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Abstract

Existing decentralized algorithms usually require knowledge of problem parameters for
updating local iterates. For example, the hyperparameters (such as learning rate) usually require
the knowledge of Lipschitz constant of the global gradient or topological information of the
communication networks, which are usually not accessible in practice. In this paper, we propose
D-NASA, the first algorithm for decentralized nonconvex stochastic optimization that requires
no prior knowledge of any problem parameters. We show that D-NASA has the optimal rate of
convergence for nonconvex objectives under very mild conditions and enjoys the linear-speedup
effect, i.e. the computation becomes faster as the number of nodes in the system increases.
Extensive numerical experiments are conducted to support our findings.

1 Introduction

Decentralized (distributed) optimization appears in many applications, such as machine learn-
ing (Lian et al., 2017; Tang et al., 2018b; Lian et al., 2018), robotics (Queralta et al., 2020), signal
processing (Hong et al., 2015), and control systems (Nedić & Liu, 2018; Yang et al., 2019). In
machine learning, decentralized optimization arises naturally when the data is either stored in
different physical locations, or split into different servers to boost training efficiency. Therefore the
main concerns for decentralized algorithms are data privacy, algorithmic scalability and robustness.
For example, starting from earlier works Lian et al. (2017); Tang et al. (2018b), researchers seek
to develop scalable decentralized algorithms for distributed training that are provably more effi-
cient than centralized algorithms, usually reflected in an inverse dependency over the number of
devices/nodes in their final convergence rate, known as linear speedup.

One obstacle of applying most of the developed decentralized algorithms in practice is that
their hyperparameters (such as learning rate) usually depend on information of the problem in
order to show a theoretical convergence, e.g, the Lipschitz constant of the global gradient, the
spectral gap of the graph adjacency matrix or other topological information of the problem. Such
information is usually hard to obtain due to either physical/privacy restrictions or computational
constraints (e.g. due to excessive amount of data in machine learning applications), and tedious
hyperparameter tuning is thus required. Nonetheless, in most of these works people demonstrate
a decent performance in experiments of the proposed algorithms without strictly following the
hyperparameter rules suggested in their theory. This gap between theory and application exists

∗Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities. li003755@umn.edu
†Department of Mathematics, University of California, Davis. xuxchen@ucdavis.edu
‡Department of Computational Applied Math and Operations Research, Rice University. Research supported in

part by NSF grants DMS-2243650, CCF-2308597, CCF-2311275 and ECCS-2326591, and a startup fund from Rice
University. sqma@rice.edu

§Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities. mhong@umn.edu

1



in centralized optimization problems and researchers have proposed different methods to mitigate
it. However, this gap introduces more serious problems in the decentralized setting for several
reasons: (i) In distributed settings, it is hard, if not impossible, for local devices to know the problem
information of other devices, even if the network is fully connected (Yuan et al., 2022); (ii) The
network architecture might be largely unknown for algorithmic design, especially when the data are
distributed in different physical locations, thus it is difficult to compute network related constants
such as eigenvalues of the graph Laplacian; (iii) The extra error introduced by the heterogeneity of
the data distributions on each local nodes brings more challenges for convergence analysis (Tang
et al., 2018b; Koloskova et al., 2020).

In this work, we close these gaps by designing problem-parameter-free algorithms, i.e., algo-
rithms whose hyperparameters do not require problem information, for decentralized optimization.
Specifically, consider the following stochastic decentralized optimization problem:

min
x

f(x) :=
1

n

n∑
i=1

fi(x) (1.1)

where each fi = Eξi∼Di
[Fi(x, ξi)] is stored on a local device/node/agent i, which is assumed to be

Li-Lipschitz smooth and possibly nonconvex, a standard assumption in the literature. Moreover, we
assume that the Lipschitz constant is not available for the algorithmic design. Each local node i is
only allowed to access the stochastic function Fi(x, ξi) in the algorithm design. Note that for different
node i the data distribution could be highly heterogeneous, i.e., each ξi follows completely different
distributions Di. Also, each local agent is only connected to a limited amount of neighboring agents,
forming an undirected connected graph, which is summarized by the doubly stochastic mixing
matrix W (see Section 2). To be more specific, in this paper, “problem-parameter-free” means that
the hyperparameters of the algorithm (such as learning rate) do not depend on problems parameters
such as Li and W . The goal of this paper is thus to design such algorithms for solving (1.1).

The most straightforward method for decentralized optimization is decentralized stochastic
gradient descent (D-SGD) where each local device runs stochastic gradient descent then communicates
the update with their neighbors to form the next iterate. In Lian et al. (2017), the authors provided a
convergence analysis under the assumption of bounded heterogeneity, i.e., the gradient distributions
across different devices are similar. To remove this assumption, another famous method is the
decentralized gradient tracking algorithm (D-SGT, Algorithm 1, see Xu et al. (2015); Di Lorenzo &
Scutari (2016); Nedic et al. (2017); Qu & Li (2017); Pu & Nedić (2021); Koloskova et al. (2021); Liu
et al. (2023)) which efficiently guarantees convergence without requiring bounded heterogeneity, also
yields superior numerical performances. We thus first inspect the convergence of D-SGT algorithm
under the problem-parameter-free setting. Our analysis shows that D-SGT could converge when
the hyperparameters are problem-parameter-free. Besides standard assumption of local Lipschitz
smooth, however, this convergence result additionally requires the local functions to be Lipschitz
continuous (i.e., having bounded gradient). To remove this restrictive assumption, we propose a new
decentralized normalized averaged stochastic approximate gradient tracking (D-NASA, Algorithm
2) which enjoys parameter-free convergence without additional assumptions.

Our contributions are summarized as follows.

• New analysis of D-SGT. We investigate D-SGT (Algorithm 1) and point out that one
can use a learning rate that is problem-parameter-free and still guarantee the convergence,
at the expense of an additional assumption: local functions are Lipschitz continuous, i.e.,
bounded local function gradients. This is a rather strong requirement since it implies bounded
heterogeneity among different nodes (see Section 3.1). The analysis also indicates that D-SGT
can no longer achieve a linear speedup under this setting.
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• A new parameter-free algorithm. We propose a fully problem-parameter-free algorithm
(D-NASA, Algorithm 2) based on certain normalization technique that does not require
information of global Lipschitz constant or spectral gap of the topology of the problem. The
convergence of D-NASA is guaranteed without any additional assumption. The convergence
result matches the lower bound for nonconvex stochastic optimization and still enjoys the
desired linear speedup.

• Normalization controls consensus error. D-NASA utilizes a novel control over the
consensus error. Specifically, we notice that normalized update efficiently helps the control
of the consensus error, and enables controlling the cumulative consensus error directly by
stepsizes (see Section 3.2). This opens the door of adapting a wide class of normalization-based
adaptive algorithms to the decentralized setting, and its fine-grained analysis is of independent
interest.

• Numerical evidences. We conduct extensive numerical study to verify our findings. We
observe linear speedup effect of D-NASA with the stepsize exactly predicted by our theory.
We also show that D-NASA compares favorably with existing algorithms D-SGD, D-SGT and
D-ASAGT in terms of convergence speed. We empirically demonstrate that D-NASA does not
require any parameter tuning for a wide range of Lipschitz smooth parameters, and network
topology. Without this technique, the stepsize tuning process can be time-consuming since
the optimal choices of the hyperparameters vary drastically when datasets change.

Notation. We denote Xt := [xt1, ..., x
t
n] which is the collection of local variables xti at iteration t

for i = 1, ..., n as column vectors. x̄t := 1
n

∑n
i=1 x

t
i is the average of all local variables. The same

convention applies to U, V, Z and ūt, v̄t, z̄t. Also denote by X̄t = x̄t1⊤ = 1
nX

t11⊤ the collection
of average of local variables, where 1 is n-dimensional all one column vector. The same convention
applies to Ū, V̄ and Z̄. We use ∥ · ∥ to represent the Euclidean vector norm and matrix Frobenius
norm to simplify the notation. For matrix 2 norm (i.e., spectral norm) we use ∥ · ∥2.

1.1 Related works

Decentralized optimization While the study of decentralized optimization algorithms has a long
history (Tsitsiklis, 1984; Ram et al., 2009; Yan et al., 2012; Yuan et al., 2016), their distinctive
advantages, such as robustness, scalability and privacy preserving, in comparison to centralized
setting like Li et al. (2014), were not well understood both theoretically and empirically until the
case study conducted by Lian et al. (2017). Despite its great success in characterizing the superiority
of decentralized training over the centralized setting, the analysis therein replies on a bounded
gradient heterogeneity assumption, which was later removed by follow-up works such as D2 (Tang
et al., 2018b).

Motivated by the empirical success of decentralized training, another line of work focused on
improving the convergence rates of decentralized algorithms. Vanilla decentralized gradient descent
with a fixed stepsize is known to only converge to a neighborhood of the optimal solution even
under the deterministic and strongly convex setting (Yuan et al., 2016). One important technique to
mitigate this effect is gradient tracking, which was introduced in control community (Xu et al., 2015;
Di Lorenzo & Scutari, 2016; Nedic et al., 2017; Qu & Li, 2017) to improve the convergence rate in the
deterministic setting. Later this method was revealed to be helpful to remove the bounded gradient
heterogeneity assumption (Zhang & You, 2019; Lu et al., 2019; Pu & Nedić, 2021; Koloskova et al.,
2021) in convergence analysis. A more recent technique of moving-average updates (momentum)
have been studied in both decentralized optimization and federated learning setting (Xiao et al.,
2023; Cheng et al., 2023) to further improve the rate of convergence.
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Table 1: Comparison of D-NASA (Algorithm 2) with some widely-used decentralized stochastic
nonconvex optimization algorithms: D-SGD (Lian et al., 2017), D2 (Tang et al., 2018b) and
D-SGT (Koloskova et al., 2021). ‘Other aspt’ refers to the additional assumptions required for
theoretical convergence (Note that the parameters in the assumptions might not be available to
the algorithm), where ‘Hetero’ stands for bounded heterogeneity, and all algorithms require the
stochastic bounded variance and the deterministic gradients begin Lipschitz continuous; ‘Info
Required’ refers to the problem parameters that the algorithm parameters (such as stepsizes) should
depend on to achieve the sample complexity, where “smoothness” is the Lipschitz constant of the
global gradient, and “variance” is the variance of the stochastic oracle; All algorithms in this table
require O(n−1ϵ−4) oracle calls to achieve an ϵ-stationary point.

Algorithm Other Aspt Info Required

D-SGD Hetero Smoothness, variance
D2 None Smoothness, net-topology

D-SGT None Smoothness, net-topology
D-NASA (ours) None None

It is worth noticing that the above works all require knowledge about the global problem to
design their algorithms. Under the assumption that the local functions are Lipschitz continuous,
NEXT (Di Lorenzo & Scutari, 2016) is able to achieve a problem-parameter-free asymptotic
convergence (in deterministic setting). We point out again that Lipschitz continuity of the
objective functions is a strong assumption that implies boundedness of gradients and bounded
heterogeneity (see Section 3.1).

Other interesting research topics in decentralized optimization include network topology (Neglia
et al., 2020; Koloskova et al., 2020), communication compression (Tang et al., 2018a; Koloskova
et al., 2019), large-model training (Gan et al., 2021; Yuan et al., 2022), adaptive algorithms (Chen
et al., 2023), to name a few.
Parameter-free optimization (Problem-) Parameter-free optimization refers to the algorithms
that require no/few information needed from the problem so that the algorithm converges without any
tedious process of hyperparameter-tuning. For deterministic smooth optimization, one could show
the convergence of gradient descent to either the optimal (convex) or the stationary point (nonconvex)
when the stepsize η is smaller than 2/L, where L is the Lipschitz smooth constant (Nesterov et al.,
2018). When problem parameters such as L are not available, one usually uses backtracking
line-search to determine the stepsize. Recently, there is a line of research initiated by Malitsky &
Mishchenko (2019) that adaptively estimates the local curvature information in each iteration and
does not require the knowledge of L. See Malitsky & Mishchenko (2023); Latafat et al. (2023a,b);
Li & Lan (2023); Zhou et al. (2024) for more recent works on this subject. Currently, these adaptive
methods are for deterministic problems and it remains an interesting direction to extend them to
stochastic and decentralized settings.

For stochastic gradient descent for solving convex problems, the current convergence result
requires either a constant step upper bounded by 1/(2L), or a diminishing stepsize ηt = η/

√
t with

η still upper bounded by terms related to L (Garrigos & Gower, 2023). Sufficiently small stepsize
guarantees the convergence since the analysis resembles the gradient flow regime, yet this is usually
inconsistent with empirical studies, which encourage the stepsize to be large as long as there is no
divergence. The stepsize can be chosen up to 103 and 104 in some logistic regression problems (see
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Section C.2 in Grazzi et al. (2020)), which indicates that optimal choices of stepsizes in SGD heavily
depend on problem parameters.

For nonconvex stochastic optimization, various adaptive methods, such as AdaGrad (Duchi
et al., 2011; McMahan & Streeter, 2010), AMSGrad-Norm Reddi et al. (2019), NSGD-M Cutkosky
& Mehta (2020), are proved to be convergent without any knowledge of the parameters Faw et al.
(2022); Yang et al. (2023); Hübler et al. (2023), which are thus believed to be more robust algorithms
comparing to SGD. Another line of works for the stochastic/online convex optimization is to use
the accumulative norm of the stochastic gradient to design adaptive stepsizes (Carmon & Hinder,
2022; Ivgi et al., 2023). These research results emphasize the optimal dependency on ∥x0 − x∗∥, i.e.,
the distance from the initial to the optimal point, and it is not clear how these works adapt to the
nonconvex problems.

Parameter-free stochastic optimization in decentralized setting is unexplored. It is natural to
ask whether one can achieve parameter-free decentralized training, given the unique challenges such
as communication complexity and heterogeneous data distribution across agents. We provide an
affirmative answer in this paper, and in Table 1 we make the comparison between our Algorithm
2 and existing well-known algorithms: D-SGD (Lian et al., 2017), D2 (Tang et al., 2018b) and
D-SGT (Koloskova et al., 2021)1. In particular, D-SGD in Lian et al. (2017) requires the information
of Lipschitz smoothness parameter and variance of stochastic gradients. D-SGT in Koloskova et al.
(2021) requires the Lipschitz smoothness parameter and λ2, λn (see Section 2), which we summarize
as ‘net-topology’. Our D-NASA (Algorithm 2) does not require any problem information to select
the algorithm parameters.

2 Methodology

We now present the full methodology of our algorithm. First we recall the decentralized commu-
nication topology with a weighted undirected graph (V,W ). The vertex set V = {1, 2, ..., n} is
the set of local device/nodes, and W = (Wi,j) ∈ Rn×n is a symmetric doubly stochastic matrix
known as weighted adjacency matrix, i.e., W satisfies the following properties: (1) Wi,j ∈ [0, 1],
∀i, j; (2) Wi,j = Wj,i, ∀i, j, i.e., W⊤ = W ; and (3)

∑n
j=1Wi,j = 1, ∀i, i.e., W1 = 1 and 1⊤W = 1⊤.

Intuitively, Wi,j represents how well the communication between node i and j is, and Wi,j = 0 if
and only if i and j are not communicating. Note that we assume that the eigenvalues of W satisfy
1 = λ1 > λ2 ≥ · · · ≥ λn > −1, and

ρ := max{|λ2|, |λn|} < 1, (2.1)

which is standard in decentralized optimization literature (Lian et al., 2017; Tang et al., 2018b).
This ensures the communication graph is strongly connected, and after each round of communication
with neighbors, the consensus error (i.e.,

∑n
i=1 ∥ai − ā∥2 where ai is a vector owned by the i-th

agent only) decreases at a controllable rate. We assume W satisfies the above properties throughout
the paper and thus will not explicitly state them in the theorems.

Now we recall the decentralized stochastic gradient tracking (D-SGT) (Zhang & You, 2019;
Lu et al., 2019; Pu & Nedić, 2021; Koloskova et al., 2021) in Algorithm 1. The algorithm takes a
gradient step at each local node, keeps a tracker uti to approximate the global stochastic gradient,
and executes a communication round in each iteration to achieve consensus among agents. A simple
arithmetic verification shows that ūt = v̄t for all iteration number t > 0. This key mechanism
guarantees that the averaged gradient tracker ūt is close to full gradient ∇f provided the consensus

1We do not compare with NEXT (Di Lorenzo & Scutari, 2016), which only proves asymptotic convergence under
deterministic setting.
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error
∑n

i=1

∥∥xti − x̄t
∥∥2 is small. However, as we will show in Section 3, this popular D-SGT algorithm

cannot achieve a problem-parameter-free convergence with linear speedup even when we assume
that the local functions are Lipschitz continuous, i.e., their gradients are bounded. We primarily
use D-SGT to showcase the difficulties of applying these algorithms to modern machine learning
applications, as we essentially still need to tune the algorithm parameters for a better performance
in distributed training, which is largely impossible Yuan et al. (2022).

Algorithm 1: Decentralized stochastic gradient tracking (D-SGT)

1: Input: T , {ηt}, u0i = v0i = ∇Fi(x
0
i , ξ

0
i )

2: Output: x̃ = xT or uniformly from {x1, ..., xT }
3: for t = 0, ..., T − 1 do
4: for each node i = 1, ..., n (in parallel) do
5: xt+1

i ←
∑n

j=1Wi,j(x
t
j − ηtu

t
j),

6: vt+1
i ← ∇Fi(x

t+1
i , ξt+1

i )
7: ut+1

i ←
∑n

j=1Wi,ju
t
j + vt+1

i − vti
8: end for
9: end for

To overcome this obstacle, we propose decentralized normalized averaged stochastic approxi-
mation (D-NASA) as in Algorithm 2, where we maintain zti as a moving-average update of the
tracker uti and then utilize the normalized direction zti/

∥∥zti∥∥ to update xti. Another difference of
D-NASA is that we update all the local operations and communicate at the end, simply for the ease
of analysis. The moving-average technique, also known as momentum method, was recently intro-
duced to distributed optimization and proven to mitigate client drift in federated learning (Cheng
et al., 2023) and achieve linear speedup in decentralized composite optimization (Xiao et al., 2023).
In Section 3, our theory reveals that the normalized direction coupled with the moving-average
provably achieves parameter-free decentralized optimization. The combination of normalization and
moving-average was explored in Cutkosky & Mehta (2020); Hübler et al. (2023), yet it is unclear
and highly non-trivial to understand if one can achieve parameter-free convergence when each of
the local node is normalized only by its local norm of gradients.

3 Convergence analysis

In this section we analyze the convergence properties of our algorithms. We have the following
standard assumptions for our theoretical analysis of Algorithm 1 and 2.

Assumption 3.1. The function fi is Li-Lipschitz smooth, i.e.

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥.

As a result, f is L-Lipschitz smooth with L = 1
n

∑
i Li.

Next, we also have the following standard assumption on the mean and variance of each local
gradient estimator. Denote the filtration generated by the random variables sampled upon the t-th
iteration as Ft, i.e. F0 = {∅,Ω} and

Ft := σ(ξki |i = 1, ..., n, k = 0, ..., t), ∀t ≥ 1

where σ is the σ-algebra generated by the random variables.
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Algorithm 2: Decentralized normalized averaged stochastic approximation (D-NASA)

1: Input: T , {ηt}, {αt}, x0i = z0i = v0i = 0
2: Output: x̃ = xT or uniformly from {x1, ..., xT }
3: for t = 0, ..., T − 1 do
4: for each node i = 1, ..., n (in parallel) do
5: x̃t+1

i ← xti −
ηt

∥zti∥
zti

6: vt+1
i ← ∇Fi(x

t
i, ξ

t
i)

7: ũt+1
i ← uti + vt+1

i − vti
8: z̃t+1

i ← (1− αt)z
t
i + αtũ

t+1
i

9: end for
# Communication

10: [xt+1
1 , ..., xt+1

n ]← [x̃t+1
1 , ..., x̃t+1

n ]W
11: [ut+1

1 , ..., ut+1
n ]← [ũt+1

1 , ..., ũt+1
n ]W

12: [zt+1
1 , ..., zt+1

n ]← [z̃t+1
1 , ..., z̃t+1

n ]W
13: end for

Assumption 3.2. The stochastic gradient estimator is unbiased and with bounded variance, i.e.,

Eξi [∇Fi(x, ξi)] = ∇fi(x),
Eξi∥∇Fi(x, ξi)−∇fi(x)∥2 ≤ σ2.

Moreover, we assume {ξt+1
i : i = 1, ..., n} are independent given Ft.

Note that Assumption 3.2 is only imposed on each local stochastic function, and does not imply
any bound for the difference between local and global functions. We now define the notion of
stationarity for this paper.

Definition 3.1. For any ϵ > 0, we say an algorithm finds an ϵ-stationary point, if an output
sequence {x̄t}Tt=0 generated by the algorithm satisfies

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ ϵ.

We say that an algorithm achieves linear speedup if it takes T ∝ n−1 oracles calls at each
node to achieve an ϵ-stationary point.

3.1 Parameter-free convergence theory for D-SGT

We first show the convergence analysis of the D-SGT algorithm in which the learning rate does not
depend on problem parameters. However, this convergence result requires the following Lipschitz
continuity assumption on functions fi.

Assumption 3.3. The function fi is Gi-Lipschitz continuous, i.e.

∥fi(x)− fi(y)∥ ≤ Gi∥x− y∥.

As a result, f is G-Lipschitz continuous with G = 1
n

∑
iGi.
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Note that Assumption 3.3 is only used in the parameter-free convergence analysis for the
D-SGT algorithm (Algorithm 1). This is a very strong assumption since in convex optimization,
Lipschitz continuity of the objective functions (or bounded subgradient) can readily give a parameter-
independent convergence result by taking the stepsize to be O(1/

√
t) (Boyd et al., 2003). Moreover, it

implies that each function fi has bounded gradients, i.e., ∥∇fi(x)∥ ≤ Gi, which further indicates the
bounded heterogeneity condition since ∥∇fi(x)−∇f(x)∥ ≤ ∥∇fi(x)∥+ 1

n

∑n
j=1 ∥∇fj(x)∥ ≤ Gi+G.

We point out that, even under such a strong assumption, we are not able to show a linear speed
up effect for D-SGT. Specifically, we have the following theorem.

Theorem 3.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold, also take ηt = ηT−1/2 (constant) or
ηt = ηt−1/2 (diminishing, η0 = 0 for this case) for η > 0, the update of Algorithm 1 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥2

≤ Õ
(
∆0/η + (Lσ2/n+ LG2)η√

T
+

ρ̃L2η2

T
(σ2 +G2)

)
.

Here ρ̃ > 0 is a parameter dependent on ρ in (2.1), ∆0 = f(x̄0)− f∗ is the initial function value
gap and we omit higher-order and logarithmic terms in Õ.

Remark 3.1. The rate of O(1/
√
T ) matches the lower bound for nonconvex stochastic optimiza-

tion Arjevani et al. (2023), yet it is worth noticing that we are not able to choose the parameter η to
achieve a linear speedup effect (even if we have access to n, the number of nodes), due to the term
related to G. We also remind the reader that if we assume the access of Lipschitz smooth constant L,
one can achieve linear speedup for D-SGT as in Zhang & You (2019); Xin et al. (2021); Koloskova
et al. (2021). This motivates the design of new algorithms that can achieve linear speedup under
problem-parameter-free setting for decentralized optimization, without the restrictive Assumption
3.3.

3.2 Parameter-free convergence theory for D-NASA

Now we analyze the convergence of D-NASA (Algorithm 2). Similar to the result for D-SGT,
we provide both the result for fixed and diminishing stepsizes. Our analysis depends on a key
observation over the control of the consecutive consensus error. By the update of Algorithm 2 one
can get:

∥Xt+1 − X̄t+1∥2

≤ 1 + ρ

2
∥Xt − X̄t∥2 + η2t

1 + ρ2

1− ρ2
∥Ẑt − ¯̂

Zt∥2

where Ẑt :=
[

zt1
∥zt1∥

, ..., ztn
∥ztn∥

]
is the collection of column vectors of normalized zti . Now the key

observation is that the consensus error of Ẑt is always bounded:

∥Ẑt − ¯̂
Zt∥2 =

n∑
i=1

∥∥∥∥∥ zti
∥zti∥

− 1

n

n∑
i=1

zti
∥zti∥

∥∥∥∥∥
2

≤ n.

Therefore the consecutive consensus error for X becomes:

1

n
∥Xt+1 − X̄t+1∥2 ≤ 1 + ρ

2

1

n
∥Xt − X̄t∥2 + 1 + ρ2

1− ρ2
η2t
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and the cumulative consensus error is controlled directly by our stepsize choice ηt. This indicates
that a careful stepsize choice will result in a bounded consensus error, regardless of any problem
parameter. Now we state the convergence result for a fixed stepsize as follows.

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold and we take αt =
√
n/T and ηt = n1/4/T 3/4

in Algorithm 2. The following bounds hold:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ O
(
∆0 + L+ σ

n1/4T 1/4
+

ρ̃2(σ + L)n1/2

T 1/2

)
,

1

T

T−1∑
t=0

E∥z̄t −∇f(x̄t)∥ ≤ O
(

L+ σ

n1/4T 1/4
+ Lρ̃

n1/4

T 1/2

)
,

1

T

T−1∑
t=0

1

n

[
∥Xt − X̄t∥2 + ∥Zt − Z̄t∥2

]
≤ O

(
ρ̃
n1/4

T 1/2
+ ρ̃2(σ2 + L2)

n2

T

)
.

Here ρ̃ > 0 is a parameter dependent on ρ in (2.1), ∆0 = f(x̄0)− f∗ is the initial function value gap
and we omit higher-order terms in O. Note that the above three bounds correspond to stationarity,
approximation to gradient and consensus errors.

Remark 3.2. To make 1/T
∑T−1

t=0 E∥∇f(x̄t)∥ ≤ ϵ, we need T = Õ(1/(nϵ4)), which matches the
lower bounds as in Lu & De Sa (2021); Arjevani et al. (2023), and also indicates the linear speedup
effect (Lian et al., 2017). Note that the approximation error ∥z̄t−∇f(x̄t)∥ also enjoys linear speedup
effect. Readers might realize that this choice of parameter requires prior knowledge of the total
number of nodes. We presume that it is impossible to achieve linear speedup if we are using none of
the problem information. Moreover, this choice of algorithm parameters still does not require global
information about the loss function or the topological information about the communication graph,
thus it is better than existing algorithms in the literature in decentralized optimization, as we have
presented in Table 1.

To free the algorithm parameters even from the total number of iterations T , we also present
the result when we do not fix the total number of iterations in advance and the stepsize will be
diminishing in Theorem 3.3.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold, also take αt =
√
n/t and ηt = n1/4/t3/4 for

any t (take η0 = α0 = 0), the update of Algorithm 2 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ Õ
(
∆0 + L+ σ

n1/4T 1/4

+
Lρ̃n1/4 + ρ̃2(σ + L)n1/2 + Lρ̃3n3/4

T 1/4

)
,

1

T

T−1∑
t=0

E∥z̄t −∇f(x̄t)∥ ≤ Õ
(
L+ σ + Lρ̃n1/2

n1/4T 1/4

)
,

1

T

T−1∑
t=0

1

n
E
[
∥Xt − X̄t∥2 + ∥Zt − Z̄t∥2

]
≤ O

(
ρ̃2(σ2 + L2 + ρ̃n1/2)

T

)
,
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where ρ̃ and ∆0 are the same as Theorem 3.2 and we omit logarithmic factors in Õ.

Remark 3.3. To ensure 1/T
∑T−1

t=0 E∥∇f(x̄t)∥ ≤ ϵ, we need T = Õ(1/ϵ4), which again matches the
lower bound as in Lu & De Sa (2021); Arjevani et al. (2023) up to logarithmic factors. Yet we are not
able to achieve a concrete linear speedup effect with this choice of algorithm parameters. This might
root back to our estimation of certain error terms in the proof (see Lemma B.6). Nevertheless, we
show in the numerical experiments (see Figure 1) that the stepsize choices α =

√
n and η = n1/4 can

still achieve linear speedup empirically, and we thus stick to this choice of parameters in experiments.

4 Numerical experiments

In this section, we test D-NASA (Algorithm 2) numerically and compare it with existing algorithms
such as D-SGD Lian et al. (2017), D-SGT (Algorithm 1) and D-ASAGT Xiao et al. (2023)2. We
follow the experimental setup in the code framework of Mancino-Ball et al. (2023) to test the
algorithms on real datasets using mpi4py (Dalcin & Fang, 2021) and PyTorch (Paszke et al., 2019).

4.1 Synthetic data experiments

We first use synthetic data to verify the linear speedup effect of D-NASA (Algorithm 2). We consider
a simple linear regression model where the data sample at each node ξ = (X,Y ) is generated by
Y = X⊤θ⋆ + ϵ where X, θ⋆ ∈ Rd and ϵ ∼ N (0, σ2) are Gaussian noise. We solve the following
least-square problem:

min
θ∈Rd

1

n

n∑
i=1

E(X,Y )∼Di
[(Y −X⊤θ)2]. (4.1)

In our experiment, we set d = 100, data X ∼ N (0, Id) and σ = 0.1. We simulate streaming data
samples with batch size = 1 for training and 10000 data samples per node for evaluations. We
employ a ring topology for the network where self-weighting and neighbor weights are set to be 1/3.
For D-NASA, we try both fixed stepsizes (αt =

√
n/T , ηt = n1/4/T 3/4) and diminishing stepsizes

(αt =
√

n/t, ηt = n1/4/t3/4) where the total number of iteration T = 15000 and n ∈ {5, 10, 20}.
Figure 1 shows results of our experiment. It could be seen that with more number of nodes D-NASA
is more efficient in terms of both test loss and the norm of the gradient (at the global point x̄t).

Next, we compare D-NASA on (4.1) with the other three algorithms. We still set d = 100, yet
with a spike model with X ∼ N (0, diag(100, 1, · · · , 1)) where only the first entry has a large variance,
in order to make the Lipschitz smooth constant of (4.1) large. It is worth noting that despite the
fact that conservative constant stepsize choices (usually O(

√
n/T )) can lead to linear speedup effect

in decentralized training theoretically (Lian et al., 2017; Tang et al., 2018b), this choice is usually
for the sake of proof simplicity (see footnote on Page 6 of Lian et al. (2017)). In practice it is
tempting to choose diminishing stepsize in the learning rate scheduler, since the model training
often benefits from large stepsizes, a phenomenon that has attracted a lot of attention recently in
deep learning community (Lewkowycz et al., 2020; Cohen et al., 2021). We thus compare D-SGD,
D-SGT, D-ASAGT with D-NASA using diminishing stepsizes with a tunable hyperparameter.

For D-SGD and D-SGT, we test the algorithm with diminishing stepsizes ηt = η
√
n/t as

suggested by Lian et al. (2017); Koloskova et al. (2021); For D-ASAGT, we test the algorithm with
stepsizes ηt = η

√
n/t and αt = min{

√
n/t, 0.3} as suggested in their experiments Xiao et al. (2023);

2Xiao et al. (2023) considers nonsmooth proximal version of the algorithm. In our numerical experiments we simply
regard the nonsmooth proximal term as zero.
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Figure 1: The convergence curve of Algorithm 2 to solve (4.1) with different choice of number of
nodes/devices n ∈ {5, 10, 20}. The above two figures correspond to fixed stepsizes (αt =

√
n/T ,

ηt = n1/4/T 3/4) and below two corresponds to diminishing stepsizes (αt =
√
n/t, ηt = n1/4/t3/4),

respectively.

For D-NASA we take ηt = n1/4/t3/4 and αt =
√
n/t based on our theoretical analysis. We conduct

a simple grid search for D-SGD, D-SGD and D-ASAGT to determine and use the best choices of
η for each algorithms. The convergence result is shown in Figure 2. Among all algorithms, the
test loss of D-NASA decreases with oscillations, presenting the catapults (Lewkowycz et al., 2020)
and Edge of Stability (EOS) (Cohen et al., 2021) phenomena, two closely related large-stepsize
regimes in which the training converges non-monotonically with oscillations and usually generalize
better than small-stepsize settings (Lewkowycz et al., 2020; Cohen et al., 2021; Arora et al., 2022;
Ahn et al., 2022). Furthermore, we observe that the test loss of our algorithm is much lower than
other baselines, indicating superior generalization performance. We emphasize that different from
the large-stepsize training setup in the literature, our Algorithm presents the catapults and EOS
without any hyperparameter tuning.
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Figure 2: Convergence curve for D-SGD, D-SGD, D-ASAGT and D-NASA for solving (4.1) under
the spike model.

4.2 Real-world data experiments

We utilize the code framework in Mancino-Ball et al. (2023) where we compare D-NASA with
D-SGD, D-SGT, D-ASAGT for solving the classification problem:

min
θ∈Rd

1

n

n∑
i=1

1

|Di|
∑

(x,y)∈Di

ℓ(f(x; θ), y) (4.2)

on MNIST, a9a and miniboone datasets3. Here ℓ denotes the cross-entropy loss, and f represents
a neural network parameterized by θ with x being its input data. Di is the training set only
available to agent i. We use a 2-layer perception model on a9a and miniboone, and the LeNet
architecture LeCun et al. (2015) for the MNIST dataset. We take n = 8 which connect in the form
of a random graph (ρ = 0.375) for all three datasets4. The data is divided evenly to n = 8 devices
(CPUs) and using mpi4py interface to communicate the computation results. The batch-sizes are
fixed to be 32.

Similar to the synthetic data, for D-SGD and D-SGT, again we test the algorithm with
diminishing stepsizes ηt = η

√
n/t; For D-ASAGT, we test the algorithm with ηt = η

√
n/t and

αt = min{
√
n/t, 0.3}; For D-NASA we again take ηt = n1/4/t3/4 and αt =

√
n/t based on our theory.

Figure 3 shows the test accuracy under different stepsizes η ∈ {0.005, 0.01, 0.5, 1, 5, 10, 50, 100}, where
the dashed horizontal line is the result for D-NASA. We can see that D-NASA yields comparable
numerical results without tuning any parameters, and other three algorithms can also work well
under certain parameter choices5.

3Available at https://www.openml.org
4To make sure that the graph is connected, we set the probability of each two node being connected as 0.8. We

refer to Appendix A for more graph designs due to page limits.
5It can be seen that D-SGD, D-SGT and D-ASAGT all seem to work well when η is around 10. We believe the

main reason is that all the datasets we tested are normalized and the Lipschitz smooth constant are fairly similar for
all three datasets.
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Figure 3: The testing accuracy of the outputs from different algorithms with respect to different
choices of learning rates.

5 Conclusion

In this paper we propose D-NASA, a problem-parameter-free decentralized stochastic optimization
algorithm and give its finite-time convergence analysis. Moreover, we showcase that in comparison to
other baselines, our algorithm demonstrates superior generalization without tedious hyperparameter
tuning process, thus having great potential for large scale machine learning problems. It would be
interesting to explore parameter-free convergence in convex, also the nonsmooth regimes.
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Appendix

A Details of experiments

Our experiments are performed on Amazon AWS EC2 g5.4xlarge cluster which consists of 16 vCPUs
with 64 GiB memory and NVIDIA A10G GPU with 24 GiB memory. All the experiments are
conducted on CPU where 8 CPU are used to imitate 8 different nodes. The network topology is
chosen as Figure 4.

Ring ρ = 0.805
Random ρ =

0.375 Ladder ρ = 0.892 Complete ρ = 0

Figure 4: Network topology for n = 8. The four graphs represent the ring, (an instance of) the
random, the ladder and the complete graph.

We now present the additional results for testing D-SGD, D-SGT, D-ASAGT, D-NASA on (4.2)
with a9a data over different network topology as specified in Figure 4. The hyperparameters follow
exactly the same as in Section 4.2. The results are presented in Figure 5. It can be seen that
D-NASA achieves competitive testing accuracy under almost every network topology choice.

We also include the figures of the loss, accuracy, and stationarity curves of all algorithms. Figure
6 and 7 shows the training/testing curve with respect to training epoch or CPU time when applying
the four algorithms to (4.2) with MNIST and a9a dataset. We show each algorithm with the best
choice of stepsizes in the light of Figure 3. One can see that D-NASA achieves competitive rate
of convergence with exactly the same stepsize choice as our theory, without tuning any parameter.

B Convergence analysis

B.1 Parameter-free convergence theory for D-SGT

From the update of Algorithm 1, we have that:

Xt+1 = Xt − ηtU
t, x̄t+1 = x̄t − ηtū

t

ūt = v̄t =
1

n

n∑
i=1

∇Fi(x
t
i, ξ

t
i)

(B.1)

The following descent lemma characterizes the difference between the function values of two
consecutive iterates for Algorithm 1:
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Figure 5: The testing accuracy of the outputs from different algorithms with respect to different
choices of learning rates for a9a dataset. The four figures corresponds to four different network
graphs as in Figure 4.
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Figure 6: The convergence curve of D-SGD, D-SGT, D-ASAGT, D-NASA for the MNIST dataset,
while the first three are at their best stepsizes (after the grid search as in Figure 3), and D-NASA
follows the stepsize choice as in Remark 3.3, i.e. ηt = n1/4/t3/4 and αt = n1/2/t1/2. The four
columns are the curves for training loss, testing loss, testing accuracy and stationarity, respectively.
The experiments are repeated and averaged for 10 times.

Lemma B.1. Suppose Assumption 3.1 and 3.3 holds. Algorithm 1 satisfies:

E[f(x̄t+1)]− E[f(x̄t)] ≤ −3ηt
4

E
∥∥∇f(x̄t)∥∥2 + 2η2tL

σ2

n
+ (ηt + 2η2tL)

L2

n
E∥Xt − X̄t∥2 + η2tLG

2

where the expectation is taken conditioned on Ft−1.
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Figure 7: The convergence curve of D-SGD, D-SGT, D-ASAGT, D-NASA for the a9a dataset, while
the first three are at their best stepsizes (after the grid search as in Figure 3), and D-NASA again
follow the same choice as Figure 6. The experiments are repeated and averaged for 10 times.

Proof. By the L-Lipschitz smooth of f (Assumption 3.1) we get:

f(x̄t+1)− f(x̄t)

≤∇f(x̄t)⊤(x̄t+1 − x̄t) +
L

2
∥x̄t+1 − x̄t∥2 = −ηt∇f(x̄t)⊤ūt +

η2tL

2
∥ūt∥2

=− ηt
∥∥∇f(x̄t)∥∥2 − ηt∇f(x̄t)⊤(v̄t −∇f(x̄t)) +

η2tL

2
∥v̄t∥2

=− ηt
∥∥∇f(x̄t)∥∥2 − ηt∇f(x̄t)⊤(v̄t − ht + ht −∇f(x̄t)) + η2tL

2
∥v̄t∥2

where ht := 1
n

∑n
i=1∇fi(xti).

Now taking the expectation conditioned on Ft−1, we get

E[f(x̄t+1)− f(x̄t)]

≤− ηtE
∥∥∇f(x̄t)∥∥2 − ηtE[∇f(x̄t)⊤(ht −∇f(x̄t))] +

η2tL

2
E∥v̄t∥2

≤− ηtE
∥∥∇f(x̄t)∥∥2 + ηt/4E∥∇f(x̄t)∥2 + ηtE∥ht −∇f(x̄t)∥2 + η2tL∥v̄t −∇f(x̄t)∥2 + η2tLG

2

≤− 3ηt
4

E
∥∥∇f(x̄t)∥∥2 + 2η2tLE∥v̄t − ht∥2 + (ηt + 2η2tL)E∥ht −∇f(x̄t)∥2 + η2tLG

2

where the second inequality is by E[v̄t] = ht, Cauchy-Schwarz, a⊤b ≤ 1/γ∥a∥2 + γ∥b2∥ and
Assumption 3.3, and the third is by ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.

Now taking the conditional expectation over Ft−1 we get:

E∥v̄t − ht∥2 = E∥ 1
n

∑
i

(∇Fi(x
t
i, ξ

t
i)−∇f(xti))∥2 =

1

n

∑
i

E∥∇Fi(x
t
i, ξ

t
i)−∇f(xti)∥2 ≤

σ2

n

due to Assumption 3.2.
As for the term ∥ht −∇f(x̄t)∥2, we have

∥ht −∇f(x̄t)∥2 = ∥ 1
n
(

n∑
i=1

∇fi(xti)−∇fi(x̄t))∥2 ≤
L2

n

∑
i

∥xti − x̄t∥2 = L2

n
∥Xt − X̄t∥2.

We have the following lemma about the consensus error, that is, the average distance of each
node to the global average.
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Lemma B.2. For the update of Algorithm 1, we have:

∥Xt+1 − X̄t+1∥2 ≤ 1 + ρ

2
∥Xt − X̄t∥2 + η2t

1 + ρ2

1− ρ2
∥Ut − Ūt∥2,

∥Ut+1 − Ūt+1∥2 ≤ 1 + ρ

2
∥Ut − Ūt∥2 + 1 + ρ2

1− ρ2
∥Vt+1 −Vt∥2.

Proof. Since

∥Xt+1 − X̄t+1∥2 = ∥(Xt − ηtU
t)W − (x̄t − ηtū

t)1⊤∥2

=∥(Xt − ηtU
t)W − 1

n
(Xt − ηtU

t)11⊤∥2 = ∥(At −At1
⊤

n
)(W − 11⊤

n
)∥2

≤∥At −At1
⊤

n
∥2∥W − 11⊤

n
∥22

≤ρ2∥At −At1
⊤

n
∥2 = ρ2∥(Xt − x̄t1⊤)− ηt(U

t − ūt1⊤)∥2

≤ρ2(1 + 1

c
)∥Xt − x̄t1⊤∥2 + ρ2η2t (1 + c)∥Ut − ūt1⊤∥2

where At := Xt − ηtU
t. Taking c = 2ρ2

1−ρ2
≥ 0 gives the desired result. For the consensus error of Ut

we could get it in a similar way.

With the analysis of one step of the consensus error, we are readily to analyze the cumulative
consensus error for the final convergence. To do this, we need the following technical lemma:

Lemma B.3 (Lemma 3.3 in Xiao et al. (2023)). Suppose we are given three sequences {an}∞n=0,
{cn}∞n=0, {τn}∞n=0, and a constant r ∈ (0, 1) such that ak, bk ≥ 0, 0 = c−1 ≤ ck+1 ≤ ck ≤ 1 and

ak+1 ≤ rak + bk

then we have
K∑
k=0

ckak ≤
1

1− r

(
c0a0 +

K∑
k=0

ckbk

)
for any positive integer K.

Now we are ready to analyze the cumulative consensus error for Algorithm 1 as follows:

Lemma B.4. For the update of Algorithm 1, under Assumption 3.3 and 3.2, we have:

T−1∑
t=0

1

n
ητt E∥Xt − X̄t∥2 ≤ 10ρ̃

T−1∑
t=0

ητ+2
t (σ2 +G2)

where τ = 0, 1 or 2 and

ρ̃ :=
ρ

1− ρ

1 + ρ2

1− ρ2
.

Note that ρ̃ is greater than 0.
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Proof. First by applying Lemma B.2 and B.3 with ak = 1
n∥X

k − X̄k∥2, bk = η2k
1+ρ2

1−ρ2
1
n∥U

k − Ūk∥2

and r = (1 + ρ)/2, we get

T−1∑
t=0

1

n
E∥Xt − X̄t∥2 ≤ ρ̃

T−1∑
t=0

η2t
1

n
E∥Ut − Ūt∥2 (B.2)

Second, by applying Lemma B.2 and B.3 again we get

T−1∑
t=0

η2t
1

n
E∥Ut − Ūt∥2 ≤ ρ̃

T−1∑
t=0

η2t
1

n
E∥Vt+1 −Vt∥2 (B.3)

Now we inspect the term Vt+1 −Vt following Xiao et al. (2023). We first have

Vt+1 −Vt =Vt+1 − E[Vt+1 | Ft]− (Vt − E[Vt | F t−1])

+ E[Vt+1 | Ft]−∇F(x̄t+1) +∇F(x̄t+1)−∇F(x̄t) +∇F(x̄t)− E[Vt | Ft−1]

where we use the notation ∇F(x) := [∇f1(x), ...,∇fn(x)] being the matrix of column gradient
vectors. We thus have

E
∥∥Vt+1 −Vt

∥∥2
≤5
{
E
∥∥Vt+1 − E

[
Vt+1 | Ft

]∥∥2 + E
∥∥Vt − E

[
Vt | Ft−1

]∥∥2 + n∑
i=1

E
∥∥∇fi(xt+1

i )−∇fi(x̄t+1)
∥∥2 .

+
n∑

i=1

E
∥∥∇fi(x̄t+1)−∇fi(x̄t)

∥∥2 + n∑
i=1

E
∥∥∇fi(xti)−∇fi(x̄t)∥∥2} ≤ 10nσ2 + 60nG2

where the first inequality uses Cauchy-Schwarz inequality, and the second utilizes Lipschitz continuity
of each fi. Plug this back to (B.3) gives the result. For k > 0 we can get the result in the exact
same manner.

Now we are ready to present our final convergence for Algorithm 1, which we restate it here:

Theorem B.1. Suppose Assumptions 3.1, 3.3 and 3.2 hold, also take ηt = ηT−1/2 for η > 0, the
update of Algorithm 1 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥2 ≤ O
(
∆0/η + (Lσ2/n+ LG2)η√

T
+

ρ̃L2η2

T
(σ2 +G2)

)
.

If we take (η0 = 0) ηt = ηt−1/2 for η > 0, the update of Algorithm 1 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥2 ≤ Õ
(
∆0/η + (Lσ2/n+ LG2)η√

T
+

ρ̃L2η2

T
(σ2 +G2)

)
.

Note that we hide higher-order terms in O and log terms in Õ.

Proof. From Lemma B.1 we know that

3ηt
4

E
∥∥∇f(x̄t)∥∥2 ≤ E[f(x̄t)]− E[f(x̄t+1)] + 2η2tL

σ2

n
+ (ηt + 2η2tL)

L2

n
E∥Xt − X̄t∥2 + η2tLG

2
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sum up the above equation from t = 0 to T − 1 gives

T−1∑
t=0

3ηt
4

E
∥∥∇f(x̄t)∥∥2 ≤E[f(x̄0)]− f∗ +

2Lσ2

n

T−1∑
t=0

η2t +
L2

n

T−1∑
t=0

(ηt + 2η2tL)E∥Xt − X̄t∥2 + LG2
T−1∑
t=0

η2t

≤E[f(x̄0)]− f∗ +
2Lσ2

n

T−1∑
t=0

η2t + 10ρ̃L2
T−1∑
t=0

(η3t + 2η4tL)(σ
2 +G2) + LG2

T−1∑
t=0

η2t

where we used Lemma B.4 for the second line.
Now for the constant stepsize ηt = ηT−1/2, it’s very straightforward to check that

∑
t η

2
t = η2,∑

t η
3
t = η3/

√
T and

∑
t η

4
t = η4/T , therefore we get the following convergence result:

T−1∑
t=0

3η

4
√
T
E
∥∥∇f(x̄t)∥∥2 ≤ ∆0 + (

2Lσ2

n
+ LG2)η2 + 10ρ̃L2(

η3√
T

+ 2L
η4

T
)(σ2 +G2)

i.e.

η

T

T−1∑
t=0

E
∥∥∇f(x̄t)∥∥2 ≤ O( ∆0√

T
+

(Lσ2/n+ LG2)η2√
T

+ ρ̃L2(
η3

T
+ L

η4

T 3/2
)(σ2 +G2)

)
where ∆0 := E[f(x̄0)]− f∗. This gives the first result in the theorem.

For the diminishing stepsize (η0 = 0) ηt = ηt−1/2 for η > 0, it’s again very straightforward to
check that

∑
t η

2
t ≤ η2 log(T ),

∑
t η

3
t ≤ η3/

√
T and

∑
t η

4
t ≤ η4/T , therefore we get the following

convergence result:

T−1∑
t=0

3η

4
√
T
E
∥∥∇f(x̄t)∥∥2 ≤ ∆0 + (

2Lσ2

n
+ LG2)η2 log(T ) + 10ρ̃L2(

η3√
T

+ 2L
η4

T
)(σ2 +G2)

which results in the second line of the result.

B.2 Parameter-free convergence theory for D-NASA

From the update of Algorithm 2 we have that:

Xt+1 = Xt − ηtẐ
t, x̄t+1 = x̄t − 1

n

n∑
i=1

ηt
∥zti∥

zti

Zt+1 = (1− αt)Z
tW + αtU

t+1W, z̄t+1 = (1− αt)z̄
t + αtū

t+1

ūt+1 = v̄t+1 =
1

n

n∑
i=1

∇Fi(x
t
i, ξ

t
i)

(B.4)

where

Ẑt :=

[
zt1
∥zt1∥

, ...,
ztn
∥ztn∥

]
is the collections of column vectors where each column is normalized zti .

The following descent lemma characterizes the difference between the function value of two
consecutive iterates for Algorithm 2:
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Lemma B.5. Suppose Assumption 3.1 holds. Algorithm 2 satisfies:

f(x̄t+1)− f(x̄t) ≤ −ηt∥∇f(x̄t)∥+ 2ηt∥z̄t −∇f(x̄t)∥+
ηt
n

n∑
i=1

∥zti − z̄t∥+ η2tL

2
(B.5)

Proof. By the L-Lipschitz smooth of f (Assumption 3.1) we get:

f(x̄t+1)− f(x̄t) ≤∇f(x̄t)⊤(x̄t+1 − x̄t) +
L

2
∥x̄t+1 − x̄t∥2

=− ηt∇f(x̄t)⊤
(
1

n

n∑
i=1

zti
∥zti∥

)
+

η2tL

2

∥∥∥∥ 1n
n∑

i=1

zti
∥zti∥

∥∥∥∥2
≤− ηt∇f(x̄t)⊤

(
1

n

n∑
i=1

zti
∥zti∥

)
+

η2tL

2

=− ηt(∇f(x̄t)− z̄t)⊤
(
1

n

n∑
i=1

zti
∥zti∥

)
− ηt(z̄

t)⊤
(
1

n

n∑
i=1

zti
∥zti∥

)
+

η2tL

2

=− ηt(∇f(x̄t)− z̄t)⊤
(
1

n

n∑
i=1

zti
∥zti∥

)
− ηt(z̄

t)⊤
(
1

n

n∑
i=1

zti
∥zti∥

− z̄t

∥z̄t∥

)
− ηt∥z̄t∥+

η2tL

2

≤2ηt∥∇f(x̄t)− z̄t∥ − ηt∥∇f(x̄t)∥+ ηt∥z̄t∥
∥∥∥∥ 1n

n∑
i=1

zti
∥zti∥

− z̄t

∥z̄t∥

∥∥∥∥+ η2tL

2

where the second and third inequalities are by Cauchy-Schwarz inequality. It remains to bound the
second last term in the last line. We have

∥z̄t∥
∥∥∥∥ 1n

n∑
i=1

zti
∥zti∥

− z̄t

∥z̄t∥

∥∥∥∥ =
∥z̄t∥
n

∥∥∥∥ n∑
i=1

∥z̄t∥ − ∥zti∥
∥z̄t∥∥zti∥

zti

∥∥∥∥
≤∥z̄

t∥
n

n∑
i=1

|∥z̄t∥ − ∥zti∥|
∥z̄t∥∥zti∥

∥zti∥ =
1

n

n∑
i=1

|∥z̄t∥ − ∥zti∥| ≤
1

n

n∑
i=1

∥zti − z̄t∥

which concludes the proof.

We have the following dual convergence.

Lemma B.6. We have

z̄t+1 −∇f(x̄t+1) = (1− αt)(z̄
t −∇f(x̄t)) + αt(δ

t
1 + δt2 + δt3) (B.6)

where

δt1 =
∇f(x̄t)−∇f(x̄t+1)

αt
,

δt2 =
1

n

n∑
i=1

∇fi(xti)−∇f(x̄t),

δt3 =
1

n

n∑
i=1

(
vti −∇fi(xti)

)
.

25



Consequently, we get:

E∥z̄t −∇f(x̄t)∥ ≤ L
t∑

τ=1

β(τ+1):tητ + L
t∑

τ=0

β(τ+1):tατ

√√√√ 1

n

n∑
i=1

E∥xτi − x̄τ∥2 + σ

√√√√ 1

n

t∑
τ=0

β2
(τ+1):tα

2
τ

(B.7)
where we have the following conventions:

βt := 1− αt and βa:b :=

b∏
i=a

βi

Proof. By the update we know that ūt = v̄t = 1
n

∑n
i=1 v

t
i , thus

z̄t+1 −∇f(x̄t+1) = (1− αt)z̄
t + αtū

t −∇f(x̄t+1)

= (1− αt)(z̄
t −∇f(x̄t)) + αt(δ

t
1 + δt2 + δt3)

Now repeat the above recursive relation we get

z̄t −∇f(x̄t) = (1− αt−1)(z̄
t−1 −∇f(x̄t−1)) + +αt−1(δ

t−1
1 + δt−1

2 + δt−1
3 )

= · · ·

= β1:t(z̄
0 −∇f(x̄0)) +

t∑
τ=1

β(τ+1):tατ (δ
τ
1 + δτ2 + δτ3 )

=

t∑
τ=1

β(τ+1):tατδ
τ
1 +

t∑
τ=1

β(τ+1):tατδ
τ
2 +

t∑
τ=0

β(τ+1):tατδ
τ
3 .

Therefore we get

E∥z̄t −∇f(x̄t)∥ ≤
t∑

τ=1

β(τ+1):tατE∥δτ1∥+
t∑

τ=1

β(τ+1):tατE∥δτ2∥+ E∥
t∑

τ=0

β(τ+1):tατδ
τ
3∥

≤ L
t∑

τ=1

β(τ+1):tητ + L
t∑

τ=0

β(τ+1):tατ
1

n

n∑
i=1

E∥xτi − x̄τ∥+

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τE∥δτ3∥2

≤ L
t∑

τ=1

β(τ+1):tητ + L

t∑
τ=0

β(τ+1):tατ

√√√√ 1

n

n∑
i=1

E∥xτi − x̄τ∥2 + σ

√√√√ 1

n

t∑
τ=0

β2
(τ+1):tα

2
τ

where the second term is due to smoothness of each fi, also the last term is by E[⟨δτ13 , δτ23 ⟩] = 0 for
any τ1 ̸= τ2 (due to unbiased assumption) and√√√√ t∑

τ=0

β2
(τ+1):tα

2
τE∥δτ3∥2 =

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τ

1

n2

n∑
i=1

E ∥∇Fi(xti, ξ
t
i)−∇fi(xti)∥

2

≤

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τ

σ2

n

since all the cross inner-product terms vanish due to unbiased assumption.

We have the following lemma about the consensus error, that is, the average distance of each
node to the global average.

26



Lemma B.7. For the update of Algorithm 2, we have:

∥Xt+1 − X̄t+1∥2 ≤ 1 + ρ

2
∥Xt − X̄t∥2 + η2t

1 + ρ2

1− ρ2
∥Ẑt − ¯̂

Zt∥2,

∥Ẑt − ¯̂
Zt∥2 ≤ n,

∥Zt+1 − Z̄t+1∥2 ≤ 1 + ρ

2
∥Zt − Z̄t∥2 + α2

t

1 + ρ2

1− ρ2
∥Ut − Ūt∥2,

∥Ut+1 − Ūt+1∥2 ≤ 1 + ρ

2
∥Ut − Ūt∥2 + 1 + ρ2

1− ρ2
∥Vt+1 −Vt∥2

E∥Vt+1 −Vt∥2 ≤ 10nσ2 + 5nL2 + 5L2E
[∥∥Xt+1 − X̄t+1

∥∥2 + ∥∥Xt − X̄t
∥∥2]

Proof. Since

∥Xt+1 − X̄t+1∥2 = ∥(Xt − ηtẐ
t)W − (x̄t − ηt ¯̂z

t)1⊤∥2

=∥(Xt − ηtẐ
t)W − 1

n
(Xt − ηtẐ

t)11⊤∥2 = ∥(At −At1
⊤

n
)(W − 11⊤

n
)∥2

≤∥At −At1
⊤

n
∥2∥W − 11⊤

n
∥22

≤ρ2∥At −At1
⊤

n
∥2 = ρ2∥(Xt − x̄t1⊤)− ηt(Ẑ

t − ¯̂zt1⊤)∥2

≤ρ2(1 + 1

c
)∥Xt − x̄t1⊤∥2 + ρ2η2t (1 + c)∥Ẑt − ¯̂zt1⊤∥2

where At := Xt − ηtẐ
t. Taking c = 2ρ2

1−ρ2
≥ 0 gives the desired result. For the consensus error of

Zt and Ut we get it in similar ways. It remains to bound the consensus error of Ẑt and the term
Vt+1 −Vt. For the consensus error of Ẑt, we have

∥Ẑt − ¯̂
Zt∥2 =

n∑
i=1

∥ zti
∥zti∥

− 1

n

n∑
i=1

zti
∥zti∥
∥2 ≤

n∑
i=1

∥ zti
∥zti∥
∥2 ≤ n

where we use

1

n

n∑
i=1

∥vi − 1

n

n∑
i=1

vi∥2 = 1

n

n∑
i=1

∥vi∥2 − ∥ 1
n

n∑
i=1

vi∥2 ≤ 1

n

n∑
i=1

∥vi∥2

for any sequence of vectors v1, ..., vn.
Now we inspect the term Vt+1 −Vt similar to the proof of Lemma B.4. We again have

Vt+1 −Vt =Vt+1 − E[Vt+1 | Ft]− (Vt − E[Vt | F t−1])

+ E[Vt+1 | Ft]−∇F(x̄t+1) +∇F(x̄t+1)−∇F(x̄t) +∇F(x̄t)− E[Vt | Ft−1]

where we use the notation ∇F(x) := [∇f1(x), ...,∇fn(x)] being the matrix of column gradient
vectors. We thus have

E
∥∥Vt+1 −Vt

∥∥2
≤5

{
E
∥∥Vt+1 − E

[
Vt+1 | Ft

]∥∥2 + E
∥∥Vt − E

[
Vt | Ft−1

]∥∥2 + n∑
i=1

E
∥∥∇fi(xt+1

i )−∇fi(x̄t+1)
∥∥2

+

n∑
i=1

E
∥∥∇fi(x̄t+1)−∇fi(x̄t)

∥∥2 + n∑
i=1

E
∥∥∇fi(xti)−∇fi(x̄t)∥∥2

}
≤5
(
2nσ2 + nL2 + L2E

[∥∥Xt+1 − X̄t+1
∥∥2 + ∥∥Xt − X̄t

∥∥2])
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where the first inequality uses Cauchy-Schwarz inequality, and the second utilizes Lipschitz smooth-
ness of each fi also note that ∥∇fi(x̄t+1)−∇fi(x̄t)∥ ≤ L∥¯̂zt∥ ≤ L.

Now we are ready to analyze the cumulative consensus error for Algorithm 2 as follows:

Lemma B.8. For the update of Algorithm 2, if decreasing sequences such that 0 ≤ αt+1 ≤ αt ≤ 1
and 0 ≤ ηt+1 ≤ ηt ≤ 1, we have:

T−1∑
t=0

1

n
E∥Xt − X̄t∥2 ≤ ρ̃

T−1∑
t=0

η2t ,

t∑
τ=0

ατ

√
1

n
E∥Xτ − X̄τ∥2 ≤ ρ̃

t∑
τ=0

ατητ ,

T−1∑
t=0

1

n
E∥Zt − Z̄t∥2 ≤ ρ̃2(10σ2 + 5L2)

T−1∑
t=0

α2
t + 2ρ̃3

T∑
t=0

α2
t η

2
t ,

t∑
τ=0

ητ

√
1

n
E∥Zτ − Z̄τ∥2 ≤ ρ̃2

√
10σ2 + 5L2

t∑
τ=0

ητατ + 2
√
5Lρ̃3

t+1∑
τ=0

η2τατ .

where

ρ̃ := max

{
1

1−
√

1+ρ
2

√
1 + ρ2

1− ρ2
,

ρ

1− ρ

1 + ρ2

1− ρ2

}
Note that ρ̃ is greater than 0.

Proof. The first line is by Lemma B.7 and B.3 by taking aτ = 1
nE∥X

τ−X̄τ∥2, bτ = η2τ (1+ρ2)/(1−ρ2),
cτ = 1 and r = (1 + ρ)/2 in Lemma B.3 directly.

For the second line, by Lemma B.7 we get√
1

n
E∥Xt+1 − X̄t+1∥2 ≤

√
1 + ρ

2

1

n
E∥Xt − X̄t∥2 + η2t

1 + ρ2

1− ρ2
1

n
E∥Ẑt − ¯̂

Zt∥2

≤
√

1 + ρ

2

√
1

n
E∥Xt − X̄t∥2 + ηt

√
1 + ρ2

1− ρ2

√
1

n
E∥Ẑt − ¯̂

Zt∥2

≤
√

1 + ρ

2

√
1

n
E∥Xt − X̄t∥2 + ηt

√
1 + ρ2

1− ρ2

where the second inequality is by
√
a+ b ≤

√
a+
√
b and third is by ∥Ẑt − ¯̂

Zt∥2 ≤ n. Now taking

aτ =
√

1
nE∥Xτ − X̄τ∥2, bτ = ητ

√
(1 + ρ2)/(1− ρ2), cτ = ατ and r =

√
(1 + ρ)/2 as in Lemma B.3

will give the first line of the result. Note that here a0 = 0 due to the initialization of our algorithm.
Now to the third line, again by Lemma B.7 we get

T−1∑
t=0

1

n
E∥Zt − Z̄t∥2 ≤ ρ̃

T−1∑
t=0

α2
t

1

n
E∥Ut − Ūt∥2

T−1∑
t=0

α2
t

1

n
E∥Ut − Ūt∥2 ≤ ρ̃

T−1∑
t=0

α2
t

1

n
E∥Vt+1 −Vt∥2
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by using Lemma B.7 for two times. Also since

T−1∑
t=0

α2
t

1

n
E∥Vt+1 −Vt∥2 ≤ (10σ2 + 5L2)

T−1∑
t=0

α2
t + 2

T∑
t=0

α2
t

1

n
E
∥∥Xt − X̄t

∥∥2
T∑
t=0

α2
t

1

n
E
∥∥Xt − X̄t

∥∥2 ≤ ρ̃
T∑
t=0

α2
t η

2
t

where for the third line we again use Lemma B.7. Combining all above equations gives the second
line of the theorem.

As for the forth line, note that from Lemma B.7 and
√
a+ b ≤

√
a+
√
b, we have:√

1

n
E∥Zt+1 − Z̄t+1∥2 ≤

√
1 + ρ

2

√
1

n
E∥Zt − Z̄t∥2 + αt

√
1 + ρ2

1− ρ2

√
1

n
E∥Ut − Ūt∥2,√

1

n
E∥Ut+1 − Ūt+1∥2 ≤

√
1 + ρ

2

√
1

n
E∥Ut − Ūt∥2 +

√
1 + ρ2

1− ρ2

√
1

n
E∥Vt+1 −Vt∥2,√

1

n
E∥Vt+1 −Vt∥2 ≤

√
10σ2 + 5L2 +

√
5L

[√
1

n
E
∥∥Xt+1 − X̄t+1

∥∥2 +√ 1

n
E
∥∥Xt − X̄t

∥∥2] .
Repeating the proof of the third line gives the fourth line.

Now we are ready to show our final convergence for constant stepsizes, which we restate as
follows:

Theorem B.2. Suppose Assumptions 3.1 and 3.2 hold, also take αt = αT−1/2 and ηt = ηT−3/4 for
any α, η > 0, the update of Algorithm 2 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ O
(
(
∆0

η
+

2Lη

α
+

2σ
√
α√

n
)

1

T 1/4
+

ρ̃2
√
10σ2 + 5L2α

T 1/2

)
,

1

T

T−1∑
t=0

E∥z̄t −∇f(x̄t)∥ ≤ O
(
(
2Lη

α
+

2σ
√
α√

n
)

1

T 1/4
+ 2Lρ̃η

1

T 1/2

)
,

1

T

T−1∑
t=0

1

n

[
∥Xt − X̄t∥2 + ∥Zt − Z̄t∥2

]
≤ O

(
ρ̃

η

T 1/2
+ ρ̃2(10σ2 + 5L2)

α4

T
+ 2ρ̃3

α4η2

T 5/2

)
.

The above three bounds correspond to stationarity, approximation to gradient and consensus errors.
Note that we hide some higher-order terms in O.

Proof. By Lemma B.5, we have

ηtE∥∇f(x̄t)∥ ≤ E[f(x̄t)− f(x̄t+1)] + 2ηtE∥z̄t −∇f(x̄t)∥+ E[
ηt
n

n∑
i=1

∥zti − z̄t∥] + η2tL

2

≤ E[f(x̄t)− f(x̄t+1)] + 2ηtE∥z̄t −∇f(x̄t)∥+ ηt

√√√√ 1

n

n∑
i=1

E∥zti − z̄t∥2 + η2tL

2

where in the second equality we used EX2 ≥ (EX)2.
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Now sum up from t = 0 to T − 1 and using Lemma B.5 and B.8, we get

T−1∑
t=0

ηtE∥∇f(x̄t)∥ ≤∆0 + 2

T−1∑
t=0

ηtE∥z̄t −∇f(x̄t)∥+
T−1∑
t=0

ηt

√√√√ 1

n

n∑
i=1

E∥zti − z̄t∥2 + L

2

T−1∑
t=0

η2t

≤∆0 + 2
T−1∑
t=0

ηt

(
L

t∑
τ=1

β(τ+1):tητ + Lρ̃
t∑

τ=0

β(τ+1):tατητ + σ

√√√√ 1

n

t∑
τ=0

β2
(τ+1):tα

2
τ

)

+ ρ̃2
√

10σ2 + 5L2

T−1∑
t=0

ηtαt + 2
√
5Lρ̃3

T∑
t=0

η2tαt +
L

2

T−1∑
t=0

η2t

(B.8)
Now we inspect the each of the terms on the right hand side. By our choice of ηt and αt, it’s

straightforward to verify that

T∑
t=1

αtηt =
αη

T 1/4
,

T∑
t=1

αtη
2
t =

αη2

T
,

T∑
t=1

η2t =
η2

T 1/2
(B.9)

and
T−1∑
t=0

ηt

t∑
τ=1

β(τ+1):tητ =
T−1∑
t=0

η

T 3/4

t∑
τ=1

(1− α

T 1/2
)t−τ η

T 3/4

=
η2

T 3/2

T−1∑
t=0

t∑
τ=1

(1− α

T 1/2
)t−τ

=
η2

T 3/2

T−1∑
t=0

(1− α

T 1/2
)t
T 1/2

α
[(1− α

T 1/2
)−t+1 − 1]

≤ η2

αT

T−1∑
t=0

(1− α

T 1/2
) ≤ η2

α

Similarly
T−1∑
t=0

ηt

t∑
τ=0

β(τ+1):tατητ ≤
η2

T 1/2

T−1∑
t=0

ηt

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τ ≤ η

√
α

Now plugging everything back we get:

η

T 3/4

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ ∆0 + 2L
η2

α
+ 2Lρ̃

η2

T 1/2
+ 2

σ√
n
η
√
α

+ ρ̃2
√
10σ2 + 5L2

αη

T 1/4
+ 2
√
5Lρ̃3

αη2

T
+

L

2

η2

T 1/2

i.e.

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ (
∆0

η
+

2Lη

α
+

2σ
√
α√

n
)

1

T 1/4
+ (2Lρ̃η +

Lη

2
)

1

T 3/4

+
ρ̃2
√
10σ2 + 5L2α

T 1/2
+

2
√
5Lρ̃3α2η

T 7/4
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The first line of the theorem is obtained by neglecting the higher-order terms. Note that we also
proved the second line of the theorem since (B.8) already contains the bound for ∥z̄t −∇f(x̄t)∥.

It remains to bound the consensus error (third line), which follows directly from Lemma B.8
and (B.9).

We also present the result when we don’t fix the total number of iterations in advance. We have
the following useful technical lemma. Most of the result in this Lemma is from Lemma 11 in Hübler
et al. (2023).

Lemma B.9. Let q ∈ (0, 1), p ≥ 0 and t > 0. Further let positive integers a, b s.t. 2 ≤ a ≤ b, then
we have that for any α > 0,

b∏
t=a

(
1− αt−q

)
≤ exp

(
α

1− q

(
a1−q − b1−q

))
.

If in addition p ≥ q, we have

b∑
t=a

t−p
t∏

τ=a

(
1− ατ−q

)
≤

(a− 1)q−p exp
(
αa1−q−(a−1)1−q

1−q

)
− bq−p exp

(
αa1−q−b1−q

1−q

)
(α+ (p− q)bq−1)

.

and in particular,

b∑
t=a

t−p
t∏

τ=a

(
1− ατ−q

)
≤ (a− 1)q−p

α
exp

(
α
a1−q − (a− 1)1−q

1− q

)
= O(a

q−p

α
).

If further in addition p < 1, α ≥ 2, we have

b∑
t=2

t−p
b∏

τ=t+1

(
1− ατ−q

)
≤ 2

α
exp

(
α

1− q

)
(b+ 1)q−p

Proof. For the first equation we get

b∏
t=a

(
1− αt−q

)
≤ exp

(
−α

b∑
τ=a

t−q

)
≤ exp

(
−α

∫ b+1

a
t−qdt

)
= exp

(
α

1− q

(
a1−q − (b+ 1)1−q

))
.

Now for the second line, using the above result we get

b∑
t=a

t−p
t∏

τ=a

(
1− ατ−q

)
≤ exp

(
αa1−q

1− q

) b∑
t=a

t−p exp

(
−α(t+ 1)1−q

1− q

)
≤ exp

(
αa1−q

1− q

)∫ b

a−1
t−p exp

(
−αt1−q

1− q

)
dt

= exp

(
αa1−q

1− q

)∫ b

a−1
t−qtq−p exp

(
−αt1−q

1− q

)
dt

(B.10)

The above integral can be calculated by integration by parts, specifically:∫ b

a−1
tq−pt−q exp

(
−αt1−q

1− q

)
dt

=

[
− tq−p

α
exp

(
−αt1−q

1− q

)]t=b

t=a−1

+ (q − p)

∫ b

a−1

tq−p−1

α
exp

(
−αt1−q

1− q

)
dt.
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Finally, since the integrand is monotonically decreasing and p ≥ q, we have

(q − p)

∫ b

a−1
tq−p−1 exp

(
−αt1−q

1− q

)
dt ≤ (q − p)bq−1

∫ b

a−1
t−p exp

(
−αt1−q

1− q

)
dt

which is exactly the integral we started with. The results in the second and third lines are thus by
rearranging terms.

Now for the last line of the lemma, and we use the similar technique as the second line, both
adopted from the proof of Lemma 10 of Hübler et al. (2023). We have

b∑
t=2

t−p
b∏

τ=t+1

(
1− ατ−q

)
≤ exp

(
−α

b∑
τ=1

τ−q

)
b∑

t=2

t−p exp

(
α

t∑
τ=1

τ−q

)

≤ exp

(
−α

∫ b+1

1
τ−qdτ

) b∑
t=2

t−p exp

(
α

∫ t

0
τ−qdτ

)

≤ exp

(
α
1− (b+ 1)1−q

1− q

) b∑
t=2

t−p exp

(
α
t1−q

1− q

)
Note that the summation in the last line above is the same as (B.10). Repeat the proof of the
second line gives the result.

Lemma B.10. Suppose we take αt = αt−1/2 and ηt = ηt−3/4 (α0 = η0 = 0) with 0 < α < 1 and
η > 0, then we have

T∑
t=1

αtηt ≤ O(αη),
T∑
t=1

αtη
2
t ≤ O(αη2),

T∑
t=1

η2t ≤ O(η2)

and
T−1∑
t=0

ηt

t∑
τ=1

β(τ+1):tητ ≤ O(
η2

α
log(T ))

T−1∑
t=0

ηt

t∑
τ=0

β(τ+1):tατητ ≤ O(η2 log(T ))

T−1∑
t=0

ηt

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τ ≤ O(

√
αη log(T ))

where βt = 1− αt.

Proof. The first line is directly by the integral test of the series in the form
∑

t t
−p with p > 1.

The proof of the latter three resembles the proof of Lemma 11 in Hübler et al. (2023). We prove
the second line of this Lemma as a show case and refer to Lemma 11 in Hübler et al. (2023) for the
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detail of the proof of the last two lines. For the second line, we have

T−1∑
t=0

ηt

t∑
τ=1

β(τ+1):tητ = η2 + η2
T−1∑
t=1

t−3/4
t∑

τ=2

t∏
ξ=τ+1

(1− αξ−1/2)τ−3/4

≤ η2 + η2
T−1∑
t=1

t−3/4 2

α
exp (2α) (t+ 1)−1/4

= η2 +
2η2

α
exp (2α)

T−1∑
t=1

t−1 ≤ η2 +
2η2

α
exp (2α) log(T )

where we use Lemma B.9 for the first inequality.

Now we are ready to present the final convergence result. We restate the convergence theorem
as follows:

Theorem B.3. Suppose Assumptions 3.1 and 3.2 hold, also take αt = αt−1/2 and ηt = ηt−3/4 for
any η > 0, the update of Algorithm 2 satisfies:

1

T

T−1∑
t=0

E∥∇f(x̄t)∥ ≤ Õ(∆0/η + Lη/α+ Lρ̃η + σ
√
α/
√
n+ ρ̃2(σ + L)α+ Lρ̃3ηα+ Lη

T 1/4
),

1

T

T−1∑
t=0

E∥z̄t −∇f(x̄t)∥ ≤ Õ
(
Lη/α+ Lρ̃η + σ

√
α/
√
n

T 1/4

)
,

1

T

T−1∑
t=0

1

n
E
[
∥Xt − X̄t∥2 + ∥Zt − Z̄t∥2

]
≤ O

(
ρ̃2(σ2 + L2 + ρ̃η2)

T

)
.

The above three bounds correspond to stationarity, approximation to gradient and consensus errors.
Note that we hide logarithmic factors in Õ.

Proof. Same as the proof of Theorem B.2, we get

T−1∑
t=0

ηtE∥∇f(x̄t)∥ ≤∆0 + 2L
T−1∑
t=0

ηt

t∑
τ=1

β(τ+1):tητ + 2Lρ̃
T−1∑
t=0

ηt

t∑
τ=0

β(τ+1):tατητ + 2
σ√
n

T−1∑
t=0

ηt

√√√√ t∑
τ=0

β2
(τ+1):tα

2
τ

+ ρ̃2
√
10σ2 + 5L2

T−1∑
t=0

ηtαt + 2
√
5Lρ̃3

T∑
t=0

η2tαt +
L

2

T−1∑
t=0

η2t

Now we inspect the each of the terms on the right hand side. By our choice of ηt and αt and
using Lemma B.10 we get:

T−1∑
t=0

ηtE∥∇f(x̄t)∥ ≤ Õ(∆0 + L
η2

α
+ Lρ̃η2 +

σ√
n

√
αη + ρ̃2(σ + L)ηα+ Lρ̃3η2α+ Lη2)

where we hide the logarithmic factor in Õ.
Now since 1

T

∑T−1
t=0 E∥∇f(x̄t)∥ ≤ T−1/4

∑T−1
t=0 t−3/4E∥∇f(x̄t)∥, we yield the desired result in the

theorem statement.
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