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Abstract

We consider the problem of distributed task assignment in a swarm of Unmanned
Aerial Vehicles (UAVs), where heterogeneous agents that can have different capa-
bilities need to work in teams to execute tasks. We consider the case where
communication between UAVs is costly or dangerous and should be limited or
avoided, while individual UAVs have uncertain and incomplete information at
hand and new tasks can appear during the mission time. For this setting, we
develop a distributed computing framework that allows for optimal task assign-
ment under quite general conditions. At each time step of the scheme, each UAV
can solve a local version of an optimisation problem that encodes the optimal
task assignment for all UAVs. This optimisation problem takes the form of a
mixed-integer linear programming problem (MILP) that can be solved readily
with state-of-the-art solvers. Theoretical results ensuring the soundness of the
proposed approach are reported and numerical results showing its efficacy are
investigated.
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TABLES of SET, PARAMETERS, VARIABLES

Table 1 Overview of the sets used in the model.

Symbol Index Definition

{1, . . . , n} i Set of UAVs
{1, . . . ,m} j Set of Tasks

L(j) - Set of teams that can be allocated to task j
Λ.(j) l Team of UAVs that can be allocated to task j

{1, . . . ,Λ} λ Set of all Teams, with repetition

Table 2 Overview of the parameters used in the model.

Symbol Domain Definition

pj R+ Priority weight for task j
lj R Minimum start time for task j
dj R+ Duration of task j
uj R Maximum completion time for task j
fj,k R+ Flight time distance between task j and k
Li R Maximum number of tasks that can be assigned to UAV i
M. R+ A big number

Table 3 Overview of the variables used in the model.

Symbol Domain Definition

sj R+ Lateness of task j
tj R Starting execution time for task j

xλ,j {0, 1} Selection of team λ for task j
yj,k {0, 1} Task k is performed before task j

1 Introduction

Autonomous systems are becoming more and more prominent nowadays given their
manifold applications — transportation, surveillance and security, warehouse automa-
tion, pickup and delivery, and defence. In particular, their adaptability and their
importance in relieving humans from performing dangerous, exhausting or tedious
duties has been noted. Design and development of multi-agent systems is a research
area where the evolution of control, communication, and decision support systems
for UAVs constitutes a rapidly evolving field, as suggested by the US Department
of Defense UAV Roadmap 2002-2027 (Department of Defense, UAV Roadmap 2002-
2027). Deployment of teams of cooperating UAVs to complete various mission is of
primary importance for many mission types and allocation of tasks with constraints
constitute an essential aspect to consider when advantageously adopting swarms of
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UAVs. The task allocation problem consists in determining how to efficiently assign
individual tasks to (teams of) UAVs, accounting for their capabilities, different con-
straints and overall objectives. By effectively distributing the tasks, it is possible to
enhance performances, increase resilience and ultimately improve mission success
rates. However, various challenges are associated with task allocation problems.
First, heterogeneous capabilities of the UAVs, which may have different sensing,
communication or payload capacities, should be considered. Second, the allocation
should account for dynamic changes in the environment, such as real-time updates
and uncertainties or unexpected events. Furthermore, task allocation might take
into account factors such as resource constraints (e.g., battery life, communication
bandwidth), inter-UAV communication and coordination as well as task priorities.
The task allocation problem becomes harder when the number of tasks, the swarm
size and timing constraints grows, as the number of possible task-allocation combina-
tions grows exponentially whereas time resources usually remain limited. To address
these challenges, researchers have explored various algorithms and approaches, rang-
ing from exact to heuristic methods and including centralized methods, distributed
approaches as well as hybrid strategies. We will provide an overview of these in the
following section. In this article, we study a task assignment problem where multiple
UAVs, able to perform a single task at a time, are required to work at the same time
and in teams on tasks that are scheduled over a planning horizon, whilst respecting
synchronisation as well as temporal and ordering constraints. We also consider the
case of costly or dangerous communication among the UAV fleet, leading us to
examine the problem in the context of distributed optimisation. For this problem,
we develop a distributed optimisation framework able to deal with different sources
of uncertainties simultaneously and enabling us to analyse situations where these
uncertainties or incomplete knowledge are dealt with gradually and not all UAVs
receive new information at the same time, or in other words where neither perfect
knowledge nor perfect ignorance is assumed.

The paper is then organised as follows. In Section 2 we review the recent develop-
ments in tackling the task assignment problem under consideration; in Section 3 we
present the underlying mathematical model for the optimal task assignment problem
and in Section 4 we embed this in a distributed optimisation framework. Subsequently,
Section 5 provides some theoretical results essential to guarantee the reliability of
the framework, while also enabling the analysis of numerical results. Such results are
presented in Section 6, where we show the power of our framework along with its scala-
bility. Finally, in Section 7 we derive a summary of the findings and propose directions
for future work.

2 Related Work

Optimal task allocation is a crucial challenge to effectively deploy multi-agent systems
like a swarm of UAVs; it involves the optimal assignment of tasks to individual or
teams of UAVs based on their capabilities, constraints, mission objectives and many
other possible requirements. Gerkey and Mataric (2004) have proposed a broadly
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accepted taxonomy for multi-robot task allocation problems, based on the main
characteristics of robots, tasks and time:

• Single-task robots vs. multi-task robots: single-task robots can do at most one task
at a time, while multi-task robots can work on multiple tasks simultaneously

• Single-robot tasks vs. multi-robot tasks: single-robot tasks require exactly one robot
in order to be completed, while multiple robots are needed to complete a multi-robot
task

• Instantaneous vs. time-extended assignments: in instantaneous assignments, tasks
are allocated as they arrive, while in time-extended assignments, tasks are sched-
uled over a planning horizon

In addition, Nunes et al. (2017) extended Gerkey and Mataric’s framework,
expanding the time-extended assignments segment to include temporal and ordering
constraints. In light of this, given the broad range of contexts, the development of
specialised algorithms is necessary to efficiently assign tasks to cooperative swarms
of UAVs (Mataric (1995); Reif and Wang (1999)). Typical approaches involve math-
ematical models like mixed-integer-linear-programming (MILP), dynamic network
flow optimization (NFO) and multiple intelligent agent-based systems (Forsmo et al.
(2013); Peng et al. (2012)). Dynamic programming (DP) is also deployed, sometimes
exhibiting computational benefits with respects to other approaches (Alighanbari
and How, 2005). In any case, solution algorithms and approaches can be categorised
according to whether they are exact (Passino et al., 2000) or heuristic (Parunak et al.,
2002) in nature, with a further distinction regarding the use of a centralized or a dis-
tributed approach. In early studies of the optimal task allocation problem, the focus
was primarily on exact algorithms embedded within a centralised framework, where
a primary entity generates a collaborative plan for the entire swarm of robots (or
UAVs). Darrah et al. (2005) proposed a MILP formulation for the multi-agent task
assignment problem assuming heterogeneous teams and dynamic target discovery.
The authors tackled the problem dynamism by iteratively reformulating and solving
the problem with the arrival of new agent or task. Secrest (2001) studied the problem
in the context of surveillance missions requiring UAVs to fly from a starting point
through defended terrain to targets, and return to a safe destination. The author
reduces the problem to a multiple traveling salesman problem (mTSP) allowing the
use of consolidated techniques and commercial solvers to find optimal solutions.
While exact algorithms have the advantage of ensuring optimality and preserving an
accurate representation of the mission, due to the problem complexity (Balas and
Padberg (1976); Service and Adams (2011)), they are often subject to significant
computational challenges, particularly for large-scale systems. Consequently, heuristic
algorithms have emerged. Well-known heuristic methods include genetic algorithms
(Shima et al., 2006), Tabu search (O’Rourke et al., 2001), colony optimisation (Chen
et al. (2018); Blum (2005)), particle swarm optimization (Wang et al., 2018), among
others.

Despite their relatively simple structure, centralised approaches exhibit several
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weaknesses (Zhang et al., 2018) such as the requirement of consistent and complete
communication between the central entity and each UAV, a high computational
demand posed on the central unit, and a weak stability, rendering the entire system
vulnerable to a single point of failure. The increased capability microchips and other
of onboard resources made work on distributed frameworks feasible, where the mis-
sion can continue even when the central decision maker or other UAVs break down.
A common way to adopt distributed approaches is via market auctions (Gerkey and
Mataric (2002); Oh et al. (2017); Qin et al. (2022); Gudmundsson et al. (2023)),
where UAVs place their bids on each task and negotiate to win it. A consensus-based
bundle algorithm (CBBA) has been introduced by Choi et al. (2009), subsequently
extended by Ponda et al. (2010) and Whitten et al. (2011). As an alternative, Whit-
brook et al. (2015) and Zhao et al. (2018) proposed a distributed approach known
as performance impact, directly optimising the overall mission. Exploiting heuristic
optimisation principles, performance impact can handle time sensitive multi-agent
task allocation problems achieving the allocation of duties with reduced time costs
with respect to CBBA. Cui et al. (2022) suggested a linear programming formulation
for a single-robot single-task time-extended problem with time window constraints
and proposed to use a heuristic and a distributed optimisation algorithm based on
the decentralized performance impact.

In spite of all the efforts made, realistic scenarios introduce numerous constraints
and complications that substantially increase the complexity of the multi-agent opti-
mal task allocation problem (Geng et al., 2014). In particular, the uncertainty and
deadlock problem are the main contributors in limiting the effectiveness, optimality,
and practicability of the various approaches. The deadlock problem is the result of
two or more vehicles mutually waiting for the other to complete their tasks and
might lead to an endless waiting situation that renders the solution ineffective or even
unreachable (Coffman et al., 1971). Different methods are proposed to handle this
complication (Lemaire et al., 2004), although detecting and unlocking deadlocks is
another NP-hard problem (Masticola, 1993). The presence of uncertainty during the
task assignment process equally necessitates careful consideration. Primary sources of
uncertainty involve the unpredictability of the environment (e.g., the number of tasks,
their locations and duration), communication stability (Mazdin and Rinner, 2021),
as well as uncertainties associated with the UAVs themselves. Several methods and
algorithms have been studied, from stochastic programming to robust optimization
(Lu, 2015), all of which can be divided into forethought and postprocessing methods.
The former deal with uncertainty at the modelling stage, whereas the latter tackle
uncertainty at a later stage, typically in the task execution phase. Postprocessing
methods are effective in handling online uncertainties like communication problems
as well as new target problems (Evers et al. (2014); Tang et al. (1994)). Although
postprocessing typically relies on distributed algorithms to consider real-time require-
ments, replanning method based on centralised algorithms can also be employed.
Recently, machine learning techniques also start to emerge (Shyalika et al., 2020).
Nevertheless, even though outstanding advancements have been reached, the liter-
ature often assumes either perfect knowledge or perfect ignorance (i.e. for instance
if a new task or a failure occurs, all active agents are promptly made aware of it or
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all of them remain oblivious) and the uncertainty elements are frequently treated
separately or one at a time. We refer the interested reader to Nunes et al. (2017),
Seenu et al. (2020) and Poudel and Moh (2022) for a more comprehensive review.

As a final consideration, task assignment problems have also been studied in alter-
native contexts, where (teams of) both humans and/or machines can be deployed to
perform different duties. As a flavour, we mention the work of Younas et al. (2018),
who examined a problem in which each task is assigned to a group of collaborating
agents and a genetic algorithm is used to solve it at scale, while a comparison with
other heuristic methods is also provided. Di Martinelly and Meskens (2017) examined
the problem of building surgical teams with different capabilities and nurse schedule
rosters, proposing an ε-constraint method to solve it when multiple objective have
to be accounted. Van Den Eeckhout et al. (2019) proposed a heuristic algorithm to
solve a strategic problem that simultaneously decides on the project schedule and
the personnel budget. As a final illustration, Saber and Ranjbar (2022) describe
their problem as a mixed-integer programming model and develop a multi-objective
decomposition-based heuristic to solve a permutation flow shop scheduling problem
with the objectives of minimising the the total tardiness of tasks as well as the
total carbon emissions. However, even though multi-robot task allocation problems
exhibit characteristics similar to typical task assignment problems, to the best of our
knowledge only a few authors have considered decentralised approaches or a dynamic
environment for task assignment problems. This has already been highlighted by
Niknafs et al. (2013) and Fikar and Hirsch (2017), and it appears that no attention
has been paid to problems considering heterogeneous team work, decentralisation
and uncertainties simultaneously.

With all this in mind, in this article we consider a distributed framework for a
problem of assigning jobs to an heterogeneous swarm of UAVs that work simulta-
neously in teams (multi-robot) on tasks (single-task) planned and executed over a
certain period of time (time-extended). We include temporal and ordering constraints,
while taking into account uncertain environments where neither perfect knowledge
nor perfect ignorance is assumed. In addition, in the following sections we tackle the
problem by building a distributed framework free of deadlock situations under fairly
mild conditions.

3 The Optimal Task Assignment Problem

3.1 Problem description

The problem considered in this paper regards the study of a multi-robot single-task
time-extended task assignment problem, including temporal and ordering constraints.
Multiple UAVs, able to perform a single task at a time, are required to work at the
same time and in teams to complete tasks positioned in different known (or estimated)
locations, scheduled over a planning horizon and with the objective of performing
them within a specified time window or with minimum delay. We consider the case
of costly or dangerous communication among the fleet, leading us to examine the
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Table 4 Example list of required capabilities.

task capability

1 x
2 y
3 x and y

problem in the context of distributed optimisation. At first, we provide a centralised
mathematical optimisation model, phrasing this multi-UAV task assignment problem
as a mixed-integer linear programming problem (MILP) that includes realistic char-
acteristics of the mission as well as sufficient fidelity to tackle key questions stemming
from real-world applications. Then, in the following sections, we see how to embed
the above formulated problem into a distributed optimisation framework enabling us
to simultaneously deal with different sources of uncertainties, like execution times or
the arrival of new tasks in due course, and analyse scenarios with incomplete knowl-
edge. We examine situations where not all UAVs receive new information at the
same time or, as previously stated, neither perfect knowledge nor perfect ignorance is
assumed. Theoretical results are provided that ensure the efficacy and convergence of
our method. Finally, numerical results are also discussed, showing the efficacy of the
proposed approach.

3.2 Mathematical Model for the Optimal Task Assignment
Problem

Let m tasks and n UAVs be given, with m,n ∈ N. Considering situations that occur
naturally when different tasks require different capabilities, we allow for various
possible teams of UAVs to be formed and be allocated to a particular task. If we
have given the capabilities of each UAV as well as the capabilities needed to perform
each task, we can compute in a preprocessing step the following information: for each
task j we compute the set L(j) = {Λ1(j), . . . ,Λk(j)(j)} with each Λℓ(j) ⊆ {1, . . . , n},
representing the set of all UAV teams that can be allocated to task j. We include
the singleton set {i} in L(j), if UAV i can be allocated to task j alone. As a simple
example, consider three tasks j = 1, 2, 3 with the following necessities: task 1 needs
capability x to complete, task 2 needs capability y to complete, and task 3 needs
capability x and y to complete as shown in Table 4. We have also four UAVs, whose
capabilities are shown in Table 5. Thus, we can derive the sets of possible formations
L(·) as shown in Table 6. For instance, the set of teams that can be assigned to task
3 is described by L(3) = {Λ1(3),Λ2(3)} where Λ1(3) = {3} and Λ2(3) = {1, 4}.

In what follows, we number all those teams Λℓ(j) occuring in the above consecu-
tively through λ = 1, . . . ,Λ, including repetitions, and we use the notation Λℓ(j) = #λ
if the team of UAVs Λℓ(j) is numbered as the λ-th set. Continuing on the previous
example, Table 7 provide an illustration of such numbering. With this in mind, to
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Table 5 Example list of UAV capabilities.

UAV capability

1 x and z
2 z
3 x and y
4 y

Table 6 Example list of tasks and sets of teams that can be assigned to those tasks.

task set of teams L(·)

1 {1}, {3}
2 {3}, {4}
3 {3}, {1, 4}

Table 7 Example list of numbered teams and their component UAVs.

λ 1 2 3 4 5 6

team {1} {3} {3} {4} {3} {1, 4}
Λℓ(j) Λ1(1) Λ2(1) Λ1(2) Λ2(2) Λ1(3) Λ2(3)

select teams’ allocation, it is then natural to introduce the decision variables

xλ,j =

{
1 if team λ is allocated to task j,
0 otherwise.

Suppose now that we have given, for each task j, a lower bound ℓj and upper
bound uj , representing the minimum time at which the task can start to be performed
and the maximum required time of completion respectively, as well as (an estimate of)
the time dj necessary to complete task j, with ℓj + dj ≤ uj for consistency. In other
words, work on task j must not start earlier than time ℓj , it will take time dj ≥ 0
and they should preferably be finalised before time uj . To model this situation, we
consider variables

tj ≥ 0 j = 1, . . .m

indicating the time when task j starts. Variables tj must then obey the constraints

lj ≤ tj (1)

and, to require that task j is completed on time, we do not impose a hard constraint
but we rather consider the relevant objective

min

m∑
j=1

pj max{0, tj + dj − uj}, (2)
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where we minimise the sum of each task lateness, max{0, tj + dj − uj}, a.k.a. the
total tardiness, also multiplying each of them by a constant pj > 0, signifying the
importance (or priority) of task j. Note that in a similar fashion, it is straightforward
to move from hard constraints (1) to soft constraints for working on a task too early,
using an additional penalty term in the objective, even if in what follows we do not
explore this route. Then, by adding m further artificial variables sj to the problem,
we can linearise the objective function (2) by writing

min

m∑
j=1

pjsj ,

and adding for each j = 1, . . . ,m the supplementary constraints

tj + dj − uj ≤ sj ,

0 ≤ sj .

Acknowledging that we are also asked that each UAV cannot perform two tasks
simultaneously, we model the requirement as follows. Consider two teams #λ and #υ,
allocated to two tasks j and k respectively, with j ̸= k. If the two teams have a UAV
in common, then we need to ensure that task j is finalised before task k, or vice versa.
This can be expressed by the requirement that

either tj + dj ≤ tk or tk + dk ≤ tj .

Using additional binary variables yj,k ∈ {0, 1}, we can write the above inequalities
along with the logical constraints via the coupled constraints

tj + dj ≤ tk +M1yj,k,

tk + dk ≤ tj +M1(1− yj,k),

with M1 > 0 being some sufficiently large constant. Noting then that these two con-
straints only need to hold when a UAV i is common between team #λ and #υ,
while the two teams are assigned to task j and task k simultaneously (i.e. when
xλ,j = xυ,k = 1), we just need to consider then the adjusted set of constraints

tj + dj ≤ tk +M1yj,k +M2(2− xλ,j − xυ,k),

tk + dk ≤ tj +M1(1− yj,k) +M2(2− xλ,j − xυ,k)

for all j, k = 1, . . . ,m and for all λ, υ = 1, . . . ,Λ with #λ ∩#υ ̸= ∅. Analogously to
M1, M2 > 0 is a big number ensuring that the logical implications are satisfied.

At the same time, if estimates of tasks location are available we can incorporate
flight times between tasks as follows. Knowing that the different tasks have to be
executed at particular locations and denoting by fj,k the flight time from the location
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where task j needs to be executed to the location where task k needs to be executed,
we can then expand the previous constraints into

tj + dj + fj,k ≤ tk +M1yj,k +M2(2− xλ,j − xυ,k),

tk + dk + fk,j ≤ tj +M1(1− yj,k) +M2(2− xλ,j − xυ,k),

for all teams λ, υ with #λ ∩#υ ̸= ∅ and j, k = 1, . . . ,m.

With this in mind, we are then ready to provide a full model formulation as follows.

OTASF-MCUS: Optimal Task Assignment with Scheduling and Flight
Times in a Multi-Capability UAV Swarm

min
s,t,x,y

m∑
j=1

pjsj (3)

subject to tj + dj − uj ≤ sj (j = 1, . . . ,m) (4)

0 ≤ sj (j = 1, . . . ,m) (5)

ℓj ≤ tj (j = 1, . . .m) (6)

tj + dj + fj,k ≤ tk + M1yj,k + M2(2 − xλ,j − xυ,k) (7)

(∀λ, υ : #λ ∩ #υ ̸= ∅; j, k = 1, . . . ,m)

tk + dk + fk,j ≤ tj + M1(1 − yj,k) + M2(2 − xλ,j − xυ,k)

(∀λ, υ : #λ ∩ #υ ̸= ∅; j, k = 1, . . . ,m), (8)

Λ∑
λ=1

xλ,j ≥ 1 (j = 1, . . . ,m), (9)

xλ,j = 0 (∀λ /∈ L(j)); (10)∑
(λ,j):
i∈#λ

xλ,j ≤ Li (i = 1, . . . , n), (11)

xλ,j ∈ {0, 1} (λ = 1, . . . ,Λ; j = 1, . . . ,m), (12)

yj,k ∈ {0, 1} (j, k = 1, . . . ,m), (13)

In addition to the constraints presented before, we consider constraints (9) indi-
cating that at least one team is assigned to task j, and constraints (10) ensuring that
a team is not assigned to a task that it cannot execute. In constraints (11) we sum up
over all teams where a particular UAV i belongs, ensuring that the UAV is not over-
loaded, executing at most Li tasks. Finally, constraints (12) and (13) represent the
obvious requirement of having binary decision variables as stated in their definition.

Having formulated our mathematical model for the optimal task assignment prob-
lem, in the following sections we will first see how to embed the model into a distributed
framework for decision making whilst ensuring the reliability of the latter. Second, we
investigate numerical examples where we show that state-of-the-art solvers can solve
the above mathematical model in a reasonable time for problems of realistic size, and
enable us to evaluate the effects of uncertainties and incomplete information.

4 Distributed Optimisation

Given a mathematical optimisation problem, the goal of an optimisation algorithm is
to compute a (local) minimum of one or multiple objective functions, while respecting
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any given constraints. In a distributed optimisation framework we have been given
several computational units, often provided with their own local memory and able
to deploy optimisation algorithms to solve a given mathematical model using their
internal resources. However, communication between these units is usually costly.
This seems to be the appropriate context for a fleet of UAVs that have to coopera-
tively solve a common set of task, a.k.a. the mission, especially if distances between
UAVs are large or there is a general desire to keep communications limited. In what
follows, we describe the proposed structure of our distributed framework, following
mostly Bertsekas and Tsitsiklis (1991).

4.1 Generic Distributed Optimisation Framework

Consider to have n UAVs at disposal, and that all parameters of the mathematical pro-
gramming model described above stem from a set Ω. At each time t of the mission, let
UAV i (i = 1, . . . , n) be equipped with its own vector of decision or state variables xi(t),
(estimates of) other UAVs’ decision variables x1(t), . . . , xi−1(t), xi+1(t), . . . , xn(t), a
set of data and parameters Pi(t) ∈ Ω, as well as a belief update function Gi : Ω

n → Ω.
We can think of the vector of variables xi(t) as the list of the above defined variables
xλ,j with i ∈ #λ at a specific time t and it can be interpreted as a list of commands or
actions the UAV has to follow, or an approximation thereof. The vector Pi(t) can be
thought of as the parameters of the model, representing (an estimate of) the world’s
status at time t, while the function Gi is a way in which the UAV i updates its
knowledge about the world, for example using its onboard sensors. Let UAV i also be
equipped with an update function Fi taking as argument states x1(t), . . . , xn(t) as well
as UAV’s belief on the world status Pi(t) and producing a new value for the decision
variables xi. Fi represents the way in which UAV i update its decisions based on the
available information and can be thought as a full or partial execution of an optimisa-
tion algorithm solving the above model OTASF-MCUS. Collect the current parameter
vectors of all UAVs into a vector P = (P1, . . . , Pn), where we ignore the time depen-
dency for a moment to lighten the notation. We can then phrase the UAVs mission,
and hence the optimal task assignment problem, as a fixed-point problem, where we
search for an x∗ = (x∗

1, . . . , x
∗
n) such that

x∗ = F (x∗, P ) = (F1(x
∗, P1), . . . , Fn(x

∗, Pn)) (14)

Such an interpretation is always possible for optimisation algorithms that work via
improvement steps, i.e. if in some step one is given some xold, the algorithm computes
an update step ∆(xold) and sets

xnew := xold + ∆(xold) (15)

Often, the update ∆(xold) is computed in such a way that xnew is an improvement on
xold either in terms of objective function value or feasibility, or both. The iterations
stop when ∆(x) = 0. If such an algorithm is given, one can simply use the update
function F (x) := x+∆(x) to define the fixed-point problem F (x) = x. In particular,
we have that xnew = F (xold).
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4.2 Synchronous vs. Total Asynchronous Optimisation

Examining now the time development of the mission, we recall that at time t, each
UAV or agent has stored its decisions in the vector xi(t). If then all agents know the
most up to date variables of all other agents and we consider a fixed world’s status
P = P (t) = P1(t) = P2(t) · · · = Pn(t) ∀t, each agent can update its own decisions via

xi(t+∆t) = Fi(x1(t), x2(t), . . . , xn(t), P ) = Fi(x(t), P ) (16)

with ∆t a small time variation. The above describes a situation where all agents use
the same information (parameters) and revise their decisions according to (16). This
is referred to as the globally synchronous update. In this case, if the functions Fi are
chosen well, then iterating over time t will result in better and better approximations
xi(t) of a solution x∗.

On the other hand, often communications between UAVs are costly or dangerous,
causing UAVs not to have the same and latest information available at time t, and
therefore making it impossible to update the local decisions according to (16). We will
call such an update asynchronous, if there exists at least one time index t̂ with

xi(t̂+∆t̂) = xi(t̂) (17)

that is if Fi is not evaluated and the old value of xi is just copied over to the next
time step. Typical examples for such a framework in the area of parallel processing are
Gauss-Seidel vs Jacobi iterations to solve linear systems. Defining then delay indices
τi,k(t) such that

0 ≤ τi,k(t) ≤ t

we compute the iterates in the so called total asynchronous case by

xi(t+∆t) = Fi(x1(τi,1(t)), x2(τi,2(t)), . . . , xn(τi,n(t), P ) (18)

Each delay index τi,k(t) can be seen as how up-to-date UAV i is with respect
tp the beliefs and decisions of UAV k at time t. Without further knowledge on the
τi,k(t) (i.e. how much ”lag” there is in the system) this is, in a sense, the most general
case and likewise the worst case. As it turns out, even in this worst case distributed
optimisation can be made to work under relatively mild conditions.

4.3 Static vs. Dynamic Case

As mentioned before, each Fi takes as input also a belief of the overall status of
the mission environment P (t), which can also include an estimate for the degree of
uncertainty present. However, up to this point we considered only the static case,
where P = P (t) is given and constant throughout the mission, and we search for
a fixed point x∗ = F (x∗, P ). However, a more interesting case is the dynamic one,
where some problem data either changes over time, or are unknown at the start of the
mission, or only estimates of them are available and UAVs can not broadcast these
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changes immediately. Potential changes in the problem data necessitate that, at each
time step t, each UAV i stores not only its own optimal decision variables xi(t), but
also its own version of the state of the problem, Pi(t). It is worth noting here that it is
possible to extend the notation used for the synchronous and asynchronous updates to
the case where agents’ decisions depend explicit on the available world’s information
at time t. More precisely, we can write Pi(τi,p(t)) to account for delays in UAV i
believes about the world’s status at time t and utilise the update rule

xi(t+∆t) = Fi(x(τi(t)), Pi(τi,p(t)))

with τi(t) = (τi,1(t), . . . , τi,n(t)). The synchronous update is simply obtained when
τi,p(t) = t ∀i.

With this in mind, decision variables and problem data are both updated during the
course of the optimisation algorithm according to

Pi(t+∆t) = Gi(P1(τi,1(t)), . . . , Pn(τi,n(t))) (19)

xi(t+∆t) = Fi(x(τi(t)), Pi(t)) (20)

and UAVs communicate not only their current decision variables to help the optimi-
sation process, but also their current belief of what problem needs to be solved.

In light of this, considering a discrete time environment (i.e. t ∈ Z and ∆t = 1),
it is possible to build a distributed optimisation framework where our overall compu-
tational model requires each UAV to execute the following steps of what we will call
the UAV Local Control Loop:

Algorithm (UAV Local Control Loop)

1. Update UAV’s belief Pi(t+ 1) according to (19)
2. Compute decision variables xi(t+ 1) by evaluating (20)
3. [Optional] If possible, execute some of the decisions encoded in xi(t+ 1)
4. If allowed, communicate xi(t+ 1), Pi(t+ 1) to other (neighbouring) UAVs
5. Also if allowed, receive data xj and Pj from some other UAV j ̸= i
6. t := t+ 1
7. Go to step 1

5 Theoretical Results

Within the context of distributed optimisation and having equipped each UAV with
a general decision framework (its local control loop), we would like to guarantee that
we are able to solve our optimal task assignment problem under quite mild conditions.
The following results will help us to show that we are indeed able to ensure this. Let
Ti be the set of time indices with τi,k(t) = t ∀k = 1, . . . , n. In other words, Ti will be
the set of time indices where UAV i has access to the most up-to-date information. In
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addition, let P be the fixed status of the world. Then we have the following main result

Theorem 1. Assume that the synchronous fixed-point iteration x(t+1) = F (x(t), P )
converges to a fixed point of F from all starting points. Assume further that all sets
Ti are infinite and that for all i and all sequences (tℓ)ℓ in Ti we have

lim
ℓ→∞

τj,k(tℓ) = ∞

for all j and k. Then the totally asynchronous iteration above converges to a fixed
point of F .

Proof. see Bertsekas (1983)

In other words, any correct optimisation algorithm can be cast in a fully dis-
tributed form and executed totally asynchronously, as long as each UAV updates it’s
own status infinitely often, and updates from other UAVs never stop, no matter how
much ”lag” these communications have. Of course, one has to expect to suffer a
breakdown in convergence speed if state updates are not provided often enough. The
above comment is also reflected in the following results

Corollary 1. Consider the graph with UAVs as nodes and an edge connecting two
nodes if and only if the two UAVs can communicate with each other. Assume that
this graph is connected. In each time step t, let each UAV i communicate its variables
xi(t) to all UAVs that are its neighbours in this graph. Then the distributed fixed-point
iteration converges.

Proof. see Bertsekas (1983)

Corollary 2. The corollary above holds if communication is only allowed every k
optimisation steps.

Proof. see Bertsekas (1983)

We have shown here that in the static case and for both the globally synchronous
and totally asynchronous iteration, we are able to find a solution for the optimal
task assignment problem using the above UAV Local Control Loop, provided that
information is updated in a somewhat regular manner. Encouraging results are also
valid for the dynamic case, where we are still able to find an optimal task allocation,
if the world status P (t) does not change dramatically and too frequently.

Corollary 3. Suppose that the actual problem data P (t) converges, i. e.
limt→∞ P (t) = P ∗ for some P ∗. Write the fixed-point equation under consideration
as explicitly depending on the problem data, i.e. x = F (x, P ), and assume that for
each P there is a unique fixed point x(P ) of this equation. Assume that the mapping
P 7→ x(P ) is continuous at P ∗, or that there are only finitely many changes to P (t).
Then the distributed fixed-point iteration converges under the same assumptions as
those stated in Theorem 1.

Proof. see Bertsekas (1983)

14



In practice, the problem data Pi(t) might correspond to a message of rather large
size, i.e. when Pi(t) is a large dense matrix of floating point numbers. In a reasonably
stable environment it is then often better to communicate only updates of the problem
data, i.e. the UAVs send ∆Pi(t) := Pi(t)−Pi(t−1), in particular if this data is sparse.

Having shown the potential of finding optimal tasks assignments within the
distributed framework above, we proceed now by showing numerical evidences demon-
strating potential effects of dynamic data as well as asynchronous communications.

6 Numerical Results

In this section we study instances of the computational framework outlined previously
by numerically investigating the properties of some particular mission example. We
establish a simulation workflow that uses (partly) randomised problem data, allowing
us to provide sufficiently powerful statistics to draw upon. All the reported computa-
tions have been performed on a Viglen Intel Core 2 with 16GB RAM with a Windows
10 operating system and our simulation prototype has been coded inMatlab R2021b.
The optimisation model we considered has been coded in AMPL (Fourer et al., 2003),
and for solving these problems we have accessed the high-performance optimisation
solver CPLEX (IBM CPLEX) Version 20.1 via the corresponding AMPL interface.

6.1 Preliminaries

Here we provide a simulation tool where UAVs perform of all the steps of their Local
Control Loop (including the execution of tasks when possible) to achieve the best
allocation and to complete the required tasks. To do so, we implement a simulation
framework where we have a ”wall clock”, know to each UAV and set to t0 = 0, the
time when the mission starts. At this time, each UAV is provided with (partial) infor-
mation about the world and start running its own local control loop. In particular,
given that each UAV starts with the same information, no communication is needed
so they will start running the optimisation model with the information at hand,
obtaining a first task allocation. We can consider this moment as the mission kick-off
and UAVs start flying towards the first task they are assigned to. From now on, only
the following relevant events can happen

1. UAV arrival : at least one UAV reaches a task location
2. Task completion: at least one task has been completed
3. UAV communication: newer information can circulate
4. New task incoming / nature update: the world’s status changes and (some) UAVs

becomes aware of it
5. Mission completed : all tasks have been completed

where the events should not be considered as mutually exclusive. In all these cases,
one or more steps of the local control loop are required to be performed. In all other
times, executing any step of the local control loop is not necessary, since it would
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lead to the same decisions of the previous step. A schematic representation of the
described workflow is reported in Figure 1. Depending on the event occuring, different
actions, always part of the control loop, are then required. More precisely, in case of

1. UAV arrival : arrived UAVs check if the working team they are supposed to work
with is at task’s location and, in that case the team starts working on the assigned
task. Otherwise, UAVs are tasked to update their world status and if possible,
communicate any updates;

2. Task completion: the working team of UAVs communicate the information about
the task termination, if presently allowed;

3. UAV communication: UAVs have just been allowed to communicate and they are
asked to inform the neighbour UAVs about newer information;

4. New task coming / nature update: some UAVs are made aware of changes in the
world status and are tasked to communicate the information, if allowed.

In addition to the above, if at any relevant time a UAV is in possess of newer infor-
mation, it can solve its local optimisation model using the newer data and amend its
own actions accordingly.

This framework provides us with the opportunity to dynamically change problem
data during the mission and therefore to analyse more realistic situations. To provide
a better understanding of the incomplete information implications, we will consider
here only the case of new tasks occurring during mission time. New tasks occurring
can be seen as special instances of changes in starting time ℓj and duration dj .
Namely, in our framework, we can consider each potentially occurring task as an
existing task j right from the start, with ℓj = 0 and dj = 0. These ’dummy tasks’ are
then assigned to some team by the first optimisation step. When their data is updated
later (i.e. when the actual new tasks come into existence), a new optimisation run
can be performed by all UAVs aware of change in data.

With all this in mind, as a numerical example, we will consider a case with n = 10
UAVs and m = 15 tasks. We represent the fact that we have costly or limited com-
munication capacity using a communication graph as depicted depicted in Figure 2.
Each UAV is represented as a node in the graph and, whenever a communication event
occur, it is allowed to send information only to the neighbour UAVs (i.e. the adjacent
UAVs directly connected to it). The 10 UAVs can form 29 different teams and these,
together with their possible allocations to tasks, are listed in Table 8.

Further problem parameters are fixed as follows. The maximum number of tasks
a UAV can be assigned to is given in Table 9. The earliest starting times ℓj for the
15 tasks as well as their duration dj are provided in Table 10. Travel times between
task locations are furnished in Table 11. Finally, we define termination times uj for
all tasks j as

uj := û := 2808 ∀j ∈ {1, . . . ,m} (21)
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Fig. 1 Simulation Workflow

Fig. 2 Structure of the communication network with 10 UAVs.
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Table 8 Teams composition and possible allocation of teams to tasks. For each task j, the ”Team”
column furnishes the list of teams that can work on it, previously denoted with Λℓ(j). Finally,

teams are numbered by λ according to the notation used for the OTASF-MCUS model.

task Team Λℓ(j) λ

1 {1,2,5} Λ1(1) 1
1 {3,4} Λ2(1) 2
1 {1,4,5} Λ3(1) 3

2 {6,9} Λ1(2) 4

3 {4,2,3} Λ1(3) 5
3 {2,4,9} Λ2(3) 6

4 {2,4,7} Λ1(4) 7
4 {2,8} Λ2(4) 8
4 {9,10} Λ3(4) 9

5 {5} Λ1(5) 10

6 {1,9} Λ1(6) 11
6 {2,4,8} Λ2(6) 12

7 {5,8} Λ1(7) 13
7 {1} Λ2(7) 14
7 {1,2,3} Λ3(7) 15

task Team Λℓ(j) λ

8 {2,6} Λ1(8) 16

9 {10} Λ1(9) 17

10 {6,5,7} Λ1(10) 18
10 {1,2,3} Λ2(10) 19
10 {4,5} Λ3(10) 20

11 {2,4,7} Λ1(11) 21
11 {5,9,10} Λ2(11) 22
11 {2,3,4} Λ3(11) 23

12 {2,3,5} Λ1(12) 24
12 {4,6} Λ2(12) 25

13 {1,6,8} Λ1(13) 26
13 {6} Λ2(13) 27

14 {1,6,10} Λ1(14) 28

15 {5,8} Λ1(15) 29

Table 9 Maximum number of tasks Li that can be execute by each UAV i.

UAV i 1 2 3 4 5 6 7 8 9 10

Li 9 13 10 8 7 9 13 6 9 12

Table 10 Earliest starting time lj and duration dj for each task j, in seconds.

task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ℓj 2080 4244 1887 859 3040 2995 1574 3854 4798 4709 610 1115 113 2916 532
dj 886 827 331 506 322 577 738 691 117 761 130 384 997 926 341

and all the pj = 1, or equivalently stated, we have been given a maximum mission
time û to fulfill all tasks and the same priority level to every tasks.

With all this in mind, by comparing three different cases, we provide useful insight
on the distributed optimal task assignment problem, while at the same time showing
the efficacy of the proposed approach. The case examined are the following.

• Static Case: where all the information about the world status are known in advance
by all UAV;

• Dynamic Case I: where some new tasks appear during the mission and only one
UAV is made aware of them;
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Table 11 Travel time distances between tasks, in seconds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0
2 616 0
3 169 177 0
4 219 283 409 0
5 253 338 427 347 0
6 219 203 229 293 628 0
7 439 286 515 320 405 384 0
8 338 431 364 293 373 438 277 0
9 439 409 461 334 262 447 223 375 0
10 370 209 271 156 275 189 358 313 445 0
11 540 98 273 311 620 432 446 567 201 301 0
12 293 339 213 336 430 108 293 457 405 378 478 0
13 138 452 328 103 535 278 589 231 543 313 18 186 0
14 101 221 373 587 627 550 316 290 338 256 463 361 166 0
15 478 220 249 300 331 237 250 203 241 575 403 159 260 560 0

• Dynamic Case II: where the same new tasks as in Dynamic Case I appear during
the mission, but further UAVs are made aware of them.

6.2 Static Case

Let us first consider a benchmark case in which the status of the world P is constant
and all UAVs are provided with all the information described in the preliminaries
since the beginning of the mission. In this situation, optimal task allocation can be
reached by centrally solving the instance of the OTASF-MCUS problem and inform
all UAVs at once about the initial plan that will then be executed. An execution of
the optimal control loop is then redundant and only one communication is needed. We
describe here the main characteristics of the solution computed, in order to compare
these with those of the dynamic cases. Figure 3 provides an overview over the mission
timeline. The horizontal axis represents mission time, and all 15 tasks are plotted
along the vertical axis. If a task is allocated to a particular team at a certain point in
time, the colour green is used. As it is natural, all tasks are in green right from the
start of the mission and expected to be allocated to exactly one team of UAVs. In
fact, in this benchmark case all information on all tasks is available to all UAVs from
the mission start. Blue dots and lines represent when the designated team reaches a
task location, works on it and complete the job. The vertical red line corresponds to
the envisioned maximum mission time û. As it can be seen, this benchmark problem
is actually quite a difficult one, from a mission planning perspective. We have been
given 15 tasks, but we can complete at best only 7 of them on time (these are tasks
no. 3, 4, 7, 11, 12, 13, 15). The remaining tasks are tackled only with delay.

We can also look at how tasks terminate over time, and how the UAV swarm retains
a collective interpretation as to how many tasks are left and late. Figure 4 provides
us with a corresponding timeline, with the blue graph showing the total number of
completed tasks over time, exhibiting the expected staircase pattern over time, and
the red curve showing the number of known tasks that have not been completed and
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Fig. 3 Static Case representation. Along the Mission Time (x-axis), for each task (reported on the
y-axis) the green colour indicates that a whole team is agreeing to work on it at some point of
the mission, with blue dots and lines depicting the actual time in which the corresponding task is
executed. A vertical red line represents the maximum mission time where tasks completed on its right
are deemed to be late.

that are deemed as late by the swarm of UAVs. One notices of course that the number
of late tasks is known from the beginning (a constant red line until û) and the resulting
red stair curve after û is entirely symmetric to the blue one. The information contained
in the graph will be particularly useful compared to the following cases.

6.3 Dynamic Case I

Using the same setting as in the benchmark case, we can examine the circumstances
where UAVs have incomplete information. In particular, we consider that tasks 11–15
”arrive” during the mission, while all UAVs are already working on the other tasks
no. 1–10. We also assume that, as soon as one of the new tasks 11-15 becomes avail-
able, UAV no. 3 only is made aware of its existence and, when allowed, it is made
responsible of informing the rest of the swarm about it. Figure 5 provides then an
overview of the corresponding mission profile. As before, the green colour indicates
that a team has been assigned to perform a task and is expected to execute it at some
point in the future. In addition, we use dark green to represent times where more
than one team of UAVs (in this case two) has been assigned to a task. As before, blue
dots and lines represent times at which the assigned team is working on the given
task. Furthermore, black dots indicate when new tasks become known to UAV 3, and
light green dots indicate when UAV 3 communicates the corresponding updates to
its neighbouring UAVs. As it can be seen, the overall mission time necessary for the
completion of all tasks increases by ca. 20%, and new tasks 11–15 are only allocated
to teams after the a-priori defined end of mission time û (indicated as before by
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Fig. 4 Expected number of late tasks in the Static Case. Along the Mission Time (x-axis), the
number of current task that the swarm (averaged among all UAVs) deems to be late is depicted in
burgundy, while a blue line indicates the number of completed tasks up to that point, with tasks
completed after the vertical red dashed line, expressing the maximum mission time, are deemed to
be late.

the red vertical line). Furthermore, task 3 and 6 becomes unassigned for certain
time periods. By this, the effects of different UAVs working on different data, some
outdated and some not, can clearly be seen: while executing its local control loop,
each UAV computes an optimal solution to the OTASF-MCUS instance it holds it in
its memory. However, the different local versions of the the status of the world result
in a disagreement regarding the team composition that should perform those tasks,
leaving some tasks uncovered. Fortunately, Theorem 1 rescues us, guaranteeing that
those tasks will be properly allocated and the mission can terminate, if the UAVs are
allowed to communicate often enough.

Figure 6 shows how the number of finished tasks evolved over time (blue line),
as well as the expected number of tasks that are not yet finished and will only be
finished late, after the maximal mission time û. One can clearly see the effect of
different UAVs working on different sets of data for the time period mentioned above.
In particular, one notes that the red line is not constant at the beginning of the
overall mission, indicating how knowledge spreads among the swarm.

Finally, Figure 7 can provide a complete overview of the mission under consid-
eration by reporting the evolution of each UAV’s path. Starting from the hangar
(corresponding to the location of task 0), each UAV assigns itself to a task and com-
mences to fly toward its location (dashed lines). We indicate the time when it arrives
to the task’s location with an empty dot, while the moment in which it starts working
on the task with the designated team is indicated by full dots and continuous lines. In
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Fig. 5 Dynamic Case I representation. Along the Mission Time (x-axis), for each task (reported on
the y-axis) the light green colour indicates that a whole team is agreeing to work on it at some point
of the mission, while a darker green is used when there is more than a team that decides to work
on the task and white cells stand for times where no team agrees on executing the task. Blue dots
and lines depict the actual time in which the corresponding task is executed, with a vertical red line
expressing the maximum mission time. Tasks completed afterwards, on red line’s right, are deemed
to be late. Black and green dots at tasks 11 − 15 indicate when the corresponding task is revealed
to the designated UAV (black) as well as when the latter sends the first communication about them
out to the swarm (green).

this way it is possible to look at the state of each UAV over time and their ”believes”
on what is the next task they should be working on. One can see that the arrival of
new tasks during the mission causes changes of plans of individual UAVs as well as
moments of idling, where UAVs wait for team members that will never arrive. Plan
adjustments happen throughout all the mission, with UAV 2 for example assigning
itself to task 12 even though it has already been completed by other UAVs.

6.4 Dynamic Case II

Analogously to Dynamic Case I, this case considers a scenario where more than one
UAV in the swarm is made aware of the presence of new tasks. In particular, UAVs
3, 5, 9 and 10 are made aware of new tasks and can then communicate the new
information to their neighbours. As before, the overall mission time necessary for the
completion of all tasks is ca. 20% higher than for the static case, even though the
mission terminates slightly earlier than in the previous dynamic situation. Figure 8
shows that for this mission one can observe an earlier and more pronounced disagree-
ment phenomenon, reflected in times where some tasks are not allocated to any team
(the white spaces between green ones). Tasks 11, 12 and 15 are now completed early
on, with task 11 performed immediately after its existence has become known to a
member of the swarm. Indeed UAV 5, 9 and 10 are promptly made aware of the task
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Fig. 6 Expected number of late tasks in Dynamic Case I. Along the Mission Time (x-axis), the
number of current task that the swarm (averaged among all UAVs) deems to be late is depicted in
burgundy, while a blue line indicates the number of completed tasks up to that point, with tasks
completed after the vertical red dashed line, expressing the maximum mission time, are deemed to
be late. Vertical dashed lines indicate when a new task is revealed (black) as well as when the first
communication about it is sent out to the swarm (green).

Fig. 7 Mission scheduling for Dynamic Case I. Each UAV path is followed starting from the hangar
(located at task 0), during its flight (dashed lines) and working period (continuous lines). Empty
dots represent the time when the corresponding UAV arrives to the task’s location, while filled dots
depict the moment in which it starts or finishes working on the assigned task.
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Fig. 8 Dynamic Case II representation. Along the Mission Time (x-axis), for each task (reported on
the y-axis) the light green colour indicates that a whole team is agreeing to work on it at some point
of the mission, while a darker green is used when there is more than a team that decides to work
on the task and white cells stand for times where no team agrees on executing the task. Blue dots
and lines depict the actual time in which the corresponding task is executed, with a vertical red line
expressing the maximum mission time. Tasks completed afterwards, on red line’s right, are deemed
to be late. Black and green dots at tasks 11− 15 indicate when the corresponding task is revealed to
the designated UAVs (black) as well as when they send the first communication about the task out
to the swarm (green).

and are then assigned to it. As before, Theorem 1 comes into play guaranteeing that
the remaining tasks will be properly allocated and the mission can terminate, if the
UAVs are allowed to communicate often enough. In addition, early disagreement is
also reflected in Figure 9 where one can observe a more dynamic behaviour of the
number of tasks the swarm deems to deliver late.

Similarly to case I, Figure 10 provides a complete overview of the mission under
consideration by reporting the evolution of each UAV’s path. One can again observe
that the arrival of new tasks during the mission causes changes of plans of individual
UAVs as well as moments of idling, where UAVs wait for team members that will
never arrive. Differently from case I though, due to a faster information spreading,
plan adjustments happen mostly close to the arrival of a new task, while in the second
part of the mission the situation becomes much less dynamic.

6.5 Computation Time

We have seen that in both static and dynamic case we are able to find a solution
for the task assignment problem with the above designed distributed optimisation
framework allowing us to analyse the impact of real-world and real-size situations.

24



Fig. 9 Expected number of late tasks in Dynamic Case II. Along the Mission Time (x-axis), the
number of current task that the swarm (averaged among all UAVs) deems to be late is depicted in
burgundy, while a blue line indicates the number of completed tasks up to that point, with tasks
completed after the vertical red dashed line, expressing the maximum mission time, are deemed to
be late. Vertical dashed lines indicate when a new task is revealed (black) as well as when the first
communication about it is sent out to the swarm (green).

Fig. 10 Mission scheduling for Dynamic Case II. Each UAV path is followed starting from the hangar
(located at task 0), during its flight (dashed lines) and working period (continuous lines). Empty
dots represent the time when the corresponding UAV arrives to the task’s location, while filled dots
depict the moment in which it starts or finishes working on the assigned task.
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Fig. 11 Histograms of computational times (in seconds) needed for solving instances of the optimi-
sation problem OTASF-MCUS with 10 UAVs, 15 tasks as well as randomised task durations dj and
start times lj . The other parameters are described in the Section 6.

Nonetheless, the OTASF-MCUS model is of sufficient complexity to make computa-
tion times a potentially relevant subject, at least for mid- to large-sized problems. In
other words, we consider in this subsection how long it take for a UAV to update
its own decisions depending on the complexity of the problem in terms of number of
UAVs, and consequently teams, number of tasks as well as mission time limit.

In what follows, we only provide computational times for the actual solution process
of the given mixed-integer problem instances, i.e. the time it takes for CPLEX to
generate a solution. Our numerical experiments indicate that the additional overhead
for executing relevant Matlab scripts bears no significance on the overall results.

6.5.1 Empirical Distribution of Computational Times

We consider again the problem setup given above for the OTASF-MCUS model.
With this setting, we run 1000 simulations, in each of which we randomise both the
task durations dj as well as all task start times ℓj . More precisely, we assume that
dj ∼ U [0, 1200] and that ℓj ∼ U [0, 2400], ∀j ∈ {1, . . . ,m}. The corresponding empir-
ical distribution of computational times is depicted in Figure 11. More than 60% of
all solution times are below 3s. However, a small number of difficult instances have
computation times in the range of 40 – 220 seconds, leading to an average computa-
tional time of 4.64s. This effect is even more evident if we compare it with the median
computational time, equal to 2.12s. If we compute the average solution time condi-
tional upon it being in the 80th percentile, we arrive at 2.02s. In contrast, the average
computational time conditional upon it not being in the 80th percentile of the overall
distribution is of ca. 15.13s, a massive difference.
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Fig. 12 Sensitivity analysis of computation times with respect to the number of tasks. Fixing a
mission time limit, for different number of available resources (blue - 8 UAVs, yellow - 15 UAVs, red
- 22 UAVs and green - 29 UAVs), percentiles of solving times distributions (y-axes) are depicted for
each number of tasks considered (x-axis). Mission instances are randomly created.

6.5.2 Computation Times for Varying Numbers of UAV and Tasks

In this section, we consider different instances of the OTASF-MCUS problem to see
how computational times vary with respect to changes in the number of tasks and
UAVs used. In particular, we consider instances where

• Number of UAVs varies from 8 to 29
• Number of Tasks goes from 5 to 38

while the mission time limit û is set as before at 2160s. Then, for each combina-
tion of no. of UAV and no. of tasks, teams of UAVs are randomly determined, with
the preference of building teams constituted by 2 or 3 UAVs. All the other problem
parameters (i.e. UAV capacities Li, task start times ℓj , travel distances fj,k, etc) are
also randomly selected. Subsequently, for each setting, 30 problem simulations and
corresponding solutions are computed, using randomly generated task duration times
dj ∼ U [0, 1200]. Results are reported in Figure 12, where bar limits in the graph cor-
respond to the 25-th and 75-th percentile of the computing times distribution, while
medians are represented by dots. A cap of 1500s (25min) has been set to the computa-
tional times. As it can be seen, computation times increase strongly when the number
of tasks reaches a critical threshold,

6.5.3 Computation Times for Various Mission Time Limits

On the other hand, it is possible to examine the effects of a different mission time
limit and, given the last observation of the previous section, we fix the no. of tasks to
23, while considering instances where
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Fig. 13 Sensitivity analysis of computation times with respect to the mission time constraints.
Fixing the number of tasks to 23, for different number of available resources (blue - 8 UAVs, yellow
- 15 UAVs, red - 22 UAVs and green - 29 UAVs), percentiles of solving times distributions (y-axes)
are depicted for each mission time limits (x-axis). Mission instances are randomly created.

• Number of UAVs varies again from 8 to 29
• Mission time limit increases from ca. 50min to 110min

As before, for all combinations of the two elements above, we generate randomly all
parameters and 30 problem simulations are computed, along with the corresponding
solutions. Allowing a larger limit of 2000s, computational times are collected and the
results are reported in Figure 13. It is possible to observe that relaxing the mission time
limit has beneficial effects on easing the problem, with a change of roughly 12min being
sufficient to significantly reduce the difficulty of the problem. As a final consideration,
it is possible to notice that computational times can exhibit high variability, also
depending on the duration time dj necessary for task’s completion.

7 Conclusions

This paper provides a way to investigate into task assignment problems as they
are faced by a cooperative fleet of UAVs. We have provided a distributed computa-
tional framework where each UAV can make its own decisions to reach swarm goals
within uncertain circumstances and quite general conditions as well as many real-
world aspects of the problem. Numerical experiments show that by leveraging on
state-of-the-art optimisation algorithms and solvers, we can exploit the structure of
the underlying mathematical optimisation model and solve problems of realistic size in
seconds. In our case study it can be seen that it appears to be detrimental when even
a small number of UAVs work on outdated data, thereby revealing the importance of
communication.
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Nonetheless, several interesting model extensions fell outside the scope of this
study and any investigation of them has not been pursued yet. We would like to
highlight what we believe are the most relevant avenues for further research. First, it
is possible to consider different objectives for the mathematical model, whose changes
might significantly affect the computation times needed to produce optimal solutions.
In addition, computational times encountered appear to make it feasible to consider
interactive approaches to solving real-world task assignment problems, and explore
the (implicit) preferences of any operator. As a second area of investigation is the
consideration of hard prioritisation of tasks, where the mathematical optimisation
model is extended to consider the case enforcing certain tasks to be finished before
their assigned due time. Finally, a dynamic communication structure can be explored,
where the communication network structure might change with time and according
to UAVs positions.
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