Store Fulfillment with Autonomous Mobile Robots and In-Store Customers

Joyjit Bhowmick ${ }^{a}$, Jennifer Pazour ${ }^{a}$, and Iman Dayarian ${ }^{b}$
${ }^{a}$ Industrial and Systems Engineering, Rensselaer Polytechnic Institute, USA
${ }^{b}$ Culverhouse College of Business, University of Alabama, USA

Abstract

Omnichannel services, such as buy-online-pickup-in-store, curbside pickup, and ship-from-store, have shifted the order-picking tasks previously completed by in-store customers doing their own shopping to the retailer's responsibility. To fulfill these orders, many retailers have deployed a store fulfillment strategy, where online orders are picked from brick-and-mortar retail store shelves. We focus on the design of operations inside a store where in-store customers collaborate with autonomous mobile robots (AMRs) to pick online orders. Due to the uncertainty in in-store customers' availability and their willingness to participate, the problem of synchronizing in-store customers with AMRs is highly stochastic. Thus, we model the stochastic order-picking problem with uncertain synchronization times of in-store customers and AMRs as a Markov Decision Process to determine how a retailer should dynamically assign tasks to a set of AMRs and dedicated pickers. We develop a heuristic solution framework that generates a set of initial assignments and routes for heterogenous picking resources and dynamically updates them as the actual synchronization times between AMRs and in-store customers unfold. We analyze multiple strategies to generate the initial set of task assignments and routes as well as update such decisions based on the system state. To provide guidance on whether the proposed approach is economically and operationally viable, we conduct extensive computational experiments using actual online grocery orders and empirical shopping behavior data. We illustrate the feasibility of such a policy to achieve similar picking performance as the status quo and through an economic analysis show that deploying dedicated pickers and AMRs aided by in-store customers in a store environment is economically viable.

Keywords: Dynamic Decision Making, Order Picking, Retail, Markov Decision Process, Autonomous Mobile Robots

1 Introduction

The retail industry, in general, and the grocery sector in particular, have seen the popularity of e-commerce rise both for curbside pickup and home delivery (Mayumi Brewster, 2022). During the COVID-19 stay-at-home orders, about 40% of Americans (or approximately
39.5 million households) in 2020 tried an online grocery service, resulting in a year-overyear increase of 193% (Brick Meets Clicks, 2020). Online grocery service demand is at higher than the pre-pandemic levels (Shen et al., 2022) and is expected to continue growing in the coming years (Aull et al., 2022). Yet, the industry is currently facing significant challenges. A store on average achieves a profit margin of $\$ 4.40$ on a typical $\$ 100$ basket of groceries when the in-store customer does their own shopping and these margins become negative when the store is responsible for picking the items (Aull et al., 2022). Thus, even without last mile delivery responsibilities, and even after charging a service fee of \$4-7, many stores incur negative margins for their curbside pickup services (Repko, 2020). Due to the current and projected labor shortages and rising labor costs, more companies are deploying automated resources (Begley et al., 2019). However, in terms of pick rates, reliability, product range, flexibility, and customization, robotic piece-level extraction still lags behind human performance(Pasparakis et al., 2023). Instead, a specific type of collaborative robots (cobots) that work side by side with humans known as autonomous mobile robots (AMRs) is commonly deployed for order fulfillment tasks in distribution centers. As shown in Figure 1(b), these AMRs autonomously move around a facility and wait at a pick location, where humans extract requested items from shelves and put them in the AMR's order totes.

In this work, we consider the potential to deploy AMRs in a retail store for store fulfillment. Store fulfillment, in which the same inventory on store shelves is used for both online and in-store customers, is commonly deployed by retailers (Eriksson et al., 2022) as it allows pooling demand from both online and in-store channels, being in closer proximity to customers, and utilizing a retailer's existing facilities and supply chain infrastructure. In the proposed store fulfillment policy, a set of AMRs would travel the shopping aisles, stopping and waiting in front of store shelves, each displaying on its monitor a request to pick specific item(s). If an in-store customer wants to help, they can pick the requested items from store shelves, scan them on the AMR's scanner, and drop them in the AMR's designated tote. Immediately, the AMR's monitor will show a QR code that a customer can scan to get compensated via store credit. To meet online order deadlines, stores would continue to employ dedicated pickers (as they currently are doing now) for order picking tasks in the retail store. These dedicated pickers would have their own order picking carts and do not need to interface with the AMRs nor the in-store customers.

While this is a new concept, we believe such a picking process is plausible because (1) human picking using AMR technology has been safely and widely adopted in distribution center environments, (2) as store fulfillment is a common strategy, in-store customers currently shop in the presence of dedicated pickers fulfilling online orders, (3) Dayarian and Pazour (2022) explored in-store customers helping pick online orders while shopping for their own personal items, and collected empirical data to support a high rate of in-store customers willing to help with picking tasks. In the problem setting studied here, in-store customers only extract and drop items in an AMR's designated container, resulting in a lower effort than the concept studied by Dayarian and Pazour (2022). (4) in-store customers would volunteer to participate and only those in-store customers who volunteer to participate will have to interact with AMRs; (5) the in-store customer interaction effort is low and given the AMR would be stationary when the in-store customer interacts with it, the interactions would be similar to using self-checkout stations; (6) it is becoming more common for in-store customers to interact with automated systems in a store environment. For instance, Lowebot, is a customer assistance and inventory checking robot at Lowe's stores; Marty, is a grocery store hazard detection robot in Stop \& Shop stores; and Tally, is an inventory checking robot at Meijer stores.

By utilizing in-store customers in conjunction with AMRs, this approach can reduce store fulfillment's marginal costs because in-store customers will have traveled to the store and the store's aisles to conduct their own shopping. Yet, as a new policy, open questions exist around whether the proposed approach is operationally and economically viable. The central operational challenge is that the store does not have prior knowledge on when an in-store customer will arrive to help an AMR, but still must meet online order service commitments. Thus, a store needs an operational policy to make concurrent assignment and routing decisions for the set of AMRS and the set of dedicated pickers that balances the need to meet demand-side service commitments in the face of the uncertainty of participating in-store customer arrivals to synchronize with AMRs. Economically, a central challenge is whether such a policy, which requires investments in AMRs, compensation to participating in-store customers, and may lead to hassle caused to in-store and online customers, is costeffective compared to the current policy which deploys dedicated pickers to conduct store fulfillment.

The contributions of this work can be summarized as follows: First, we introduce a new store fulfillment concept that deploys dedicated pickers and AMRs and utilizes a previously untapped set of resources, in-store customers, to help pick online orders in a store environment. Second, we formalize the decision-making process of dynamic resource-to-item assignments, as well as sequencing (routing) and abandonment decisions of picking resources in a time-constrained environment as a Markov Decision Process (MDP). Uncertainty arises due to the random nature of customer arrivals to different parts of the store, making the time an AMR must wait until a participating in-store customer arrives (referred to as the synchronization time) stochastic. Third, we develop a heuristic solution framework that allows for exploration of alternative policy designs in terms of initial sequencing decisions, abandonment strategies, and picking assignment reallocation, as well as dynamically updating such decisions as new information is revealed. Fourth, we provide insights into the economic viability and operational design of the proposed store fulfillment concept through a set of computational experiments based on actual online orders and empirical consumer shopping behavior data.

2 Literature Review

Order picking with the help of AMRs in distribution centers is an emerging research area (Fragapane et al., 2021; Azadeh et al., 2019; Boysen et al., 2019; Jacob et al., 2023; Lorson et al., 2023; Löffler et al., 2023; Schäfer et al., 2023). A recent focus of research has been on how to design operational policies having AMRs coupled with either humans (Azadeh et al., 2023; Ghelichi and Kilaru, 2021; Meller et al., 2018; Löffler et al., 2021, 2023; Zou et al., 2019; Yokota, 2019; Pasparakis et al., 2023; Winkelhaus et al., 2022; Srinivas and Yu, 2022; Fager et al., 2021; Žulj et al., 2022; Zhang et al., 2021; Zhu et al., 2022) or with other robotic resources (Lee and Murray, 2019; Wang et al., 2020) to perform order picking tasks. These papers deploy a wide range of methodologies, primarily deterministic integer programming models to decide on routing, order batching, zoning, and sequencing in a warehouse setting. Additionally, existing work has explored tractable heuristic solution approaches, queuing-based models to capture resource congestion impacts on performance metrics, simulation models to assess validity of such policies, MDPs to choose between strategies, and physical lab experiments to understand collaborative behaviors. The most
closely related paper is a recent one by Löffler et al. (2023) who studies how to route AMRs and human pickers in a distribution center order fulfillment process. Similar to our work, they also consider the need for AMRs and human pickers to synchronize, yet, as both AMRs and human resources are controllable, in contrast to this work, they develop a static, deterministic integer programming model to make coordinated routing decisions, and present heuristic methods to solve the problem. To the best of our knowledge, all of the above referenced papers use AMRs for distribution center order fulfillment, where all picking resources are controlled by the warehouse and thus, none captures stochastic picking tasks. While dynamic decision making in a stochastic warehouse environment has been an area of interest (Boysen et al., 2019; Azadeh et al., 2023), the sources of uncertainty arise primarily from incoming orders, not from the picking process and thus these works do not update decisions due to uncertain synchronization times.

Another emerging and related area is research on store fulfillment operations (Hübner et al., 2022; Zhong et al., 2023; Bayram and Cesaret, 2021). However, operational decisions inside the store have been largely ignored by past research; exceptions include (MacCarthy et al., 2019; Masel and Mesa, 2018; Zhang et al., 2019; Zhang and Pazour, 2019; Mou, 2022a; Difrancesco et al., 2021), but none use in-store customers or AMRs. Only limited research has explored the intralogistic tasks of order picking in stores (Seghezzi et al., 2022; Pietri et al., 2021; Neves-Moreira and Amorim, 2023; Mou, 2022b), and all are manual operations without the use of automation. No previous work explores the use of AMRs in orderpicking processes in a store environment. Related is work that investigates deploying robots for intralogistics tasks in a store environment for inventory replenishment (Caporaso et al., 2022). Additionally, crowdsourced order picking has been explored where in-store customers pick items while doing their own shopping (Dayarian and Pazour, 2022). However, this paper focuses on the assignment of orders (not routing of a set of resources), nor does it consider the use of AMRs. Therefore, this is the first paper to consider the use of AMRs for store fulfillment in a retail setting and is also the first to study AMRs within a crowdsourced setting. The contribution of this work is thus in modeling and developing a solution approach for resource dispatching, routing, and abandonment, capturing the salient features of this unique order fulfillment environment and using these models to determine the operational and economic viability of the proposed approach.

3 Problem Statement

We consider a store that receives online orders spontaneously over time. Each online order consists of a set of items found on the store's shelves and is expected to be available for last-mile delivery or curbside pickup at a designated dropoff station, denoted as v_{p}, within a given service guarantee (e.g., in 2 hours, next day). To fulfill these online order requests, the store uses a collaborative process where in-store customers extract items from store shelves and place them in waiting AMRs to transport the picked items back to the dropoff station. To ensure high service levels, the store also deploys a set of dedicated pickers to help pick and transport items from store shelves. The store has control over the dedicated pickers and the AMRs, and can instruct them to complete specific tasks in a specific sequence. This is in contrast to the in-store customers, who help with the picking process but the store does not have control over their actions. Thus, a store has a set K of fulfillment resources available and under their control, $K=C \cup D$, where C is the set of AMRs and D is the set of dedicated pickers.

As is common in warehousing order fulfillment operations (Shah and Khanzode, 2017), the store deploys a wave system, which splits the workday into discrete, equally spaced time periods, known as waves each of length T. The store fulfillment process is segregated into three separate work processes, each with its own dedicated resources that run in parallel. These processes include (1) receiving and dispatching online orders (including performing a check of requested items versus point-of-sale inventory levels and determining suitable substitute products in case of out-of-stock items), (2) traveling to, picking, and transporting requested items from store shelves to a dropoff station, and (3) sorting, packing, quality control, and interfacing with customers for order pickup. The focus of this paper is on optimizing the second process step. The store collects online order requests that have arrived over the previous wave(s) and are made available to be assigned to the set of controllable picking resources in a future wave based on meeting service deadlines. This means at the beginning of a wave the store has a known set of items, all with the same urgency that needs to be retrieved from store shelves and returned to the dropoff station by the end of the wave (i.e., within the wavelength T).

The store fulfillment problem using AMRs and dedicated pickers can be defined on a graph $\mathcal{G}=\{V, \mathcal{E}\}$, where $V=V^{s} \cup v_{p} \cup v_{g}$ are the sets of nodes and \mathcal{E} are the set of edges
of the graph. The store has a set of designated stopping points V^{s} where the AMRs will travel to and from and wait (see Figure 1(a)). Each stopping point covers a specific shelf area around them, and thus, collectively across all stopping points in the store, all items in the store are covered by the set of stopping points, V^{s}. All picking resources, $k \in K$, will start their picking route from the idle station v_{g}, and end their wave's route at the dropoff station, v_{p}. The travel times along the edges of the graph depend on the picking resource type, with $t_{i j}^{D}$ and $t_{i j}^{C}$ being the travel time of a dedicated picker and a AMR along edge $(i, j) \in \mathcal{E}$, respectively. During a given wave, all stopping points may not need to be visited; thus, the set of stopping points required to be visited during the current wave is denoted as $V^{r} \subseteq V^{s}$. Hence, $\hat{V}=V^{r} \cup v_{p} \cup v_{g}$ is the subset of nodes of graph \mathcal{G} that are present in the targeted wave. The number of items required to be picked from stopping point $v \in V^{r}$ is denoted by n_{v}, and collectively across all V^{r} the number of items required to be picked in a given wave is denoted by $N=\sum_{v \in V^{r}} n_{v}$.

When an AMR $k \in C$ reaches a stopping point $v \in V^{r}$, the AMR will stop and wait for a participating in-store customer's arrival, which we refer to as waiting time. If a participating in-store customer arrives at the covered area of a $v \in V^{r}$ where an AMR is waiting, a synchronization of an AMR and in-store customer with the completion of n_{v} picks occurs. Thus, the wait time of AMR $k \in C$ at a stopping point $v \in V^{r}$ before being synchronized with an in-store customer is a random value denoted by $\bar{\omega}_{k v}$. Simultaneously, the fleet of dedicated pickers is deployed by the store to pick a subset of items in V^{r} and then transport them to v_{p}, and they do not require synchronization (i.e., $\bar{\omega}_{k v}=0$ for $k \in D$). The random service time at a given stopping point $v \in V^{r}$ that captures the picking time per item is denoted by \bar{s}_{v}.

The purpose of the stochastic order-picking problem with uncertain synchronization times of in-store customers and $A M R$ s is to identify a set of routes starting at v_{g} and ending at v_{p} for the set of dedicated pickers and the set of AMRs such that the total number of items picked is maximized and the picking resources are back to v_{p} within the wavelength T. To achieve this objective, the store adopts a centralized decision-making mechanism to determine how best to utilize its controllable picking resources during a given wave.

Figure 1: From left to right (a) example store layout with stopping points (b) Commercially available AMR collaborative robot (source: Locus Robotics)

4 Modeling as Markov Decision Process

We model our problem setting as a MDP with the objective to maximize the total expected number of picked items returned back to v_{p} within T, given the set of resources $k \in K$ and uncertain arrival times of in-store customers. We aim to determine, over the horizon of a wave, a picking policy, which consists of a set of sequential decisions about which AMRs and which dedicated pickers should be deployed to pick which items, and in what order, when AMRs should abandon their current stopping point, and when resources should return to v_{p}.

4.1 Decision Epochs

The system makes a decision based on the updated information at every decision epoch, which occurs anytime one of the 6 triggering events $\left(\tau^{u}\right)$ in the form of (1) τ^{I} the initial trigger, which occurs at the beginning of the wave; (2) τ_{k}^{c} when an in-store customer has dropped n_{v} items into a $k \in C$'s tote at any $v \in V^{r} ;(3) \tau_{k}^{d}$ when a dedicated picker $k \in D$ completes picking n_{v} items at any $v \in V^{r}$; (4) τ_{k}^{a} whenever an AMR $k \in C$ needs to consider abandoning at any $v \in V^{r} ;(5) \tau_{k}^{r}$ whenever any $k \in K$ needs to travel to v_{p} to meet the wave deadline; (6) τ^{f} when all $k \in K$ reaches v_{p}. Given a finite number of these events can occur over the wavelength, we have a finite set of discrete decision epochs, which are revealed dynamically during a wave. Let $E=\left\{e_{1}, e_{2}, \ldots, e_{|E|}=\tau^{f}\right\}$ be the set of decision epochs.

4.2 Rewards

Whenever the system reaches a state $s_{e} \in S$ at epoch $e \in E$, an action is chosen and an immediate reward is accrued. This reward, denoted as $\beta\left(s_{e}, \alpha\right)$, is a function of two elements: the state of the system at epoch e and the type of action taken.

4.3 States

The state of the system $s_{e} \in S$ at decision epoch $e \in E$ can be described by a tuple, i.e., s_{e} $=\left\langle t_{e},\left(l_{k e}\right)_{k \in K},\left(z_{v e}\right)_{v \in V^{r}}\right\rangle$. Element t_{e} is the time at which the decision epoch $e \in E$ was triggered, $l_{k e}$ is the locations of picking resources $k \in K$ in the store at epoch $e \in E$, and $z_{v e}$ is the status of stopping point $v \in V^{r}$ at t_{e}, holding one of three values: $z_{v e}=0$ if the assigned n_{v} items have all been picked at $v \in V^{r}$ by time $t_{e} ; z_{v e}=1$ if a picking resource has not been assigned to pick at $v \in V^{r}$ by time t_{e}; or $z_{v e}=2$ if a picking resource has been assigned to pick at $v \in V^{r}$ but not yet finished picking by time t_{e}.

4.4 Actions

When a new decision epoch, $e \in E$, is triggered, an action α is taken that causes the system to transition from the current state s_{e} to the next state s_{e+1}. There are four types of actions: $\alpha=\alpha_{1}$ to send the triggered picking resource $k \in K$ to a $v \in V^{r}$ that has its $z_{v e}=1$ at any $\tau_{k}^{c}, \tau_{k}^{d}$, or $\tau_{k}^{a} ; \alpha=\alpha_{2}$ to send the triggered picking resource $k \in K$ to v_{p} at any $\tau_{k}^{r} ; \alpha=\alpha_{3}$ to send all picking resources to their first assignments at epoch e_{1} (i.e., τ^{I}); and $\alpha=\alpha_{4}$ keep the triggered picking resource $k \in K$ waiting at current $v \in V^{r}$ at any τ_{k}^{a}. We assume that no two stopping points $v \in V^{r}$ would change their status from $z_{v e}=1$ to $z_{v e}=0$ at the same time. Additionally, we assume the set of actions occur assuming all picking resource(s) have reached their previously made decisions (we do not allow resources en route to be diverted by an action). Also, actions that assign more than one picking resource to a stopping point at the same time are prohibited.

4.5 Transition Probabilities

Depending on the state and action, the system transitions from state s_{e} at epoch e to another state, s_{e+1} at epoch $e+1$. We break down this transition into two separate steps: (1) a
post-decision state, and (2) a pre-decision state. First, from s_{e}, the system transitions to a post-decision state s_{e}^{α} reflecting (but not yet reached) three aspects: the new assignment(s) (i.e., new locations of the picking resources), time when the triggered picking resource will reach its new location, and the status of $v \in V^{r}$. From the post-decision state s_{e}^{α}, the system transitions to a pre-decision state s_{e+1} at epoch $e+1$ in a probabilistic manner, i.e., the probability that one of the triggering events $\left(\tau_{k}^{c}, \tau_{k}^{d}, \tau_{k}^{r}, \tau_{k}^{a}\right)$ occur before the others. Such transition probabilities have been categorized and defined in Appendix A.

4.6 Objective Function and Optimal Policy

The objective of our problem is to maximize the number of items picked and transferred to v_{p} within T. As there are a finite set of states S as well as a finite set of actions at each decision epoch e, an optimal deterministic Markovian policy is existent (Puterman, 2014). A policy π here can be defined as a sequence of actions for each decision epoch in the wave. An optimal policy $\pi^{*} \in \Pi$ would therefore take the form of Equation (1) that refers to achieving the maximum expected sum of rewards given the initial state of $s_{e_{1}}$ where α_{e}^{π} denotes actions following policy π at epoch e.

$$
\begin{equation*}
\pi^{*}=\arg \max _{\pi \in \Pi} \mathbb{E}\left[\sum_{e=e_{1}}^{|E|} \beta\left(s_{e}, \alpha_{e}^{\pi}\right) \mid s_{e_{1}}\right] \tag{1}
\end{equation*}
$$

5 Solution Approach

MDPs are notorious for being computationally expensive for most practical problems (Ulmer et al., 2020). Thus, we develop a heuristic solution approach framework that decomposes the problem into tractable decision stages. This approach also enables us to explore the impact on picking performance of alternative methods for the different stages (see Section 6 for computational results across the resulting 12 different solution variants).

Our solution approach is designed so all AMRs and dedicated pickers have an initial set and sequence of stopping points and return times, and AMRs have an expected amount of time to wait before abandoning their currently assigned stopping point. Due to the high levels of uncertainty associated with AMR and in-store customer synchronization times, a key feature of the heuristic is to update these decisions as new information becomes available. Thus, in subsections that follow, we first describe the approach to initialize the set, sequence,
wave-time, and abandon triggers of stopping points for each of the resources, and then how decisions are updated during the wave in the face of the materialized synchronization times.

5.1 Initialization

Figure 2: Initialization block for the heuristic approach

As shown in Figure 2, the initialization block uses a decomposition approach where we first decide on the assignment of stopping points to the set of resources. We then determine each resource's initial sequence of the assigned stopping points. Based on these sequences, we determine the wave-time triggers for all resources, and the abandon triggers for all AMRs. Lastly, we deploy the resources to their first assignments.

5.1.1 Determine Initial Picking Assignments

We take a holistic view of the wave's picking tasks and different resource types to determine the initial assignment of picking points to resources that (i) balances the expected workload across picking resources, and (ii) captures that AMRs require different expected synchronization time for different stopping points, while dedicated pickers require no synchronization time. To do so, at $\tau^{I}\left(t_{e}=0\right)$, we find the (initial) cluster of stopping points $v \in V^{r}$ that each resource $k \in K$ should visit by solving the Linear Integer Program in (4)(10) that minimizes the maximum time expected to travel, wait, and pick all items across the stopping points $v \in V^{r}$ and return back to the dropoff station. As minimizing the exact traveling times within a cluster is computationally expensive, this formulation is motivated by the MIP-Diameter problem (Sağlam et al., 2006), which minimizes the maximum traveling distance within a cluster.

Inputs include for each picking resource $k \in K$, their expected waiting time $\omega_{k v}$ (an approximation of $\bar{\omega}_{k v}$ with a known distribution), their expected picking time at stopping point $v \in V^{r}$ denoted by $s_{v} n_{v}\left(s_{v}\right.$ is an approximation of $\left.\bar{s}_{v}\right)$, and a surrogate travel time, denoted by $t_{k v}^{h}$, which is calculated as the average travel time spent by picking resource
$k \in K$ from a $v \in V^{r}$ to all required stopping points and stations $\hat{V} \backslash\{v\}$ using equation (2) and (3).

$$
\begin{equation*}
t_{k v}^{h}=\frac{\sum_{j \in \hat{V} \backslash\{v\}} t_{v j}^{C}}{|\hat{V}|-1} \quad \forall v \in V^{r}, k \in C \quad(2) \quad t_{k v}^{h}=\frac{\sum_{j \in \hat{V} \backslash\{v\}} t_{v j}^{D}}{|\hat{V}|-1} \quad \forall v \in V^{r}, k \in D \tag{3}
\end{equation*}
$$

We define decision variables $x_{k v}$ having value 1 if picking resource $k \in K$ will initially be assigned to visit $v \in V^{r}$ and 0 otherwise. Decision variables t_{k}^{M} express the expected amount of time by picking resource $k \in K$ for their combined waiting, picking, and surrogate traveling, and decision variable Z^{Δ} expresses the expected amount of time the last resource will return back to the dropoff station after completing their picking assignments.

$$
\begin{array}{lll}
\min & Z^{\Delta} & \\
\text { s.t. } & Z^{\Delta} \geq t_{k}^{M} ; & \forall k \in K \\
& t_{k}^{M}=\sum_{v \in V^{r}} x_{k v} \omega_{k v}+\sum_{v \in V^{r}} x_{k v} s_{v} n_{v}+\sum_{v \in V^{r}} t_{k v}^{h} x_{k v} ; & \forall k \in K ; \\
& \sum_{k \in K} x_{k v}=1 ; & \forall v \in V^{r} ; \\
& x_{k v} \in\{0,1\} ; & \forall v \in V^{r}, k \in K ; \\
& t_{k}^{M} \geq 0 ; & \forall k \in K ; \\
& Z^{\Delta} \geq 0 & \tag{10}
\end{array}
$$

The objective function in (4) minimizes the maximum expected pick completion time across all resources by enforcing in (5) that Z^{Δ} be greater than or equal to $t_{k}^{M} \forall k \in K$. The expected completion time of each resource is a function of which $v \in V^{r}$ are assigned to which resource, as enforced in (6). Constraints (7) ensure that each stopping point is assigned to one and only one picking resource. Lastly, constraints set (8) ensure that all $x_{k v}$ hold only binary values, constraints set (9) and (10) ensures non-negative values. After solving (4) - (10), we define the initial non-sequenced assignments of stopping points for each picking resource $k \in K$, denoted by V_{k}^{Λ}, using (11).

$$
\begin{equation*}
V_{k}^{\Lambda}=\left\{v \in V^{r} \mid x_{k v}=1\right\} \quad \forall k \in K \tag{11}
\end{equation*}
$$

5.1.2 Determine Initial Sequences

We consider two alternatives to determine the initial sequence of the assignments in $V_{k}^{\Lambda} \quad \forall k \in$ K. The first one prioritizes minimizing travel time $\forall k \in K$ and the second alternative prioritizes visiting lower synchronization time points earlier $\forall k \in C$.

Alternative 1: TSP-Based: The first alternative minimizes the travel time for each $k \in K$ by solving a separate Traveling Salesman Problem (TSP) that sequences V_{k}^{Λ} in terms of the minimum travel time of their route that starts at v_{g} and ends at v_{p}.

Alternative 2: Ranking-Based: The ranking-based alternative sequences stopping points for AMRs in a descending manner of $b_{v} n_{v}$ (or equivalently ascending order of expected wait times per pick) for each $v \in V_{k}^{\Lambda} \forall k \in C$. Because all dedicated pickers have zero wait time, their sequences are determined using a TSP-based approach (similar to alternative 1).

For both alternatives, the output is a sequenced set of stopping points denoted by $R_{k}\left(t_{e}\right)$ $=\left\{R_{k 1}\left(t_{e}\right), R_{k 2}\left(t_{e}\right), \ldots\right\} \forall k \in K$, where $R_{k i}\left(t_{e}\right)$ is the $i^{\text {th }}$ stopping point in the sequence updated at t_{e}. We also define $\theta_{k}\left(t_{e}\right)$ as the current assignment for resource k updated at t_{e} in (12).

$$
\begin{equation*}
\theta_{k}\left(t_{e}\right)=R_{k 1}\left(t_{e}\right) \quad \forall k \in K \tag{12}
\end{equation*}
$$

5.1.3 Determine Initial Wave-Time Triggers

We set the wave time triggers for each picking resource $k \in K$ so that all picking resources return to the dropoff station, v_{p}, by T but no earlier (unless all items have been picked). To do this, we denote the wave-time trigger for picking resource $k \in K$ updated at time t_{e} as $\tau_{k}^{r}\left(t_{e}\right)$. This is set using equation (13) and (14), where $t_{\theta p}^{C}$ and $t_{\theta p}^{D}$ are the travel time required from the current assignment $\theta_{k}\left(t_{e}\right)$ to v_{p} for an AMR $\left(t_{\theta p}^{C}\right)$, and a dedicated picker $\left(t_{\theta p}^{D}\right)$, respectively.

$$
\begin{equation*}
\tau_{k}^{r}\left(t_{e}\right)=T-\left(t_{\theta p}^{C}\right) \quad \forall k \in C \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{k}^{r}\left(t_{e}\right)=T-\left(t_{\theta p}^{D}\right) \quad \forall k \in D \tag{14}
\end{equation*}
$$

The corresponding picking resource is sent to the dropoff station to ensure it arrives there by the wavelength. Thus, when the time $\tau_{k}^{r}\left(t_{e}\right)$ is reached at epoch $e+1, \theta_{k}\left(t_{e+1}\right)$ is set to v_{p}.

5.1.4 Determine Abandon Policy Triggers

Due to stochasticity in synchronization times, an AMR might end up waiting for a long period of time, which reduces the available time to retrieve the remaining items in the AMR's sequence. To mitigate this risk, we create an abandonment policy, where a AMR may abandon their current point because leaving and going to the next stopping point provides a higher expected value of items picked and returned to the v_{p} by T. To quantify the value of such an abandon policy, we explore two solution approach variants: one with and one without an abandon policy.

Alternative 1: Using Abandon Policy

To decide on the maximum waiting time a given AMR $k \in C$ should continue waiting at their current stopping point $\theta_{k}\left(t_{e}\right)$, we develop a constrained optimization model that is solved independently for each $k \in C$. The decision variables are the allowable waiting times at stopping point $v \in R_{k}\left(t_{e}\right)$ denoted as t_{v}^{ϵ}. Input parameters are n_{v}, T, and t_{e}.

$$
\begin{array}{ll}
\max & \sum_{v \in R_{k}\left(t_{e}\right)} F_{v} n_{v} \\
\text { s.t. } & \sum_{v \in R_{k}\left(t_{e}\right)} t_{v}^{\epsilon} \leq T-t_{e} ; \\
& t_{v}^{\epsilon} \geq 0 ; \quad \forall v \in R_{k}\left(t_{e}\right) . \tag{17}
\end{array}
$$

The objective function in (15) maximizes the expected number of items picked and returned given the remaining time in the wave. Here, F_{v} denotes a function to calculate the probability of at least one participating customer showing up within t_{v}^{ϵ} amount of time. In (16), the total waiting allowed for all stopping points remaining in the resource's sequence is the time remaining in the wave. Lastly, constraints (17) enforce a non-negative waiting time at each $v \in R_{k}\left(t_{e}\right)$. Thus, at τ^{I}, we solve (15)-(17) for all $k \in C$ and set the abandon trigger following equation (18).

$$
\begin{equation*}
\tau_{k}^{a}\left(t_{e}\right)=t_{e}+t_{\theta_{k}\left(t_{e}\right)}^{\epsilon} \quad \forall k \in C \tag{18}
\end{equation*}
$$

Alternative 2: No Abandon Policy: When the framework does not use an abandon policy, we simply set the initial abandon triggers to the wavelength (i.e., $\tau_{k}^{a}\left(t_{e}\right)=T \quad \forall k \in$ C), and do not update them during the wave.

5.1.5 Deploy Resources

The last step in initialization is to send all resources $k \in K$ to their first assigned point, $\theta_{k}\left(\tau^{I}\right)$. This is action α_{3} which occurs at epoch e_{1}. Then the solution approach waits for a new triggering event.

5.2 Updating Decisions

Figure 3: Updating decisions block for the heuristic approach

Whenever any triggering event occurs, we update decisions depending on which triggering event was observed (see Figure 3). We denote the triggered resource at time t_{e} as $k^{\psi}\left(t_{e}\right)$.

5.2.1 Triggered by a Pick Completion (τ_{k}^{c} or τ_{k}^{d})

After a pick completion trigger, the approach considers whether or not to move not-yet visited picking locations among the set of resources. If the system reaches a pick completion trigger (i.e., $\tau^{u}=\tau_{k}^{c}$ or τ_{k}^{d} for any $k \in K$) at epoch $e \in E$, we first remove the picked stopping point from the sequence of k^{ψ} and leave the other resources' sequences as is. This results in the pre-decision sequences $R_{k}^{q}\left(t_{e}\right)$ given in equation (19).

$$
R_{k}^{q}\left(t_{e}\right)= \begin{cases}R_{k}\left(t_{e-1}\right) \backslash\left\{\theta_{k}\left(t_{e-1}\right)\right\} & \text { if } k=k^{\psi} \tag{19}\\ R_{k}\left(t_{e-1}\right) & \text { if } k \neq k^{\psi}\end{cases}
$$

Next, we follow the below-mentioned steps to transition from pre-decision sequences, $R_{k}^{q}\left(t_{e}\right)$ to post-decision sequence, $R_{k}\left(t_{e}\right)$.

Step 1: Using equation (20) and (21), we calculate the expected pick completion time, t_{k}^{σ}, for each $k \in K$, which is the sum of the travel time, the expected waiting time, and the expected picking time at each $v \in R_{k}^{q}\left(t_{e}\right)$, added to the epoch's trigger time t_{e}. Let, $R_{k N}^{q}\left(t_{e}\right)$ denote the last stopping point to visit in the sequence of $k \in K$. Also, we calculate t_{k}^{Q}, the slack time for each $k \in K$, using equation (22).

$$
\begin{gather*}
t_{k}^{\sigma}=\sum_{i=R_{k 1}^{q}\left(t_{e}\right)}^{R_{k, N-1}^{q}\left(t_{e}\right)} \sum_{j=R_{k 2}^{q}\left(t_{e}\right)}^{R_{k N}^{q}\left(t_{e}\right)} t_{i j}^{C}+\sum_{v \in R_{k}^{q}\left(t_{e}\right)} \omega_{k v}+\sum_{v \in R_{k}^{q}\left(t_{e}\right)} s_{v} n_{v}+t_{e} \forall k \in C \tag{20}\\
t_{k}^{\sigma}=\sum_{i=R_{k 1}^{q}\left(t_{e}\right)}^{R_{k, N-1}^{q}\left(t_{e}\right)} \sum_{j=R_{k 2}^{q}\left(t_{e}\right)}^{R_{k N}^{q}\left(t_{e}\right)} t_{i j}^{D}+\sum_{v \in R_{k}^{q}\left(t_{e}\right)} \omega_{k v}+\sum_{v \in R_{k}^{q}\left(t_{e}\right)} s_{v} n_{v}+t_{e} \forall k \in D \tag{21}\\
t_{k}^{Q}=\max _{k \in K}\left(t_{k}^{\sigma}\right)-t_{k}^{\sigma} \quad \forall k \in K \tag{22}
\end{gather*}
$$

Step 2: Identify two disjoint sets of resources: (i) resources to consider adding stopping points (denoted as the set K^{H}) and (ii) resources to consider removing stopping points (denoted as the set K^{m}). Any resource not in K^{m} are resources with the potential for add stopping point(s), which we define as $K^{H}=K \backslash K^{m}$. The associated stopping points in the sequences of K^{m} is denoted by V^{m} and defined by $V^{m}=\underset{k \in K^{m}}{ } R_{k}^{q}\left(t_{e}\right)$ and the stopping points of K^{H} is denoted by V^{H} and defined by $V^{H}=\bigcup_{k \in K^{H}} R_{k}^{q}\left(t_{e}\right)$

$$
K^{m}= \begin{cases}\underset{k \in K}{\arg \max }\left(t_{k}^{\sigma}\right) & \text { if }\left|\left\{k \in K: t_{k}^{\sigma}>T\right\}\right|=0 \tag{23}\\ \left\{k \in K \mid t_{k}^{\sigma}>T\right\} & \text { if }\left|\left\{k \in K: t_{k}^{\sigma}>T\right\}\right| \geq 1\end{cases}
$$

Step 3: Define set G which represents the set of detour positions within each sequence of a resource $k \in K^{H}$. For instance, for any $k \in K^{H}$, the first detour position will be in between $R_{k 1}^{q}\left(t_{e}\right)$ and $R_{k 2}^{q}\left(t_{e}\right)$.

Step 4: Solve the multi-objective Mixed-Integer Linear Programming (MILP) model in (24) to (34) to determine the decision variable values: (i) $x_{i j}$ which is 1 if stopping point $i \in V^{m}$ is inserted into position $j \in G$ and 0 otherwise; (ii) t_{k}^{ϕ} which denotes the updated expected pick completion time for picking resource $k \in K$; and (iii) Z^{Γ} which denotes the maximum value among all t_{k}^{ϕ}. Input parameters are $B_{j k}$, which is 1 if stopping point $j \in G$ is in the sequence of $k \in K^{H}$ and 0 otherwise, $t_{i j}^{+}$which expresses the amount of additional
expected time to account for adding stopping point $i \in V^{m}$ in the position $j \in G$, (i.e., the expected detour time) which includes additional traveling, waiting and picking time after insertion, and $t_{i k}^{-}$which denotes the amount of expected pick completion time to be deducted from the sequence of picking resource $k \in K^{m}$ if stopping point $i \in V^{m}$ is moved to another resource's sequence.

$$
\begin{align*}
& \min \quad Z^{\Gamma} \tag{24}\\
& \min \quad \sum_{k \in K} t_{k}^{\phi} \tag{25}\\
& \text { s.t. } \quad \sum_{i \in V^{m}} \sum_{j \in G} x_{i j} t_{i j}^{+} B_{j k} \leq t_{k}^{Q} ; \quad \forall k \in K^{H} ; \tag{26}\\
& \sum_{i \in V^{m}} x_{i j} \leq 1 ; \quad \forall j \in G ; \tag{27}\\
& \sum_{j \in G} x_{i j} \leq 1 ; \quad \forall i \in V^{m} ; \tag{28}\\
& \sum_{i \in V^{m}} \sum_{j \in G} x_{i j} \leq 1 ; ; \tag{29}\\
& t_{k}^{\phi}=t_{k}^{\sigma}+\sum_{i \in V^{m}} \sum_{j \in G} x_{i j} t_{i j}^{+} B_{j k} ; \quad \forall k \in K^{H} ; \tag{30}\\
& t_{k}^{\phi}=t_{k}^{\sigma}-\sum_{i \in V^{m}} \sum_{j \in G} x_{i j} t_{i k}^{-} ; \quad \forall k \in K^{m} ; \tag{31}\\
& t_{k}^{\phi} \leq Z^{\Gamma} ; \quad \forall k \in K ; \tag{32}\\
& t_{k}^{\phi} \geq 0 ; ; \tag{33}\\
& Z^{\Gamma} \geq 0 . \tag{34}
\end{align*}
$$

The primary objective function (24) minimizes Z^{Γ}, which in conjunction with constraint set (32) minimizes the maximum t_{k}^{ϕ}. When multiple solutions achieve the same best primary objective function value, then we prioritize solutions using the secondary objective function (25), which minimizes the sum of all t_{k}^{ϕ}. Constraint set (26) ensures that the expected pick completion time addition to picking resource $k \in K^{H}$ does not exceed the limit of t_{k}^{Q}. Constraint set (27) ensures that each detour position is filled by at most one stopping point from V^{m}. Similarly, constraints set (28) ensures that each stopping point in V^{m} is reallocated into at most one detour position. The set of constraints (29) limits the amount of total reallocations performed to only one and this constraint is our source of creating alternative methods. The updated expected pick completion time is calculated in
constraint set (30) for the resources in K^{H} and (31) for resources in K^{m}. Lastly, inequalities (33) and (34) ensure non-negative values of decision variables. In our solution framework, we consider three different alternatives: Alternative 1: S: Single Reallocation: We use constraints (29) to limit the total number of reallocations to one; Alternative 2: M: Multiple Insertion: We do not use constraints (29) to allow for more than one reallocations; Alternative 3: Z: Zero Updates: No reallocations.

After solving, the MILP (24) - (34), we get the optimal values of $x_{i j}$. For each values of $x_{i j}=1$, we perform two operations: (i) we insert $i \in V^{m}$ to the position of $j \in G$ and (ii) we remove $i \in V^{m}$ from the corresponding sequence of $k \in K^{m}$ to reconstruct the pre-decision sequences, $R_{k}^{q}\left(t_{e}\right) \forall k \in K$, and achieve post-decision sequences $R_{k}\left(t_{e}\right) \forall k \in K$. Lastly, we update the abandon triggers $\tau_{k}^{a}\left(t_{e}\right) \forall k \in C$ where $R_{k}\left(t_{e}\right) \neq R_{k}^{q}\left(t_{e}\right)$ by solving the constrained optimization model in (15) - (17) and then set $\tau_{k}^{a}\left(t_{e}\right)$ following equation (18). Additionally, the wave-time triggers $\tau_{k}^{r}\left(t_{e}\right)$ for $k^{\psi}\left(t_{e}\right)$ are also updated following equation (35) where γ is the stopping point the picking resource has completed picking.

$$
\tau_{k}^{r}\left(t_{e}\right)= \begin{cases}T-\left(t_{\theta p}^{C}\right) \quad \forall k \in C & \text { if } t_{e}+t_{\gamma \theta}^{C}+t_{\theta p}^{C}+s_{\theta}<T \tag{35}\\ t_{e} \quad \forall k \in C & \text { if } t_{e}+t_{\gamma \theta}^{C}+t_{\theta p}^{C}+s_{\theta} \geq T \\ T-\left(t_{\theta p}^{D}\right) \quad \forall k \in D & \text { if } t_{e}+t_{\gamma \theta}^{D}+t_{\theta p}^{D}+s_{\theta}<T \\ t_{e} \quad \forall k \in D & \text { if } t_{e}+t_{\gamma \theta}^{D}+t_{\theta p}^{D}+s_{\theta} \geq T\end{cases}
$$

5.2.2 Triggered by wave-time $\left(\tau_{k}^{r}\right)$, abandon $\left(\tau_{k}^{a}\left(t_{e}\right)\right)$, or pick finish $\left(\tau^{f}\right)$ trigger

Whenever the picking system reaches a wave-time, abandon, or pick finish trigger, we also make new decisions, which are described in Appendix B.

6 Computational Experiments

We design our computational experiments to answer questions a store might have prior to deploying the proposed store fulfillment strategy: (1) How much advantage is there to deploying dynamic vs static assignment policies? (2) In which situations is there value in a store deploying an AMR abandon policy? (3) How does the allowed number of reallocation
of stopping points impact picking performance? (4) How does the participation rate of in-store customers affect such policies? (5) How are picking tasks distributed among the dedicated pickers and the AMRs? (6) Are our solution approaches computationally tractable for decision-making in practical settings? (7) Which policy should a store utilize? (8) How many AMRs are needed to replace one dedicated picker? And lastly, (9) Is the proposed approach economically viable?

To answer these questions, we evaluate the performance of our policy variants on a set of computational experiments that integrate actual online order data, store layouts and empirical consumer shopping behavior data. Our primary performance indicator is calculated by $\rho=\frac{n^{P}}{N}$ representing the percentage of items released at the beginning of the wave that are picked and returned back to the v_{p} by the end of the wave. Here, n^{P} denotes the number of total items picked and returned to v_{p} within T across all resources. We use a three-letter acronym to denote the policy variants, with the first letter referring to the initial sequencing alternative (R - Ranking, T - TSP) (Section 5.1.2), the second letter for abandon policy (A - Abandon policy, N - No abandon policy) (Section 5.1.4), and the third letter for the updating alternative (S - Single Insertion, M - Multiple Insertion, Z Zero updates) (Section 5.2.1). This leads to 12 different policy variants (See Appendix C). Notably, the variants ending with NZ are static variants that make initial decisions at the beginning of the wave and do not update these decisions throughout the wave.

The computational experiments use the grocery store layout described in Hui et al. (2009), and empirical online order data from Instacart (2017). We map the product categories in the Instacart data set to the zones in Hui et al. (2009)'s store layout, and assume each of the 134 product categories corresponds to a stopping point (i.e., $\left|V^{s}\right|=134$) (see Appendix D). We set $0.6 \mathrm{~m} / \mathrm{s}$ (Lee and Murray, 2019) as the traveling speed of the dedicated human pickers traveling with a picking cart. For the AMRs, although they are operated at a higher traveling speed in a warehouse environment, as our AMRs will be operating in a retail environment, we set a low $0.4 \mathrm{~m} / \mathrm{s}$ as the average AMR traveling speed. Combining these speeds with the layout and distances in Hui et al. (2009), we obtain $t_{i j}^{C}$ and $t_{i j}^{D}$. Furthermore, we consider the mean per item picking time to be the same for all product categories and set $s_{v}=25$ seconds $\forall v \in V^{s}, \forall k \in K$, which captures both the searching and picking time once a dedicated or in-store customer is at the stopping point (Zhang et al.,

2023; Tompkins et al., 2010). Finally, we set the wavelength to be 30 minutes, i.e., $T=1800$ seconds.

We generate 10 different order profile instances (see Appendix E), using actual online order data from Instacart (2017). These instances represent multiple different orders that have been assigned to be picked in a wave. The instances have varying levels of items to be picked, and we arranged them in ascending order of N (i.e., instance 1 has the lowest N and instance 10 the highest). In addition to differences in variations in the number of items to pick N, each instance differs in the set of stopping points to be visited (V^{r}) and the number of items to be picked from each stopping point $\left(n_{v}\right)$. The mean arrival rates of in-store customers willing to help with fulfillment at stopping point $v \in V^{s}$, denoted by λ_{v} is given in (36). This assumes in-store customers arrive at the store and then visit subsequent stopping points for their own shopping following a Poisson process. Here, n^{ζ} is the average number of customer arrivals to the store, b_{v} is the average purchase rate by instore customers at stopping point $v \in V^{r}$, and f denotes the estimated average participation rate from in-store customers in helping the AMRs. We use (37) to estimate the expected waiting time for an AMR at a stopping point, $\omega_{k v}$, which also relies on input d_{v}, the average dwell time of in-store customers at the area covered by $v \in V^{r}$. Here, n^{ζ} is estimated to be about 192 customers per hour on average for Walmart stores (Bhowmick and Pazour, 2024), and b_{v} and d_{v} are estimated from empirical data in Hui et al. (2009).

$$
\begin{equation*}
\lambda_{v}=\frac{n^{\zeta} f b_{v}}{T} \quad \forall v \in V^{r} \quad(36) \quad \omega_{k v}=\frac{1}{\lambda_{v}}-d_{v} \quad \forall v \in V^{r}, k \in K \tag{37}
\end{equation*}
$$

Thus, we transform F_{v} in (15) in the abandon policy as $F_{v}=1-e^{\lambda_{v} t_{v}^{\epsilon}}$ which is the Poisson Cumulative Distribution Function for at least one participating in-store customer showing up. This makes (15)-(17) a non-linear programming model, which we solve using the Sequential Least Squares Programming (SLSQP) method. This gradient-based method requires an initial solution, which we set using equation (38).

$$
\begin{equation*}
t_{v}^{\eta}=\left(\frac{b_{v} n_{v}}{\sum_{v \in R_{k}\left(t_{e}\right)} b_{v} n_{v}}\right)\left(T-t_{e}\right) \quad \forall v \in R_{k}\left(t_{e}\right) \tag{38}
\end{equation*}
$$

While the rate of in-store customer participation is unknown, a survey in Dayarian and Pazour (2022) found there is general interest from a high rate of in-store customers to participate in crowdsourced picking opportunities. We consider different rates of participating customers, specifically, considering 100, 125, 150, and 175 expected participating
customers out of the 192 mean arrival of customers to the store. This results in 4 levels of $f=52 \%, 65 \%, 78 \%$, and 91%. For each level of f, we generate 100 random instances of in-store customer arrival to each $v \in V^{s}$. We solve TSPs for AMRs (Section 5.1.2) following a column generation method where at each iteration a master problem as well as a subproblem is solved optimally following a bidirectional labeling algorithm with dynamic halfway points (Tilk et al., 2017) which had quick convergence. As dedicated pickers get assigned more $v \in V^{r}$ compared to AMRs as a result of no waiting time, following the same method had slow convergence. Thus, we followed a compound method where we take the best result out of an algorithm described by Santini et al. (2018) and Clarke and Wright saving algorithm (Clarke and Wright, 1964) to determine the initial sequence for dedicated pickers. Lastly, we ran our experiments on a computer with processor $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-10510U CPU @1.80GHz to $2.30 \mathrm{GHz}, 32.0 \mathrm{~Gb}$ of memory, Windows 11 Pro 64 -bit, solver version Gurobi 10.0.1, and Python 3.11.5.

6.1 Benchmarks

For comparison purposes, we provide the pick performance achieved when a store does not deploy any AMRs, but instead has $1,2,3$, or 4 dedication pickers (denoted as a resource mix C0D1, C0D2, C0D3, and C0D4, respectively). To determine the results with only dedicated pickers, we determine the initial picking assignments as described in Section 5.1.1 and then sequence them using the TSP-based initial sequencing policy in Section 5.1.2. These decisions do not require updating because, with dedicated pickers, the work is controllable and does not change over the wave. As shown in Table 1,1 dedicated picker (C0D1) is unable to achieve $\rho=100 \%$ in any of the instances. As we increase the number of dedicated pickers we can achieve $\rho=100 \%$ for the lower N instances only. To achieve $\rho=100 \%$ across all instances requires 4 dedicated pickers. To deploy the same total number of resources and to answer our first seven questions, in the next subsections we utilize a resource mix with 3 AMRs and 1 dedicated picker (i.e., a C3D1 mix). And in Table 1 we also display the average percent picked (i.e., ρ) across each of the 10 instances, and for each of 12 variants.

K	C0D1	C0D2	C0D3	C0D4	C3D1											
Instances					RAM	RAS	RAZ	RNM	RNS	RNZ	TAM	TAS	TAZ	TNM	TNS	TNZ
1	75.00\%	100.00\%	100.00\%	100.00\%	99.27\%	99.33\%	93.22\%	99.23\%	99.30\%	93.22\%	95.52\%	95.48\%	90.60\%	94.98\%	94.89\%	90.05\%
2	61.11\%	100.00\%	100.00\%	100.00\%	99.58\%	99.65\%	95.42\%	99.56\%	99.65\%	95.42\%	96.30\%	96.47\%	93.52\%	96.29\%	96.47\%	93.57\%
3	62.96\%	95.06\%	100.00\%	100.00\%	96.77\%	98.21\%	91.11\%	96.77\%	98.21\%	91.11\%	93.72\%	93.65\%	87.81\%	93.60\%	94.02\%	87.77\%
4	64.71\%	95.29\%	100.00\%	100.00\%	94.78\%	96.55\%	87.75\%	94.59\%	96.48\%	87.75\%	88.30\%	89.55\%	77.26\%	87.64\%	88.52\%	75.44%
5	49.44\%	94.38\%	100.00\%	100.00\%	95.15\%	96.88\%	86.84\%	95.13\%	96.85\%	86.84\%	94.76\%	93.80\%	81.35\%	94.66\%	96.12\%	80.10\%
6	60.00\%	92.00\%	100.00\%	100.00\%	92.73\%	94.54\%	86.33\%	92.69\%	94.50\%	86.33\%	92.41\%	86.00\%	79.87\%	92.15\%	90.21\%	78.90\%
7	44.34\%	84.91\%	100.00\%	100.00\%	84.36\%	85.77\%	78.08\%	84.28\%	85.74\%	78.08\%	81.03\%	81.50\%	70.97\%	80.87\%	80.75\%	70.00\%
8	54.70\%	85.47\%	100.00\%	100.00\%	91.93\%	93.48\%	84.43\%	91.90\%	93.45\%	84.43\%	88.79\%	90.61\%	75.44\%	88.67\%	90.41\%	74.57\%
9	44.00\%	74.40\%	96.80\%	100.00\%	81.39\%	81.37\%	81.52\%	81.08\%	81.16\%	81.52\%	78.48\%	76.60\%	73.34\%	77.75\%	76.51\%	71.34\%
10	41.35\%	74.44\%	95.49\%	100.00\%	78.70\%	81.81\%	77.20\%	78.58\%	81.72\%	77.20\%	73.79\%	71.58\%	71.33\%	73.32\%	72.75\%	70.14\%
Overall	55.76\%	89.60\%	99.64\%	100.00\%	91.46\%	92.76\%	86.19\%	91.38\%	92.71\%	86.19\%	88.31\%	87.52\%	80.15\%	87.99\%	88.07\%	79.19\%

Table 1: Average percent picked (ρ) for dedicated only benchmark policies and for the 12 solution variants with 3 AMRs and 1 dedicated picker.

6.2 Effect of a Dynamic vs. a Static Policy

First, we explore the impact of a store dynamically updating its resource allocation decisions within a wave. To do so, in Figure $4(\mathrm{a})$, we display the difference in the performance of a dynamic policy (i.e., the variants that end in either S or M which make updates after a pick completion trigger τ_{k}^{c} or τ_{k}^{d}) to their static counterpart that make and fix decisions at the beginning of the wave (i.e., the variants that end in Z). A positive difference means the dynamic reallocation policy performs better than its static counterpart. In Figure 4(a), all differences are positive, which means that a dynamic update of resource allocation is always beneficial. On average, a dynamic approach can provide improvements of 5.10% (across all instances) and is more valuable when a TSP-based initial sequencing policy is used versus a ranking-based initial sequencing policy. In addition to variant influences, the characteristics of the instances also influence the improvement values, and we find that improvement across all instances can range from 0.25% to 16.02%.

INSIGHT 1: Picking performance rates can be increased on average by 5.10% by dynamically updating decisions at each pick completion triggering event, rather than only making assignment decisions at the beginning of each wave, and the improvements are more pronounced for policies that use a TSP-based initial sequencing policy rather than a rankingbased one.

Figure 4: From left to right, change in ρ of (a) dynamically updating resource allocations, and (b) using an AMR abandon policy.

6.3 Effect of AMR Abandon Policy

In Figure 4(b) we plot the improvement of performance from policies with an abandonment policy (second letter A) minus those without an abandonment policy (second letter N). For the R-variants, the decision to abandon or not has little impact on ρ. However, for the T -variants the impact is higher and the highest positive impact is achieved for TAZTNZ (with around a 0.95% average improvement). Such performance is significantly more efficient if the abandon policy is coupled with a dynamic reallocation after pick completion trigger policy (i.e., S or M) as TAM and TAS both have higher ρ than TAZ in Table 1. The number of abandon triggers as well as abandonment events are low in general, but more abandonment events occur for T-variants (TAZ-3578, TAM-884, TAS - 762) than R-variants (RAM - 775, RAS - 420, RAZ - 0). The numbers are for total abandonment events across all instances, which represents 4,000 waves, and thus, even the variant with the highest number of abandonment events had fewer than one event per wave.

INSIGHT 2: An AMR abandonment policy impacts the picking performance if the store deploys resources in a way that prioritizes minimizing travel distances (e.g., for policies using TSP for initial sequencing) and when such abandonment policies are combined with updating resource allocation after pick completion events. Yet, if a store deploys resources that prioritize $A M R$ synchronization times, an abandonment policy is so seldom needed that its implementation is likely not practically warranted.

6.4 Effect of Number of Reallocations at Pick Completion Trigger

Figure 5: Effect of reallocation number at pick completion trigger for C3D1

Next, we explore the impact on pick performance of allowing single versus multiple reallocations of stopping points among picking resources after a pick completion trigger, i.e., after a τ_{k}^{c} or τ_{k}^{d} trigger. This is captured by the third letter in our variants, where a single insertion (S) allows at most one stopping point to be moved from a picking resource to another picking resource (see (29)), whereas (M) allows unlimited reallocations (as (29) is removed from the optimization model). To capture the effect of these contrasting policies we plot in Figure 5 the average ρ of the single (S) variant minus its multiple(M) counterpart variant; thus, positive values mean the S -variant performed better than its M -variant counterpart. S-variants perform better when coupled with ranking-based initial sequencing. Yet, multiple insertions are preferred when coupled with a TSP-based initial sequencing and an abandon policy (TAS-TAM). In the case of no abandonment policy and a TSP-based initial sequencing (TNS-TNM), multiple and single reallocations perform similarly.

INSIGHT 3: Exchanging only a single picking point among resources after a pick completion trigger provides performance benefits compared to multiple reallocation alternatives when coupled with ranking-based initial sequencing. On the contrary, allowing multiple picking points to be exchanged is beneficial after a pick completion trigger if coupled with a TSP-based initial sequencing approach and an $A M R$ abandon policy.

6.5 Effect of Participation Rate of In-Store Customers

In this section, we explore the impact of participating in-store customers on the variants' achieved picking performance. Table 2 breaks down ρ by participation rate. As the rate of participating customers increases, the picking rate also increases. And for the R-variants with dynamic reallocation policies after pick completion trigger (RAS, RAM, RNS, RNM), we observe an increase of picking performance as f increases. However, for the other 8 variants when $f=91 \%$ the ρ values decrease slightly compared to $f=78 \%$. For variants prioritizing minimizing traveling times or ones that do not make dynamic updates (i.e.,
reallocations), with such high participation rates, their decisions are made expecting a low average AMR synchronization time, but due to the uncertainty in the system, this, in many instances, is too optimistic, resulting in lower average picking performance. However, when R -variants are coupled with dynamic reallocation of stopping points, this risk is avoided and so increased expected participation rates, does not hurt ρ values.

f	RAM	RAS	RAZ	RNM	RNS	RNZ	TAM	TAS	TAZ	TNM	TNS	TNZ
52%	88.89%	90.00%	85.31%	88.84%	89.95%	85.31%	83.21%	82.45%	72.55%	82.90%	82.01%	71.75%
65%	90.52%	92.04%	86.19%	90.50%	91.99%	86.19%	86.69%	85.95%	79.66%	86.36%	86.77%	78.95%
78%	92.69%	94.32%	87.12%	92.55%	94.28%	87.12%	92.19%	91.32%	85.43%	92.01%	92.32%	84.66%
91%	93.76%	94.67%	86.14%	93.63%	94.59%	86.14%	91.15%	90.37%	82.97%	90.69%	91.17%	81.39%

Table 2: Effect of increasing participation rate across variants

INSIGHT 4: Ranking-based initial sequencing policies with dynamic reallocation methods are recommended for high in-store customer participation rates.

6.6 Workload Distribution Among Resources

Next, to better understand how AMRs are utilized,

Figure 6: Utilization of AMRs across all variants for C3D1 mix we explore how work is distributed among the dedicated picker and the AMRs. To do so, in Figure 6, we plot the AMR's picking utilization, which is the ratio of items picked by all $k \in C$ and the total items picked in a wave by all $k \in K$, and the AMR's visiting utilization, which is the ratio of $v \in V^{r}$ visited by all $k \in C$ and all $v \in V^{r}$ visited by all $k \in K$. The complement of these values is the utilization for the single dedicated resource. Across the variants, the three AMRs were used to pick around 60% of all items by visiting around 40% of the stopping points. As our variants prioritize AMRs being assigned to stopping points with high number of picks and low expected waiting time, across all variants, AMR's picking utilization is higher than its visiting utilization. This leads to our next insight:

INSIGHT 5: Stores can expect a significant amount of item picking done by AMRs synchronizing with in-store customers: on average, across our experiments, three AMRs
picked around 60% of the items, with the dedicated picker's workload the remaining 40%.

6.7 Computational Time

We capture the computational time in seconds for five decision stages - clustering, sequencing, pick completion trigger, abandon trigger, and wave-time trigger (see Appendix F for boxplot). Except for sequencing, the other four stages gets solved under a second, regardless of variant type. The sequencing stage requires the highest computational effort and there are large differences in computational time based on which variant is used. Even with sequential computations for each resource, the computational time for sequencing is less than 7 seconds for the R -variants, and less than 14 seconds for the T -variants. If further reductions are needed, parallel processing across resources can further reduce computational times.

INSIGHT 6: The proposed solution approaches are computationally tractable for deployment in practical settings.

6.8 Recommended Policy Variants

RAS achieves the highest average pick rate and is the best variant in 9 out of 10 instances (see Table 1). This is a policy that creates initial AMR sequences based on ranking stopping points in descending order of expected per-pick waiting times, uses an abandonment policy, and reallocates the best single stopping point dynamically. The R -variants consistently achieve improved ρ values compared to their counterpart T-variants, with average improvements ranging from 0.32% to 12.31% across the instances. As previously discussed, the store can expect a higher pick rate with this policy when there are higher rates of customers willing to participate or more customers in the store.

INSIGHT 7: AMR ranking-based initial sequencing policies, where waiting time per pick is arranged in an ascending manner, results in higher pick rates than ones based on minimizing total travel time. Specifically, the recommended policy variant is where initial sequencing is done through a ranking-based approach coupled with use of an abandon policy and single reallocation of stopping points at pick completion events.

Thus, in the remaining computational experiments, we use the best-performing variant, RAS.

6.9 Reduction in Labor Requirements with AMRs

While a store should not expect to achieve the same level of performance by replacing a dedicated picker with an AMR (due to slower travel times and stochastic synchronization times), stores can expect high performance in systems where multiple AMRs augment the work of a single dedicated picker (see Table 1).

Figure 7: Pick performance comparison with and without AMRs

Our next set of experiments is designed to determine how many AMRs are needed to work with a single dedicated worker to achieve the same level of ρ as a system with 2 dedicated pickers but no AMRs (i.e., with C0D2). We run additional experiments deploying the RAS variant with the previously defined 10 order profile instances, considering the $4 f$ levels, and for 100 different customer arrival patterns. Figure 7 plots ρ for different AMR levels and different in-store customer rates f. As we increase the number of AMRs to assist with the picking task of one dedicated picker, the ρ value increases. A system with 2 dedicated pickers (and no AMRs) achieved $\rho=87.45 \%$. This performance can be matched with one less dedicated picker and 2 AMRs if $f=91 \%$ or with 3 AMRs if participating rates are lower. A similar observation about C3D1 achieving equivalent performance can also be made by looking at ρ values across 10 instances (see Appendix G)

INSIGHT 8: Three AMRs and a single dedicated picker can achieve equivalent picking performance as two dedicated pickers.

6.10 Economic Analysis

To determine whether the proposed approach is economically viable, in this section we conduct an economic analysis comparing the risk-adjusted cumulative costs of deploying a C3D1 resource mix instead of the status quo store fulfillment policy with two dedicated pickers (a C0D2 resource mix). We consider two AMR investment scenarios: (i) a purchase model, where the store purchases the AMR upfront and (ii) a subscription model. Our analysis captures in Year 0, initial costs of a store purchasing AMRs (for the purchasing model) and initial deployment, training, and integration costs. Annual costs include AMR

Figure 8: Economic analysis with sensitivity levels of compensation levels, churn rate, and participation levels for purchase and subscription based model.
maintenance, AMR subscription fees (for the subscription model), training costs, dedicated pickers labor costs, participating in-store customer compensation costs, non-participating in-store customer churn rate costs, and online customer dissatisfaction costs. For the dedicated picker case, we capture annual dedicated workers' labor costs, in-store customer churn rate costs, and online customer dissatisfaction costs. Data sources and further details are provided in Appendix H .

We conduct a one-at-a-time sensitivity analysis with three parameters: Compensation Per Pick (CPP), Churn Rate (CR), and participation level (f). We explore four levels of CPP for participating in-store customers: $\$ 0.06, \$ 0.12, \$ 0.18, \$ 0.24$; four levels of CR of non-participating customers: $1 \%, 2 \%, 3 \%$, and 4%; and four levels of f shown in Table 2 . We consider base values of $C R=1 \%, C P P=\$ 0.12$ (which is estimated to be compensation based on dedicated picker wages, see Appendix H), and $f=78 \%$ such that two of these are always fixed while we vary the other parameter in Figure 8. Figures 8a and 8d show that a purchase model achieves positive cost savings after $2,2,3$, and 3 years, respectively for $C P P$ of $\$ 0.06, \$ 0.12, \$ 0.18$, and $\$ 0.24$. Whereas, a subscription model achieves cost savings after $2,2,2$, and 3 years, respectively, for the same ascending $C P P$ levels, achieving
cost savings at equal times or faster than the purchase model with a lower risk-adjusted cumulative cost per year. Similar findings are seen with different levels of $C R$ and f. In Figures 8 b and 8 e , a positive cost saving is achieved after 2 years with the subscription model for all churn rate $C R$ levels except for $C R=4 \%$ (which occurs after 3 years). For the purchase model, a positive saving is achieved after 3 years for all $C R$ levels except for $C R=1 \%$, which occurs after 2 years. Figures 8 c and 8 d show that as the store incurs more participation, faster positive cost savings are achieved.

INSIGHT 9: The proposed policy is an economically viable solution even when stores purchase AMRs and when in-store customers are compensated for picking at similar wages to dedicated pickers. Further, faster positive savings can be achieved with a subscriptionbased model and higher participation rates.

7 Conclusions and Future Research Directions

To address the challenges associated with the increasing demand for online grocery services, we propose an order-picking policy where AMRs synchronize with stochastically arriving in-store customers to augment the picking tasks of manual dedicated pickers. After modeling the problem as an MDP, we design a heuristic solution framework. Computational experiments using actual online grocery order and empirical shopping behavior data illustrate the feasibility of such a policy to achieve similar picking performance as the status quo (which is to deploy a limited set of dedicated pickers). However, performance varies based on the resource mix, initialization, abandon policy, updating policies, and environmental factors like participating in-store customers. AMR assignments where waiting time per pick is arranged in an ascending manner result in higher pick rates than ones that create initial routes based on minimizing total travel time. Dynamic updates of resource allocation at pick completion events can help the store to achieve higher picking performance. While the AMR abandon policy insignificantly improves performance for ranking-based initially sequenced variants, such a policy has a higher positive impact when combined with TSP-based initial sequencing policy followed by dynamic reallocation policies. Similarly, exchanging only a single picking point among resources provides higher performance for ranking-based initial sequencing, yet, allowing multiple points shows better outcomes for TSP-based initial sequencing policies. Additionally, when there are high participation rate from in-store
customers, ranking-based initial sequencing policies are preferred. Such policies are found to be computationally tractable for practical purposes, and can help the store to offload a significant amount of tasks to AMRs. We find that three AMRs and one dedicated picker can perform equivalently as two dedicated pickers, and such a policy is economically viable even when stores purchase AMRs and when in-store customers are compensated for picking at rates similar to dedicated pickers.

As the first research to study order-picking policies using AMRs and in-store customers in retail stores, there are numerous future research directions. First, we considered a wavebased policy, future research can create policies in wave-less systems. More research is needed to better estimate in-store customers' interests in participating and their behaviors around AMRs. Additionally, policies can be developed with explicit modeling of congestion and in-store customer behaviors. Further, as AMRs would be available to the store $24 / 7$, policies that consider other tasks such as replenishment, inventory checking, and customer assistance can also be explored. Lastly, this work considered the layout and facility design to be fixed; future research could jointly optimize other decisions, such as facility design, inventory, store shelf design, and item allocation, to more efficiently deploy such policies.

References

Aull, B., Coggins, B., Kohli, S., and Marohn, E. (2022). The state of grocery in North America. McKinsey \& Company.

Azadeh, K., De Koster, R., and Roy, D. (2019). Robotized and automated warehouse systems: Review and recent developments. Transportation Science, 53(4):917-945.

Azadeh, K., Roy, D., de Koster, R., and Khalilabadi, S. M. G. (2023). Zoning strategies for human-robot collaborative picking. Decision Sciences.

Bayram, A. and Cesaret, B. (2021). Order fulfillment policies for ship-from-store implementation in omni-channel retailing. European Journal of Operational Research, 294(3):9871002.

Begley, S., Hancock, B., Kilroy, T., and Kohli, S. (2019). Automation in retail: An executive overview for getting ready. McKinsey \& Company Retail Insights.

Bhowmick, J. and Pazour, J. (2024). A connected in-store and online customer data set for omnichannel retail logistics research. In IIE Annual Conference. Proceedings, pages 1-6. Institute of Industrial and Systems Engineers (IISE).

Boysen, N., De Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277(2):396-411.

| Brick | Meets | Clicks | (2020). | | Online | grocery | shopping |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| surges | to | record | levels | | | | | in us \quad during \quad covid-19 \quad crisis.

https://www.foodlogistics.com/transportation/press-release/21125307/brick-mee ts-click-online-grocery-shopping-surges-to-record-levels-in-us-during-covid19 -crisis.

Caporaso, T., Panariello, D., Grazioso, S., Di Gironimo, G., and Villani, L. (2022). Robots helping humans: Collaborative shelf refilling. In Robotics for Intralogistics in Supermarkets and Retail Stores, pages 117-135. Springer.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4):568-581.

Dayarian, I. and Pazour, J. (2022). Crowdsourced order-fulfillment policies using in-store customers. Production and Operations Management, 31(11):4075-4094.

Difrancesco, R. M., van Schilt, I. M., and Winkenbach, M. (2021). Optimal in-store fulfillment policies for online orders in an omni-channel retail environment. European Journal of Operational Research, 293(3):1058-1076.

Eriksson, E., Norrman, A., and Kembro, J. (2022). Understanding the transformation toward omnichannel logistics in grocery retail: a dynamic capabilities perspective. International Journal of Retail E Distribution Management, 50(8/9):1095-1128.

Fager, P., Sgarbossa, F., and Calzavara, M. (2021). Cost modelling of onboard cobotsupported item sorting in a picking system. International Journal of Production Research, 59(11):3269-3284.

Fragapane, G., de Koster, R., Sgarbossa, F., and Strandhagen, J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research.

Ghelichi, Z. and Kilaru, S. (2021). Analytical models for collaborative autonomous mobile robot solutions in fulfillment centers. Applied Mathematical Modelling, 91:438-457.

Hübner, A., Hense, J., and Dethlefs, C. (2022). The revival of retail stores via omnichannel operations: A literature review and research framework. European Journal of Operational Research, 302(3):799-818.

Hui, S. K., Bradlow, E. T., and Fader, P. S. (2009). Testing behavioral hypotheses using an integrated model of grocery store shopping path and purchase behavior. Journal of Consumer Research, 36(3):478-493.

Instacart (2017). The instacart online grocery shopping dataset 2017. https://www. instacart.com/datasets/grocery-shopping-2017. Accessed: 2021-01-27.

Jacob, F., Grosse, E. H., Morana, S., and König, C. J. (2023). Picking with a robot colleague: a systematic literature review and evaluation of technology acceptance in human-robot collaborative warehouses. Computers \& Industrial Engineering, page 109262.

Lee, H.-Y. and Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18):5821-5841.

Löffler, M., Boysen, N., and Schneider, M. (2021). Picker routing in agv-assisted order picking systems. INFORMS Journal on Computing.

Löffler, M., Boysen, N., and Schneider, M. (2023). Human-robot cooperation: Coordinating autonomous mobile robots and human order pickers. Transportation Science.

Lorson, F., Fügener, A., and Hübner, A. (2023). New team mates in the warehouse: Human interactions with automated and robotized systems. IISE Transactions, 55(5):536-553.

MacCarthy, B. L., Zhang, L., and Muyldermans, L. (2019). Best performance frontiers for buy-online-pickup-in-store order fulfilment. International Journal of Production Economics, 211:251-264.

Masel, D. T. and Mesa, A. (2018). Managing the order picking process in for click and collect in grocery stores. In 15th IMHRC Proceedings (Savannah, Georgia. USA - 2018).

Mayumi Brewster (2022). Annual retail trade survey shows impact of online shopping on retail sales during covid-19 pandemic. https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-duringpandemic.html.

Meller, R. D., Nazzal, D., and Thomas, L. M. (2018). Collaborative bots in distribution centers. 15th IMHRC Proceedings (Savannah, Georgia. USA). 1%.

Mou, S. (2022a). In-store order fulfilment in omni-channel supermarkets with heterogeneous workforce: A bi-objective optimisation approach. Computers \& Industrial Engineering, 171:108516.

Mou, S. (2022b). Integrated order picking and multi-skilled picker scheduling in omnichannel retail stores. Mathematics, 10(9):1484.

Neves-Moreira, F. and Amorim, P. (2023). Playing hide and seek: tackling in-store picking operations while improving customer experience. arXiv preprint arXiv:2301.02142.

Pasparakis, A., De Vries, J., and De Koster, R. (2023). Assessing the impact of humanrobot collaborative order picking systems on warehouse workers. International Journal of Production Research, 61(22):7776-7790.

Pietri, N. O., Chou, X., Loske, D., Klumpp, M., and Montemanni, R. (2021). The buy-online-pick-up-in-store retailing model: Optimization strategies for in-store picking and packing. Algorithms, 14(12):350.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley \& Sons.

Repko, M. (2020). Grocers urgently need to fix broken online business model, as pandemic shifts more to web, report says. CNBC. https://www.cnbc.com/2020/07/09/ coronavirus-grocers-must-fix-broken-online-model-report-says.html.

Sağlam, B., Salman, F. S., Sayın, S., and Türkay, M. (2006). A mixed-integer programming approach to the clustering problem with an application in customer segmentation. European Journal of Operational Research, 173(3):866-879.

Santini, A., Plum, C. E., and Ropke, S. (2018). A branch-and-price approach to the feeder network design problem. European Journal of Operational Research, 264(2):607-622.

Schäfer, F., Lorson, F., and Hübner, A. (2023). Finding the right one: Decision support for selecting cost-efficient order picking solutions. IISE Transactions, pages 1-15.

Seghezzi, A., Siragusa, C., and Mangiaracina, R. (2022). Enhancing in-store picking for e-grocery: an empirical-based model. International Journal of Physical Distribution ${ }^{6}$ Logistics Management, 52(4):301-323.

Shah, B. and Khanzode, V. (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26(3):346-378.

Shen, H., Namdarpour, F., and Lin, J. (2022). Investigation of online grocery shopping and delivery preference before, during, and after covid-19. Transportation Research Interdisciplinary Perspectives, 14:100580.

Srinivas, S. and Yu, S. (2022). Collaborative order picking with multiple pickers and robots: Integrated approach for order batching, sequencing and picker-robot routing. International Journal of Production Economics, 254:108634.

Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational Research, 261(2):530-539.

Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A. (2010). Facilities planning. John Wiley \& Sons.

Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., and Thomas, B. W. (2020). On modeling stochastic dynamic vehicle routing problems. EURO Journal on Transportation and Logistics, 9(2):100008.

Wang, H., Chen, W., and Wang, J. (2020). Coupled task scheduling for heterogeneous multirobot system of two robot types performing complex-schedule order fulfillment tasks. Robotics and Autonomous Systems, 131:103560.

Winkelhaus, S., Zhang, M., Grosse, E. H., and Glock, C. H. (2022). Hybrid order picking: A simulation model of a joint manual and autonomous order picking system. Computers © Industrial Engineering, 167:107981.

Yokota, T. (2019). Min-max-strategy-based optimum co-operative picking with agvs in warehouse. In 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pages 236-242. IEEE.

Zhang, J., Liu, F., Tang, J., and Li, Y. (2019). The online integrated order picking and delivery considering pickers' learning effects for an o2o community supermarket. Transportation Research Part E: Logistics and Transportation Review, 123:180-199.

Zhang, M., Grosse, E. H., and Glock, C. H. (2023). Ergonomic and economic evaluation of a collaborative hybrid order picking system. International Journal of Production Economics, 258:108774.

Zhang, M., Winkelhaus, S., and Grosse, E. H. (2021). Evaluation of human workload in a hybrid order picking system. IFAC-PapersOnLine, 54(1):458-463.

Zhang, N. and Pazour, J. (2019). Expected travel distance models for retail store order fulfillment. In IIE Annual Conference. Proceedings, pages 94-99. Institute of Industrial and Systems Engineers (IISE).

Zhong, Y., Zheng, X., and Xie, W. (2023). Fulfillment flexibility strategy for dual-channel retail networks. IISE Transactions, pages 1-14.

Zhu, S., Wang, H., Zhang, X., He, X., and Tan, Z. (2022). A decision model on humanrobot collaborative routing for automatic logistics. Advanced Engineering Informatics, 53:101681.

Zou, Y., Zhang, D., and Qi, M. (2019). Order picking system optimization based on pickerrobot collaboration. In Proceedings of the 2019 5th International Conference on Industrial and Business Engineering, pages 1-6.

Žulj, I., Salewski, H., Goeke, D., and Schneider, M. (2022). Order batching and batch sequencing in an amr-assisted picker-to-parts system. European Journal of Operational Research, 298(1):182-201.

Appendices/ Supplemental Materials

A Categorizing and Defining Transition Probabilities

We categorize the transition probabilities into two types. One is to transition to a pick completion state s_{e+1} by reaching either τ_{k}^{c} or τ_{k}^{d}. The second type is to transition to a non-pick completion state s_{e+1} by τ_{k}^{r} or τ_{k}^{a}. The first type transitions with the probability that a specific picking resource $k \in K$ completes the required number of picks $\left(n_{v}\right)$ at their currently assigned stopping point before the other deployed picking resources. For any $\gamma \in K$ this probability is calculated from three-time components: (1) travel time from the current stopping point location, ∂_{γ}, to the next assigned stopping point location, θ_{γ}, denoted as $t_{\partial \theta}^{C} \vee t_{\partial \theta}^{D}$, (2) uncertain waiting time at θ_{γ} denoted as $\bar{\omega}_{\gamma \theta}$, and (3) uncertain picking time at θ_{γ} denoted as $\bar{s}_{\gamma \theta}$. The travel time component can be of value 0 if any $\gamma \in K$ in the system has already reached θ_{γ}. Similarly, if synchronization with an in-store customer at θ_{γ} has already occurred for an AMR, $\bar{\omega}_{\gamma \theta}=0$. However, to define the probability of pick completion of $\gamma \in K$, we must also take into account the probability of any τ_{k}^{r} or a τ_{k}^{a} happening before the pick completion of $\gamma \in K$. Thus, the transition probability at decision epoch e of a picking resource $\gamma \in K$ completing n_{v} picks at θ_{γ} before the other picking resources pick completion and other triggers can be defined simply by (39) and in detail by (40) for any $k \in C$ and (41) for any $k \in D$.
$\delta_{\gamma e}^{p}=$ probability $[$ (pick completion by $\gamma \in K$ before pick completion by $k \in K \backslash \gamma$), (pick completion by $\gamma \in K$ before wave-time trigger by any $k \in K$), (pick completion by $\gamma \in K$ before abandon trigger by any $k \in K$)]
$\delta_{\gamma e}^{p C}=$ probability $\left[\left(t_{\partial \theta}^{C}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right)\right.$ for $\gamma \in C<\left(t_{\partial \theta}^{C}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \forall k \in C \backslash\{\gamma\}$,

$$
\left(t_{\partial \theta}^{C}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in C<\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \forall k \in D,
$$

$$
\left(t_{\partial \theta}^{C}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in C<\left(T-t_{\theta p}^{C}\right) \forall k \in C
$$

$$
\left(t_{\partial \theta}^{C}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in C<\left(T-t_{\theta p}^{D}\right) \forall k \in D
$$

$$
\begin{equation*}
\left.\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(t_{e} \mid \tau^{u}=\tau_{k}^{a}\right) \forall k \in K\right] \tag{40}
\end{equation*}
$$

$$
\begin{array}{r}
\delta_{\gamma e}^{p D}=\text { probability }\left[\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \forall k \in D \backslash\{\gamma\},\right. \\
\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \forall k \in C, \\
\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(T-t_{\theta p}^{C}\right) \forall k \in C, \\
\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(T-t_{\theta p}^{D}\right) \forall k \in D, \\
\left.\left(t_{\partial \theta}^{D}+\bar{\omega}_{\gamma \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \text { for } \gamma \in D<\left(t_{e} \mid \tau^{u}=\tau_{k}^{a}\right) \forall k \in K\right] \tag{41}
\end{array}
$$

The second type is the probability of reaching the wave-time trigger τ_{γ}^{r} of picking resource $\gamma \in K$ before any other any other $\tau_{k}^{r} \forall k \in K \backslash\{\gamma\}$, any pick completion trigger, and any abandon trigger. This can be simplified by finding out the probability of the earliest wavetime trigger happening before any resource completes a pick and before any τ^{a}. In other words, it would be the probability of reaching state s_{e+1} from state s_{e}, such that the remaining time in the wave $\left(T-t_{e+1}\right)$ would be equal to the maximum of the travel time from current stopping point ∂_{γ} to the dropoff station $v_{p} \forall k \in K$. Hence, this probability can be defined by equation (42).

$$
\begin{array}{r}
\delta_{e}^{r}=\text { probability }\left[T-\max \left(t_{\theta p}^{C} \quad \forall k \in C, t_{\theta p}^{D} \quad \forall k \in D\right)<\left(t_{\theta p}^{C}+\bar{\omega}_{k \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \quad \forall k \in C\right. \\
T-\max \left(t_{\theta p}^{C} \quad \forall k \in C, t_{\theta p}^{D} \quad \forall k \in D\right)<\left(t_{\theta p}^{D}+\bar{\omega}_{k \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \quad \forall k \in D \\
\left.T-\max \left(t_{\theta p}^{C} \quad \forall k \in C, t_{\theta p}^{D} \quad \forall k \in D\right)<\left(t_{e} \mid \tau^{u}=\tau_{k}^{a}\right) \forall k \in K\right] \tag{42}
\end{array}
$$

Lastly, the transition probability for having a triggering event of type τ_{k}^{a} for resource $\gamma \in K$ can also be defined in a similar manner by (43)

$$
\begin{align*}
& \delta_{\gamma e}^{a}=\text { probability }\left[\left(t_{e} \mid \tau^{u}=\tau_{\gamma}^{a}\right)<\left(t_{\theta p}^{C}+\bar{\omega}_{k \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \quad \forall k \in C,\right. \\
& \left(t_{e} \mid \tau^{u}=\tau_{\gamma}^{a}\right)<\left(t_{\theta p}^{D}+\bar{\omega}_{k \theta}+n_{\theta} \bar{s}_{\theta}+t_{e}\right) \quad \forall k \in D, \\
& \left(t_{e} \mid \tau^{u}=\tau_{\gamma}^{a}\right)<T-\max \left(t_{\theta p}^{C} \quad \forall k \in C, t_{\theta p}^{D} \quad \forall k \in D\right), \tag{43}\\
& \left.\left(t_{e} \mid \tau^{u}=\tau_{\gamma}^{a}\right)<\left(t_{e} \mid \tau^{u}=\tau_{k}^{a}\right) \forall k \in K \backslash\{\gamma\}\right]
\end{align*}
$$

B Triggered by wave-time (τ_{k}^{r}), abandon $\left(\tau_{k}^{a}\left(t_{e}\right)\right.$), or pick finish (τ^{f}) trigger

B. 1 Triggered by wave-time trigger τ_{k}^{r}

Whenever the picking system reaches a wave-time trigger $\tau^{u}=\tau_{k}^{r}$ for any picking resource $k \in K, k^{\psi}\left(t_{e}\right)$ is instructed to return to v_{p}, hence $\theta_{k}\left(t_{e}\right)=v_{p}$ for $k^{\psi}\left(t_{e}\right)$. Here, $k^{\psi}\left(t_{e}\right)$ not only has to travel to v_{p} if it was waiting there for synchronization but also if it was in the process of picking item(s). Therefore, a stopping point $v \in R_{k}\left(t_{e}\right)$ may have a fraction of n_{v} picked by a resource.

B. 2 Triggered by abandon trigger $\tau_{k}^{a}\left(t_{e}\right)$:

Whenever $\tau^{u}=\tau_{k}^{a}$ for any $k \in C$, we update the amount of time we should wait at $\theta_{k}\left(t_{e-1}\right)$ for $k^{\psi}\left(t_{e}\right)$ based on the abandon policy in Section 5.1.4 and update τ_{k}^{a} following equation (44). Additionally, $R_{k}\left(t_{e}\right)$ for $k^{\psi}\left(t_{e}\right)$ also gets updated using equation (45). This is then followed by updating the current assignment $\theta_{k}\left(t_{e}\right)$ of resource $k^{\psi}\left(t_{e}\right)$ using equation (12) and updating the wave-time trigger using equation (13) or (14). If the AMR is instructed to stop waiting at $R_{k 1}\left(t_{e-1}\right)$ (i.e., $t_{v}^{\epsilon}=0$), the abandoned stopping point, denoted by $v^{a}\left(t_{e}\right)$ gets added to the end of any picking resource's sequence providing the least increase of maximum expected pick completion time, following equation (46). And we do not recalculate the abandon trigger after adding this point (as this stopping point had already been given the opportunity to synchronize).

$$
\begin{gather*}
\tau_{k}^{a}\left(t_{e}\right)= \begin{cases}t_{e}+t_{v}^{\epsilon} \mid v=R_{k 1}\left(t_{e-1}\right) & \text { if } t_{v}^{\epsilon}>0 \mid v=R_{k 1}\left(t_{e-1}\right) \\
t_{e}+t_{v}^{\epsilon} \mid v=R_{k 2}\left(t_{e-1}\right) & \text { if } t_{v}^{\epsilon}=0 \mid v=R_{k 1}\left(t_{e-1}\right)\end{cases} \tag{44}\\
R_{k}\left(t_{e}\right)= \begin{cases}R_{k}\left(t_{e-1}\right) & \text { if } t_{v}^{\epsilon}>0 \mid v=R_{k 1}\left(t_{e-1}\right) \\
R_{k}\left(t_{e-1}\right) \backslash R_{k 1}\left(t_{e-1}\right) & \text { if } t_{v}^{\epsilon}=0 \mid v=R_{k 1}\left(t_{e-1}\right)\end{cases} \tag{45}\\
R_{k}\left(t_{e}\right)=R_{k}\left(t_{e-1}\right) \cup v^{a}: \min \left(\max \left(t_{k}^{\sigma} \forall k \in K\right) \text { at } t_{e}-\max \left(t_{k}^{\sigma} \forall k \in K\right) \text { at } t_{e-1}\right) \tag{46}
\end{gather*}
$$

B. 3 Triggered by pick finish trigger τ^{f}

This trigger is only set off when all picking resources are assigned to travel to the dropoff station, whether by completing all the assigned picks for the wave, N, or being sent to v_{p} as a result of one or more τ_{k}^{r}. For any of these two scenarios, when the algorithm finds $\theta_{k}\left(t_{e}\right)=v_{p} \quad \forall k \in K$, we terminate the algorithm.

C Variants of the Solutions Approach

		Variants											
Decision Stage	Alternatives	RAS	RAM	RAZ	RNS	RNM	RNZ	TAS	TAM	TAZ	TNS	TNM	TNZ
Initial	Ranking(R)	x	x	x	x	x	x						
Sequencing	TSP(T)							x	x	x	x	x	x
Abandon	Yes(A)	x	x	x				x	x	x			
Policy	No(N)				x	x	x				x	x	x
Updating	Single(S)	x			x			x			x		
Sequences	Multiple(M)		x			x			x			x	
with reallocation(s)	Zero(Z)			x			x			x			x

Table 3: Decision alternatives and resulting variants

D Stopping Point to Product Category Mapping

Stopping Point Number	Product Category	Stopping Point Number	Product Category	Stopping Point Number	Product Category
1	prepared soups salads	46	mint gum	91	soy lactosefree
2	specialty cheeses	47	vitamins supplements	92	baby food formula
3	energy granola bars	48	breakfast bars pastries	93	breakfast bakery
4	instant foods	49	packaged poultry	94	tea
5	marinades meat preparation	50	fruit vegetable snacks	95	canned meat seafood
6	other	51	preserved dips spreads	96	lunch meat
7	packaged meat	52	frozen breakfast	97	baking supplies decor
8	bakery desserts	53	cream	98	juice nectars
9	pasta sauce	54	paper goods	99	canned fruit applesauce
10	kitchen supplies	55	shave needs	100	missing
11	cold flu allergy	56	diapers wipes	101	air fresheners candles
12	fresh pasta	57	granola	102	baby bath body care
13	prepared meals	58	frozen breads doughs	103	ice cream toppings
14	tofu meat alternatives	59	canned meals beans	104	spices seasonings
15	packaged seafood	60	trash bags liners	105	doughs gelatins bake mixes
16	fresh herbs	61	cookies cakes	106	hot dogs bacon sausage
17	baking ingredients	62	white wines	107	chips pretzels
18	bulk dried fruits vegetables	63	grains rice dried goods	108	other creams cheeses
19	oils vinegars	64	energy sports drinks	109	skin care
20	oral hygiene	65	protein meal replacements	110	pickled goods olives
21	packaged cheese	66	asian foods	111	plates bowls cups flatware
22	hair care	67	fresh dips tapenades	112	bread
23	popcorn jerky	68	bulk grains rice dried goods	113	frozen juice
24	fresh fruits	69	soup broth bouillon	114	cleaning products
25	soap	70	digestion	115	water seltzer sparkling water
26	coffee	71	refrigerated pudding desserts	116	frozen produce
27	beers coolers	72	condiments	117	nuts seeds dried fruit
28	red wines	73	facial care	118	first aid
29	honeys syrups nectars	74	dish detergents	119	frozen dessert
30	latino foods	75	laundry	120	yogurt
31	refrigerated	76	indian foods	121	cereal
32	packaged produce	77	soft drinks	122	meat counter
33	kosher foods	78	crackers	123	packaged vegetables fruits
34	frozen meat seafood	79	frozen pizza	124	spirits
35	poultry counter	80	deodorants	125	trail mix snack mix
36	butter	81	canned jarred vegetables	126	feminine care
37	ice cream ice	82	baby accessories	127	body lotions soap
38	frozen meals	83	fresh vegetables	128	tortillas flat bread
39	seafood counter	84	milk	129	frozen appetizers sides
40	dog food care	85	food storage	130	hot cereal pancake mixes
41	cat food care	86	eggs	131	dry pasta
42	frozen vegan vegetarian	87	more household	132	beauty
43	buns rolls	88	spreads	133	muscles joints pain relief
44	eye ear care	89	salad dressing toppings	134	specialty wines champagnes
45	candy chocolate	90	cocoa drink mixes		

Table 4: Stopping point number and its mapped product category

E Order Profiles

Instance No	Order Profile - (Stopping Point Number, Number of items to pick)	N	$\left\|V^{r}\right\|$
1	$\begin{aligned} & (1,1),(4,1),(16,1),(19,1),(21,2),(24,7),(26,4),(32,1),(37,1),(45,1),(54,2),(57,2),(64,1),(74,1),(78,3), \\ & (81,1),(83,7),(86,1),(93,1),(98,3),(100,1),(101,1),(108,1),(115,5),(120,3),(121,1),(123,4),(127,1),(129,1) \end{aligned}$	60	30
2	$(16,2),(19,1),(20,1),(21,3),(24,7),(26,2),(31,3),(36,1),(37,2),(42,1),(53,1),(75,1),(77,3),(78,1)$, $(83,11),(84,4),(86,4),(107,1),(109,1),(110,1),(112,2),(114,1),(115,2),(120,4),(121,2),(123,6),(128,2)$, $(129,2)$	72	29
3	$(3,1),(4,2),(16,1),(19,4),(21,4),(24,6),(31,1),(36,2),(37,2),(45,1),(50,1),(54,1),(59,2),(61,1),(67,2)$, $(69,1),(72,1),(77,2),(78,1),(79,2),(83,6),(84,5),(86,1),(88,1),(91,1),(93,4),(94,1),(96,4),(100,4),(107,2)$, $(108,2),(110,1),(112,5),(116,1),(120,1),(121,1),(123,2),(127,1)$	81	39
4	$(4,1),(6,1),(9,1),(12,2),(16,2),(19,1),(21,1),(24,12),(30,2),(32,2),(36,1),(37,1),(45,1),(48,1),(51,1)$, $(52,1),(54,1),(56,1),(66,1),(70,1),(74,1),(82,1),(83,10),(84,4),(85,1),(86,2),(87,1),(91,4),(96,1),(98,2)$, $(100,2),(104,3),(106,5),(110,1),(114,2),(115,1),(116,1),(120,2),(123,5),(129,1)$	85	41
5	$\begin{aligned} & (3,3),(16,2),(17,1),(19,1),(20,1),(21,5),(24,13),(26,1),(31,1),(35,1),(36,1),(37,1),(48,2),(60,1),(62,1), \\ & (67,1),(69,2),(72,1),(77,1),(78,2),(81,3),(83,8),(84,2),(86,1),(91,1),(92,1),(93,1),(94,4),(96,1),(98,2), \\ & (99,4),(100,1),(104,1),(107,2),(108,1),(112,1),(115,1),(116,1),(117,1),(120,5),(122,1),(123,2),(128,1),(131,1) \end{aligned}$	89	45
6	$(2,2),(9,1),(11,1),(16,4),(17,2),(19,2),(21,4),(24,6),(25,1),(31,3),(34,1),(36,1),(37,1),(53,1),(54,1)$, $(59,4),(63,1),(67,1),(69,1),(71,1),(72,1),(74,1),(75,1),(78,1),(81,2),(83,12),(84,2),(85,1),(86,1),(91,2)$, $(95,1),(96,4),(98,1),(99,1),(106,1),(107,3),(108,1),(111,1),(112,1),(115,2),(116,3),(117,1),(120,3)$, $(123,11),(128,1),(129,1),(133,1)$	100	48
7	$(1,1),(4,1),(6,1),(9,2),(19,2),(21,2),(24,15),(25,1),(26,1),(31,3),(32,1),(34,1),(35,1),(37,1),(38,1)$, $(43,1),(45,1),(50,3),(52,2),(53,3),(54,1),(61,2),(62,1),(66,2),(67,1),(72,1),(75,1),(78,1),(79,1),(80,1)$, $(83,8),(84,4),(86,1),(91,1),(93,2),(98,2),(99,1),(104,1),(105,3),(106,2),(107,2),(108,1),(112,2),(115,5)$, $(120,3),(121,1),(123,5),(125,1),(129,2),(130,1),(131,2)$	106	52
8	$\begin{aligned} & (1,1),(4,1),(9,2),(13,2),(16,2),(23,1),(24,11),(25,1),(31,3),(34,1),(36,2),(37,4),(38,1),(42,1),(45,2),(48,2), \\ & (50,1),(53,2),(59,1),(61,1),(64,1),(67,2),(69,3),(77,5),(78,2),(79,1),(81,3),(83,20),(84,6),(86,1),(89,1), \\ & (94,2),(96,1),(98,1),(100,1),(107,4),(112,1),(115,6),(117,3),(120,4),(121,1),(123,4),(129,1),(134,1) \end{aligned}$	117	45
9	$(3,4),(4,1),(5,1),(8,1),(9,1),(20,1),(21,9),(23,1),(24,10),(26,2),(31,4),(32,1),(33,1),(37,3),(38,1),(42,1)$, $(45,2),(51,1),(53,1),(54,1),(59,1),(61,1),(63,1),(65,1),(66,2),(69,2),(74,1),(77,2),(78,1),(83,10),(84,5)$, $(85,1),(86,1),(89,1),(91,5),(94,1),(95,1),(98,1),(106,2),(107,1),(108,2),(112,3),(115,4),(116,1),(120,8)$, $(121,4),(123,11),(129,3),(131,1)$	125	50
10	$(2,2),(3,7),(5,2),(12,1),(16,1),(17,2),(20,1),(21,3),(23,1),(24,11),(26,2),(30,2),(32,1),(34,1),(36,1),(37,2)$, $(42,1),(45,3),(46,1),(50,1),(53,2),(54,2),(57,1),(61,1),(66,1),(69,3),(74,1),(77,4),(78,1),(81,4),(83,11)$, $(84,2),(88,3),(91,3),(92,1),(93,1),(94,1),(96,2),(98,1),(106,1),(107,9),(108,3),(110,2),(115,2),(116,1)$, $(117,5),(120,10),(123,4),(125,1),(128,2),(130,1),(131,1)$	133	53

Table 5: Generated order instances from whole orders (Instacart, 2017)

F Boxplot of Computational Time

Figure 9: Boxplots of solving time in seconds for C3D1 instances across all 12 variants, broken down by decision stage.

G Picking performance across instances

Instances/K	C1D1	C2D1	C3D1	C4D1	C0D1	C0D2
1	95.79%	88.51%	99.33%	99.28%	75.00%	100.00%
2	78.66%	99.44%	99.65%	99.74%	61.11%	100.00%
3	84.53%	92.64%	98.21%	98.68%	62.96%	95.06%
4	82.26%	92.66%	96.55%	98.02%	64.71%	95.29%
5	79.69%	91.09%	96.88%	98.20%	49.44%	94.38%
6	70.42%	82.85%	94.54%	97.72%	60.00%	92.00%
7	72.88%	75.27%	85.77%	93.38%	44.34%	84.91%
8	74.67%	85.78%	93.48%	96.58%	54.70%	85.47%
9	64.27%	72.74%	81.37%	89.08%	44.00%	74.40%
10	62.72%	70.96%	81.81%	87.23%	41.35%	74.44%

Table 6: Picking performance across instances for increasing AMRs with one dedicated picker compared to benchmark resource mix

H Data and Calculations for Economic Evaluation

We present the data and calculations performed to conduct the economic analysis in Section 6.10. In this analysis, we compare the status quo (which is the resource mix with two dedicated pickers C0D2) to an approach that deploys 3 AMRs and 1 dedicated picker. To incorporate the time value of money and to adjust for associated risks, we transform all costs beyond year 0 to the present value, by multiplying each year-end (or annual) costs by the discount factor calculated for that year through (47).

$$
\begin{equation*}
\text { Discount factor }=\frac{1}{(1+\text { Discount rate })^{\text {Year }}} \tag{47}
\end{equation*}
$$

The cumulative risk-adjusted cost of operation up to any given year is then plotted in Figure 8. For instance, the cumulative risk-adjusted cost of operations until year 3 consists of year 0 costs and discounted year-end costs from year 1 through year 3. To perform this analysis, we rely on the input data in Table 7 and the calculations in equations (52)-(60).

Cost Area	Input Data	Numerical Values Used
Dedicated Pickers	Wage per hour	\$ $17.50{ }^{1}$
	Legally required benefit per hour	\$ $2.80{ }^{\text {² }}$
	Wage increase per year	$4.20 \%^{5}$
	Benefits increase per year	$3.80 \%^{5}$
	Churn rate dedicated case	$1 \%^{5}$
AMR	AMR purchase cost	\$ 35,000 ${ }^{6}$
	Yearly AMR maintenance cost	20\% of purchase cost ${ }^{7}$
	Monthly subscription cost	\$ $950{ }^{8}$
	One time initial deployment fee	\$ 75,000 ${ }^{8}$
	Number of cross-trained team members for AMR operation	12^{12}
	Required yearly training hours per team member	2^{8}
	Percent of picks by AMRs	$60 \%{ }^{17}$
	One time internal integration cost	\$ 50,000 ${ }^{8}$
Store	Number of online orders in a day	$128{ }^{13}$
	Operating days per year	$363{ }^{3}$
	Operating hours per day	17^{4}
	Mean items per online order	$10.5{ }^{15}$
	Number of in-store customers per week during peak hours	$18,135{ }^{\text {13 }}$
	Spending per week per in-store customer	\$ $164{ }^{9}$
	Profit margin per item	$4.40 \%^{16}$
	Average churn rate in retail	$5.5 \%{ }^{18}$
	Dissatisfied online customers not reordering	$13 \%{ }^{10}$
	Dissatisfaction cost per online item not picked	$\$ 0.08^{14}$
	Mean online basket value	\$ 149.10^{11}
Economic	Discount rate	$10 \%^{8}$

Table 7: Input data for economic evaluation

H. 1 In-store and online customer dissatisfaction costs

In our economic analysis, we capture dissatisfaction costs for both in-store and online customers. In-store customer hassle costs occur in both the current store fulfillment operations that use dedicated pickers to pick online orders, and would also occur with the proposed
policy. We capture possible hassle costs for in-store customers around the picking resources in peak hours when there is more than average (i.e., 192) in-store customer presence in the store due to possible congestion. As a result, given some in-store customers may decide not to return to the store, causing the store to lose profit on sales, we capture the lost profit due to in-store customer hassle in (48) for the dedicated picker case and in (49) for the AMR case. The equation for the AMR case assumes that only non-participating customers (i.e., $1-f$ percent of in-store customers) would face the hassle costs. In our economic analysis, we vary the churn rate (CR) (from 1% to 4%) of these non-participating in-store customers who decide not to return to the store due to this hassle. The sensitivity range of CR was motivated by the average CR in the retail (see Table 7) industry which occurs from multiple sources of customer dissatisfaction. We also consider there is a churn rate when dedicated pickers do store fulfillment (i.e., C0D2), which we fix at 1% in (48).

Lost profit due to in-store customer hassle
$($ Dedicated Picker Case $)=$ Number of in-store customers per week during
peak hours \times Churn rate dedicated case \times
Spending per week per in-store customer \times
Profit margin per item \times Weeks in a year

Lost profit due to in-store customer hassle

$$
\begin{align*}
(\text { AMR case })= & \text { Number of in-store customers per week during } \\
& \text { peak hours } \times(1-f) \times \text { Churn rate } \times \\
& \text { Spending per week per in-store customer } \times \\
& \text { Profit margin per item } \times \text { Weeks in a year } \tag{49}
\end{align*}
$$

We consider online customer dissatisfaction costs on two fronts: lost profit due to unsuccessful item picking during waves, therefore, unable to sell unpicked items and lost profit due to losing future online customers who did not receive all items that they have ordered online, thus, dissatisfied.

Lost profit due to unsuccessful item picking $=$ Number of online orders in a day \times
Operating days per year $\times(1-\rho) \times$
Online basket value
(Mean items per online order
\times Profit margin per item)

Lost profit due to online customer dissatisfaction $=$ Number of online orders in a day \times
Days worked in a year $\times(1-\rho) \times$
$\left(\frac{1}{\text { Mean items per online order }} \times\right.$
Dissatisfied online customers not reordering \times
Online basket value \times Profit margin)

H. 2 Costs for Dedicated Pickers

We utilize (52) to calculate the year-end costs of a C0D2 resource pool. This assumes 2 dedicated pickers are needed for the entire time a store operates. As operations with dedicated pickers do not incur any upfront cost, there is no cost considered at year 0 . Additionally, since we consider wage and benefits increase every year, we calculate the wage increase factor using equation (53) and the benefits increase factor using equation (54).

[^0]Year-end cost $=[$ Number of dedicated pickers \times Operating hours per day \times Operating days per year $\times(($ Wage per hour \times Wage increase factor $)+$ (Benefits per hour \times Benefits increase factor)) + Lost profit due to in-store customer hassle+ Lost profit due to online customer dissatisfaction+ Lost profit due to unsuccessful item picking] \times Discount factor

$$
\begin{equation*}
\text { Wage increase factor }=(1+\text { Wage increase rate })^{\text {Year }} \tag{52}
\end{equation*}
$$

Benefits increase factor $=(1+\text { Benefits increase rate })^{\text {Year }}$

H. 3 Costs for AMR Operation (Purchase Model)

We use (55)-(58) to calculate the costs for the AMR operation when a store purchases AMR technology in year 0 . Here, (55) is only applicable at year 0 , whereas, (56) is used for year 1 onwards. Based on a dedicated picker's wage per hour (\$17.50), the average time for a dedicated picker to pick an item once they arrive in front of the shelf (i.e., s_{v} of 25 seconds), and assuming this is the only task required, this results in $\$ 0.12$ per pick. Thus, we vary the CPP levels around this value. The percent of picks by AMRs is derived from Section 6.6 which refers to a 60% value for the C3D1 resource mix. The lost profit terms in (56) are calculated following (50)-(51). Additionally, the lost profit due to customer hassle is defined by (49), the wage increase factor follows (53), and the benefits increase factor follows (54).

Initial cost (Year 0) $=$ One time deployment fee + One time internal integration cost+ Training cost + (AMR purchase cost \times Number of AMRs)

Year-end costs $=[$ AMR purhase cost \times Number of AMRs \times Maintenance + Number of dedicated pickers \times Hours worked per day \times Days worked in a year $\times(($ Wage per hour \times Wage increase factor $)+$ (Benefits per hour \times Benefit increase factor $))+$ Yearly training cost+ In-store customer compensation+
Lost profit due to in-store customer hassle+
Lost profit due to online customer dissatisfaction+
Lost profit due to unsuccessful item picking $] \times$ Discount factor

In-store customer compensation $=$ Compensation per pick \times Utilization of AMRs
\times Days in a year \times Number of online orders in a day \times Mean items per online order

$$
\begin{align*}
\text { Training cost }= & \text { Number of cross-trained team members for AMR operation } \times \text { Wage per hour } \\
& \text { Required yearly training hours per team member } \times \\
& \text { Wage increase factor } \tag{58}
\end{align*}
$$

H. 4 Costs for AMR Operation (Subscription Model)

Lastly, we use (59)-(60) to calculate the costs for the AMR operation if a store obtains the AMRs via a subscription model. The difference from the purchase model is the store does not have to pay the initial price of the AMRs upfront, resulting in a lower initial cost. However, from year 1 onwards, there is a subscription cost in addition to the cost we considered in the purchase model (56). Similar to the purchase model, the lost profit terms in (60) are calculated following (50)-(51) and (49), the Discount factor follows (47), in-store customer compensation is calculated following (57), and yearly training cost through (58).

$$
\begin{align*}
\text { Initial cost }(\text { Year } 0)= & \text { One time deployment fee }+ \text { Internal integration cost }+ \tag{59}\\
& \text { Training cost }
\end{align*}
$$

$$
\begin{align*}
\text { Year-end costs }= & {[(\text { Monthly subscription cost } \times \text { Number of AMRs } \times 12)+} \\
& (\text { AMR purhase cost } \times \text { Number of AMRs } \times \text { Maintenance })+ \\
& \text { Number of dedicated pickers } \times \text { Hours worked per day } \times \\
& \text { Days worked in a year } \times((\text { Wage per hour } \times \text { Wage increase rate })+ \\
& (\text { Benefits per hour } \times \text { Benefit increase rate }))+ \text { Yearly training cost+ }+ \\
& \text { In-store customer compensation }+ \\
& \text { Lost profit due to in-store customer hassle }+ \\
& \text { Lost profit due to online customer dissatisfaction }+ \\
& \text { Lost profit due to unsuccessful item picking }] \times \text { Discount factor } \tag{60}
\end{align*}
$$

[^0]: ${ }^{1}$ Walmart (2023). How much do Walmart associates make? https://corporate.walmart.com/ askwalmart/how-much-do-walmart-associates-make
 ${ }^{2}$ Bureau of Labor Statistics (2023). Employer costs for employee compensation - June 2023.
 ${ }^{3}$ Excluding two major holidays in the USA
 ${ }^{4}$ Data from Walmart stores found in Google maps
 ${ }^{5}$ Bureau of Labor Statistics (2023). Employment Cost Index - December 2023
 ${ }^{6}$ Marc Wulfraat (2023). Locus Robotics - An Independent Review of Autonomous Robots. https: //mwpvl.com/html/locus_robotics_-_independent_consultant_review.html
 ${ }^{7}$ Lucas Systems (2020). The ROI of autonomous mobile robots in your dc. https://www.lucasware. com/the-roi-of-autonomous-mobile-robots-in-your-dc/
 ${ }^{8}$ Forrester Research (2019). The Total Economic Impact of Locus Robotics.https://www. thenewwarehouse.com/wp-content/uploads/2019/12/Total-Economic-Impact-of-Locus-Robotics_ June_2019F.pdf
 ${ }^{9}$ T. Ozbun (2024). Grocery shopping: U.S. Consumers' Expenditure Per Week 2006-2023. Statista
 ${ }^{10}$ K. Ambrogio and A. Dalkoff, "Retailers and Customers Don't See Eye to Eye on Returns or In-Store Experiences," Oracle Retail, 2019.
 ${ }^{11}$ Grocery Doppio (2023). Q1 2023: State of Digital Grocery Performance Scorecard. https://www.grocerydoppio.com/performance-scorecard/ q1-2023-state-of-digital-grocery-performance-scorecard
 ${ }^{12}$ Walmart (2021). Emphasizing Opportunity, Walmart Moves More Associates to Full Time. https://corporate.walmart.com/news/2021/04/14/ emphasizing-opportunity-walmart-moves-more-associates-to-full-time
 ${ }^{13}$ Bhowmick, J. and Pazour, J. (2024). A connected in-store and online customer data set for omnichannel retail logistics research. In IIE Annual Conference. Proceedings, pages 1-6. Institute of Industrial and Systems Engineers (IISE)
 ${ }^{14}$ An estimation with the help of the data in Table 7
 ${ }^{15}$ nstacart (2017). The instacart online grocery shopping dataset 2017. https://www. instacart.com/datasets/grocery-shopping-2017. Accessed: 2021-01-27
 ${ }^{16}$ Aull, B., Coggins, B., Kohli, S., and Marohn, E. (2022). The state of grocery in north america. McKinsey \& Company.
 ${ }^{17}$ Section 6.6
 ${ }^{18}$ Recurly Research, Churn Rate Benchmarks, Accessed:2024-05-02, https://recurly.com/research/ churn-rate-benchmarks/

