a), a legally required benefit per hour per employee of $2.80

(Bureau of Labor Statistics 2023), and assume the store is open 17 hours per day and 363 days per

year (Kelly Tyko 2021).

Figure 9 plots the risk-adjusted cumulative costs in USD for three cases: C0D2 (the status quo

of store fulfillment), C3D1 with a subscription model and C3D1 with a purchase model. Initially

(beginning of year 1, referred to as year 0), the purchase model cost is higher than the subscription

model and the benchmark status quo case without cobots. Yet, the subscription model achieves

positive cost savings over the benchmark dedicated only case in about a year, whereas the purchase

model achieves cost savings in just over two years.

INSIGHT 9: Deploying cobots to augment dedicated pickers is an economically viable solution

whether the store utilizes a subscription based model or purchases the cobots.

7. Conclusions and Future Research Directions

To address the challenges associated with the increasing demand for online grocery services, we pro-

posed a dynamic order-picking policy where cobots synchronize with stochastically arriving in-store

customers to augment the picking tasks of manual dedicated pickers. After modeling the problem
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as a Markov Decision Process, we designed a heuristic solution framework that a store could use to

decide on alternatives at different stages of the decision-making process. Computational experiments

using actual online grocery order and empirical shopping behavior data illustrates the feasibility of

such a policy to achieve similar picking performance as the status quo (which is to deploy a limited

set of dedicated pickers). However, performance varies based on the resource mix, initialization,

abandon policy, updating policies, and environmental factors like participating in-store customers.

Cobot assignments where waiting time per pick is arranged in an ascending manner result in higher

pick rates than ones that create initial routes based on minimizing total travel time. Dynamic

updates of resource allocation at pick completion events can help the store to achieve higher picking

performance. While the cobot abandon policy insignificantly improves performance for ranking-

based initially sequenced variants, such a policy has a higher positive impact when combined with

TSP-based initial sequencing policy followed by dynamic reallocation policies. Similarly, exchanging

only a single picking point among resources provides higher performance for ranking-based initial

sequencing, yet, allowing multiple points shows better outcomes for TSP-based initial sequencing

policies. Additionally, when there are high participation rate from in-store customers, ranking-based

initial sequencing policies are preferred. Such policies are found to be computationally tractable for

practical purposes, and can help the store to offload a significant amount of tasks to cobots. We

find that three cobots and one dedicated picker can perform equivalently as two dedicated pickers,

and this resource mix is economically viable.

As the first research to study order-picking policies using cobots and in-store customers in a

retail store, there are numerous future research directions. First, we considered a wave-based policy,

future research can be directed towards policies in wave-less systems, as well as investigating policies

that consider multiple consecutive waves. More research is needed to better understand in-store

customers’ interests to participate, as well as their behavior, and performance in the proposed

system. Lastly, this work considered the layout and facility design to be fixed; future research could

jointly optimize other decisions, such as inventory, store shelf design, and item allocation, or even

re-design the facility to more efficiently deploy such policies.
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Appendix A: Categorizing and Defining Transition Probabilities

We categorize the transition probabilities into two types. One is to transition to a pick completion state

se+1 by reaching either τ c
k or τd

k . The second type is to transition to a non-pick completion state se+1 by τ r
k

or τa
k . The first type transitions with the probability that a specific picking resource k ∈K completes the

required number of picks (nv) at their currently assigned stopping point before the other deployed picking

resources. For any γ ∈K this probability is calculated from three-time components: (1) travel time from the

current stopping point location, ∂γ , to the next assigned stopping point location, θγ , denoted as tC∂θ ∨ tD∂θ,

(2) uncertain waiting time at θγ denoted as ω̄γθ , and (3) uncertain picking time at θγ denoted as s̄γθ. The

travel time component can be of value 0 if any γ ∈K in the system has already reached θγ . Similarly, if

synchronization with an in-store customer at θγ has already occurred for a cobot, ω̄γθ = 0. However, to define

the probability of pick completion of γ ∈K, we must also take into account the probability of any τ r
k or a

τa
k happening before the pick completion of γ ∈K. Thus, the transition probability at decision epoch e of

a picking resource γ ∈K completing nv picks at θγ before the other picking resources pick completion and

other triggers can be defined simply by (44) and in detail by (45) for any k ∈C and (46) for any k ∈D.

δpγe = probability
[
(pick completion by γ ∈K before pick completion by k ∈K \ γ),

(pick completion by γ ∈K before wave-time trigger by any k ∈K),

(pick completion by γ ∈K before abandon trigger by any k ∈K)
] (44)

δpCγe = probability
[
(tC∂θ + ω̄γθ + s̄θ + te) for γ ∈C < (tC∂θ + ω̄γθ + s̄θ + te)∀k ∈C \ {γ},

(tC∂θ + ω̄γθ + s̄θ + te) for γ ∈C < (tD∂θ + ω̄γθ + s̄θ + te)∀k ∈D,

(tC∂θ + ω̄γθ + s̄θ + te) for γ ∈C < (T − tCθp)∀k ∈C,

(tC∂θ + ω̄γθ + s̄θ + te) for γ ∈C < (T − tDθp)∀k ∈D,

(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (te|τu = τa
k )∀k ∈K

]
(45)
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δpDγe = probability
[
(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (tD∂θ + ω̄γθ + s̄θ + te)∀k ∈D \ {γ},

(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (tD∂θ + ω̄γθ + s̄θ + te)∀k ∈C,

(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (T − tCθp)∀k ∈C,

(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (T − tDθp)∀k ∈D,

(tD∂θ + ω̄γθ + s̄θ + te) for γ ∈D< (te|τu = τa
k )∀k ∈K

]
(46)

The second type is the probability of reaching the wave-time trigger τ r
γ of picking resource γ ∈K before

any other any other τ r
k∀k ∈ K \ {γ}, any pick completion trigger, and any abandon trigger. This can be

simplified by finding out the probability of the earliest wave-time trigger happening before any resource

completes a pick and before any τa. In other words, it would be the probability of reaching state se+1 from

state se, such that the remaining time in the wave (T − te+1) would be equal to the maximum of the travel

time from current stopping point ∂γ to the dropoff station vp∀k ∈K. Hence, this probability can be defined

by equation (47).

δre = probability
[
T −max (tCθp ∀k ∈C, tDθp ∀k ∈D)< (tCθp + ω̄kθ + s̄θ + te) ∀k ∈C,

T −max (tCθp ∀k ∈C, tDθp ∀k ∈D)< (tDθp + ω̄kθ + s̄θ + te) ∀k ∈D,

T −max (tCθp ∀k ∈C, tDθp ∀k ∈D)< (te|τu = τa
k )∀k ∈K

] (47)

Lastly, the transition probability for having a triggering event of type τa
k for resource γ ∈K can also be

defined in a similar manner by (48)
δaγe = probability

[
(te|τu = τa

γ )< (tCθp + ω̄kθ + s̄θ + te) ∀k ∈C,

(te|τu = τa
γ )< (tDθp + ω̄kθ + s̄θ + te) ∀k ∈D,

(te|τu = τa
γ )<T −max (tCθp ∀k ∈C, tDθp ∀k ∈D),

(te|τu = τa
γ )< (te|τu = τa

k )∀k ∈K \ {γ}
]

(48)

Appendix B: Picking performance across instances

Instances/K C1D1 C2D1 C3D1 C4D1 C0D1 C0D2
1 95.79% 88.51% 99.33% 99.28% 75.00% 100.00%
2 78.66% 99.44% 99.65% 99.74% 61.11% 100.00%
3 84.53% 92.64% 98.21% 98.68% 62.96% 95.06%
4 82.26% 92.66% 96.55% 98.02% 64.71% 95.29%
5 79.69% 91.09% 96.88% 98.20% 49.44% 94.38%
6 70.42% 82.85% 94.54% 97.72% 60.00% 92.00%
7 72.88% 75.27% 85.77% 93.38% 44.34% 84.91%
8 74.67% 85.78% 93.48% 96.58% 54.70% 85.47%
9 64.27% 72.74% 81.37% 89.08% 44.00% 74.40%
10 62.72% 70.96% 81.81% 87.23% 41.35% 74.44%

Table 4 Picking performance across instances for increasing cobots with one dedicated picker compared to

benchmark resource mix
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Appendix C: Stopping Point to Product Category Mapping

Stopping
Point
Number

Product Category
Stopping
Point
Number

Product Category
Stopping
Point
Number

Product Category

1 prepared soups salads 46 mint gum 91 soy lactosefree
2 specialty cheeses 47 vitamins supplements 92 baby food formula
3 energy granola bars 48 breakfast bars pastries 93 breakfast bakery
4 instant foods 49 packaged poultry 94 tea
5 marinades meat preparation 50 fruit vegetable snacks 95 canned meat seafood
6 other 51 preserved dips spreads 96 lunch meat
7 packaged meat 52 frozen breakfast 97 baking supplies decor
8 bakery desserts 53 cream 98 juice nectars
9 pasta sauce 54 paper goods 99 canned fruit applesauce
10 kitchen supplies 55 shave needs 100 missing
11 cold flu allergy 56 diapers wipes 101 air fresheners candles
12 fresh pasta 57 granola 102 baby bath body care
13 prepared meals 58 frozen breads doughs 103 ice cream toppings
14 tofu meat alternatives 59 canned meals beans 104 spices seasonings
15 packaged seafood 60 trash bags liners 105 doughs gelatins bake mixes
16 fresh herbs 61 cookies cakes 106 hot dogs bacon sausage
17 baking ingredients 62 white wines 107 chips pretzels
18 bulk dried fruits vegetables 63 grains rice dried goods 108 other creams cheeses
19 oils vinegars 64 energy sports drinks 109 skin care
20 oral hygiene 65 protein meal replacements 110 pickled goods olives
21 packaged cheese 66 asian foods 111 plates bowls cups flatware
22 hair care 67 fresh dips tapenades 112 bread
23 popcorn jerky 68 bulk grains rice dried goods 113 frozen juice
24 fresh fruits 69 soup broth bouillon 114 cleaning products
25 soap 70 digestion 115 water seltzer sparkling water
26 coffee 71 refrigerated pudding desserts 116 frozen produce
27 beers coolers 72 condiments 117 nuts seeds dried fruit
28 red wines 73 facial care 118 first aid
29 honeys syrups nectars 74 dish detergents 119 frozen dessert
30 latino foods 75 laundry 120 yogurt
31 refrigerated 76 indian foods 121 cereal
32 packaged produce 77 soft drinks 122 meat counter
33 kosher foods 78 crackers 123 packaged vegetables fruits
34 frozen meat seafood 79 frozen pizza 124 spirits
35 poultry counter 80 deodorants 125 trail mix snack mix
36 butter 81 canned jarred vegetables 126 feminine care
37 ice cream ice 82 baby accessories 127 body lotions soap
38 frozen meals 83 fresh vegetables 128 tortillas flat bread
39 seafood counter 84 milk 129 frozen appetizers sides
40 dog food care 85 food storage 130 hot cereal pancake mixes
41 cat food care 86 eggs 131 dry pasta
42 frozen vegan vegetarian 87 more household 132 beauty
43 buns rolls 88 spreads 133 muscles joints pain relief
44 eye ear care 89 salad dressing toppings 134 specialty wines champagnes
45 candy chocolate 90 cocoa drink mixes

Table 5 Stopping point number and its mapped product category
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Appendix D: Order Profiles

Instance
No Order Profile - (Stopping Point Number, Number of items to pick) N |V r|

1 (1, 1), (4, 1), (16, 1), (19, 1), (21, 2), (24, 7), (26, 4), (32, 1), (37, 1), (45, 1), (54, 2), (57, 2), (64, 1), (74, 1), (78, 3),
(81, 1), (83, 7), (86, 1), (93, 1), (98, 3), (100, 1), (101, 1), (108, 1), (115, 5), (120, 3), (121, 1), (123, 4), (127, 1), (129, 1) 60 30

2
(16, 2), (19, 1), (20, 1), (21, 3), (24, 7), (26, 2), (31, 3), (36, 1), (37, 2), (42, 1), (53, 1), (75, 1), (77, 3), (78, 1),
(83, 11), (84, 4), (86, 4), (107, 1), (109, 1), (110, 1), (112, 2), (114, 1), (115, 2), (120, 4), (121, 2), (123, 6), (128, 2),
(129, 2)

72 29

3
(3, 1), (4, 2), (16, 1), (19, 4), (21, 4), (24, 6), (31, 1), (36, 2), (37, 2), (45, 1), (50, 1), (54, 1), (59, 2), (61, 1), (67, 2),
(69, 1), (72, 1), (77, 2), (78, 1), (79, 2), (83, 6), (84, 5), (86, 1), (88, 1), (91, 1), (93, 4), (94, 1), (96, 4), (100, 4), (107, 2),
(108, 2), (110, 1), (112, 5), (116, 1), (120, 1), (121, 1), (123, 2), (127, 1)

81 39

4
(4, 1), (6, 1), (9, 1), (12, 2), (16, 2), (19, 1), (21, 1), (24, 12), (30, 2), (32, 2), (36, 1), (37, 1), (45, 1), (48, 1), (51, 1),
(52, 1), (54, 1), (56, 1), (66, 1), (70, 1), (74, 1), (82, 1), (83, 10), (84, 4), (85, 1), (86, 2), (87, 1), (91, 4), (96, 1), (98, 2),
(100, 2), (104, 3), (106, 5), (110, 1), (114, 2), (115, 1), (116, 1), (120, 2), (123, 5), (129, 1)

85 41

5
(3, 3), (16, 2), (17, 1), (19, 1), (20, 1), (21, 5), (24, 13), (26, 1), (31, 1), (35, 1), (36, 1), (37, 1), (48, 2), (60, 1), (62, 1),
(67, 1), (69, 2), (72, 1), (77, 1), (78, 2), (81, 3), (83, 8), (84, 2), (86, 1), (91, 1), (92, 1), (93, 1), (94, 4), (96, 1), (98, 2),
(99, 4), (100, 1), (104, 1), (107, 2), (108, 1), (112, 1), (115, 1), (116, 1), (117, 1), (120, 5), (122, 1), (123, 2), (128, 1), (131, 1)

89 45

6

(2, 2), (9, 1), (11, 1), (16, 4), (17, 2), (19, 2), (21, 4), (24, 6), (25, 1), (31, 3), (34, 1), (36, 1), (37, 1), (53, 1), (54, 1),
(59, 4), (63, 1), (67, 1), (69, 1), (71, 1), (72, 1), (74, 1), (75, 1), (78, 1), (81, 2), (83, 12), (84, 2), (85, 1), (86, 1), (91, 2),
(95, 1), (96, 4), (98, 1), (99, 1), (106, 1), (107, 3), (108, 1), (111, 1), (112, 1), (115, 2), (116, 3), (117, 1), (120, 3),
(123, 11), (128, 1), (129, 1), (133, 1)

100 48

7

(1, 1), (4, 1), (6, 1), (9, 2), (19, 2), (21, 2), (24, 15), (25, 1), (26, 1), (31, 3), (32, 1), (34, 1), (35, 1), (37, 1), (38, 1),
(43, 1), (45, 1), (50, 3), (52, 2), (53, 3), (54, 1), (61, 2), (62, 1), (66, 2), (67, 1), (72, 1), (75, 1), (78, 1), (79, 1), (80, 1),
(83, 8), (84, 4), (86, 1), (91, 1), (93, 2), (98, 2), (99, 1), (104, 1), (105, 3), (106, 2), (107, 2), (108, 1), (112, 2), (115, 5),
(120, 3), (121, 1), (123, 5), (125, 1), (129, 2), (130, 1), (131, 2)

106 52

8
(1, 1), (4, 1), (9, 2), (13, 2), (16, 2), (23, 1), (24, 11), (25, 1), (31, 3), (34, 1), (36, 2), (37, 4), (38, 1), (42, 1), (45, 2), (48, 2),
(50, 1), (53, 2), (59, 1), (61, 1), (64, 1), (67, 2), (69, 3), (77, 5), (78, 2), (79, 1), (81, 3), (83, 20), (84, 6), (86, 1), (89, 1),
(94, 2), (96, 1), (98, 1), (100, 1), (107, 4), (112, 1), (115, 6), (117, 3), (120, 4), (121, 1), (123, 4), (129, 1), (134, 1)

117 45

9

(3, 4), (4, 1), (5, 1), (8, 1), (9, 1), (20, 1), (21, 9), (23, 1), (24, 10), (26, 2), (31, 4), (32, 1), (33, 1), (37, 3), (38, 1), (42, 1),
(45, 2), (51, 1), (53, 1), (54, 1), (59, 1), (61, 1), (63, 1), (65, 1), (66, 2), (69, 2), (74, 1), (77, 2), (78, 1), (83, 10), (84, 5),
(85, 1), (86, 1), (89, 1), (91, 5), (94, 1), (95, 1), (98, 1), (106, 2), (107, 1), (108, 2), (112, 3), (115, 4), (116, 1), (120, 8),
(121, 4), (123, 11), (129, 3), (131, 1)

125 50

10

(2, 2), (3, 7), (5, 2), (12, 1), (16, 1), (17, 2), (20, 1), (21, 3), (23, 1), (24, 11), (26, 2), (30, 2), (32, 1), (34, 1), (36, 1), (37, 2),
(42, 1), (45, 3), (46, 1), (50, 1), (53, 2), (54, 2), (57, 1), (61, 1), (66, 1), (69, 3), (74, 1), (77, 4), (78, 1), (81, 4), (83, 11),
(84, 2), (88, 3), (91, 3), (92, 1), (93, 1), (94, 1), (96, 2), (98, 1), (106, 1), (107, 9), (108, 3), (110, 2), (115, 2), (116, 1),
(117, 5), (120, 10), (123, 4), (125, 1), (128, 2), (130, 1), (131, 1)

133 53

Table 6 Generated order instances from whole orders (Instacart 2017)


