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A traditional stochastic program under a finite population typically seeks to optimize efficiency by maxi-

mizing the expected profits or minimizing the expected costs, subject to a set of constraints. However, imple-

menting such optimization-based decisions can have varying impacts on individuals, and when assessed using

the individuals’ utility functions, these impacts may differ substantially across demographic groups delin-

eated by sensitive attributes, such as gender, race, age, and socioeconomic status. As each group comprises

multiple individuals, a common remedy is to enforce group fairness, which necessitates the measurement of

disparities in the distributions of utilities across different groups. This paper introduces the concept of Dis-

tributionally Fair Stochastic Optimization (DFSO) based on the Wasserstein fairness measure. The DFSO

aims to minimize distributional disparities among groups, quantified by the Wasserstein distance, while

adhering to an acceptable level of inefficiency. Our analysis reveals that: (i) the Wasserstein fairness measure

recovers the demographic parity fairness prevalent in binary classification literature; (ii) this measure can

approximate the well-known Kolmogorov–Smirnov fairness measure with considerable accuracy; and (iii)

despite DFSO’s biconvex nature, the epigraph of the Wasserstein fairness measure is generally Mixed-Integer

Convex Programming Representable (MICP-R). Additionally, we introduce two distinct lower bounds for

the Wasserstein fairness measure: the Jensen bound, applicable to the general Wasserstein fairness measure,

and the Gelbrich bound, specific to the type-2 Wasserstein fairness measure. We establish the exactness of

the Gelbrich bound and quantify the theoretical difference between the Wasserstein fairness measure and

the Gelbrich bound. Lastly, the theoretical underpinnings of the Wasserstein fairness measure enable us to

design efficient algorithms to solve DFSO problems. Our numerical studies validate the effectiveness of these

algorithms, confirming their practical use in achieving distributional fairness in several societally pertinent

real-world stochastic optimization problems.

Key words : Wasserstein Distance, Group Fairness, Stochastic Optimization, Gelbrich Bound,

Mixed-Integer Convex Programming
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1. Introduction

Optimization empowers decision-making by providing an efficient solution to address complex

problems in many domains. Its widespread use has motivated research studies focusing on the

societal impact of optimization-based decisions. Since the traditional approach optimizes efficiency

relevant to profits or costs, the optimization outcomes can have varying impacts across demographic

groups delineated by sensitive attributes, including gender, race, age, and socioeconomic status. As

each group comprises multiple individuals, enforcing group fairness necessitates the measurement

of disparities of probability distributions of individual utilities between different groups. Traditional

fairness measures are often based on summary statistics, such as minimum, mean, or deviation,

which can be insufficient to quantify distributional disparities since each notion only characterizes

a particular aspect of the probability distributions. On the other hand, statistical distance metrics,

such as the Wasserstein distance, can be employed to quantify distributional fairness accurately.

However, these metrics introduce significant computational challenges, and hence they remain

largely unexplored in the field of fair decision-making. This motivates us to study distributional

fairness.

1.1. Setting

The conventional decision-making problem under uncertainty is to optimize the total expected cost

efficiency. Such an optimization problem can be formulated as the stochastic program

V ∗ =min
x∈X

EP[Q(x, ξ̃)], (1)

where X ⊆ Rn specifies a mixed-integer convex representable decision space (Lubin et al. 2022),

Q(·, ·) is a recourse function in stochastic programming or a loss function in machine learning, and

ξ̃ ∈Rκ are the random problem parameters governed by a probability distribution P with support

Ξ. The stochastic program (1) and its variants with risk aversion and distributional robustness

have been a prevailing modeling paradigm for numerous decision-making problems (see the survey

paper Rahimian and Mehrotra 2019).

Many real-life decision-making problems may often involve a sensitive attribute such as gender,

race, or age in the random parameters ξ̃, designated by the component ξ̃κ ∈ A, where the set A

denotes a finite collection of possible outcomes in the sensitive attribute (e.g., A= {male, female}).

This sensitive attribute partitions the outcome space into groups. Thus, by invoking the law of

total expectation, we can rewrite the stochastic program (1) equivalently as

V ∗ =min
x∈X

∑
a∈A

P(ξ̃κ = a)EPa [Q(x, ξ̃a)], (2)
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where Pa is a shorthand for the conditional distribution of ξ̃ given ξ̃κ = a. Observe that the objective

function constitutes a weighted sum of conditional expectations, where the weights correspond to

the marginal distribution of the sensitive attribute. From this vantage point, the optimal solution x

may treat the minority groups unfairly as it emphasizes groups of higher weight. This observation

motivates us to study fair stochastic programming. Since many pertinent decision-making problems

with sensitive attributes are concerned with a finite population, we assume that the entire support

set Ξ is finite (i.e., Ξ = {ξi}i∈[m]), and we assume that each group a∈A consists of ma individuals

represented by the set Ca, i.e., Pa{ξ̃a = ξi}= 1/ma for any i∈Ca. Evidently, the following identities

hold in view of our assumption: Ξ = ∪a∈A{ξi}i∈Ca and Ca ∩Cā = ∅ for any a < ā ∈A. Under this

setting, the stochastic program (2) further simplifies to

V ∗ =min
x∈X

∑
a∈A

ma

m

∑
i∈Ca

1

ma

Q(x,ξi). (3)

Many deterministic optimization problems involving multiple groups of individuals can be viewed

as a special case of (3) by treating each individual as an equiprobable sample.

To measure fairness, given a decision x ∈ X , for an individual realization ξa in each a ∈A, we

suppose that the function f(x,ξa) denotes its utility value, which may not be monotonic (see,

e.g., Kliegr 2009). Our goal is to match the probability distributions of the random utility values

{f(x, ξ̃a)}a∈A among different groups to attain fairness, where we quantify the utility distributional

disparities using a statistical distance metric. Since the random utilities may have different support

sets, we employ the Wasserstein distance and propose the following Distributionally Fair Stochastic

Optimization (DFSO):

v∗(q) =min
x∈X

{
WDq

q(x) := max
a<ā∈A

W q
q

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
:EP[Q(x, ξ̃)]≤ V ∗ + ϵ|V ∗|

}
. (DFSO)

Here, the objective function represents the qth power of type-q Wasserstein fairness measure.

Particularly, the type-q Wasserstein distance Wq(·, ·) is defined as

Wq(P1,P2) = inf
Q

{
q

√∫
Ξ×Ξ

∥ζ1 − ζ2∥q Q(dζ1, dζ2) :
Q is a joint distribution of ζ̃1 and ζ̃2
with marginals P1 and P2, respectively

}
,

where ∥ · ∥ is a norm and q ∈ [1,∞]. In DFSO, the goal is to minimize the maximum distributional

disparities of utilities quantified by the Wasserstein distance among all pairs of groups (i.e., the

Wasserstein fairness) while maintaining the cost efficiency around a near-optimal region, where

ϵ≥ 0 denotes the inefficiency level prescribed by the decision-maker. In practice, the utility function

f(x,ξ) can be quite general. If it is equal to the recourse function Q(x,ξ), then the decision-maker,

in this case, tries to achieve the distributional fairness of random cost among different groups.



Qing Ye, Grani A. Hanasusanto, and Weijun Xie: Distributionally Fair Stochastic Optimization using Wasserstein Distance
4

1.2. Literature Review

Optimization has served as an essential tool in decision-making over the past decades. Throughout

the years, the issues of fairness in optimization have been recognized and studied in the fields of

resource allocation, facility location, and communication networks (Ogryczak et al. 2014, Karsu

and Morton 2015). The commonly adopted definitions of fairness pertain to the utilities of all

individuals in the population, e.g., max-min fairness, proportional fairness, and alpha fairness, or

to some particular characteristics of the distribution of the utilities, e.g., spread, deviation, Jain’s

index, and Gini coefficient. Contrary to traditional definitions that consider the entire population,

this paper concentrates on fairness among different groups of individuals. These fairness measures

at the population level can be simply generalized to the group level by applying them to each

group instead of the entire population. For example, Samorani et al. (2022) studied the max-min

fairness at the group level. They addressed the racial disparity in medical appointment scheduling

by minimizing the maximum waiting time among the racial groups. Cohen et al. (2022) discussed

price discrimination against protected groups and attempted to enforce nearly equal prices for

different groups. Patel et al. (2020) considered group fairness for the knapsack problem when each

item belongs to a particular group. They defined three fair knapsack notions, i.e., to bound the

number of items from each group, to bound the total weight of items from each group, and to bound

the total value of items from each group. Since the traditional fairness measures are often based on

summary statistics, they might be inadequate for quantifying group disparities in a comprehensive

way. Our distributional fairness notion overcomes this limitation by using the Wasserstein distance

to quantify the distributional disparities among different groups. The Wasserstein distance has

also been used in a variety of optimization problems such as Wasserstein distributional robust

optimization (Mohajerin Esfahani and Kuhn 2018, Blanchet and Murthy 2019, Gao and Kleywegt

2023, Hanasusanto and Kuhn 2018, Chen et al. 2022, Xie 2021).

Recent studies in the growing field of fair machine learning have proposed various methods for a

number of tasks (Caton and Haas 2020). The majority of the literature has focused on group fair-

ness, which seeks to treat different groups equally. Group fairness in binary classification has been

extensively studied (Kamishima et al. 2012, Feldman et al. 2015, Barocas and Selbst 2016, Hardt

et al. 2016, Zafar et al. 2017, Donini et al. 2018, Aghaei et al. 2019, Kallus et al. 2022, Taskesen et al.

2020, Ye and Xie 2020, Wang et al. 2021, Lowy et al. 2021). However, the number of works on group

fairness in regression with continuous outcomes is rather limited. Berk et al. (2017) introduced a

family of convex fairness regularizers such that each group should have similar predicted outcomes

weighted by the nearness of the true outcomes on average. Agarwal et al. (2019), Chzhen et al.

(2020), Rychener et al. (2022) used the Kolmogorov–Smirnov distance to achieve demographic par-

ity. Additionally, Rychener et al. (2022) summarized the common integral probability metrics for
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quantifying fairness, including the Kolmogorov–Smirnov distance and the Wasserstein distance. To

achieve fairness, Agarwal et al. (2019) designed a reduction-based algorithm, while Chzhen et al.

(2020) developed a post-processing algorithm for fair regression. Rychener et al. (2022) proposed

to solve fair regression via a stochastic gradient descent algorithm. According to the definition in

fair machine learning literature, the demographic parity-based fairness notion ensures the proba-

bility distribution of outcomes is independent of the sensitive attribute groups. Our distributional

fairness notion coincides with demographic parity when applied to machine learning problems.

Furthermore, the proposed DFSO formulation is a general stochastic optimization problem where

fairness is integrated with efficiency. Thus, it provides flexibility to model various decision-making

problems, including classification with binary utilities and regression with continuous utilities.

More importantly, different from existing results in the literature, we thoroughly investigate the

optimization properties of the Wasserstein fairness measure and exploit them to systematically

design efficient solution algorithms with provable guarantees.

1.3. Summary of Contributions

The main contributions of this paper are summarized as follows:

• From a fresh scope, this paper establishes the fundamental result that the Wasserstein fair-

ness measure is essentially equivalent to matching the probability distributions of distinct groups

comonotonically and computing the distance of the comonotonic distributions. Using this equiva-

lence, we show that the Wasserstein fairness measure recovers the well-known demographic parity

fairness from the binary classification literature, and we reveal that the Wasserstein fairness mea-

sure is relatively close to the Kolmogorov–Smirnov one.

• We prove that the DFSO under the Wasserstein fairness measure, in general, is NP-hard.

However, different from other biconvex programs, we show that the epigraph of the Wasserstein

fairness measure is, in general, Mixed-Integer Convex Programming Representable (MICP-R), and

we provide four different representations. These are the first known MICP-R results for Wasserstein

distance-based distributional fairness models.

• We derive two different lower bounds for the Wasserstein fairness measure: the Jensen bound

for the general Wasserstein fairness measure and the Gelbrich bound for the type-2 Wasserstein

fairness measure. We prove a broader condition than the well-known elliptical distributions under

which the Gelbrich bound is asymptotically tight, and we provide a theoretical gap between the

Wasserstein fairness measure and the Gelbrich bound. We also prove that computing the Gelbrich

bound is NP-hard.

• Inspired by the theoretical properties of the Wasserstein fairness measure, we design effective

solutions algorithms to solve the DFSO to near-optimality. Our numerical study confirms the

effectiveness of the proposed algorithms.
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The remainder of the paper is organized as follows. Section 2 presents properties of the Wasser-

stein fairness measure. Section 3 formalizes definitions and develops two exact mixed-integer convex

programming representations of the epigraph of the Wasserstein fairness measure. Section 4 studies

two lower bounds of the Wasserstein fairness measure. Section 5 reports the numerical study, and

Section 6 concludes the paper. Proofs and additional results are relegated to the appendix.

Notation. Bold lowercase letters (e.g., x) denote vectors, bold uppercase letters (e.g., Z) denote

matrices, and the corresponding regular letters (e.g., xi,Zij) denote their components. For any

n ∈ Z+, we let [n] := {1,2, . . . , n} and use Rn
+ := {x ∈ Rn : xi ≥ 0,∀i ∈ [n]}. For any n1 < n2 ∈ Z+,

we let [n1, n2] := {n1, n1 +1, . . . , n2}. For a set A, we let a< ā∈A denote a, ā∈A such that a< ā.

The indicator function I(B) takes value 1 if B is true and 0 otherwise. Additional notation will be

introduced as needed.

2. Properties of the Wasserstein Fairness Measure

This section presents various notable properties of the Wasserstein fairness measure. To begin

with, let us define the cumulative distribution functions of the random functions {f(x, ξ̃a)}a∈A

as Fa(t | x) = Pa{f(x, ξ̃a) ≤ t} for all a ∈ A. Correspondingly, we define the inverse distribution

functions F−1
a (y |x) = inf{t : Fa(t |x)≥ y} for all a∈A.

2.1. Comonotonicity and Complexity

This subsection investigates the comonotonicity property of the Wasserstein fairness measure and

the complexity of DFSO, which motivate us to develop strong mixed-integer convex programming

formulations for DFSO.

One property of the Wasserstein fairness measure in DFSO is that it can be simplified as the

integral of the difference of inverse cumulative distributions.

Lemma 1 (Proposition 2.17 in Santambrogio (2015)). For any a < ā ∈ A and a fixed deci-

sion x, the Wasserstein distance Wq

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
can be expressed as

Wq

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
=

q

√∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy, (4)

where F−1
a is the inverse distribution function of the random function f(x, ξ̃a) for each a ∈ A.

When q = 1, the type-1 Wasserstein distance W1

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
coincides with the L1 distance

between the cumulative distribution functions

W1

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
=

∫
R
|Fa(t |x)−Fā(t |x)|dt, (5)

where Fa is the cumulative distribution function of the random function f(x, ξ̃a) for each a∈A.
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Lemma 1 shows that the Wasserstein fairness measure WDq(x) :=maxa<ā∈AWq(Pf(x,ξ̃a)
,Pf(x,ξ̃ā)

)

can be viewed as the largest Lq-norm of the difference between inverse distribution functions.

Hence, in DFSO, minimizing WDq(x) implies attempting to match the distributions of utilities

between any two groups a < ā ∈ A. Remarkably, as established in the existing literature, type-

1 Wasserstein fairness measure WD1(x) is equivalent to the maximum L1 distance between the

cumulative distribution functions. For each pair of groups a < ā ∈ A, under our assumption of

discrete distributions, the integrals in (4) and (5) can be simplified to be summations. These

properties motivate us to study the exact MICP formulations of the Wasserstein fairness measure.

Another interesting byproduct of Lemma 1 is that when achieving the infimum of the Wasserstein

distance, the two distributions must be aligned comonotonically, where the comonotonicity of two

random variables is formally defined as follows.

Definition 1. A pair of random variables X = (X1,X2) is comonotonic if and only if it can be

represented as (X1,X2)
d
= (F−1

X1
(U),F−1

X2
(U)), where U is the standard uniform random variable,

and F−1
X1
,F−1

X2
are the inverse distribution functions of X1,X2.

This gives rise to an interesting result for the following Wasserstein fairness measure.

Proposition 1. For a given decision x ∈ X , when computing the Wasserstein fairness measure

in DFSO, the optimal joint distribution is comonotonic for any pair a< ā∈A.

Proof. See Appendix B.1. □

Proposition 1 shows that the Wasserstein fairness measure, in fact, aligns the two distinct groups’

utility function values comonotonically, computes the Lq norm of the difference of their inverse

distribution functions, and then takes the maximum value among all the pairs of groups. It helps

us study the new exactness conditions of the well-known lower bound (i.e., the Gelbrich bound) of

the type-2 Wasserstein fairness measures. This result also motivates us to study its relation with

another popular distributional fairness notion: the Kolmogorov–Smirnov fairness measure.

We conclude the subsection by proving the NP-hardness of DFSO via a reduction from the well-

known chance-constrained stochastic program (Charnes and Cooper 1959, Ahmed and Xie 2018).

Theorem 1. Solving DFSO is, in general, strongly NP-hard, even when X is a polytope, ϵ=∞,

and f(x,ξ) is a linear function.

Proof. See Appendix B.4. □
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2.2. Recovering the Demographic Parity Fairness Measure of Binary Outcomes

Demographic parity of binary outcomes, defined as DP(x), requires the probability of beneficial or

detrimental outcomes to be independent of the sensitive attribute. In the following, we show that

the proposed WDq(x) recovers DP(x) if the utility function is Bernoulli. Let us first define DP(x).

Definition 2. Suppose that P{f(x, ξ̃)∈ {0,1}}= 1. The binary demographic parity fairness mea-

sure is defined as

DP(x) = max
a<ā∈A

∣∣∣P{f(x, ξ̃a) = 0}−P{f(x, ξ̃ā) = 0}
∣∣∣= max

a<ā∈A

∣∣∣Pa{f(x, ξ̃a) = 1}−Pā{f(x, ξ̃ā) = 1}
∣∣∣ .

We next show that the Wasserstein fairness measure WDq(x) is equivalent to DP(x) in view of

Lemma 1.

Proposition 2. For a Bernoulli utility function f(x, ξ̃)∈ {0,1}, WDq(x) is equivalent to DP(x).

Proof. See Appendix B.2. □

The result in Proposition 2 reveals that the proposed Wasserstein fairness measure constitutes

a generalization of the binary demographic parity fairness measure.

2.3. Comparison with the Kolmogorov–Smirnov Fairness Measure

Instead of the sum of differences, we can use the supremum of differences to measure the demo-

graphic parity fairness as defined below.

Definition 3 (Kolmogorov–Smirnov Fairness Measure, Agarwal et al. 2019). The

distributional fairness of a decision x can be measured using the Kolmogorov–Smirnov distance:

KSD(x) = max
a<ā∈A

sup
t

|Fa(t |x)−Fā(t |x)| . (6)

The Kolmogorov–Smirnov distance measures the largest difference of cumulative distribution func-

tions between any two distinct groups. To compute KSD(x), one needs to discretize t, which is

easily done in view of our assumption of finite populations. Specifically, the assumption implies

that the cumulative distributions {Fa(y | x)}a∈A and their inverse counterparts {F−1
a (y | x)}a∈A

are of finitely many values, defined formally as follows.

Definition 4 (Breaking Points). For any x∈X and any pair a< ā∈A, the breaking points of

F−1
a (y |x)−F−1

ā (y |x) are denoted by baā(x) = (bjaā(x))j∈Jaā with index set Jaā := {1,2, · · · , |Jaā|}.

We further define the widths wjaā(x) = bjaā(x) − b(j−1)aā(x) for j ∈ Jaā \ {1} and calculate the

largest width as η(x) =maxa<ā∈A,j∈Jaā\{1}wjaā(x).
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Based on Definition 4, we propose the following lower and upper bounds on KSD(x) in terms of

WDq(x), which shows that the two measures are close to each other within a constant factor. The

key idea is to recast the type-q Wasserstein fairness measure as

WDq(x) = max
a<ā∈A

q

√∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy

= max
a<ā∈A

q

√ ∑
j∈Jaā\{1}

wjaā(x)
∣∣F−1

a (bjaā(x) |x)−F−1
ā (bjaā(x) |x)

∣∣q,
in the spirit of Definition 4. Then we bound the difference between WD1(x) and KSD(x). Next,

we use the relationship between WD1(x) and WDq(x) to finally bound WDq(x) and KSD(x).

Proposition 3. For any feasible x∈X and q ∈ [1,∞], the following inequalities hold:

1

maxa<ā∈A η(x)
1−q
q (t2aā(x)− t1aā(x))

WDq(x)≤KSD(x)≤ 1

mina<ā∈A µ(∆aā(x))
WDq(x).

Here, t1aā(x) = min{mint{t : Fa(t | x) > 0},mint{t : Fā(t | x) > 0}}, t2aā(x) = max{supt{t : Fa(t |

x)< 1}, supt{t : Fā(t |x)< 1}}, and ∆aā(x) = {t̄ : |Fa(t̄ |x)−Fā(t̄ |x)|= supt |Fa(t |x)−Fā(t |x)|}

with its Lebesgue measure µ(∆aā(x)).

Proof. See Appendix B.3. □

Proposition 3 theoretically establishes that the Wasserstein and Kolmogorov–Smirnov fairness

measures are rather similar to each other. The bounds can be independent of the decision variables

x by finding the least-favorable coefficients. It is worth mentioning that the existing literature

(see, e.g., Ross 2011) only bound Kolmogorov–Smirnov fairness measure from above by type-1

Wasserstein fairness measure when the underlying random variables are continuous. In our fol-

lowing derivation, the Wasserstein fairness measure shows amenable optimization properties. Our

numerical study demonstrates the advantage of the proposed methods for the Wasserstein fairness

measure compared to the existing ones for the Kolmogorov–Smirnov fairness measure.

3. Mixed-Integer Convex Programming Formulations of DFSO

This section focuses on deriving exact Mixed-Integer Convex Programming (MICP) formulations

of DFSO. To begin with, we observe that under the discrete-distribution assumption, using epi-

graphical variable ν, the proposed DFSO can be formulated as the mathematical program

v∗(q) = min
(x,ν)∈Fq

ν, (7a)

s.t.
∑
i∈[m]

1

m
Q(x,ξi)≤ V ∗ + ϵ|V ∗|, (7b)
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where we introduce the set Fq to denote the epigraph of the Wasserstein fairness measure, as

follows:

Fq =
{
(x, ν)∈X ×R+ :W q

q

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
≤ ν,∀a< ā∈A

}
. (8)

For the formulations, we will also utilize the following set that corresponds to the graph of the

function f(·,ξi) for each realization ξi ∈Ξ:

Xi = {(x, w̄i)∈X ×R : f(x,ξi) = w̄i} .

Section 3.1 discusses the concept of MICP representability and presents MICP formulations for

the graphs of utility functions {Xi}i∈[m]. Section 3.2 and Section 3.3 explore two different ways

of representing the epigraph of Wasserstein fairness measure Fq in (8). The first formulation uses

Lemma 1 to represent quantiles using mixed-integer programming formulations. The second for-

mulation is a variation of the first one, using aggregate rather than individual quantiles. We have

two additional formulations presented in Appendix A, where the Discretized Formulation (see

Appendix A.1) is based on the discretization of the transportation decisions by observing that the

inflated transportation decision variables can be restricted to integers, and the Complementary

Formulation (see Appendix A.2) is to recast the set Fq using linear programming with comple-

mentary slackness constraints and linearize the complementary slackness constraints. Besides, we

derive an equivalent MICP formulation for the Kolmogorov–Smirnov fairness measure KSD(x),

which can be found in Appendix A.3.

3.1. Mixed-Integer Convex Programming Representability

To begin with, we introduce the notion of MICP representability and develop formulations for var-

ious families of utility functions, depending on whether the sets {Xi}i∈[m] are MICP representable

(MICP-R) or not MICP-R. The MICP-R sets are defined as follows.

Definition 5 (Theorem 4.1 in Lubin et al. 2022). A set S ⊆ Rn is MICP-R if and only if

there exists d, p ∈ Z+, a convex set C ⊆Rd, and a closed convex family (Bz)z∈C ⊆Rn+p such that

S =
⋃

z∈C∩Zd projx(Bz).

In addition, Lubin et al. (2022) also provided the following sufficient condition for not MICP-R.

Lemma 2 (Lemma 4.1 in Lubin et al. 2022). A set S ⊆Rn is not MICP-R if there exists R⊆

S, |R|=∞ such that (x+x′)/2 /∈ S for all x,x′ ∈R,x ̸=x′.

Our MICP-R results rely on the McCormick representation.
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Definition 6 (McCormick Representation, McCormick 1976). Consider a bilinear set

{(ψ,κ, ν) ∈ R× {κL, κU} × [νL, νU ] : ψ = κν} with given lower bounds κL, νL and upper bounds

κU , νU . Its McCormick representation is

MC(κL, κU , νL, νU) =

(ψ,κ, ν) :

ψ ∈R, κ∈ {κL, κU}, νL ≤ ν ≤ νU ,

ψ≥ κLν+κνL −κLνL,ψ≥ κUν+κνU −κUνU ,

ψ≤ κUν+κνL −κUνL,ψ≤ κνU +κLν−κLνU

 .

Next, we discuss three special cases when the sets {Xi}i∈[m] are MICP-R.

Proposition 4. Suppose that f(x,ξ) = ξ⊤r(x)+ s(x), where r(x) and s(x) are linear functions.

Then the sets {Xi}i∈[m] are MICP-R.

Proof. We have

Xi =
{
(x, w̄i)∈X ×R : ξ⊤

i r(x)+ s(x) = w̄i

}
,

which is an MICP-R set. □

Proposition 5. Suppose that f(x,ξ) = maxτ∈T

{
ξ⊤rτ (x)+ sτ (x)

}
, where {rτ (x)}τ∈T and

{sτ (x)}τ∈T are linear functions. Then the sets {Xi}i∈[m] are MICP-R.

Proof. Suppose thatMi ≥maxx∈X ,(7b)

∣∣maxτ∈T

{
ξ⊤
i rτ (x)+ sτ (x)

}∣∣ for each i∈ [m]. Then, we have

Xi =
{
(x, w̄i)∈X ×R : max

τ∈T

{
ξ⊤
i rτ (x)+ sτ (x)

}
= w̄i

}

=

(x, w̄i)∈X ×R :

w̄i ≥ ξ⊤
i rτ (x)+ sτ (x),∀τ ∈ T,

w̄i ≤ ξ⊤
i rτ (x)+ sτ (x)+Mi(1− ziτ ),∀τ ∈ T,∑

τ∈T

ziτ = 1, ziτ ∈ {0,1},∀τ ∈ T

 ,

which is an MICP-R set. □

Proposition 6. Suppose that f(x,ξ) = minτ∈T

{
ξ⊤rτ (x)+ sτ (x)

}
, where {rτ (x)}τ∈T and

{sτ (x)}τ∈T are linear functions. Then the sets {Xi}i∈[m] are MICP-R.

Proof. Recall that Mi ≥maxx∈X ,(7b)

∣∣minτ∈T

{
ξ⊤
i rτ (x)+ sτ (x)

}∣∣ for each i∈ [m]. Thus, we have

Xi =
{
(x, w̄i)∈X ×R : min

τ∈T

{
ξ⊤
i rτ (x)+ sτ (x)

}
= w̄i

}

=

(x, w̄i)∈X ×R :

w̄i ≤ ξ⊤
i rτ (x)+ sτ (x),∀τ ∈ T,

w̄i ≥ ξ⊤
i rτ (x)+ sτ (x)−Mi(1− ziτ ),∀τ ∈ T,∑

τ∈T

ziτ = 1, ziτ ∈ {0,1},∀τ ∈ T

 ,

which is an MICP-R set. □

When the utility functions are exponential or logarithmic, their corresponding Fq sets are typi-

cally not MICP-R according to Lemma 2. Hence we propose to approximate them using piecewise

linear functions (see Appendix C).
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3.2. Quantile Formulation

In this subsection, we propose a quantile-based formulation to represent the set Fq motivated by

Lemma 1. That is, we first equivalently rewrite set Fq as

Fq =

{
(x, ν)∈X ×R+ :

∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy≤ ν,∀a< ā∈A

}
. (9)

Since all the random parameters have finite support, let us sort the distinct elements of the set

{0}∪
{

i

ma

}
i∈[ma]

∪
{

i

mā

}
i∈[mā]

:=
{
b̂iaā

}
i∈[m̂aā]

in the ascending order as 0 := b̂1aā < · · · < b̂(m̂aā)aā := 1 for each a < ā ∈ A. Observe that in the

equation (4), the value F−1
a (y | x) − F−1

ā (y | x) is a constant whenever y ∈ (̂biaā, b̂(i+1)aā] for i ∈

[m̂aā − 1]. Thus, the set {b̂iaā}i∈[m̂aā] helps simplify the Wasserstein fairness measure as

WDq
q(x) = max

a<ā∈A

∑
i∈[m̂aā−1]

∫ b̂(i+1)aā

b̂iaā

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy,

= max
a<ā∈A

∑
i∈[m̂aā−1]

(̂b(i+1)aā − b̂iaā)
∣∣∣F−1

a (̂b(i+1)aā |x)−F−1
ā (̂b(i+1)aā |x)

∣∣∣q. (10)

Next, we define the quantile set Ωa(k) = {(x, tka)∈X ×R : F−1
a (k/ma |x) = tka} for each k ∈ [ma]

and a ∈A. Using the graph representation (x, w̄i) ∈Xi for each i ∈ [m], we propose the following

equivalent formulation of the quantile set Ωa(k).

Proposition 7. Suppose that Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i ∈ [m]. For each k ∈ [ma] and

a∈A, the quantile set Ωa(k) is equivalent to

Ωa(k) =


(x, tka)∈X ×R :

πika ∈ {0,1}, zika ∈ {0,1}, πika ≤ zika, (x, w̄i)∈Xi,∀i∈Ca,∑
i∈Ca

zika = k,
∑
i∈Ca

πika = 1, tka =
∑
i∈Ca

t̂ika,

tka ≥ w̄i − (Mi +M(k))(1− zika), tka ≤ w̄i +(Mi +M(k))zika,

(t̂ika, πika, w̄i)∈MC(0,1,−Mi,Mi),∀i∈Ca


, (11)

where M(i) is the ith smallest value of the vector M .

Proof. See Appendix B.5. □

To reformulate the set Fq defined in (9), we use the quantile-based representation (10) of the

Wasserstein fairness measure by plugging in the MICP-R quantile sets {Ωa(k)}k∈[ma],a∈A defined

in (11).

Theorem 2. (Quantile Formulation) Suppose that the set Xi = {(x, w̄i) ∈ X × R : f(x,ξi) =

w̄i} is MICP-R and Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i∈ [m]. We further define the quantile set



Qing Ye, Grani A. Hanasusanto, and Weijun Xie: Distributionally Fair Stochastic Optimization using Wasserstein Distance
13

Ωa(k) = {(x, tka)∈X ×R : F−1
a (k/ma |x) = tka}, which admits a MICP-R form (11). Then Fq can

be represented as

Fq =


(x, ν)∈X ×R+ :

∑
i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)
ηqiaā ≤ ν,∀a< ā∈A,∣∣∣∣∣∣

∑
j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣≤ ηiaā,∀i∈ [m̂aā − 1], a < ā∈A,

(x, tja)∈Ωa(j),∀j ∈ [ma], a∈A


, (12)

where

δijaā1 = I
((

b̂iaā, b̂(i+1)aā

]
⊆
(
j− 1

ma

,
j

ma

])
,∀i∈ [m̂aā − 1], j ∈ [ma], a < ā∈A,

and

δijaā2 = I
((

b̂iaā, b̂(i+1)aā

]
⊆
(
j− 1

mā

,
j

mā

])
,∀i∈ [m̂aā − 1], j ∈ [mā], a < ā∈A.

Proof. See Appendix B.6. □

According to (11), we see that the continuous variable tja = F−1
a (j/ma |x) represents the j/math

smallest quantile value, and the binary variable zija indicates whether up to the ith smallest quantile

value is selected or not for each i ∈ Ca, j ∈ [ma], and a ∈ A. Therefore, we obtain the following

monotonicity-based valid inequalities.

Proposition 8. The following inequalities are valid for the Quantile Formulation

tja ≤ t(j+1)a, zija ≥ zi(j+1)a,∀i∈Ca, j ∈ [ma], a∈A. (13)

3.3. Aggregate Quantile Formulation

Motivated by the quantile set Ωa(k) in (11), we develop another formulation using the aggregate

quantiles in this subsection. We also show that this formulation can be quite strong compared to

others. To begin with, let us define the aggregate quantile variable t̄ and the aggregate quantile

set Ω̄a(k) = {(x, t̄ka) ∈ X × R :
∑k

i=1F
−1
a (i/ma | x) = t̄ka} for each k ∈ [ma] and a ∈ A. Letting

(x, w̄i)∈Xi for each i∈ [m], we present the following representation of the set Ω̄a(k)

Ω̄a(k) =


(x, t̄ka)∈X ×R :

(x, w̄i)∈Xi,∀i∈Ca,

t̄ka ≤min
z̄

{∑
i∈Ca

z̄ikaw̄i : z̄ika ∈ {0,1},∀i∈Ca,
∑
i∈Ca

z̄ika = k

}
,

t̄ka ≥min
z

{∑
i∈Ca

zikaw̄i : zika ∈ {0,1},∀i∈Ca,
∑
i∈Ca

zika = k

}


,

where similar to (11), we let the binary variables zika, z̄ika indicate whether up to the ith smallest

quantile values is selected or not for each i ∈Ca, k ∈ [ma], and a ∈A. By dualizing the first mini-

mization problem and linearizing the bilinear terms in the second minimization problem, we arrive

at the following MICP-R set.
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Proposition 9. Suppose that Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i ∈ [m]. For each k ∈ [ma] and

a∈A, the aggregate quantile set Ω̄a(k) is equivalent to

Ω̄a(k) =


(x, t̄ka)∈X ×R :

zika ∈ {0,1}, (x, w̄i)∈Xi,∀i∈Ca,
∑
i∈Ca

zika = k,

t̄ka ≤ kπka −
∑
i∈Ca

ρika, πka − ρika ≤ w̄i, ρika ≥ 0,∀i∈Ca,

t̄ka ≥
∑
i∈Ca

sika, (sika, zika, w̄i)∈MC(0,1,−Mi,Mi),∀i∈Ca


. (14)

To represent the set Fq defined in (9), we simply plug in the representation of the aggregate quan-

tile sets {Ω̄a(k)}k∈[ma],a∈A into the representation (9), which motivates the following formulation.

Theorem 3. (Aggregate Quantile Formulation) Suppose that the set Xi = {(x, w̄i) ∈X ×R :

f(x,ξi) = w̄i} is MICP-R and Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i ∈ [m]. We further define the

aggregate quantile set Ω̄a(k) = {(x, t̄ka)∈X ×R :
∑k

i=1F
−1
a (i/ma |x) = t̄ka}, which admits a MICP-

R form (14). Then Fq can be represented as

Fq =


(x, ν)∈X ×R+ :

∑
i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)
ηqiaā ≤ ν,∀a< ā∈A,∣∣∣∣∣∣

∑
j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣≤ ηiaā,∀i∈ [m̂aā − 1], a < ā∈A,

tja = t̄ja − t̄(j−1)a, (x, t̄ja)∈ Ω̄a(j), t̄0a = 0,∀j ∈ [ma], a∈A


, (15)

where the parameters δ are defined in Theorem 2.

Proof. The proof follows Theorem 2 with the fact that tja = t̄ja − t̄(j−1)a for all j ∈ [ma], a∈A. □

We remark that the inequalities (13) are also valid for the Aggregate Quantile Formulation.

3.4. Summary of the Different Formulations

The different formulations have their own strengths from the derivations according to their devel-

opments. Their formulation complexities are summarized in Table 1, where we suppress the term

O(|A|2) for simplicity. In our numerical study, we observe that the Aggregate Quantile Formulation

consistently outperforms the others in terms of computational time, which might be because it has

the least amount of binary variables and the smallest big-M coefficients.

In the following, we show that the Quantile Formulation and the Aggregate Quantile Formulation

can be stronger than the other two under some assumptions.

Proposition 10. Suppose that the big-M coefficients M ,M̂ are large enough as specified in the

proof. Then, by relaxing the binary variables,
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Table 1 Formulation Complexity Comparisons

Formulation # of Constraints
# of Binary

Variables

# of Continuous

Variables

Largest Big-M

Coefficient

Discretized O(m2 log(m)) O(m2 log(m)) O(m2 log(m)) maxi∈[m]Mi

Complementary O(m2) O(m2) O(m2)
maxa<ā∈A

∑
(i,j)∈Ca×Cā

(Mi +Mj)
q

Quantile O(m2) O(m2) O(m2) 2maxi∈[m]Mi

Aggregate Quantile O(m2) O(m2) O(m2) maxi∈[m]Mi

(i) the continuous relaxation value of the Discretized Formulation is zero;

(ii) the continuous relaxation value of the Complementary Formulation is zero;

(iii) the continuous relaxation value of the Quantile Formulation is

min
x∈X

max
a<ā∈A

(
b̂(m̂aā)aā − b̂(m̂aā−1)aā

)∣∣F−1
a (1 |x)−F−1

ā (1 |x)
∣∣q ;

(iv) the continuous relaxation value of the Aggregate Quantile Formulation is at least

min
x∈X

max
a<ā∈A

∣∣∣∣∣ 1

ma

∑
i∈Ca

F−1
a

(
i

ma

∣∣∣x)− 1

mā

∑
i∈Cā

F−1
ā

(
i

mā

∣∣∣x)∣∣∣∣∣
q

.

Proof. See Appendix B.7 □

As a side product of Proposition 10, we see that

Corollary 1. For any q ≥ 1, the continuous relaxation value of the Aggregate Quantile Formu-

lation is at least as good as the Jensen bound presented in Section 4.1.

The continuous relaxations of all the formulations can have nonzero objective values if one

optimizes the big-M coefficients or adds valid inequalities. We numerically test each formulation in

Section 5.1 and observe that the Aggregate Quantile Formulation performs best overall.

3.5. An Alternating Minimization (AM) Algorithm

When solving large instances with thousands of populations, the exact formulations in the previ-

ous subsections may suffer from slow convergence to find an optimal solution. Therefore, in this

subsection, motivated by the representation in Lemma 1, we design a fast AM algorithm that can

effectively solve DFSO instances to near optimality.

To this end, according to (10), we can recast DFSO as

v∗(q) = min
x∈X ,ν

ν, (16a)

s.t.
∑

i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)∣∣∣F−1
a

(
b̂(i+1)aā |x

)
−F−1

ā

(
b̂(i+1)aā |x

)∣∣∣q ≤ ν,∀a< ā∈A,

(16b)
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(7b),

which has been used to derive the Quantile Formulation and the Aggregate Quantile Formulation

of DFSO. This formulation is also valuable for deriving the AM algorithm. Specifically, we can run

the AM algorithm as follows: (i) First, we pick a feasible solution x0 (e.g., an optimal solution

that minimizes the total cost (1)); (ii) At iteration t≥ 0, we find the inverse distribution functions

{F−1
a (· | xt)}a∈A, which can be done via sorting with time complexity O(m logm); (iii) For each

i∈ [m̂aā−1] and a< ā∈A, let f(xt,ξŝa(i)) := F−1
a (̂b(i+1)aā |xt) and f(xt,ξŝā(i)) := F−1

ā (̂b(i+1)aā |xt);

(iv) Next, we solve the following program by fixing the inverse distribution functions in the DFSO

(16):

vt+1(q) = min
x∈X ,ν

ν,

s.t.
∑

i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)∣∣f (x,ξŝa(i))− f
(
x,ξŝā(i)

)∣∣q ≤ ν,∀a< ā∈A,

(7b),

with an optimal solution xt+1; and (v) Let t := t+ 1 and repeat Step (ii) to Step (iv) until the

stopping criterion is invoked (e.g., |vt − vt+1| < ϵ̄ for some small threshold ϵ̄). The benefit of the

proposed AM algorithm is that it completely eliminates the necessity of auxiliary binary variables

introduced by the exact MICP-R formulations. In addition to its computational advantage, our

numerical study shows that the proposed AM algorithm can successfully find optimal solutions in

many instances.

4. Two Lower Bounds for the Wasserstein Fairness Measure

In this section, we study a compact Jensen lower bound for type-q Wasserstein fairness measure

(i.e., WDq
q(x)) and the well-known Gelbrich lower bound for type-2 Wasserstein fairness measure

(i.e., WD2
2(x)). In particular, we derive new conditions under which the Gelbrich bound is tight.

To obtain the equivalent MICP-R formulations, we assume that f(x,ξ) = ξ⊤r(x) + s(x), where

r(x) =Ax+ â0 and s(x) = â⊤
1 x+ â2 are linear functions. For notational convenience, we define the

mean and covariance matrix for each group a∈A as µa =EP[ξ̃a] and Σa =CovP[ξ̃a], respectively.

4.1. The Jensen Bound for the qth Power of Type-q Wasserstein Fairness Measure WDq
q(x)

We first introduce the Jensen bound for WDq
q(x), which enables us to ascertain that the semidefinite

relaxation of the Gelbrich bound is relatively weak. The following theorem establishes the relation

between the Wasserstein fairness measure and the Jensen bound.

Theorem 4 (The Jensen Bound). For any q≥ 1, WDq
q(x) is bounded by

WDq
q(x)≥ max

a<ā∈A

∣∣µ⊤
a r(x)−µ⊤

ā r(x)
∣∣q := vJ(q).
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Proof. For any q, a < ā ∈ A, and joint distribution Qa,ā of f(x, ξ̃a) and f(x, ξ̃ā) with marginals

Pa,Pā, we have

EQa,ā [|f(x,ξa)− f(x,ξā)|q]≥
∣∣EQa,ā [f(x,ξa)]−EQa,ā [f(x,ξā)]

∣∣q ,
= |EPa [f(x,ξa)]−EPā [f(x,ξā)]|

q
=
∣∣µ⊤

a r(x)−µ⊤
ā r(x)

∣∣q .
Here, the inequality is due to Jensen’s inequality, and the first equality is because the random

vectors ξa,ξā are governed by the marginal distributions Pa,Pā, respectively. Then, we obtain

WDq
q(x) = max

a<ā∈A
W q

q (Pa,Pā)≥ max
a<ā∈A

∣∣µ⊤
a r(x)−µ⊤

ā r(x)
∣∣q ,

which completes the proof. □

This result gives rise to the following model for computing the Jensen bound for WDq
q(x):

vJ(q) = min
x∈X ,ν

{
ν :
∣∣µ⊤

a r(x)−µ⊤
ā r(x)

∣∣q ≤ ν,∀a< ā∈A, (7b)
}
. (18)

4.2. The Gelbrich Bound for the Squared Type-2 Wasserstein Fairness Measure WD2
2(x)

When q = 2, there is a popular Gelbrich bound for W 2
2 (Pa,Pā) for any a < ā ∈A, which has been

studied in many optimal transport works (see, e.g., Kuhn et al. 2019). Formally, the Gelbrich bound

for W 2
2 (Pa,Pā) is defined as follows.

Definition 7 (The Gelbrich Bound, Theorem 2.1 in Gelbrich 1990). For any a< ā∈A,

the squared type-2 Wasserstein distance W 2
2 (Pa,Pā) is bounded by

W 2
2 (Pa,Pā)≥

(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+
(√

r(x)⊤Σar(x)−
√
r(x)⊤Σār(x)

)2

.

According to Definition 7, the Gelbrich bound can be computed via the following nonconvex

program:

vG = min
x∈X ,ν

ν, (19a)

s.t.
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+
(√

r(x)⊤Σar(x)−
√

r(x)⊤Σār(x)
)2

≤ ν,∀a< ā∈A, (19b)

(7b).

where µa and Σa are the mean and covariance of ξ̃a for all a.

Using the Cholesky decomposition Σa =LaL
⊤
a for each a∈A, we can recast (19) as

vG = min
x∈X ,z,ν

ν, (20a)

s.t. za =L⊤
a r(x),∀a∈A, (20b)(

µ⊤
a r(x)−µ⊤

ā r(x)
)2

+(∥za∥2 −∥zā∥2)2 ≤ ν,∀a< ā∈A, (20c)
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(7b).

Our numerical study shows that the Gelbrich bound (20) can be very close to the true optimal

value v∗(2). Unfortunately, computing the Gelbrich bound (20) constitutes an intractable noncon-

vex program, which we formally prove to be generically NP-hard.

Theorem 5. Computing the Gelbrich bound is strongly NP-hard even when ϵ=∞ and |A|= 2.

Proof. See Appendix B.8. □

We remark that, in practice, one can compute the Gelbrich bound (20) by employing off-the-

shelf solvers, which are based on the spatial branch and bound algorithm. To further expedite

the solution process, we can tighten the bounds of decision variables and auxiliary variables in

formulation (20), which significantly decreases the number of branch and bound nodes and thus

accelerates the computation.

AM Algorithm. The complexity result motivates us to solve (20) using a highly effective AM

method. We first rewrite the formulation (20) as

vG = min
x∈X ,z,ν

ν,

s.t.
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+2∥za∥22 +2∥zā∥22 − (∥za∥2 + ∥zā∥2)2 ≤ ν,∀a< ā∈A,

(7b), (20b).

Using the convex conjugate representation, we have

− (∥za∥2 + ∥zā∥2)2 = min
waā≥0,αa,αā

{
−2α⊤

a za − 2α⊤
a za +w2

aā : ∥αa∥2 ≤waā,∥αā∥2 ≤waā

}
.

Thus, we can equivalently restate the formulation (20) as

vG = min
x∈X ,z,w,α,ν

ν, (21a)

s.t.
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+2∥za∥22 +2∥zā∥22 − 2α⊤

a za

− 2α⊤
a za +w2

aā ≤ ν, |αa∥2 ≤waā,∥αā∥2 ≤waā,∀a< ā∈A, (21b)

(7b), (20b).

In the AM method, at each iteration t, given a solution (xt,zt, νt), we compute the solution

(wt,αt, ν̄t) in closed-form, as follows:

ν̄t = max
a<ā∈A

{(
µ⊤

a r(xt)−µ⊤
ā r(xt)

)2
+(∥zat∥2 −∥zāt∥2)2

}
,

waāt = ∥zat∥2 + ∥zāt∥2,αat =
waāt

∥zat∥2
zat,αāt =

waāt

∥zāt∥2
zāt.
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Then we fix the values of (wt,αt) and resolve (21) with respect to the variables (x,z, ν). The

procedure is repeated until we reach a prescribed tolerance. Our numerical study finds that the

AM approach works extremely well in quickly finding near-optimal solutions.

Semidefinite Programming Relaxation. Alternatively, in the Gelbrich bound formulation (20),

let us introduce a new variable σa = ∥za∥2 for each a ∈A. For each pair a < ā ∈A, let us denote

saā =
[
σa za σā zā

]⊤
and Zaā = saā · s⊤

aā. Then one can show that the Gelbrich bound (20) can be

converted to a semidefinite programming formulation with rank-one constraint, as follows:

vG = min
x∈X ,s,Z,ν

ν, (22a)

s.t.
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+(

Zaā11 − 2Zaā1(n+2) +Zaā(n+2)(n+2)

)
≤ ν,∀a< ā∈A, (22b)

za =L⊤
a r(x), σa ≥ 0,∀a∈A, (22c)

Zaā11 =
n+1∑
i=2

Zaāii,Zaā(n+2)(n+2) =
2n+2∑
i=n+3

Zaāii,∀a< ā∈A, (22d)

saā =
[
σa za σā zā

]⊤
,∀a< ā∈A, (22e)

Zaā = saā · s⊤
aā,∀a< ā∈A, (22f)

(7b).

The rank one constraints in (22f) are difficult to handle in practice. A simple way is to relax (22f)

as the semidefinite inequalities

Zaā ⪰ saā · s⊤
aā,∀a< ā∈A.

Using the Schur complement, we obtain the semidefinite relaxation of the Gelbrich bound (20) as

vG = min
x∈X ,s,Z,ν

ν, (23a)

s.t.

[
1 s⊤

aā

saā Zaā

]
⪰ 0,∀a< ā∈A, (23b)

(7b), (22b)− (22e).

We see that the semidefinite relaxation (23) is stronger than the type-2 Jensen bound vJ(2) in

(18) since Zaā is positive semidefinite and
(
Zaā11 − 2Zaā1(n+2) +Zaā(n+2)(n+2)

)
≥ 0 for every pair

a< ā∈A. On the other hand, if we allow the relative tolerance of the semidefinite constraints (see

MOSEK ApS 2019), then for up to any prescribed tolerance, we can show that vG ≤ vJ(2). This

result is summarized in the following proposition.

Proposition 11. The semidefinite relaxation (23) of the Gelbrich bound model satisfies vG ≥
vJ(2). On the other hand, for any relative tolerance β > 0 of the semidefinite constraints in (23b)

such that Zaā − saā · s⊤
aā ⪰ −βλ+

min(Zaā)I2n+2, where λ
+
min(·) denotes the smallest nonzero eigen-

value, we have vG ≤ vJ(2).
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Proof. See Appendix B.9. □

4.3. Tightness of the Gelbrich Bound

The Same Univariate Marginal Distribution Condition: In the literature, it is known that

the Gelbrich bound is tight when the random parameters {ξ̃a}a∈A are asymptotically elliptical as

ma →∞ for all a ∈A. We generalize this result by establishing a weaker condition that achieves

the tightness of the Gelbrich bound. Our result shows that when the random utility functions

of different groups can be linearly transformed to the same univariate random variable, then the

Gelbrich bound is asymptotically tight.

Theorem 6. Suppose that for any pair a < ā ∈ A, the optimal comonotonic ran-

dom variables (f(x, ξ̃a) − µ⊤
a r(x) − s(x), f(x, ξ̃ā) − µ⊤

ā r(x) − s(x))
ma→∞,mā→∞−−−−−−−−−→

(
√

r(x)⊤Σar(x)ũ,
√

r(x)⊤Σār(x)ũ) for a univariate random variable ũ with zero mean and unit

variance. Then the Gelbrich bound is asymptotically tight.

Proof. See Appendix B.10. □

Theorem 6 shows that the tightness of the Gelbrich bound applies to a much broader family of

distributions than elliptical. In fact, from the proof, we can see that the Gelbrich bound is derived

using the Cauchy-Schwarz inequality, i.e.,

EQa,ā

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)(

f(x, ξ̃ā)−µ⊤
ā r(x)− s(x)

)]
≤
√
r(x)⊤Σar(x)·

√
r(x)⊤Σār(x).

Thus, the tightness result holds whenever there exists a joint distribution such that the Cauchy-

Schwarz inequality becomes equality.

More importantly, we can theoretically bound the gap between the optimal Gelbrich bound vG

and the optimal value of DFSO v∗(2) under type q= 2 Wasserstein distance.

Theorem 7. Suppose that for any group a ∈A, the individual samples {ξi}i∈Ca satisfy f(x,ξi)−

µ⊤
a r(x)−s(x)

d
=
√

r(x)⊤Σar(x)ui for each i∈Ca, where {ui}i∈Ca are i.i.d. samples of a univariate

sub-Gaussian random variable ũa with zero mean and unit variance, and {ũa}a∈A obey the same

distribution. Then with probability at most 1− η̂ such that η̂ > 0 is small, we have

v∗(2)− C̄1(η̂min
a∈A

√
ma)

−1 ≤ vG ≤ v∗(2)

for some positive constant C̄1.

Proof. See Appendix B.11. □

Different Groups with Proportional Covariances: The result in Theorem 6 necessitates the

same marginal distributions. We relax this assumption by establishing another tightness condition,

such that the marginal distributions of different groups can be distinct.
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Theorem 8. Suppose that for any pair a < ā ∈ A, the optimal comonotonic random variables

(f(x, ξ̃a) − µ⊤
a r(x) − s(x), f(x, ξ̃ā) − µ⊤

ā r(x) − s(x))
ma→∞,mā→∞−−−−−−−−−→ (ξ̂⊤

a r(x), ξ̂
⊤
ā r(x)), where the

random vectors ĉ−1
a ξ̂a, ĉ

−1
ā ξ̂ā obey the same distribution with zero mean and covariance matrix Σaā

for some positive parameters ĉa, ĉā. Then the Gelbrich bound is asymptotically tight.

Proof. See Appendix B.12. □

Similar to Theorem 7, we can theoretically bound the gap between the optimal Gelbrich bound

vG and the optimal value of DFSO v∗(2) under type q= 2 Wasserstein distance.

Theorem 9. Suppose that for any group a ∈A, the individual samples {ξi}i∈Ca satisfy f(x,ξi)−

µ⊤
a r(x)− s(x) := ξ⊤

i r(x) for each i ∈Ca, where {ξi}i∈Ca are i.i.d. and sampling from ξ̂a and the

random vectors ĉ−1
a ξ̂a, ĉ

−1
ā ξ̂ā obey the same sub-Gaussian distribution with zero mean and covariance

matrix Σaā. Then with probability at most 1− η̂ such that η̂ > 0 is small, we have

v∗(2)− C̄2(η̂min
a∈A

√
ma)

−1 ≤ vG ≤ v∗(2)

for some positive constant C̄2.

Proof. The proof is similar to that of Theorem 7 and is thus omitted. □

5. Numerical Study

In this section, we apply our framework to several fair optimization problems. We consider the

fair regression problem and the fair allocation problem of scarce medical resources. An additional

numerical study on the fair knapsack problem can be found in Appendix D.2. All the instances in

this section are executed in Python 3.7 with calls to Gurobi 10.0.0 on a PC with an Apple M2 Pro

processor and 16GB of memory.

5.1. Fair Regression

Consider the regression problem aiming to predict the response vector y ∈Rm using features ξ ∈

Rm×n, where the loss function is given by the mean squared error (MSE) Q(x,ξi) = |ξ⊤
i x− yi|2

or the mean absolute error (MAE) Q(x,ξi) = |ξ⊤
i x− yi|. In terms of demographic parity fairness,

we choose the utility function of the fair regression problem to be f(x,ξ) = ξ⊤x. We conduct two

experiments to test the proposed methods: (i) using hypothetical data to evaluate the performance

of the exact formulations, AM algorithm, and two lower bounds, and (ii) using real data to compare

DFSO against two state-of-the-art methods.
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5.1.1. Formulation comparisons We compare the proposed methods for solving fair regres-

sion with MAE, where we (i) test the exact formulations on small populations and (ii) test the

AM algorithm and lower bounds on large populations. In this experiment, we choose |A|= 2 (i.e.,

we study the fairness among two groups) and q= 2 (i.e., we consider type-2 Wasserstein distance),

and we set ϵ= 10% as the inefficiency level. The hypothetical data is generated in the following

manner. The response ỹ is generated from ỹ = ξ̃⊤(x0) + noise. The first ⌊n/2⌋ components of the

vector x0 are randomly sampled i.i.d. from the uniform distribution Unif(−1,0), the next ⌊n/2⌋−1

components are sampled from Unif(0,10), and the last component is set to zero. The last compo-

nent ξ̃κ ∈ {−1,1} of the vector ξ̃ corresponds to the sensitive attribute. In the generated dataset,

the first ⌈m/2⌉ data points are assigned with the sensitive attribute ξκ =−1, where their features

(ξ̃j)j∈[κ−1] are independently drawn from {Unif(0, j)}j∈[κ−1]. The remaining data points are assigned

ξκ = 1, where their features (ξ̃j)j∈[κ−1] are independently drawn from {Unif(0, j + 2)}j∈[κ−1]. The

noise follows the uniform distribution Unif(−0.1,0.1)×E[ξ̃]⊤(x0).

In the first comparison, we generate data sets of a small population with sizes m ∈

{15,20, . . . ,100} and feature dimension κ= 10 to compare the exact formulations against the AM

algorithm of DFSO and the two lower bounds. In the second comparison, we generate data sets of

a large population with sizes m∈ {100,200, . . . ,3,000} to illustrate the solution quality of the AM

algorithm and two lower bounds. We solve the Vanilla Formulation, the four exact MICP-R for-

mulations, the AM algorithm in Section 3.5, the Jensen bound, and the Gelbrich bound in the first

comparison. We test the AM algorithm, the Jensen bound, and the Gelbrich bound in the second

comparison. Particularly, the AM algorithm of DFSO in Section 3.5 is initialized with the Gelbrich

bound solution obtained by executing its corresponding AM algorithm described in Section 4.2.

In the first comparison, we report each instance’s objective value, lower bound, optimality gap,

and running time. Let “Obj.Val” denote the objective value and “LB” denote the lower bound.

We use the dashed line “–” if “Obj.Val” is not available. The optimality gap denoted by “Gap” is

computed by (UB-LB)/UB× 100%, where we use the optimal objective value as UB if available.

We define the best upper bound as the smallest “Obj.Val” of the exact formulations and the AM

algorithm of DFSO, and the best lower bound as the largest “LB” of the exact formulations and

“Obj.Val” of Gelbrich bound. For some instances, “Obj.Val” may not be available for the exact

formulations. In this case, we use the best upper bound to compute their optimality gaps, use

the best lower bound to compute the AM’s optimality gap, and use the AM’s objective value to

compute the Jensen bound’s and Gelbrich bound’s optimality gaps. The running time in seconds is

denoted as “Time”. We set the time limit to 3,600 seconds. In the second comparison, we plot the

gaps between AM and the two lower bounds over 10 replications, where the gap is computed by
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(UB-LB)/UB× 100%. We report the mean and standard deviation of the gaps and also illustrate

the average running time of each method.

The first comparison results are displayed in Tables 2-5. The Vanilla Formulation cannot solve

the small population instances within the time limit. The upper bounds of the Vanilla Formula-

tion tend to be close to the optimal value, while the lower bounds are nearly zero. In fact, the

gap of the Vanilla Formulation is 100% when the population size of the instance is m≥ 30. The

Discretized Formulation can solve the instance with m= 15. The quality of the incumbent solu-

tion at the time limit then deteriorates rapidly as m increases. The Complementary Formulation

performs similarly to the Discretized Formulation. Its upper bounds are often worse than other

formulations, and the lower bounds are always zero for all the instances. This demonstrates the

weakness of the Discretized Formulation and the Complementary Formulation, which is consistent

with Proposition 10. The performances of the Quantile Formulation and the Aggregate Quantile

Formulation in Table 3 are significantly better. The Quantile Formulation is able to solve instances

up to m≤ 40 to optimality, and it returns nonzero lower bounds except for the last instance. The

optimality gap of the Quantile Formulation becomes larger as m increases. Remarkably, the Aggre-

gate Quantile Formulation can solve instances with m≤ 60 and m= 70 to optimality. The running

time for each instance is less than 10 seconds when the population size is m≤ 40. The Aggregate

Quantile Formulation cannot be solved optimally for larger instances; however, it still consistently

provides high quality lower bounds with small gaps. We observe that the upper bounds of the

Quantile Formulation and the Aggregate Quantile Formulation may not be available for instances

with large m. This is potentially due to these two MICP-R formulations having many variables and

constraints, which causes the solver to have difficulty finding a feasible solution for large instances.

Therefore, we instead use the AM algorithm to solve instances for which the Aggregate Quantile

Formulation cannot provide an optimal solution within the time limit.

In fact, as shown in Table 4, the AM algorithm provides very near-optimal solutions to instances

of a small population using less than one second. It has a zero gap for most instances when the

optimal solution is available, that is, m ≤ 60 and m = 70. Its solution is close to the best lower

bound when the optimal solution is unavailable, where the gap is less than 7%. In particular, the

AM algorithm has better objective values than the Vanilla Formulation for all instances in this

experiment. On the other hand, the Jensen bound has a gap of around 30% for each instance, and its

running time is short due to the simplicity of its model formulation. On the contrary, the Gelbrich

bound’s gap decreases and running time slightly increases when the population size m increases.

The gap of the Gelbrich bound is around 15% when the population size is m ≥ 50. Since the

number of features κ= 10 is small, the Gelbrich bound model can solve all instances to optimality,

where each instance’s running time is less than 3 seconds. Besides, we also compute the continuous
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relaxation values of the exact MICP formulations. In Table 5, the continuous relaxation values

of the first three formulations are zero for most instances. The Aggregate Quantile Formulation

always has a nonzero continuous relaxation value, and it is greater than the objective value of the

Jensen bound as shown in Corollary 1. The continuous relaxation gap of the Aggregate Quantile

Formulation is around 30% overall, which numerically verifies this formulation’s strength.

The second comparison is presented in Figure 1. We see that both gaps stabilize when the

population size is large enough. The gap between AM and the Jensen bound decreases from 40%

to 21% when the population size m grows from 100 to 1,000. This gap is around 21% when

the population size m ≥ 1,000. The gap between AM and the Gelbrich bound drops from 10%

to 1% when the population size m grows from 100 to 1,500. This gap decreases to 0.8% after

m= 1,500. The small gap between AM and the Gelbrich bound verifies that the solution of AM is

near optimal and demonstrates the strength of the Gelbrich bound. Meanwhile, the running time

of these methods grows slowly. Since the Gelbrich bound formulation is nonconvex, it requires a

longer time to solve large population instances. Figure 1(c) shows that AM is much faster than

the Gelbrich bound, and the Jensen bound is slightly faster than AM. When m = 3,000, AM,

the Jensen bound, and the Gelbrich bound take 15, 11, and 53 seconds on average, respectively.

The stable and efficiently solvable lower bound solutions are useful to initialize AM and verify its

solution quality.

The two comparisons in this experiment confirm the effectiveness of the proposed methods in

solving DFSO. In practice, we suggest choosing the Aggregate Quantile Formulation to solve fair

decision-making problems with a small population and switch to the AM method if the population

size is large, where we can use the Jensen bound or the Gelbrich bound to initialize and establish

the quality of the AM method.

Table 2 Results of Exact MICP Formulations

m
Vanilla Formulation Discretized Formulation Complementary Formulation

Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time
15 342.43 99.92 70.82 3600.00 342.43 342.40 0.01 339.36 342.44 0.00 100.00 3600.00
20 230.62 8.23 96.43 3600.00 230.62 184.95 19.80 3600.00 231.30 0.00 100.00 3600.00
25 136.81 0.62 99.55 3600.00 135.03 84.28 37.58 3600.00 140.37 0.00 100.00 3600.00
30 174.38 0.00 100.00 3600.00 172.21 52.11 69.74 3600.00 199.55 0.00 100.00 3600.00
35 136.94 0.00 100.00 3600.00 133.81 12.34 90.78 3600.00 219.28 0.00 100.00 3600.00
40 256.27 0.00 100.00 3600.00 257.70 53.99 79.05 3600.00 1249.10 0.00 100.00 3600.00
45 226.81 0.01 100.00 3600.00 228.73 20.61 90.99 3600.00 613.29 0.00 100.00 3600.00
50 170.45 0.00 100.00 3600.00 177.92 21.70 87.80 3600.00 708.46 0.00 100.00 3600.00
55 205.50 0.00 100.00 3600.00 230.96 11.95 94.83 3600.00 684.75 0.00 100.00 3600.00
60 134.96 0.00 100.00 3600.00 772.27 1.35 99.82 3600.00 1142.74 0.00 100.00 3600.00
65 150.43 0.00 100.00 3600.00 176.77 0.03 99.98 3600.00 658.52 0.00 100.00 3600.00
70 138.49 0.00 100.00 3600.00 144.42 0.00 100.00 3600.00 596.50 0.00 100.00 3600.00
75 140.58 0.00 100.00 3600.00 242.28 0.00 100.00 3600.00 1021.06 0.00 100.00 3600.00
80 169.10 0.00 100.00 3600.00 253.35 0.00 100.00 3600.00 793.09 0.00 100.00 3600.00
85 148.41 0.00 100.00 3600.00 320.75 0.00 100.00 3600.00 773.68 0.00 100.00 3600.00
90 174.45 0.00 100.00 3600.00 400.22 0.00 100.00 3600.00 835.96 0.00 100.00 3600.00
95 177.90 0.00 100.00 3600.00 587.42 0.00 100.00 3600.00 898.22 0.00 100.00 3600.00
100 161.34 0.00 100.00 3600.00 819.40 0.00 100.00 3600.00 727.02 0.00 100.00 3600.00
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Table 3 Results of Exact MICP Formulations

m
Quantile Formulation Aggregate Quantile Formulation

Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time
15 342.43 342.43 0.00 0.51 342.43 342.43 0.00 0.21
20 230.62 230.62 0.00 6.94 230.62 230.62 0.00 0.50
25 135.03 135.03 0.00 40.80 135.03 135.03 0.00 1.50
30 172.21 172.21 0.00 356.06 172.21 172.21 0.00 3.14
35 133.54 133.54 0.00 271.32 133.54 133.54 0.00 5.77
40 252.42 252.42 0.00 2379.63 252.42 252.42 0.00 8.61
45 219.17 177.31 19.10 3600.00 219.17 219.17 0.00 46.05
50 170.16 120.52 29.17 3600.00 169.99 169.99 0.00 169.07
55 204.76 137.83 32.69 3600.00 204.76 204.76 0.00 230.42
60 — 66.85 48.91 3600.00 130.84 130.84 0.00 1022.89
65 — 47.18 66.90 3600.00 142.54 142.27 0.19 3600.00
70 — 30.48 77.57 3600.00 135.92 135.91 0.01 3134.58
75 — 31.39 77.24 3600.00 — 128.64 6.72 3600.00
80 — 25.32 84.03 3600.00 — 154.58 2.51 3600.00
85 — 27.86 80.89 3600.00 157.36 143.52 8.79 3600.00
90 — 26.65 84.47 3600.00 — 165.23 3.71 3600.00
95 — 4.57 97.37 3600.00 — 162.50 6.51 3600.00
100 — 0.00 100.00 3600.00 — 124.59 12.17 3600.00

Table 4 Results of AM Algorithm of DFSO, Jensen Bound and Gelbrich Bound

m
AM Jensen Bound Gelbrich Bound

Obj.Val Gap (%) Time Obj.Val Gap (%) Time Obj.Val Gap (%) Time
15 342.43 0.00 0.17 207.12 39.51 0.06 222.14 35.13 0.39
20 230.62 0.00 0.26 89.13 61.35 0.08 105.91 54.07 0.41
25 135.03 0.00 0.37 46.03 65.91 0.09 50.41 62.67 0.48
30 172.21 0.00 0.30 109.56 36.38 0.10 110.85 35.63 0.48
35 133.54 0.00 0.35 92.95 30.39 0.11 93.07 30.31 0.50
40 252.42 0.00 0.23 187.66 25.65 0.13 194.65 22.89 0.54
45 219.17 0.00 0.63 138.17 36.96 0.14 176.41 19.51 0.59
50 170.17 0.10 0.52 116.18 31.65 0.16 143.05 15.85 0.72
55 204.76 0.00 0.62 141.53 30.88 0.16 178.35 12.90 0.65
60 130.84 0.00 0.46 69.87 46.60 0.18 105.48 19.38 1.18
65 142.54 0.00 0.90 83.21 41.63 0.19 118.92 16.57 1.40
70 135.92 0.00 0.51 83.84 38.31 0.20 119.37 12.18 0.81
75 137.91 6.72 0.68 85.22 38.21 0.22 119.79 13.14 0.89
80 158.57 2.51 0.73 112.03 29.35 0.24 145.23 8.41 0.96
85 145.77 1.54 0.81 104.78 28.12 0.24 134.34 7.84 0.99
90 171.59 3.71 0.80 126.73 26.15 0.29 160.95 6.20 1.08
95 173.82 5.36 0.91 132.55 23.74 0.31 164.49 5.36 2.00
100 141.85 6.59 0.92 91.76 35.32 0.32 132.50 6.59 2.27

Table 5 Results of Continuous Relaxation Values of Exact MICP Formulations

m
Discretized Formulation Complementary Formulation Quantile Formulation Aggregate Quantile Formulation

Obj.Val Gap (%) Time Obj.Val Gap (%) Time Obj.Val Gap (%) Time Obj.Val Gap (%) Time
15 0.20 99.94 0.24 0.00 100.00 0.38 0.34 99.90 0.23 282.42 17.52 0.16
20 0.00 100.00 0.41 0.00 100.00 0.60 0.00 100.00 0.63 147.18 36.18 0.64
25 0.00 100.00 0.50 0.00 100.00 1.00 0.38 99.72 0.60 57.40 57.49 0.63
30 0.00 100.00 0.77 0.00 100.00 1.05 0.00 100.00 0.49 111.36 35.33 1.07
35 0.00 100.00 1.09 0.00 100.00 5.64 0.51 99.62 0.62 98.71 26.08 0.67
40 0.00 100.00 1.36 0.00 100.00 17.50 0.00 100.00 0.72 219.32 13.11 0.82
45 0.00 100.00 1.73 0.00 100.00 37.80 0.96 99.56 1.22 179.74 17.99 1.03
50 0.00 100.00 2.11 0.00 100.00 5.01 0.00 100.00 1.09 134.92 20.63 1.25
55 0.00 100.00 2.63 0.00 100.00 5.76 0.65 99.68 1.81 167.17 18.36 1.51
60 0.00 100.00 3.08 0.00 100.00 6.60 0.00 100.00 1.54 92.30 29.45 1.77
65 0.00 100.00 3.68 0.00 100.00 8.72 0.44 99.69 2.00 101.41 28.85 2.24
70 0.00 100.00 4.76 0.00 100.00 10.27 0.00 100.00 2.08 103.16 24.10 2.43
75 0.00 100.00 5.46 0.00 100.00 13.96 0.32 99.77 2.71 99.28 28.01 3.09
80 0.00 100.00 6.19 0.00 100.00 11.26 0.00 100.00 2.79 120.75 23.85 3.40
85 0.00 100.00 7.25 0.00 100.00 13.57 0.26 99.82 3.49 115.93 20.47 4.08
90 0.00 100.00 8.06 0.00 100.00 14.48 0.00 100.00 4.12 136.94 20.19 4.65
95 0.00 100.00 9.27 0.00 100.00 16.51 0.21 99.88 4.99 140.77 19.01 5.48
100 0.00 100.00 10.59 0.00 100.00 18.72 0.00 100.00 4.35 102.23 27.93 5.66

5.1.2. Comparison with state-of-the-art In the second experiment, we compare our meth-

ods against two fair regression methods from the literature using real data. In this experiment, the

cost function is set to the mean squared error (MSE). We solve DFSO using its AM algorithm in

Section 3.5, solve the Jensen bound by solving (18), and solve the Gelbrich bound using its AM

algorithm in Section 4.2. The first approach that we compare is Berk (Berk et al. 2017). Their work

proposed a convex optimization method to incorporate group and individual fairness for fair regres-

sion. We compare with their group fairness model for demographic parity. The second approach
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(a) Gap between AM and the

Jensen Bound

(b) Gap between AM and the Gel-

brich Bound

(c) Running time

Figure 1 Gap between AM and the two lower bounds for a large population size. The mean and standard deviation

of the gap over 10 replications, as well as the average running time of each method, are illustrated.

is Agarwal (Agarwal et al. 2019), a reduction-based fair regression algorithm that uses the Kol-

mogorov–Smirnov distance to measure demographic parity. We test the performance of different

approaches using criminological and educational datasets. The Communities and Crime dataset

contains socio-economic, law enforcement, and crime data of different communities in the US. The

goal is to predict the number of violent crimes per 100,000 of the population with race (black ver-

sus non-black) as the sensitive attribute. It contains 1,994 samples characterized by 127 features.

We create the sensitive attribute by thresholding the percentage of the black population following

Calders et al. (2013). The Law School (Wightman 1998) dataset consists of student records from

the Law School Admission Council (LSAC) National Longitudinal Bar Passage Study. The goal

is to predict a student’s GPA with race (white versus non-white) as the sensitive attribute. The

dataset contains 20,649 samples characterized by 12 features.

For both datasets, we split the data into 70% for training and 30% for testing. We repeat this

procedure 10 times and report the average performance. We evaluate the different methods based

on the trade-off between MSE and fairness scores of Wasserstein fairness and Kolmogorov–Smirnov

fairness measures, where we compute WD2(x) using (10) and KSD(x) using (6) for each method.

Note that we only use DFSO to solve the Wasserstein fairness measure and plug in its solution to

compute the Kolmogorov–Smirnov fairness measure. The hyperparameters of each method are cho-

sen as follows. For DFSO, the Jensen bound, and the Gelbrich bound, we set the inefficiency level

parameter ϵ∈ {0.05,0.1, . . . ,1} for the Communities and Crime dataset and ϵ∈ {0.01,0.02, . . . ,0.2}
for the Law School dataset. For Agarwal (Agarwal et al. 2019), we set their unfairness level param-

eter ϵ ∈ {0.015,0.03, . . . ,0.3} for Communities and Crime and ϵ ∈ {0.035,0.07, . . . ,0.7} for Law

School. For Berk (Berk et al. 2017), we set their unfairness penalty parameter λ ∈ {0.5,1, . . . ,10}
for Communities and Crime and λ∈ {0.2,0.4, . . . ,4} for Law School.

Figure 2 presents the trade-off between fairness scores and MSE on the two datasets described

above. We observe that DFSO consistently outperforms other methods in training and testing in
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view of the Wasserstein fairness measure, where it can reduce the unfairness level to significantly

small values (i.e., nearly zero) with a relatively small increase in MSE. DFSO also performs well

in terms of the Kolmogorov–Smirnov fairness measure and attains small fairness scores. Two lower

bounds (i.e., the Jensen and Gelbrich bounds) also provide good solution quality for both Wasser-

stein and Kolmogorov–Smirnov fairness measures. Notably, the Jensen bound has similar solutions

as Berk (Berk et al. 2017), and the Gelbrich bound is competitive with Agarwal (Agarwal et al.

2019). We observe that the Gelbrich bound tends to be fairer than the Jensen bound. DFSO con-

sistently provides the best Wasserstein fairness score for the Communities and Crime and Law

School datasets. In terms of the Kolmogorov–Smirnov fairness measure, Berk (Berk et al. 2017) and

the Jensen bound is effective when MSE is small. Note that they cannot further improve fairness

given large inefficiency level parameters or allow large MSE in the experiment. On the contrary,

DFSO and the Gelbrich bound have the capacity to improve Kolmogorov–Smirnov fairness with

large MSE. It is evident that DFSO is capable of effectively addressing the unfairness issues in fair

regression problems.

(a) Training of C & C (b) Training of C & C (c) Training of Law School (d) Training of Law School

(e) Testing of C & C (f) Testing of C & C (g) Testing of Law School (h) Testing of Law School

Figure 2 Fairness vs MSE for Fair Regression. The Wasserstein fairness versus MSE are shown in (a), (c), (e),

(g), and Kolmogorov–Smirnov fairness versus MSE are shown in (b), (d), (f), (h). All the training and

testing results are averaged over 10 replications.

5.2. Fair Allocation of Scarce Medical Resources

During public health emergencies such as the influenza pandemic and COVID-19, optimal allocation

of scarce medical resources (e.g., therapeutics and vaccines) is a crucial yet challenging task (see,

e.g., Sun et al. 2023, Shehadeh and Snyder 2023). DFSO can be adapted to allocate scarce medical
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resources in a distributionally fair way. In this experiment, we study the fair allocation of COVID-

19 vaccine across m counties in Georgia. Given the total amount of vaccines T ∈ Z+, counties’

population sizes p∈Zm
+ , and thresholds l≤u∈ (0,1]m, we consider a vaccine allocation problem

V ∗ =max
x

 m

√∏
i∈[m]

xi :
∑
i∈[m]

pixi ≤ T, li ≤ xi ≤ ui,∀i∈ [m]

 , (24)

where the coverage rate xi ∈ [0,1] is defined as the ratio of the number of allocated vaccines to

the population size in each county i ∈ [m], and the benefit function is Q(x,ξi) = xi. We remark

that the efficiency function in (24) follows the conventional proportional fairness, which seeks to

maximize the product of each individual county’s utility. The fair allocation approach that we are

comparing is the max-min fairness at the group level, defined as

max
x

min
a∈A

 ma

√ ∏
i∈[ma]

xi : m

√∏
i∈[m]

xi ≥ (1− ϵ)V ∗,
∑
i∈[m]

pixi ≤ T, li ≤ xi ≤ ui,∀i∈ [m]

 . (25)

In the experiment, we compare DFSO against the Max-Min formulation (25) using Georgia (GA)

population data from the U.S. Census Bureau. We choose the utility function to be f(x,ξi) = xi

for each county i ∈ [m]. The dataset includes each county’s population size pi and the size of

the population aged 65 years and over, denoted by si. We let A = {urban, rural} in order to

study the fairness among urban counties (where the population size is at least 50,000) and rural

counties (where the population size is less than 50,000). We assume the total amount of vaccine

is 20% of the total population. That is, we have T = 0.2
∑

i∈[m] pi. Since older people are more

vulnerable to COVID-19, we select the minimum and maximum vaccine coverage rates as li =

0.8siT/
∑

i∈[m] si and ui = 2siT/
∑

i∈[m] si, respectively. We also set the inefficiency level parameter

to ϵ= {0.1,0.2,0.267,0.3}. We choose type q= 2 Wasserstein fairness and solve DFSO using its AM

algorithm in Section 3.5. Since the solution of Max-Min (25) remains unchanged when ϵ≥ 0.267,

we only display its results for ϵ= {0.1,0.2,0.267}.

Figure 3 shows the histograms of utility for fair allocation of COVID-19 vaccine in GA. It can be

observed that both methods can reduce the disparities of utilities among urban and rural counties,

while DFSO always has a smaller Wasserstein fairness score than Max-Min (25) given the same

inefficiency level. The solution of Max-Min (25) remains unchanged when ϵ≥ 0.267, thus Figure

3(c) shows the fairest solution that Max-Min (25) can provide. DFSO can achieve a Wasserstein

fairness score that is nearly zero, effectively resolving the distributional disparities. We observe

that Max-Min (25) is not sufficient to eliminate the disparity between two distributions compared

to its counterpart DFSO. This demonstrates that the proposed DFSO can effectively address

distributional fairness while achieving relatively high efficiency.
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(a) Max-Min with ϵ= 0.1 (b) Max-Min with ϵ= 0.2 (c) Max-Min with ϵ =

0.267

(d) Vanilla

(e) DFSO with ϵ= 0.1 (f) DFSO with ϵ= 0.2 (g) DFSO with ϵ= 0.267 (h) DFSO with ϵ= 0.3

Figure 3 Histograms of Utility for Fair Allocation of COVID-19 Vaccine in GA

6. Conclusion

This paper studies Distributionally Fair Stochastic Optimization (DFSO), where we employ the

Wasserstein distance to measure group fairness. We propose exact mixed-integer convex program-

ming formulations for DFSO. By exploring the properties of the Wasserstein fairness measure, we

develop an efficient alternating minimization (AM) solution method and two strong lower bounds.

Our numerical study shows that the proposed exact methods can solve medium-sized fair learning

problems efficiently, while the proposed AM method and lower bounds work efficiently for large-

scale fair optimization and learning problems. The convergence rate and solution quality of AM

methods are interesting open questions. Stronger lower bounds for the general Wasserstein fairness

measure are also interesting to explore in the future. Another future study is properly incorporating

distributional robustness into DFSO when the individual data are noise-related.
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Appendix A. Two Additional Exact Formulations and An Equiv-
alent MICP-R Formulation for KSD(x)

A.1 Discretized Formulation: Discretizing the Transportation Decisions

In this subsection, we develop an MICP-R formulation for the Wasserstein fairness measure set

Fq by observing that the balanced transportation polytope can be integral given that the supplies

and demands are both integers. To this end, we recast the set as

Fq =

{
(x, ν)∈X ×R+ : min

πaā∈Πaā

{∑
i∈Ca

∑
j∈Cā

πijaā |f(x,ξi)− f(x,ξj)|q
}

≤ ν,∀a< ā∈A

}
(26)

where for each a< ā∈A, the transportation feasible set is given by

Πaā =

{
πaā ∈Rma×mā

+ :
∑
i∈Ca

πijaā =
1

mā

,∀j ∈Cā,
∑
j∈Cā

πijaā =
1

ma

,∀i∈Ca

}
.

Observe that, for each a< ā∈A, the constraint in (26) is satisfied if and only if there exists πaā ∈

Πaā such that
∑

i∈Ca

∑
j∈Cā

πijaā |f(x,ξi)− f(x,ξj)|q ≤ ν. Hence, the resulting set has nonconvex

terms in πaā and x that complicate the formulation.

Theorem 10. (Discretized Formulation) Suppose that the set Xi = {(x, w̄i) ∈ X × R :

f(x,ξi) = w̄i} is MICP-R for each i ∈ [m] and Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i ∈ [m]. Then

Fq is equivalent to the MICP-R set

Fq =


(x, ν)∈X ×R+ :

∑
i∈Ca

∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1ŵq
ijkaā

mamā

≤ ν,zaā ∈ Γaā,∀a< ā∈A,

(x, w̄i)∈Xi,∀i∈ [m], |z̄ijkaā1 − z̄ijkaā2| ≤ ŵijkaā,

(z̄ijkaā1, zijkaā, w̄i)∈MC(0,1,−Mi,Mi),

(z̄ijkaā2, zijkaā, w̄j)∈MC(0,1,−Mj,Mj),

∀i∈Ca, j ∈Cā, k ∈ [Ω̄aā], a < ā∈A


, (27)

where for each a< ā∈A, we define Ω̄aā = ⌈log2 (min{ma,mā})⌉+1 and

Γaā =

zaā ∈ {0,1}ma×mā×Ω̄aā :

∑
i∈Ca

∑
k∈[Ω̄aā]

2k−1zijkaā =ma,∀j ∈Cā,∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1zijkaā =mā,∀i∈Ca

 .

Proof. Letting π̄ijaā = πijaāmamā, the set Fq in (26) can be reformulated as

Fq =

{
(x, ν)∈X ×R+ : min

π̄aā∈Π̄aā

{∑
i∈Ca

∑
j∈Cā

π̄ijaā

mamā

|f(x,ξi)− f(x,ξj)|q
}

≤ ν,∀a< ā∈A

}
,
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where for each a< ā∈A, we have

Π̄aā =

{
π̄aā ∈Rma×mā

+ :
∑
i∈Ca

π̄ijaā =ma,∀j ∈Cā,
∑
j∈Cā

π̄ijaā =mā,∀i∈Ca

}
.

We see that there exist integer solutions π̄aā for this transportation problem according to Rebman

(1974). Then, we obtain

Fq =

{
(x, ν)∈X ×R+ : min

π̄aā∈Π̄aā∩Zma×mā
+

{∑
i∈Ca

∑
j∈Cā

π̄ijaā

mamā

|f(x,ξi)− f(x,ξj)|q
}

≤ ν,∀a< ā∈A

}
,

Since there exists π̄aā ∈ Π̄aā ∩Zma×mā
+ for Fq, we have

Fq =

{
(x, ν)∈X ×R+ : ∃π̄aā ∈ Π̄aā ∩Zma×mā

+ ,
∑
i∈Ca

∑
j∈Cā

π̄ijaā

mamā

|f(x,ξi)− f(x,ξj)|q ≤ ν,∀a< ā∈A

}
,

Next, we binarize the integer matrix variables π̄aā using the expansion

π̄ijaā =
∑

k∈[Ω̄aā]

2k−1zijkaā

where Ω̄aā = ⌈log2 (min{ma,mā})⌉+1 and zijkaā ∈ {0,1} for all i∈Ca, j ∈Cā, and k ∈ [Ω̄aā].

We thus obtain

Fq =

(x, ν)∈X ×R+ :
∑
i∈Ca

∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1zijkaā
mamā

|f(x,ξi)− f(x,ξj)|q ≤ ν,zaā ∈ Γaā,∀a< ā∈A

 ,

where for each a< ā∈A, we have

Γaā =

zaā ∈ {0,1}ma×mā×Ω̄aā :

∑
i∈Ca

∑
k∈[Ω̄aā]

2k−1zijkaā =ma,∀j ∈Cā,∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1zijkaā =mā,∀i∈Ca

 .

Then, letting w̄i = f(x,ξi) and |zijkaāw̄i − zijkaāw̄j|q ≤ ŵijkaā can further linearize the set Fq as

follows

Fq =


(x, ν)∈X ×R+ :

∑
i∈Ca

∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1ŵq
ijkaā

mamā

≤ ν,∀a< ā∈A,

|zijkaāw̄i − zijkaāw̄j| ≤ ŵijkaā,∀i∈Ca, j ∈Cā, k ∈ [Ω̄aā], a < ā∈A,

zaā ∈ Γaā,∀a< ā∈A, (x, w̄i)∈Xi,∀i∈ [m]


.

The conclusion follows from using McCormick representation of bilinear terms

{zijkaāw̄i}i∈Ca,j∈Cā,k∈[Ω̄aā],a<ā∈A and {zijkaāw̄j}i∈Ca,j∈Cā,k∈[Ω̄aā],a<ā∈A, and invoking the definition of

the sets {Xi}i∈[m]. □
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Note that the support size of π̄aā isma+mā. This motivates us to introduce new binary variables

ẑaā such that zijkaā ≤ ẑijaā for each i ∈ Ca, j ∈ Cā, k ∈ [Ω̄aā], a < ā ∈ A and obtain the following

inequalities valid for the set Fq as

∑
i∈Ca

∑
j∈Cā

ẑijaā ≤ma +mā,

for all a< ā∈A.

A.2 Complementary Formulation: Linearizing the Complementary Slackness Constraints

In this subsection, we propose the second formulation of the set Fq using linear programming

complementary slackness. According to the definition of the sets {Xi}i∈[m], we can represent the

set Fq in (26) as

Fq =

(x, ν)∈X ×R+ :
min

πaā∈Πaā

{∑
i∈Ca

∑
j∈Cā

πijaāwij

}
≤ ν,∀a< ā∈A,

(x, w̄i)∈Xi,wij ≥ ŵq
ij, ŵij ≥ |w̄i − w̄j|,∀i∈ [m], j ∈ [m]

 , (28)

and we have wij ≤ (Mi +Mj)
q for each (i, j) ∈ [m] × [m]. For each a < ā ∈ A, the dual of the

left-hand side of the first constraint system in (28) is

max
µaā,λaā

1

mā

∑
j∈Cā

λjaā +
1

ma

∑
i∈Ca

µiaā ≤ ν, (29a)

s.t. µiaā +λjaā ≤wij,∀i∈Ca, j ∈Cā. (29b)

According to linear programming complementary slackness, the system of linear inequalities in (29)

is equivalent to

1

mā

∑
j∈Cā

λjaā +
1

ma

∑
i∈Ca

µiaā ≤ ν, (30a)

∑
i∈Ca

πijaā =
1

mā

,∀j ∈Cā, (30b)

∑
j∈Cā

πijaā =
1

ma

,∀i∈Ca, (30c)

πijaā ≥ 0,∀i∈Ca, j ∈Cā, (30d)

wij −µiaā −λjaā ≥ 0,∀i∈Ca, j ∈Cā, (30e)

πijaā (wij −µiaā −λjaā) = 0,∀i∈Ca, j ∈Cā. (30f)

Then, linearizing the complementary slackness constraints (30f) allows us to derive the second

MICP-R.
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Theorem 11. (Complementary Formulation) Suppose that the set Xi = {(x, w̄i) ∈ X × R :

f(x,ξi) = w̄i} is MICP-R for each i∈ [m], Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i∈ [m], and M̂aā =∑
(i,j)∈Ca×Cā

(Mi +Mj)
q for each a< ā∈A. Then the set Fq is equivalent to

Fq =


x :

1

mā

∑
j∈Cā

λjaā +
1

ma

∑
i∈Ca

µiaā ≤ ν,∀a< ā∈A,

∑
i∈Ca

πijaā =
1

mā

,∀j ∈Cā, a < ā∈A,
∑
j∈Cā

πijaā =
1

ma

,∀i∈Ca, a < ā∈A,

(x, w̄i)∈Xi,∀i∈ [m],wij ≥ ŵq
ij, ŵij ≥ |w̄i − w̄j|,∀i∈ [m], j ∈ [m],

wij −µiaā −λjaā ≥ 0,wij −µiaā −λjaā ≤ M̂aā (1− zijaā) ,

πijaā ≤min{m−1
a ,m−1

ā }zijaā, πijaā ≥ 0, zijaā ∈ {0,1},∀i∈Ca, j ∈Cā, a < ā∈A


. (31)

Proof. By introducing a large constant M̂aā for each a< ā∈A, (30f) can be linearized as

πijaā ≤min{m−1
a ,m−1

ā }zijaā, wij −µiaā −λjaā ≤ M̂aā (1− zijaā) ,

zijaā ∈ {0,1},∀i∈Ca, j ∈Cā.
(32a)

It remains to show that for each pair a < ā ∈ A, the big-M value M̂aā =
∑

(i,j)∈Ca×Cā
(Mi +Mj)

q

suffices. That is, any dual feasible solution satisfies wij − µiaā − λjaā ≤ M̂aā for each i ∈ Ca, j ∈

Cā, a < ā∈A. From (30a), we can get

0≤ 1

mamā

∑
(i,j)∈Ca×Cā

(µiaā +λjaā)≤ ν. (32b)

According to (30e), we also know that

µiaā +λjaā ≤wij ≤ (Mi +Mj)
q. (32c)

Then, we have

µiaā +λjaā ≥−
∑

(i′,j′)∈Ca×Cā\{i,j}

(µi′aā +λj′aā)≥−
∑

(i′,j′)∈Ca×Cā\{i,j}

(Mi′ +Mj′)
q,

where the first inequality is due to (32b) and the second inequality is because of (32c). Thus, M̂aā

can be found by

M̂aā := (Mi +Mj)
q +

∑
(i′,j′)∈Ca×Cā\{i,j}

(Mi′ +Mj′)
q =

∑
(i′,j′)∈Ca×Cā

(Mi′ +Mj′)
q ≥wij −µiaā −λjaā,

which give us M̂aā =
∑

(i,j)∈Ca×Cā
(Mi +Mj)

q. □
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A.3 A Side Product: An Equivalent MICP-R Formulation for KSD(x)

In this subsection, we propose to represent the sublevel set of the Kolmogorov–Smirnov fairness

measure KSD(x), denoted as KSDδ̂(x), using the sets {Ωa(k)}a∈A,k∈[ma] defined in (11). We note

that the Kolmogorov–Smirnov fairness problem (similar to DFSO) admits the following form:

v∗ =min
x∈X

{
KSD(x) :EP[Q(x, ξ̃)]≤ V ∗ + ϵ|V ∗|

}
. (33)

Hence, if we can represent the sublevel set of the function KSD(x), then we can simply run a

binary search to find the best objective value of problem (33). The formulation of KSDδ̂(x) is

shown below.

Theorem 12. Let the quantile set be defined as Ωa(k) = {(x, ta) ∈ X × R : F−1
a (k/ma | x) =

ta} for each a ∈ A, which admits a MICP-R form (11). Then for a given δ̂ ∈ {|i/ma −
j/mā|}i∈[0,ma],j∈[0,mā],a<ā∈A, the set KSDδ̂(x) can be expressed as

KSDδ̂(x) =

x∈X :

(x, tia)∈Ωa(i),∀i∈ [ma], a∈A,

t(⌊mā(i/ma−δ̂)+⌋)ā ≤ tia,∀i∈ [ma], a < ā∈A

t(i+1)a ≤ t(⌊mā max(i/ma+δ̂,1)⌋+1)ā,∀i∈ [0,ma − 1], a < ā∈A

 ,

where we let t0a =−∞ and t(ma+1)a =+∞ for any a∈A.

Proof. Recall that for any x∈KSDδ̂(x), we have

max
a<ā∈A

sup
τ

|Fa(τ |x)−Fā(τ |x)| ≤ δ̂, (34a)

⇔ sup
τ

|Fa(τ |x)−Fā(τ |x)| ≤ ν,∀a< ā∈A. (34b)

Let us consider the possible values of Fa(τ |x) as {0,1/ma, · · · ,ma/ma}. There are three cases:

Case 1. If Fa(τ |x) = 0, then −∞< τ ≤ t1a. For any such τ , we must have |Fa(τ |x)−Fā(τ |x)| ≤ δ̂.

That is, we must have

0≤ Fā(τ |x)≤ δ̂,

or equivalently −∞< τ < t(⌊mā max(δ̂,1)⌋+1)ā. Therefore, the following inequalities must hold

τ ≤ t1a ≤ t(⌊mā max(δ̂,1)⌋+1)ā.

Case 2. If Fa(τ | x) = i/ma for some i ∈ [ma − 1], then tia ≤ τ < t(i+1)a. For any such τ , we must

have |Fa(τ |x)−Fā(τ |x)| ≤ δ̂. That is, we must have(
i

ma

− δ̂

)
+

≤ Fā(τ |x)≤max

(
i

ma

+ δ̂,1

)
or equivalently t(⌊mā(i/ma−δ̂)+⌋)ā ≤ τ < t(⌊mā max(i/ma+δ̂,1)⌋+1)ā. Therefore, the following

inequalities must hold

t(⌊mā(i/ma−δ̂)+⌋)ā ≤ tia ≤ t(i+1)a ≤ t(⌊mā max(i/ma+δ̂,1)⌋+1)ā.
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Case 3. If Fa(τ | x) = 1, then t(ma)a ≤ τ < +∞. For any such τ , we must have

|Fa(τ |x)−Fā(τ |x)| ≤ δ̂. That is, we must have(
1− δ̂

)
+
≤ Fā(τ |x)≤ 1,

or equivalently t(⌊mā(1−δ̂)+⌋)ā ≤ τ <+∞. Therefore, the following inequalities must hold

t(⌊mā(i/ma−δ̂)+⌋)ā ≤ t(ma)a.

If F (τ |x) = i/m, then we must have i/m− δ̂≤ Fa(ti |x)≤ i/m+ δ̂ for all a∈A to solve (34b).

Finally, we observe that since all {Pa}a∈A are equiprobable discrete distributions, we must have

δ̂ ∈ {|i/ma − j/mā|}i∈[0,ma],j∈[0,mā],a<ā∈A. □

We remark that to solve (33) to optimality, we can run the binary search to find the optimal

δ̂ ∈ {|i/ma − j/mā|}i∈[0,ma],j∈[0,mā],a<ā∈A. That is, given a current δ̂ value, we optimize the total

cost E[Q(x, ξ̃)] subject to the set KSDδ̂(x). Next, we check whether the optimal value is no larger

than V ∗ + ϵ|V ∗| or not. If yes, we decrease δ̂; otherwise, we increase it.

Alternatively, we can perform difference-of-convex (DC) method at each binary search step,

where we solve a continuous relaxation by relaxing the binary variables to be continuous and

rewrite the set Ωa(k) to

Ωa(k) =

(x, tka)∈X ×R :

πika ∈ [0,1], zika ∈ [0,1], πika ≤ zika,∀i∈Ca,∑
i∈Ca

zika = k,
∑
i∈Ca

πika = 1, tka =
∑
i∈Ca

t̂ika,

(x, w̄i)∈Xi, zika(tka − w̄i)≥ 0, t̂ika ≤ πikaw̄i,∀i∈Ca

 .

Here, we can rewrite each bilinear term as a difference between two convex functions.
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Appendix B. Proofs

B.1 Proof of Proposition 1

Proposition 1. For a given decision x ∈ X , when computing the Wasserstein fairness measure

in DFSO, the optimal joint distribution is comonotonic for any pair a< ā∈A.

Proof. Given a standard uniform distribution U , let us define a joint distribution Qaā such that

(f(x, ξ̃a), f(x, ξ̃ā))
d
= (F−1

a (U | x),F−1
ā (U | x)) for any pair a < ā ∈A, and a fixed decision x ∈ X .

Then, we have

q

√∫
Ξ×Ξ

∥ζ1 − ζ2∥q Qaā(dζ1, dζ2) =
q

√∫ 1

0

∣∣F−1
a (u |x)−F−1

ā (u |x)
∣∣q du≥Wq

(
Pf(x,ξ̃a)

,Pf(x,ξ̃ā)

)
where the inequality is because Q is an admissible joint distribution. According to Lemma 1, Q

is the ideal joint distribution when computing the Wasserstein fairness measure in DFSO. This

completes the proof. □

B.2 Proof of Proposition 2

Proposition 2. For a Bernoulli utility function f(x, ξ̃)∈ {0,1}, WDq(x) is equivalent to DP(x).

Proof. Since f(x, ξ̃)∈ {0,1}, we observe that

F−1
a (y |x) =

{
0 y ∈ (0,Fa(0 |x)],
1 y ∈ (Fa(0 |x),1],

for each a∈A. According to Lemma 1, the Wasserstein fairness measure WDq(x) can be simplified

as

WDq(x) = max
a<ā∈A

q

√∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy= max

a<ā∈A

q
√

|Fa(0 |x)−Fā(0 |x)|q,

= max
a<ā∈A

|Fa(0 |x)−Fā(0 |x)|= max
a<ā∈A

∣∣∣Pa{f(x, ξ̃a) = 0}−Pā{f(x, ξ̃ā) = 0}
∣∣∣=DP(x),

where the second and third equalities are due to P(f(x, ξ̃)∈ {0,1}) = 1 and the observation above,

while the fourth one follows from the definition of cumulative distribution functions. □

B.3 Proof of Proposition 3

Proposition 3. For any feasible x∈X and q ∈ [1,∞], the following inequalities hold:

1

maxa<ā∈A η(x)
1−q
q (t2aā(x)− t1aā(x))

WDq(x)≤KSD(x)≤ 1

mina<ā∈A µ(∆aā(x))
WDq(x).

Here, t1aā(x) = min{mint{t : Fa(t | x) > 0},mint{t : Fā(t | x) > 0}}, t2aā(x) = max{supt{t : Fa(t |
x)< 1}, supt{t : Fā(t |x)< 1}}, and ∆aā(x) = {t̄ : |Fa(t̄ |x)−Fā(t̄ |x)|= supt |Fa(t |x)−Fā(t |x)|}
with its Lebesgue measure µ(∆aā(x)).
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Proof. We split the proof into two steps.

Step 1. We first derive the relationship between WD1(x) and KSD(x).

We let t1aā(x) = min{mint{t : Fa(t | x)> 0},mint{t : Fā(t | x)> 0}} and t2aā(x) = max{maxt{t :

Fa(t |x)< 1},maxt{t : Fā(t |x)< 1}}. Then, according to Lemma 1, we have

WD1(x) = max
a<ā∈A

∫
t

|Fa(t |x)−Fā(t |x)|dt,

= max
a<ā∈A

∫ t2aā(x)

t1aā(x)

|Fa(t |x)−Fā(t |x)|dt,

≤ max
a<ā∈A

(t2aā(x)− t1aā(x)) max
a<ā∈A

sup
t

|Fa(t |x)−Fā(t |x)|= max
a<ā∈A

(t2aā(x)− t1aā(x))KSD(x),

which yields the lower bound on KSD(x).

To establish the upper bound on KSD(x), we let ∆aā(x) = {t̄ : |Fa(t̄ |x)−Fā(t̄ |x)|= supt |Fa(t |

x)− Fā(t | x)|} and use µ(∆aā(x)) to denote the Lebesgue measure of the set ∆aā(x), which is

positive since all the groups are finitely distributed. Then, we have

WD1(x) = max
a<ā∈A

∫
t

|Fa(t |x)−Fā(t |x)|dt,

≥ max
a<ā∈A

∫
∆aā(x)

|Fa(t |x)−Fā(t |x)|dt,

≥ min
a<ā∈A

µ(∆aā(x)) max
a<ā∈A

sup
t

|Fa(t |x)−Fā(t |x)|= min
a<ā∈A

µ(∆aā(x))KSD(x).

Combining both lower and upper bounds, we obtain the desired inequalities

1

maxa<ā∈A(t2aā(x)− t1aā(x))
WD1(x)≤KSD(x)≤ 1

mina<ā∈A µ(∆aā(x))
WD1(x).

Step 2. Next, we derive the bounds between WD1(x) and WDq(x) for any q ∈ [1,∞]. According

to Lemma 1, we know that

WDq(x) = max
a<ā∈A

q

√∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy,

= max
a<ā∈A

q

√ ∑
j∈Jaā\{1}

wjaā(x)
∣∣F−1

a (bjaā(x) |x)−F−1
ā (bjaā(x) |x)

∣∣q,
≤ max

a<ā∈A

q

√√√√ ∑
j∈Jaā\{1}

wjaā(x)q

η(x)q−1

∣∣F−1
a (bjaā(x) |x)−F−1

ā (bjaā(x) |x)
∣∣q,

≤η(x)
1−q
q max

a<ā∈A

∑
j∈Jaā\{1}

wjaā(x)
∣∣F−1

a (bjaā(x) |x)−F−1
ā (bjaā(x) |x)

∣∣= η(x)
1−q
q WD1(x),

where the second equality is due to Definition 4, the first inequality is due to η(x) =

maxa<ā∈A,j∈Ja\{1}wjaā(x), and the second one is because ∥ · ∥q ≤ ∥ · ∥1.
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Meanwhile, by using Hölder’s inequality, we have

1

√∫ 1

0

|F−1
a (y |x)−F−1(y |x)|1 dy≤

q

√∫ 1

0

|F−1
a (y |x)−F−1(y |x)|q dy

p

√∫ 1

0

dy

for any p, q ∈ [1,∞) with 1/p+1/q= 1, Thus, the following inequality holds∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣1 dy≤ q

√∫ 1

0

∣∣F−1
a (y |x)−F−1

ā (y |x)
∣∣q dy,

i.e., WD1(x)≤WDq(x). This concludes the proof. □

B.4 Proof of Theorem 1

Theorem 1. Solving DFSO is, in general, strongly NP-hard, even when X is a polytope, ϵ=∞,

and f(x,ξ) is a linear function.

Proof. We derive a reduction from the chance constrained optimization problem, which is strongly

NP-hard (Ahmed and Xie 2018). Let us consider the following feasibility problem of the generic

chance-constrained stochastic program:

Does there exist a feasible solution to the following chance-constrained set(x,z)∈X : z ∈ {0,1}m
′
,
∑
i∈[m′]

zi =m′ − k,


where X = {(x,z) ∈ Rn × [0,1]m

′
: Âix≥ bi −M(1− zi),∀i ∈ [m′]} with large coefficients M

for each i∈ [m′]?

Let us consider a special case of DFSO with |A|= 2, ma =mā =m′, C1 = [m′], C2 = [m′ +1,2m′],

and ξ ∈Rn+m′+1 with

f((x,z),ξ) = ξ⊤
1:nx+ ξ⊤

[n+1:n+m′]z+ ξn+m′+1.

Specifically, for each individual i∈ [2m′], we design their corresponding scenario ξi such that

f((x,z),ξi) = zi,∀i∈ [m′],

f((x,z),ξj) = 0,∀j ∈ [m′ +1 :m′ + k],

f((x,z),ξj) = 1,∀j ∈ [m′ + k+1 : 2m′].

Assuming that ϵ=∞, this particular DFSO becomes

v∗(q) = min
(x,z)∈X

WDq
q((x,z)).

Hence, we see that v∗(q) = 0 if and only if there exists a point (x,z) ∈ X such that z ∈
{0,1}m′

,
∑

i∈[m′] zi =m′−k. In other words, v∗(q) = 0 if and only if (x,z) is feasible to the chance-

constrained stochastic program. This completes the proof. □
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B.5 Proof of Proposition 7

Proposition 7. Suppose that Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i ∈ [m]. For each k ∈ [ma] and

a∈A, the quantile set Ωa(k) is equivalent to

Ωa(k) =


(x, tka)∈X ×R :

πika ∈ {0,1}, zika ∈ {0,1}, πika ≤ zika, (x, w̄i)∈Xi,∀i∈Ca,∑
i∈Ca

zika = k,
∑
i∈Ca

πika = 1, tka =
∑
i∈Ca

t̂ika,

tka ≥ w̄i − (Mi +M(k))(1− zika), tka ≤ w̄i +(Mi +M(k))zika,

(t̂ika, πika, w̄i)∈MC(0,1,−Mi,Mi),∀i∈Ca


, (11)

where M(i) is the ith smallest value of the vector M .

Proof. By definition of the inverse distribution function, we have

Ωa(k) =
{
(x, tka)∈X ×R : F−1

a (k/ma |x) = tka
}

=

(x, tka)∈X ×R :

πika ∈ {0,1}, zika ∈ {0,1}, πika ≤ zika, (x, w̄i)∈Xi,∀i∈Ca,∑
i∈Ca

zika = k,
∑
i∈Ca

πika = 1, tka =
∑
i∈Ca

w̄iπika,

tka ≥ w̄i − (Mi +M(k))(1− zika), tka ≤ w̄i +(Mi +M(k))zika,

 ,

for each k ∈ [ma] and a ∈ A. Next, we arrive at the conclusion by linearizing the bilinear terms

with the McCormick representation. □

B.6 Proof of Theorem 2

Theorem 2. (Quantile Formulation) Suppose that the set Xi = {(x, w̄i) ∈ X × R : f(x,ξi) =

w̄i} is MICP-R and Mi ≥maxx∈X ,(7b) |f(x,ξi)| for each i∈ [m]. We further define the quantile set

Ωa(k) = {(x, tka)∈X ×R : F−1
a (k/ma |x) = tka}, which admits a MICP-R form (11). Then Fq can

be represented as

Fq =


(x, ν)∈X ×R+ :

∑
i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)
ηqiaā ≤ ν,∀a< ā∈A,∣∣∣∣∣∣

∑
j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣≤ ηiaā,∀i∈ [m̂aā − 1], a < ā∈A,

(x, tja)∈Ωa(j),∀j ∈ [ma], a∈A


, (12)

where

δijaā1 = I
((

b̂iaā, b̂(i+1)aā

]
⊆
(
j− 1

ma

,
j

ma

])
,∀i∈ [m̂aā − 1], j ∈ [ma], a < ā∈A,

and

δijaā2 = I
((

b̂iaā, b̂(i+1)aā

]
⊆
(
j− 1

mā

,
j

mā

])
,∀i∈ [m̂aā − 1], j ∈ [mā], a < ā∈A.
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Proof. We split the proof into two steps.

Step 1. First, we will reformulate WDq
q(x). According to (10), we can represent WDq

q(x)≤ ν as∑
i∈[m̂aā−1]

(̂b(i+1)aā − b̂iaā)
∣∣∣F−1

a (̂b(i+1)aā |x)−F−1
ā (̂b(i+1)aā |x)

∣∣∣q ≤ ν,∀a< ā∈A. (35)

Suppose F−1
a (y | x) = tja for j ∈ [ma], a ∈ A. Let δijaā1 = I((̂biaā, b̂(i+1)aā]⊆ ((j − 1)/ma, j/ma]) for

each i ∈ [m̂aā − 1], j ∈ [ma], a < ā ∈ A and δijaā2 = I((̂biaā, b̂(i+1)aā] ⊆ ((j − 1)/mā, j/mā]) for each

i∈ [m̂aā − 1], j ∈ [mā], a < ā∈A. Then, the constraints (35) are equivalent to∑
i∈[m̂aā−1]

(̂b(i+1)aā − b̂iaā)η
q
iaā ≤ ν,∀a< ā∈A, (36)

where ∣∣∣∣∣∣
∑

j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣≤ ηiaā,∀i∈ [m̂aā − 1], a < ā∈A. (37)

Step 2. By choosing (x, tja) ∈ Ωa(j) for all j ∈ [ma], a ∈A, we have the formulation (12) for the

set Fq. □

B.7 Proof of Proposition 10

Proposition 10. Suppose that the big-M coefficients M ,M̂ are large enough as specified in the

proof. Then, by relaxing the binary variables,

(i) the continuous relaxation value of the Discretized Formulation is zero;

(ii) the continuous relaxation value of the Complementary Formulation is zero;

(iii) the continuous relaxation value of the Quantile Formulation is

min
x∈X

max
a<ā∈A

(
b̂(m̂aā)aā − b̂(m̂aā−1)aā

)∣∣F−1
a (1 |x)−F−1

ā (1 |x)
∣∣q ;

(iv) the continuous relaxation value of the Aggregate Quantile Formulation is at least

min
x∈X

max
a<ā∈A

∣∣∣∣∣ 1

ma

∑
i∈Ca

F−1
a

(
i

ma

∣∣∣x)− 1

mā

∑
i∈Cā

F−1
ā

(
i

mā

∣∣∣x)∣∣∣∣∣
q

.

Proof.

(i) Since the optimal value of the continuous relaxation of the Discretized Formulation is at least

zero, it suffices to show that there exists a feasible solution for the continuous relaxation of

the Discretized Formulation such that its objective value is zero.

In the Discretized Formulation, we choose any x∈X and w̄i = f(x,ξi) for any i∈ [m]. We

also let ν = 0, ŵijkaā = z̄ijkaā1 = z̄ijkaā2 = 0 and zijkaā = 21−k/Ω̄aā, for all i ∈ Ca, j ∈ Cā, and

k ∈ [Ω̄aā]. Then we have∑
i∈Ca

∑
k∈[Ω̄aā]

2k−1zijkaā =ma,∀j ∈Cā,
∑
j∈Cā

∑
k∈[Ω̄aā]

2k−1zijkaā =mā,∀i∈Ca,
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for all a< ā∈A. It remains to show that

(z̄ijkaā1, zijkaā, w̄i)∈MC(0,1,−Mi,Mi), (z̄ijkaā2, zijkaā, w̄j)∈MC(0,1,−Mj,Mj),

for all i∈Ca, j ∈Cā, k ∈ [Ω̄aā], a < ā∈A. This is true by choosing

Mi ≥ max
a<ā∈A

Ω̄aā/(Ω̄aā − 1) max
x∈X ,(7b)

|f(x,ξi)|

for each i ∈ [m]. Hence, we see that (x, w̄, ν,z, z̄, ŵ) satisfies the constraints in (27), which

yields an objective value zero.

(ii) Similarly, in the Complementary Formulation, we choose any x∈X and w̄i = f(x,ξi) for any

i∈ [m]. We let zijaā =min{ma,mā}/(mamā),wij = ŵq
ij, ŵij = |w̄i− w̄j|, and πijaā = 1/(mamā)

for all i∈Ca, j ∈Cā, a < ā∈A. We also let µiaā = 0 and λjaā = 0 for all i∈Ca, j ∈Cā, a < ā∈A.

We note that∑
i∈Ca

πijaā =
1

mā

,
∑
j∈Cā

πijaā =
1

ma

, πijaā ≤min{m−1
a ,m−1

ā }zijaā, πijaā ≥ 0,

for all i∈Ca, j ∈Cā, a < ā∈A.

It remains to show that

wij ≤ M̂aā (1− zijaā) ,

for all i ∈ Ca, j ∈ Cā, a < ā ∈ A. This is true by choosing M̂aā ≥ (mamā)/(mamā −

min{ma,mā})
∑

(i,j)∈Ca×Cā
(Mi + Mj)

q for each a < ā ∈ A. Hence, we see that

(x, w̄, ŵ,w,µ,λ, ν,z, z̄,π) satisfies the constraints in (31), which yields an objective value

zero.

(iii) We observe that for any feasible solution of the Quantile Formulation, we must have zi(ma)a = 1

for each i ∈ Ca and a ∈ A. Therefore, t(ma)a = F−1
a (1 | x), t(mā)ā = F−1

ā (1 | x) and ηm̂aā−1 ≥

|t(ma)a − t(mā)ā|. That is,

ν ≥ max
a<ā∈A

(
b̂(m̂aā)aā − b̂(m̂aā−1)aā

)
|F−1

a (1 |x)−F−1
ā (1 |x)|q.

We show that this bound is tight by constructing a solution such that tka = 0 for any

k ∈ [ma − 1] and a∈A. In fact, for any x∈ χ, let w̄i = f(x,ξi) for each i∈ [m]. Then for any

i ∈Ca, k ∈ [ma − 1], and a ∈A, we let zika = k/ma, πika = 1/ma, t̂ika = 0. It remains to show

that for any i∈Ca, k ∈ [ma − 1], and a∈A,

(t̂ika, πika, w̄i)∈MC(0,1,−Mi,Mi)

which must hold when Mi ≥maxa∈Amamaxx∈X ,(7b) |f(x,ξi)|.
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(iv) We observe that for any feasible solution of the Aggregate Quantile Formulation, we must

have zi(ma)a = 1 for each i ∈ Ca and a ∈A. Therefore, t̄(ma)a =
∑

i∈Ca
F−1

a (i/ma | x), t̄(mā)ā =∑
i∈Cā

F−1
ā (i/mā |x). According to the first two constraints in (15), we have

ν ≥ max
a<ā∈A

∑
i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

)∣∣∣∣∣∣
∑

j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣
q

≥ max
a<ā∈A

∣∣∣∣∣∣
∑

i∈[m̂aā−1]

(
b̂(i+1)aā − b̂iaā

) ∑
j∈[ma]

δijaā1tja −
∑

j∈[mā]

δijaā2tjā

∣∣∣∣∣∣
q

= max
a<ā∈A

∣∣∣∣∣m−1
a

∑
i∈Ca

F−1
a (i/ma |x)−m−1

ā

∑
i∈Cā

F−1
ā (i/mā |x)

∣∣∣∣∣
q

where the second inequality is due to Jensen’s inequality. □

B.8 Proof of Theorem 5

Theorem 5. Computing the Gelbrich bound is strongly NP-hard even when ϵ=∞ and |A|= 2.

Proof. We show a reduction from the integer programming feasibility problem, which is known to

be strongly NP-complete. Consider the following feasibility problem of a binary integer program:

Does there exist a feasible solution to the binary program X = {x∈ {−1,1}n−1 :Ax≥ b}?

We consider a special case of the Gelbrich bound (20) by letting ϵ=∞, |A|= 2, r(x, y) = (x⊤, y)⊤,

µa =µā = 0, La =

[
Imā 0
0 0

]
, Lā =

[
0 0
0 1

]
, and defining

X :=
{
(x, y)∈ [−1,1]n−1 ×{

√
n− 1} :Ax≥ b

}
.

Under this setting, the Gelbrich bound (20) simplifies to

vG =min
x

(√
x⊤x−

√
n− 1

)2

, (38a)

s.t. x∈ [−1,1]n−1,Ax≥ b. (38b)

We see that vG = 0 in the formulation (38) if and only if there exists a binary feasible solution to

the set X. Thus, the claim follows. □

B.9 Proof of Proposition 11

Proposition 11. The semidefinite relaxation (23) of the Gelbrich bound model satisfies vG ≥

vJ(2). On the other hand, for any relative tolerance β > 0 of the semidefinite constraints in (23b)

such that Zaā − saā · s⊤
aā ⪰ −βλ+

min(Zaā)I2n+2, where λ
+
min(·) denotes the smallest nonzero eigen-

value, we have vG ≤ vJ(2).
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Proof. We split the proof into two steps.

Step 1. We know that Zaā is positive semidefinite and
(
Zaā11 − 2Zaā1(n+2) +Zaā(n+2)(n+2)

)
≥ 0.

Therefore, by removing the second term in the left-hand side of (22b), we have

vG ≥ min
x∈X ,s,Z,ν

ν, (39a)

s.t.
∣∣µ⊤

a r(x)−µ⊤
ā r(x)

∣∣2 ≤ ν,∀a< ā∈A, (39b)

(7b), (22c)− (22e), (23b)

where the optimal value of the minimization problem is equal to vJ(2). Thus, we have vG ≥ vJ(2).

Step 2. Let (x∗, ν∗) denote the optimal solution of (18) for q = 2. We compute z∗
a = L⊤

a r(x
∗),

σ∗
a = ∥z∗

a∥2, s∗
aā =

[
σ∗
a z∗

a σ
∗
ā z∗

ā

]⊤
, and Z∗

aā = s∗
aā · s∗⊤

aā for all a < ā ∈ A. Suppose σ∗
a ≥ σ∗

ā and

γ = σ∗
a/σ

∗
ā ≥ 1. Let ŝaā =

[
σ̂a ẑa σ̂ā ẑā

]⊤
=
[
σ∗
a z∗

a γσ
∗
ā γz

∗
ā

]⊤
. For any given α≥ ᾱ (we will specify

ᾱ later), we construct Ẑaā as

Ẑaā =

 σ̂2
a 0 σ̂aσ̂ā 0
0 ẑ2

a 0 0
σ̂aσ̂ā 0 σ̂2

ā 0
0 0 0 ẑ2

ā

 .
It is evident that (x∗,s∗, αẐ, ν∗) satisfies constraints (7b), (22b)-(22c), (22e).

We next compute αẐaā − s∗
aā · s∗

aā
⊤. Without loss of generality, we can assume that z∗ia ̸= 0 for

all i ∈ [n] and a ∈ A. We first observe that by dropping the first row and column, the resulting

principal submatrix has rank 2n+1. Thus, the rank of Ẑaā is at least 2n+1. On the other hand, let

u= [1,0,−1,0]⊤. Then we have u⊤Ẑaāu= 0. Thus, the rank of Ẑaā is 2n+1. Let {vi}i∈[2n+1] denote

the nonzero eigenvectors of Ẑaā with the corresponding positive eigenvalues {λi}i∈[2n+1] ⊆ R++.

Then we can rewrite the matrix as

Ẑaā =V ΛV ⊤,

where V = [v1, . . . ,v2n+1] and Λ=diag(λ). On the other hand, since s∗ ∈ span({vi}i∈[2n+1] ∪{u}),

we have

s∗ = t0u+
∑

i∈[2n+1]

qivi.

Thus, we have

αẐaā − s∗
aā · s∗

aā
⊤ =V (αΛ− qq⊤)V ⊤ − t20uu

⊤,

where t0 = (s∗
aā)

⊤u/2. Since Λ ≻ 0, we can choose ᾱ =

max{q⊤q/mini∈[2n+1] λi,2t
2
0/(βmini∈[2n+1] λi)} such that for any α≥ ᾱ, we have

αẐaā − s∗
aā · s∗

aā
⊤ =V (αΛ− qq⊤)V ⊤ − t20uu

⊤ ⪰−t20uu⊤ ⪰−βλ+
min(αẐaā)I2n+2.

This completes the proof. □
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B.10 Proof of Theorem 6

Theorem 6. Suppose that for any pair a < ā ∈ A, the optimal comonotonic ran-

dom variables (f(x, ξ̃a) − µ⊤
a r(x) − s(x), f(x, ξ̃ā) − µ⊤

ā r(x) − s(x))
ma→∞,mā→∞−−−−−−−−−→

(
√

r(x)⊤Σar(x)ũ,
√

r(x)⊤Σār(x)ũ) for a univariate random variable ũ with zero mean and unit

variance. Then the Gelbrich bound is asymptotically tight.

Proof. Note that for any a < ā ∈ A, and an optimal comonotonic joint distribution Qa,ā of

f(x, ξ̃a) and f(x, ξ̃ā) with marginals Pa,Pā such that (f(x, ξ̃a)−µ⊤
a r(x)−s(x), f(x, ξ̃ā)−µ⊤

ā r(x)−

s(x))
ma→∞,mā→∞−−−−−−−−−→ (

√
r(x)⊤Σar(x)ũ,

√
r(x)⊤Σār(x)ũ), we have

EQa,ā [|f(x, ξ̃a)− f(x, ξ̃ā)|2] =EPa

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)2
]
+EPā

[(
f(x, ξ̃ā)−µ⊤

ā r(x)− s(x)
)2
]

− 2EPa

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)(

µ⊤
a r(x)−µ⊤

ā r(x)
)]

− 2EPā

[(
f(x, ξ̃ā)−µ⊤

ā r(x)− s(x)
)(

µ⊤
a r(x)−µ⊤

ā r(x)
)]

+
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2 − 2EQa,ā

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)(

f(x, ξ̃ā)−µ⊤
ā r(x)− s(x)

)]
ma→∞,mā→∞−−−−−−−−−→

(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+
(√

r(x)⊤Σar(x)−
√
r(x)⊤Σār(x)

)2

.

Thus, the claim follows. □

B.11 Proof of Theorem 7

Theorem 7. Suppose that for any group a ∈A, the individual samples {ξi}i∈Ca satisfy f(x,ξi)−

µ⊤
a r(x)−s(x)

d
=
√
r(x)⊤Σar(x)ui for each i∈Ca, where {ui}i∈Ca are i.i.d. samples of a univariate

sub-Gaussian random variable ũa with zero mean and unit variance, and {ũa}a∈A obey the same

distribution. Then with probability at most 1− η̂ such that η̂ > 0 is small, we have

v∗(2)− C̄1(η̂min
a∈A

√
ma)

−1 ≤ vG ≤ v∗(2)

for some positive constant C̄1.

Proof. Note that the inequality vG ≤ v∗ is due to the derivation of the Gelbrich bound. It remains

to establish the other direction. For notational convenience, we define P̂a as the true distribution

of random variable s(x) +µ⊤
a r(x) +

√
r(x)⊤Σar(x)ũa for each a ∈A, and let ūa be the discrete

random variable with a uniform distribution on the samples {ui}i∈Ca , where µ̄a and var(ūa) are the

corresponding sample mean and variance, respectively. We also let P′
a be the empirical distribution

of s(x) + µ⊤
a r(x) +

√
r(x)⊤Σar(x)ūa for each a ∈ A, and P̄ be the joint distribution of all the

random variables {ũa}a∈A. In this case, for any a< ā∈A, the Gelbrich bound reduces to(
µ⊤

a r(x)−µ⊤
ā r(x)+

√
r(x)⊤Σarµ̄a −

√
r(x)⊤Σār(x)µ̄ā

)2

+
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r(x)⊤Σar(x)var(ūa)−
√
r(x)⊤Σār(x)var(ūā)

)2

.

We split the proof into five steps.

Step 1. Following the proof in Theorem 6, for any a< ā∈A, we have

W 2
2

(
P̂a, P̂ā

)
=
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+
(√

r(x)⊤Σar(x)−
√

r(x)⊤Σār(x)
)2

.

According to the triangle inequality, for any a< ā∈A, we have

W2 (P′
a,P′

ā)≤W2

(
P′
a, P̂a

)
+W2

(
P̂a, P̂ā

)
+W2

(
P̂ā,P′

ā

)
.

Step 2. In view of Theorem 2 in Fournier and Guillin (2015), for each a ∈ A, there exist two

constants c1a > 0, c2a > 0 such that for any η̂a > 0, we have

P̄
{
W 2

2

(
P′
a, P̂a

)
> η̂a

}
≤ c1a exp(−c2amaη̂a).

By letting the right-hand side probability be no larger than δ̂ ∈ (0,0.1), we obtain η̂a :=

− log(c1a/δ̂)/(c2ama).

Step 3. We have(
µ⊤

a r(x)−µ⊤
ā r(x)

)2 ≤(µ⊤
a r(x)−µ⊤

ā r(x)+
√
r(x)⊤Σarµ̄a −

√
r(x)⊤Σār(x)µ̄ā

)2

+
∣∣µ⊤

a r(x)−µ⊤
ā r(x)

∣∣ ∣∣∣√r(x)⊤Σarµ̄a −
√

r(x)⊤Σār(x)µ̄ā

∣∣∣
≤
(
µ⊤

a r(x)−µ⊤
ā r(x)+

√
r(x)⊤Σarµ̄a −

√
r(x)⊤Σār(x)µ̄ā

)2

+4M 2 |µ̄a − µ̄ā| ,

where M := maxa∈Amaxx∈X

{
max{

√
r(x)⊤Σar(x), |µ⊤

a r(x)|} : (7b)
}
. According to the Cheby-

shev inequality, for each a∈A, the following probabilistic bound holds:

P̄

{
|µ̄a|>

1√
η̂ma

}
≤ η̂.

Thus, using the union bound, we obtain(
µ⊤

a r(x)−µ⊤
ā r(x)

)2 ≤(µ⊤
a r(x)−µ⊤

ā r(x)+
√

r(x)⊤Σarµ̄a −
√

r(x)⊤Σār(x)µ̄ā

)2

+4M 2

(√
1√
η̂ma

+

√
1√
η̂mā

)2

,

that is, ∣∣µ⊤
a r(x)−µ⊤

ā r(x)
∣∣≤ ∣∣∣µ⊤

a r(x)−µ⊤
ā r(x)+

√
r(x)⊤Σarµ̄a −

√
r(x)⊤Σār(x)µ̄ā

∣∣∣
+2M

(√
1√
η̂ma

+

√
1√
η̂mā

)
,
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with probability at least 1− 2η̂.

Step 4. In view of Theorem 4.7.1 in Vershynin (2018) and the Markov inequality, for each a∈A,

there exists a constant c3a > 0 such that

P̄
{
|var(ūa)− 1|> 2c3a

η̂
√
ma

}
≤ η̂.

Thus, according to the union bound, with probability at least 1− 2η̂, we have(√
r(x)⊤Σar(x)−

√
r(x)⊤Σār(x)

)2

≤
(√

r(x)⊤Σar(x)var(ūa)−
√

r(x)⊤Σār(x)var(ūā)
)2

+4M 2

(√
2c3a
η̂
√
ma

+

√
2c3ā
η̂
√
mā

)2

.

That is,∣∣∣√r(x)⊤Σar(x)−
√

r(x)⊤Σār(x)
∣∣∣≤ ∣∣∣√r(x)⊤Σar(x)var(ūa)−

√
r(x)⊤Σār(x)var(ūā)

∣∣∣
+2M

(√
2c3a
η̂
√
ma

+

√
2c3ā
η̂
√
mā

)
.

Step 5. Combining all the steps together and using the union bound again, we have with probability

at most 1− 6η̂,

W 2
2 (Pa,Pā)≤

(
µ⊤

a r(x)−µ⊤
ā r(x)+

√
r(x)⊤Σarµ̄a −

√
r(x)⊤Σār(x)µ̄ā

)2

+

+
(√

r(x)⊤Σar(x)var(ūa)−
√
r(x)⊤Σār(x)var(ūā)

)2

+ C̄1(η̂min
a∈A

√
ma)

−1,

where C̄1 is a positive constant depending on {c1a, c2a, c3a}a∈A and M . Letting x be an optimal

solution of DFSO and redefining η̂ := 6η̂, the conclusion follows. □

B.12 Proof of Theorem 8

Theorem 8. Suppose that for any pair a < ā ∈ A, the optimal comonotonic random variables

(f(x, ξ̃a) − µ⊤
a r(x) − s(x), f(x, ξ̃ā) − µ⊤

ā r(x) − s(x))
ma→∞,mā→∞−−−−−−−−−→ (ξ̂⊤

a r(x), ξ̂
⊤
ā r(x)), where the

random vectors ĉ−1
a ξ̂a, ĉ

−1
ā ξ̂ā obey the same distribution with zero mean and covariance matrix Σaā

for some positive parameters ĉa, ĉā. Then the Gelbrich bound is asymptotically tight.

Proof. Note that for any a < ā ∈ A, and an optimal comonotonic joint distribution Qa,ā of

f(x, ξ̃a) and f(x, ξ̃ā) with marginals Pa,Pā such that (f(x, ξ̃a)−µ⊤
a r(x)−s(x), f(x, ξ̃ā)−µ⊤

ā r(x)−

s(x))
ma→∞,mā→∞−−−−−−−−−→ (ξ̂⊤

a r(x), ξ̂
⊤
ā r(x)) and the random vectors ĉ−1

a ξ̂a, ĉ
−1
ā ξ̂ā obey the same distribu-

tion with zero mean and covariance matrix Σaā, we have

EQa,ā [|f(x, ξ̃a)− f(x, ξ̃ā)|2] =EPa

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)2
]
+EPā

[(
f(x, ξ̃ā)−µ⊤

ā r(x)− s(x)
)2
]
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− 2EPa

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)(

µ⊤
a r(x)−µ⊤

ā r(x)
)]

− 2EPā

[(
f(x, ξ̃ā)−µ⊤

ā r(x)− s(x)
)(

µ⊤
a r(x)−µ⊤

ā r(x)
)]

+
(
µ⊤

a r(x)−µ⊤
ā r(x)

)2 − 2EQa,ā

[(
f(x, ξ̃a)−µ⊤

a r(x)− s(x)
)(

f(x, ξ̃ā)−µ⊤
ā r(x)− s(x)

)]
ma→∞,mā→∞−−−−−−−−−→

(
µ⊤

a r(x)−µ⊤
ā r(x)

)2
+
(
ĉa
√

r(x)⊤Σaār(x)− ĉā
√
r(x)⊤Σaār(x)

)2

.

Thus, the claim follows. □
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Appendix C. Not MICP-R Functions and Their Piecewise Linear
Approximations

When the utility functions are exponential or logarithmic, their corresponding Fq sets are typically

not MICP-R. Hence we propose to approximate them using piecewise linear functions.

Proposition 12. If f(x,ξ) = exp(ξ⊤r(x)+ s(x)), where r(x) and s(x) are linear functions, then

set Fq, in general, is not MICP-R even when m= 2 and |A|= 2.

Proof. Let us consider a special case of DFSO with n= 2, X = [0,1]2, m= 2, |A|= 2, ma =mā = 1,

ϵ= 0.1 and f(x,ξ1) = exp(x1), f(x,ξ2) = exp(x2). Under this setting, we have

Fq =
{
(x, ν)∈ [0,1]2 ×R+ : | exp(x1)− exp(x2)|q ≤ ν

}
.

It suffices to show that the sublevel set of the function | exp(x1)− exp(x2)|q is not MICP-R. Specif-

ically, letting ν = 0.1 in Fq, we consider the set

F̂q =
{
(x, ν)∈ [0,1]2 ×R+ : | exp(x1)− exp(x2)|q ≤ 0.1

}
.

Then for any two distinct points x1,x2 satisfying x11 = log(exp(x21)+
q
√
0.1), x12 = log(exp(x22)+

q
√
0.1), and x21, x22 ∈ (0, log(e− q

√
0.1)), one can show that their midpoint (x1+x2)/2 /∈ F̂q. Indeed,

we have

exp

(
1

2

(
log(exp(x21)+

q
√
0.1)+ log(exp(x22)+

q
√
0.1)

))
− exp

(
1

2
(x21 +x22)

)
− q
√
0.1> 0

(⇔)

√
exp(x21)+

q
√
0.1

√
exp(x22)+

q
√
0.1−

√
exp(x21)

√
exp(x22)− q

√
0.1> 0

(⇔)
(
exp(x21)+

q
√
0.1
)(

exp(x22)+
q
√
0.1
)
−
(√

exp(x21)
√
exp(x22)+

q
√
0.1
)2

> 0

(⇔)
q
√
0.1exp(x21)+

q
√
0.1exp(x22)− 2

q
√
0.1
√
exp(x21) exp(x22)> 0

(⇔)
(√

exp(x21)−
√
exp(x22)

)2

> 0

where the last inequality holds due to x21 ̸= x22.

Since there is an infinite number of these points, according to Lemma 2, the set F̂q is not

MICP-R. Hence, the set Fq is not MICP-R. □

Therefore, when f(x,ξ) = exp(ξ⊤r(x)+ s(x)), we propose to use an iterative discretization

method to approximate it. Suppose that there are T candidate points {x̂τ}τ∈[T ] and their corre-

sponding gτ = ξ⊤r(x̂τ )+s(x̂τ ), then we approximate f(x,ξ)≈maxτ∈[T ] exp(gτ )+exp(gτ )(ξ
⊤r(x)+

s(x)− gτ ). Thus, we obtain the following approximate MICP set of Xi for each i∈ [m] as

Xi ≈ X̂i =

(x, w̄i)∈X ×R :

w̄i ≥ exp(gτ )+ exp(gτ )(ξ
⊤r(x)+ s(x)− gτ ),∀τ ∈ [T ],

w̄i ≤ exp(gτ )+ exp(gτ )(ξ
⊤r(x)+ s(x)− gτi)+Miτ (1− ziτ ),∀τ ∈ [T ],∑

τ∈[T ]

ziτ = 1, ziτ ∈ {0,1},∀τ ∈ [T ]

 ,
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where Miτ =maxx∈X{exp (ξ⊤
i r(x)+ s(x))− exp(gτ )− exp(gτ )(ξ

⊤r(x) + s(x)− gτi)} for each τ ∈

[T ].

A similar negative result holds when f(x,ξ) = log (ξ⊤r(x)+ s(x)).

Proposition 13. If f(x,ξ) = log (ξ⊤r(x)+ s(x)), where r(x) and s(x) are linear functions, and

ξ⊤r(x)+ s(x)> 0 for all x∈X , then set Fq is not MICP-R even when m= 2 and |A|= 2.

Proof. Let us consider a special case of DFSO with n= 2, X = [1,+∞)2,m= 2, A= |2|,ma =mā = 1

and f(x,ξ1) = log(x1), f(x,ξ2) = log(x2). Under this setting, we have

Fq =
{
(x, ν)∈ [1,+∞)2 ×R+ : | log(x1)− log(x2)|q ≤ ν

}
.

Consider any two distinct points (x1, ν1), (x2, ν2) ∈ [1,+∞)2 ×R+ such that x11 = x12 = 1, x21 =

exp( q
√
ν1) > exp(q − 1), x22 = exp( q

√
ν2) > exp(q − 1). Note that when ν ≥ (q − 1)q, the function

exp( q
√
ν) is convex in ν. It remains to show that their midpoint ((x1, ν1)+(x2, ν2))/2 /∈Fq. Indeed,

we have

1

2
(exp( q

√
ν1)+ exp( q

√
ν2))− exp

(
q

√(
1

2
(ν1 + ν2)

))
> 0

due to the convexity of the function exp( q
√
ν).

Since there are infinitely many of these points, according to Lemma 2, the set Fq is not MICP-R.

□

Therefore, when f(x,ξ) = log (ξ⊤r(x)+ s(x)), we also propose to use an iterative discretization

method to approximate it. Suppose that there are T candidate points {x̂τ}τ∈[T ] and their corre-

sponding gτ = x̂⊤
τ r(x̂τ ) + s(x̂τ ), then we approximate f(x,ξ) ≈ minτ∈[T ] log(gτ ) + g−1

τ (ξ⊤r(x) +

s(x)− gτ ). Thus, we obtain the following approximate MICP set of Xi for each i∈ [m] as

Xi ≈ X̂i =

(x, w̄i)∈X ×R :

w̄i ≤ log(gτ )+ g−1
τ (ξ⊤r(x)+ s(x)− gτ ),∀τ ∈ [T ],

w̄i ≥ log(gτ )+ g−1
τ (ξ⊤r(x)+ s(x)− gτi)−Miτ (1− ziτ ),∀τ ∈ [T ],∑

τ∈[T ]

ziτ = 1, ziτ ∈ {0,1},∀τ ∈ [T ]

 ,

where Miτ =maxx∈X{− log (ξ⊤
i r(x)+ s(x))+ log(gτ )+ g−1

τ (ξ⊤r(x)+ s(x)− gτi)} for each τ ∈ [T ].
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Appendix D. Additional Numerical Results

D.1 Results of Exact MICP Formulations With Jensen Inequality

Table 6 and Table 7 display the numerical results for the Vanilla Formulation, Discretized Formu-

lation, Complementary Formulation, Quantile Formulation, Aggregate Quantile Formulation by

adding Jensen bound as a valid inequality. We see that adding the Jensen bound improves the lower

bounds for most instances. However, it often yields worse upper bounds and does not help solve

the hard instances to optimality. Therefore, the main paper only reports the exact formulation

comparison results without having Jensen bound.

Table 6 Results of Exact MICP Formulations (With Jensen Inequality)

m
Vanilla Formulation Discretized Formulation Complementary Formulation

Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time
15 342.44 207.12 39.51 3600.00 342.43 342.43 0.00 57.36 345.38 207.12 40.03 3600.00
20 232.67 89.13 61.69 3600.00 236.27 192.01 18.73 3600.00 245.28 89.13 63.66 3600.00
25 139.71 46.03 67.05 3600.00 158.40 75.62 52.26 3600.00 248.53 46.03 81.48 3600.00
30 177.52 109.56 38.28 3600.00 218.84 109.56 49.94 3600.00 217.74 109.56 49.68 3600.00
35 140.54 92.95 33.86 3600.00 326.31 92.95 71.51 3600.00 963.45 92.95 90.35 3600.00
40 256.82 187.66 26.93 3600.00 583.48 187.66 67.84 3600.00 294.49 187.66 36.27 3600.00
45 223.49 138.17 38.18 3600.00 480.48 138.17 71.24 3600.00 693.37 138.17 80.07 3600.00
50 170.04 116.18 31.67 3600.00 933.76 116.18 87.56 3600.00 915.49 116.18 87.31 3600.00
55 209.61 141.53 32.48 3600.00 576.83 141.53 75.46 3600.00 636.08 141.53 77.75 3600.00
60 131.32 69.87 46.80 3600.00 546.72 69.87 87.22 3600.00 857.62 69.87 91.85 3600.00
65 153.22 83.21 45.70 3600.00 548.73 83.21 84.84 3600.00 1125.53 83.21 92.61 3600.00
70 136.70 83.84 38.67 3600.00 754.04 83.84 88.88 3600.00 962.53 83.84 91.29 3600.00
75 173.96 85.22 51.01 3600.00 703.20 85.22 87.88 3600.00 881.76 85.22 90.34 3600.00
80 159.68 112.03 29.84 3600.00 567.92 112.03 80.27 3600.00 746.74 112.03 85.00 3600.00
85 194.68 104.78 46.18 3600.00 599.51 104.78 82.52 3600.00 563.55 104.78 81.41 3600.00
90 176.64 126.73 28.26 3600.00 807.08 126.73 84.30 3600.00 1713.39 126.73 92.60 3600.00
95 231.74 132.55 42.80 3600.00 749.70 132.55 82.32 3600.00 1144.84 132.55 88.42 3600.00
100 147.47 91.76 37.78 3600.00 683.09 91.76 86.57 3600.00 1427.90 91.76 93.57 3600.00

Table 7 Results of Exact MICP Formulations (With Jensen Inequality)

m
Quantile Formulation Aggregate Quantile Formulation

Obj.Val LB Gap (%) Time Obj.Val LB Gap (%) Time
15 342.43 342.43 0.00 0.56 342.43 342.40 0.01 0.54
20 230.62 230.62 0.00 5.26 230.62 230.61 0.01 0.49
25 135.03 135.03 0.00 18.58 135.03 135.03 0.00 1.65
30 172.21 172.21 0.00 53.27 172.21 172.20 0.00 5.92
35 133.54 133.54 0.00 911.07 133.54 133.54 0.00 8.81
40 252.42 252.42 0.00 3068.64 252.42 252.42 0.00 15.39
45 219.63 192.58 12.32 3600.00 219.17 219.17 0.00 21.90
50 170.01 120.79 28.95 3600.00 169.99 169.99 0.00 41.36
55 — 143.47 29.93 3600.00 204.77 204.76 0.00 75.79
60 — 79.65 39.12 3600.00 130.84 130.84 0.00 199.56
65 — 83.25 41.59 3600.00 142.55 142.54 0.00 327.37
70 — 83.94 38.24 3600.00 136.33 134.50 1.34 3600.00
75 — 85.22 38.21 3600.00 — 135.69 1.61 3600.00
80 — 112.03 29.35 3600.00 — 155.35 2.03 3600.00
85 — 104.78 28.12 3600.00 — 144.59 0.81 3600.00
90 — 126.73 26.15 3600.00 — 169.96 0.95 3600.00
95 — 132.55 23.74 3600.00 — 171.93 1.09 3600.00
100 — 91.76 35.32 3600.00 — 139.46 1.68 3600.00

D.2 Fair Knapsack

This subsection extends DFSO to the classic knapsack problem. Given weights w ∈Zm
+ and values

ξ ∈Zm
+ of a set of m items, the objective of the knapsack problem is to select a subset of items to
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maximize the total value given that the total weight does not exceed the capacity C. That is, the

knapsack problem can be formulated as

V ∗ =max
x

∑
i∈[m]

ξixi :
∑
i∈[m]

wixi ≤C,xi ∈ {0,1},∀i∈ [m]

 , (40)

where the binary variable xi indicates whether item i ∈ [m] is selected or not. We define the

distributional fairness for the knapsack problem, where we choose the utility function of the fair

knapsack problem to be the value of item f(x, ξi) = ξixi if being selected for each i∈ [m].

In this experiment, we use A= {a, ā} and generate the hypothetical data in the following manner.

The weights wi are drawn from Unif{1,100}. The first ⌈m/2⌉ data points are assigned with the sen-

sitive attribute a, where their values {ξi}i∈[⌈m/2⌉] are drawn independently from {Unif{wi+10,wi+

30}}i∈[⌈m/2⌉]. The remaining data points are assigned with ā, where their values {ξi}i∈[⌈m/2⌉+1,m]

are drawn independently from {Unif{wi +20,wi +60}}
i∈[⌈m/2⌉+1,m]

. We generate a dataset of m=

1,000 items and choose the capacity C = 0.5
∑

i∈[m]wi. We set the inefficiency level parameter to

ϵ∈ {0.01,0.05,0.1}. We choose type q= 2 Wasserstein fairness and solve DFSO using its AM algo-

rithm in Section 3.5. For ease of illustration, we only display the histograms of each group’s utility

for selected items (x= 1). The probabilities of selection Pa(x= 1) and Pā(x= 1) are reported.

Figure 4 presents the histograms of utility for fair knapsack. The vanilla knapsack problem

(40) has a Wasserstein fairness score of 57.09, where it selects 47% and 85.8% of items from

groups a and ā, respectively. In Figures 4(b)-4(d), DFSO improves the Wasserstein fairness score

significantly between groups a and ā by slightly reducing the efficiency. The two groups have the

same probability of selected items when ϵ∈ {0.05,0.1}. This shows that the proposed approach can

achieve distributional fairness for the knapsack problem while maintaining high efficiency.

(a) Vanilla (b) DFSO with ϵ= 0.01 (c) DFSO with ϵ= 0.05 (d) DFSO with ϵ= 0.1

Figure 4 Histograms of Utility for Fair Knapsack
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