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Abstract

Omnichannel services, such as buy-online-pickup-in-store, curbside pickup, and ship-
from-store, have shifted the order-picking tasks previously completed by in-store cus-
tomers doing their own shopping to the retailer’s responsibility. To fulfill these orders,
many retailers have deployed a store fulfillment strategy, where online orders are picked
from brick-and-mortar retail store shelves. We focus on the design of operations inside
a store where in-store customers collaborate with autonomous mobile robots (AMRs)
to pick online orders. Due to the uncertainty in in-store customers’ availability and
their willingness to participate, the problem of synchronizing in-store customers with
AMRs is highly stochastic. Thus, we model the stochastic order-picking problem with
uncertain synchronization times of in-store customers and AMRs as a Markov Decision
Process to determine how a retailer should dynamically assign tasks to a set of AMRs
and dedicated pickers. We develop a heuristic solution framework that generates a
set of initial assignments and routes for heterogenous picking resources and dynami-
cally updates them as the actual synchronization times between AMRs and in-store
customers unfold. We analyze multiple strategies to generate the initial set of task
assignments and routes as well as update such decisions based on the system state. To
provide guidance on whether the proposed approach is economically and operationally
viable, we conduct extensive computational experiments using actual online grocery
orders and empirical shopping behavior data. We illustrate the feasibility of such a pol-
icy to achieve similar picking performance as the status quo and through an economic
analysis show that deploying dedicated pickers and AMRs aided by in-store customers
in a store environment is economically viable.

Keywords: Dynamic Decision Making, Order Picking, Retail, Markov Decision Process,
Autonomous Mobile Robots

1 Introduction

The retail industry, in general, and the grocery sector in particular, have seen the popularity

of e-commerce rise both for curbside pickup and home delivery (Mayumi Brewster, 2022).

During the COVID-19 stay-at-home orders, about 40% of Americans (or approximately
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39.5 million households) in 2020 tried an online grocery service, resulting in a year-over-

year increase of 193% (Brick Meets Clicks, 2020). Online grocery service demand is at

higher than the pre-pandemic levels (Shen et al., 2022) and is expected to continue growing

in the coming years (Aull et al., 2022). Yet, the industry is currently facing significant

challenges. A store on average achieves a profit margin of $4.40 on a typical $100 basket

of groceries when the in-store customer does their own shopping and these margins become

negative when the store is responsible for picking the items (Aull et al., 2022). Thus, even

without last mile delivery responsibilities, and even after charging a service fee of $4-7, many

stores incur negative margins for their curbside pickup services (Repko, 2020). Due to the

current and projected labor shortages and rising labor costs, more companies are deploying

automated resources (Begley et al., 2019). However, in terms of pick rates, reliability,

product range, flexibility, and customization, robotic piece-level extraction still lags behind

human performance(Pasparakis et al., 2023). Instead, a specific type of collaborative robots

(cobots) that work side by side with humans known as autonomous mobile robots (AMRs)

is commonly deployed for order fulfillment tasks in distribution centers. As shown in Figure

1(b), these AMRs autonomously move around a facility and wait at a pick location, where

humans extract requested items from shelves and put them in the AMR’s order totes.

In this work, we consider the potential to deploy AMRs in a retail store for store ful-

fillment. Store fulfillment, in which the same inventory on store shelves is used for both

online and in-store customers, is commonly deployed by retailers (Eriksson et al., 2022) as

it allows pooling demand from both online and in-store channels, being in closer proximity

to customers, and utilizing a retailer’s existing facilities and supply chain infrastructure.

In the proposed store fulfillment policy, a set of AMRs would travel the shopping aisles,

stopping and waiting in front of store shelves, each displaying on its monitor a request to

pick specific item(s). If an in-store customer wants to help, they can pick the requested

items from store shelves, scan them on the AMR’s scanner, and drop them in the AMR’s

designated tote. Immediately, the AMR’s monitor will show a QR code that a customer

can scan to get compensated via store credit. To meet online order deadlines, stores would

continue to employ dedicated pickers (as they currently are doing now) for order picking

tasks in the retail store. These dedicated pickers would have their own order picking carts

and do not need to interface with the AMRs nor the in-store customers.
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While this is a new concept, we believe such a picking process is plausible because (1)

human picking using AMR technology has been safely and widely adopted in distribution

center environments, (2) as store fulfillment is a common strategy, in-store customers cur-

rently shop in the presence of dedicated pickers fulfilling online orders, (3) Dayarian and

Pazour (2022) explored in-store customers helping pick online orders while shopping for

their own personal items, and collected empirical data to support a high rate of in-store

customers willing to help with picking tasks. In the problem setting studied here, in-store

customers only extract and drop items in an AMR’s designated container, resulting in a

lower effort than the concept studied by Dayarian and Pazour (2022). (4) in-store cus-

tomers would volunteer to participate and only those in-store customers who volunteer to

participate will have to interact with AMRs; (5) the in-store customer interaction effort is

low and given the AMR would be stationary when the in-store customer interacts with it,

the interactions would be similar to using self-checkout stations; (6) it is becoming more

common for in-store customers to interact with automated systems in a store environment.

For instance, Lowebot, is a customer assistance and inventory checking robot at Lowe’s

stores; Marty, is a grocery store hazard detection robot in Stop & Shop stores; and Tally, is

an inventory checking robot at Meijer stores.

By utilizing in-store customers in conjunction with AMRs, this approach can reduce

store fulfillment’s marginal costs because in-store customers will have traveled to the store

and the store’s aisles to conduct their own shopping. Yet, as a new policy, open questions

exist around whether the proposed approach is operationally and economically viable. The

central operational challenge is that the store does not have prior knowledge on when an

in-store customer will arrive to help an AMR, but still must meet online order service

commitments. Thus, a store needs an operational policy to make concurrent assignment

and routing decisions for the set of AMRS and the set of dedicated pickers that balances the

need to meet demand-side service commitments in the face of the uncertainty of participating

in-store customer arrivals to synchronize with AMRs. Economically, a central challenge is

whether such a policy, which requires investments in AMRs, compensation to participating

in-store customers, and may lead to hassle caused to in-store and online customers, is cost-

effective compared to the current policy which deploys dedicated pickers to conduct store

fulfillment.
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The contributions of this work can be summarized as follows: First, we introduce a new

store fulfillment concept that deploys dedicated pickers and AMRs and utilizes a previously

untapped set of resources, in-store customers, to help pick online orders in a store envi-

ronment. Second, we formalize the decision-making process of dynamic resource-to-item

assignments, as well as sequencing (routing) and abandonment decisions of picking resources

in a time-constrained environment as a Markov Decision Process (MDP). Uncertainty arises

due to the random nature of customer arrivals to different parts of the store, making the

time an AMR must wait until a participating in-store customer arrives (referred to as the

synchronization time) stochastic. Third, we develop a heuristic solution framework that

allows for exploration of alternative policy designs in terms of initial sequencing decisions,

abandonment strategies, and picking assignment reallocation, as well as dynamically up-

dating such decisions as new information is revealed. Fourth, we provide insights into the

economic viability and operational design of the proposed store fulfillment concept through

a set of computational experiments based on actual online orders and empirical consumer

shopping behavior data.

2 Literature Review

Order picking with the help of AMRs in distribution centers is an emerging research area

(Fragapane et al., 2021; Azadeh et al., 2019; Boysen et al., 2019; Jacob et al., 2023; Lorson

et al., 2023; Löffler et al., 2023; Schäfer et al., 2023). A recent focus of research has been

on how to design operational policies having AMRs coupled with either humans (Azadeh

et al., 2023; Ghelichi and Kilaru, 2021; Meller et al., 2018; Löffler et al., 2021, 2023; Zou

et al., 2019; Yokota, 2019; Pasparakis et al., 2023; Winkelhaus et al., 2022; Srinivas and

Yu, 2022; Fager et al., 2021; Žulj et al., 2022; Zhang et al., 2021; Zhu et al., 2022) or

with other robotic resources (Lee and Murray, 2019; Wang et al., 2020) to perform order

picking tasks. These papers deploy a wide range of methodologies, primarily deterministic

integer programming models to decide on routing, order batching, zoning, and sequencing

in a warehouse setting. Additionally, existing work has explored tractable heuristic solution

approaches, queuing-based models to capture resource congestion impacts on performance

metrics, simulation models to assess validity of such policies, MDPs to choose between

strategies, and physical lab experiments to understand collaborative behaviors. The most
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closely related paper is a recent one by Löffler et al. (2023) who studies how to route

AMRs and human pickers in a distribution center order fulfillment process. Similar to our

work, they also consider the need for AMRs and human pickers to synchronize, yet, as

both AMRs and human resources are controllable, in contrast to this work, they develop

a static, deterministic integer programming model to make coordinated routing decisions,

and present heuristic methods to solve the problem. To the best of our knowledge, all of

the above referenced papers use AMRs for distribution center order fulfillment, where all

picking resources are controlled by the warehouse and thus, none captures stochastic picking

tasks. While dynamic decision making in a stochastic warehouse environment has been an

area of interest (Boysen et al., 2019; Azadeh et al., 2023), the sources of uncertainty arise

primarily from incoming orders, not from the picking process and thus these works do not

update decisions due to uncertain synchronization times.

Another emerging and related area is research on store fulfillment operations (Hübner

et al., 2022; Zhong et al., 2023; Bayram and Cesaret, 2021). However, operational decisions

inside the store have been largely ignored by past research; exceptions include (MacCarthy

et al., 2019; Masel and Mesa, 2018; Zhang et al., 2019; Zhang and Pazour, 2019; Mou, 2022a;

Difrancesco et al., 2021), but none use in-store customers or AMRs. Only limited research

has explored the intralogistic tasks of order picking in stores (Seghezzi et al., 2022; Pietri

et al., 2021; Neves-Moreira and Amorim, 2023; Mou, 2022b), and all are manual operations

without the use of automation. No previous work explores the use of AMRs in order-

picking processes in a store environment. Related is work that investigates deploying robots

for intralogistics tasks in a store environment for inventory replenishment (Caporaso et al.,

2022). Additionally, crowdsourced order picking has been explored where in-store customers

pick items while doing their own shopping (Dayarian and Pazour, 2022). However, this

paper focuses on the assignment of orders (not routing of a set of resources), nor does it

consider the use of AMRs. Therefore, this is the first paper to consider the use of AMRs for

store fulfillment in a retail setting and is also the first to study AMRs within a crowdsourced

setting. The contribution of this work is thus in modeling and developing a solution approach

for resource dispatching, routing, and abandonment, capturing the salient features of this

unique order fulfillment environment and using these models to determine the operational

and economic viability of the proposed approach.
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3 Problem Statement

We consider a store that receives online orders spontaneously over time. Each online order

consists of a set of items found on the store’s shelves and is expected to be available for

last-mile delivery or curbside pickup at a designated dropoff station, denoted as vp, within a

given service guarantee (e.g., in 2 hours, next day). To fulfill these online order requests, the

store uses a collaborative process where in-store customers extract items from store shelves

and place them in waiting AMRs to transport the picked items back to the dropoff station.

To ensure high service levels, the store also deploys a set of dedicated pickers to help pick

and transport items from store shelves. The store has control over the dedicated pickers and

the AMRs, and can instruct them to complete specific tasks in a specific sequence. This

is in contrast to the in-store customers, who help with the picking process but the store

does not have control over their actions. Thus, a store has a set K of fulfillment resources

available and under their control, K = C ∪D, where C is the set of AMRs and D is the set

of dedicated pickers.

As is common in warehousing order fulfillment operations (Shah and Khanzode, 2017),

the store deploys a wave system, which splits the workday into discrete, equally spaced time

periods, known as waves each of length T . The store fulfillment process is segregated into

three separate work processes, each with its own dedicated resources that run in parallel.

These processes include (1) receiving and dispatching online orders (including performing

a check of requested items versus point-of-sale inventory levels and determining suitable

substitute products in case of out-of-stock items), (2) traveling to, picking, and transporting

requested items from store shelves to a dropoff station, and (3) sorting, packing, quality

control, and interfacing with customers for order pickup. The focus of this paper is on

optimizing the second process step. The store collects online order requests that have arrived

over the previous wave(s) and are made available to be assigned to the set of controllable

picking resources in a future wave based on meeting service deadlines. This means at the

beginning of a wave the store has a known set of items, all with the same urgency that

needs to be retrieved from store shelves and returned to the dropoff station by the end of

the wave (i.e., within the wavelength T ).

The store fulfillment problem using AMRs and dedicated pickers can be defined on a

graph G = {V, E}, where V = V s ∪ vp ∪ vg are the sets of nodes and E are the set of edges
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of the graph. The store has a set of designated stopping points V s where the AMRs will

travel to and from and wait (see Figure 1(a)). Each stopping point covers a specific shelf

area around them, and thus, collectively across all stopping points in the store, all items in

the store are covered by the set of stopping points, V s. All picking resources, k ∈ K, will

start their picking route from the idle station vg, and end their wave’s route at the dropoff

station, vp. The travel times along the edges of the graph depend on the picking resource

type, with tDij and tCij being the travel time of a dedicated picker and a AMR along edge

(i, j) ∈ E , respectively. During a given wave, all stopping points may not need to be visited;

thus, the set of stopping points required to be visited during the current wave is denoted

as V r ⊆ V s. Hence, V̂ = V r ∪ vp ∪ vg is the subset of nodes of graph G that are present in

the targeted wave. The number of items required to be picked from stopping point v ∈ V r

is denoted by nv, and collectively across all V r the number of items required to be picked

in a given wave is denoted by N =
∑

v∈V r nv.

When an AMR k ∈ C reaches a stopping point v ∈ V r, the AMR will stop and wait

for a participating in-store customer’s arrival, which we refer to as waiting time. If a

participating in-store customer arrives at the covered area of a v ∈ V r where an AMR is

waiting, a synchronization of an AMR and in-store customer with the completion of nv

picks occurs. Thus, the wait time of AMR k ∈ C at a stopping point v ∈ V r before being

synchronized with an in-store customer is a random value denoted by ω̄kv. Simultaneously,

the fleet of dedicated pickers is deployed by the store to pick a subset of items in V r and

then transport them to vp, and they do not require synchronization (i.e., ω̄kv = 0 for k ∈ D).

The random service time at a given stopping point v ∈ V r that captures the picking time

per item is denoted by s̄v.

The purpose of the stochastic order-picking problem with uncertain synchronization times

of in-store customers and AMRs is to identify a set of routes starting at vg and ending at

vp for the set of dedicated pickers and the set of AMRs such that the total number of

items picked is maximized and the picking resources are back to vp within the wavelength

T . To achieve this objective, the store adopts a centralized decision-making mechanism to

determine how best to utilize its controllable picking resources during a given wave.
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Figure 1: From left to right (a) example store layout with stopping points (b) Commercially

available AMR collaborative robot (source: Locus Robotics)

4 Modeling as Markov Decision Process

We model our problem setting as a MDP with the objective to maximize the total expected

number of picked items returned back to vp within T , given the set of resources k ∈ K and

uncertain arrival times of in-store customers. We aim to determine, over the horizon of a

wave, a picking policy, which consists of a set of sequential decisions about which AMRs and

which dedicated pickers should be deployed to pick which items, and in what order, when

AMRs should abandon their current stopping point, and when resources should return to

vp.

4.1 Decision Epochs

The system makes a decision based on the updated information at every decision epoch,

which occurs anytime one of the 6 triggering events (τu) in the form of (1) τ I the initial

trigger, which occurs at the beginning of the wave; (2) τ ck when an in-store customer has

dropped nv items into a k ∈ C’s tote at any v ∈ V r; (3) τdk when a dedicated picker k ∈ D

completes picking nv items at any v ∈ V r; (4) τak whenever an AMR k ∈ C needs to consider

abandoning at any v ∈ V r; (5) τ rk whenever any k ∈ K needs to travel to vp to meet the

wave deadline; (6) τ f when all k ∈ K reaches vp. Given a finite number of these events

can occur over the wavelength, we have a finite set of discrete decision epochs, which are

revealed dynamically during a wave. Let E = {e1, e2, ...., e|E| = τ f} be the set of decision

epochs.
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4.2 Rewards

Whenever the system reaches a state se ∈ S at epoch e ∈ E, an action is chosen and

an immediate reward is accrued. This reward, denoted as β(se, α), is a function of two

elements: the state of the system at epoch e and the type of action taken.

4.3 States

The state of the system se ∈ S at decision epoch e ∈ E can be described by a tuple, i.e., se

= 〈te,
(
lke

)
k∈K ,

(
zve

)
v∈V r〉. Element te is the time at which the decision epoch e ∈ E was

triggered, lke is the locations of picking resources k ∈ K in the store at epoch e ∈ E, and

zve is the status of stopping point v ∈ V r at te, holding one of three values: zve = 0 if the

assigned nv items have all been picked at v ∈ V r by time te; zve = 1 if a picking resource

has not been assigned to pick at v ∈ V r by time te; or zve = 2 if a picking resource has been

assigned to pick at v ∈ V r but not yet finished picking by time te.

4.4 Actions

When a new decision epoch, e ∈ E, is triggered, an action α is taken that causes the system

to transition from the current state se to the next state se+1. There are four types of actions:

α = α1 to send the triggered picking resource k ∈ K to a v ∈ V r that has its zve = 1 at any

τ ck , τ
d
k , or τak ; α = α2 to send the triggered picking resource k ∈ K to vp at any τ rk ; α = α3

to send all picking resources to their first assignments at epoch e1 (i.e., τ I); and α = α4

keep the triggered picking resource k ∈ K waiting at current v ∈ V r at any τak . We assume

that no two stopping points v ∈ V r would change their status from zve = 1 to zve = 0

at the same time. Additionally, we assume the set of actions occur assuming all picking

resource(s) have reached their previously made decisions (we do not allow resources en route

to be diverted by an action). Also, actions that assign more than one picking resource to a

stopping point at the same time are prohibited.

4.5 Transition Probabilities

Depending on the state and action, the system transitions from state se at epoch e to another

state, se+1 at epoch e + 1. We break down this transition into two separate steps: (1) a
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post-decision state, and (2) a pre-decision state. First, from se, the system transitions to a

post-decision state sαe reflecting (but not yet reached) three aspects: the new assignment(s)

(i.e., new locations of the picking resources), time when the triggered picking resource will

reach its new location, and the status of v ∈ V r. From the post-decision state sαe , the system

transitions to a pre-decision state se+1 at epoch e + 1 in a probabilistic manner, i.e., the

probability that one of the triggering events (τ ck , τ
d
k , τ

r
k , τ

a
k ) occur before the others. Such

transition probabilities have been categorized and defined in Appendix A.

4.6 Objective Function and Optimal Policy

The objective of our problem is to maximize the number of items picked and transferred

to vp within T . As there are a finite set of states S as well as a finite set of actions at

each decision epoch e, an optimal deterministic Markovian policy is existent (Puterman,

2014). A policy π here can be defined as a sequence of actions for each decision epoch in the

wave. An optimal policy π∗ ∈ Π would therefore take the form of Equation (1) that refers

to achieving the maximum expected sum of rewards given the initial state of se1 where απe

denotes actions following policy π at epoch e.

π∗ = arg maxπ∈ΠE
[ |E|∑
e=e1

β
(
se, α

π
e

)
|se1

]
(1)

5 Solution Approach

MDPs are notorious for being computationally expensive for most practical problems (Ulmer

et al., 2020). Thus, we develop a heuristic solution approach framework that decomposes

the problem into tractable decision stages. This approach also enables us to explore the

impact on picking performance of alternative methods for the different stages (see Section

6 for computational results across the resulting 12 different solution variants).

Our solution approach is designed so all AMRs and dedicated pickers have an initial set

and sequence of stopping points and return times, and AMRs have an expected amount of

time to wait before abandoning their currently assigned stopping point. Due to the high

levels of uncertainty associated with AMR and in-store customer synchronization times, a

key feature of the heuristic is to update these decisions as new information becomes available.

Thus, in subsections that follow, we first describe the approach to initialize the set, sequence,
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wave-time, and abandon triggers of stopping points for each of the resources, and then how

decisions are updated during the wave in the face of the materialized synchronization times.

5.1 Initialization

Figure 2: Initialization block for the heuristic approach

As shown in Figure 2, the initialization block uses a decomposition approach where we

first decide on the assignment of stopping points to the set of resources. We then determine

each resource’s initial sequence of the assigned stopping points. Based on these sequences,

we determine the wave-time triggers for all resources, and the abandon triggers for all AMRs.

Lastly, we deploy the resources to their first assignments.

5.1.1 Determine Initial Picking Assignments

We take a holistic view of the wave’s picking tasks and different resource types to deter-

mine the initial assignment of picking points to resources that (i) balances the expected

workload across picking resources, and (ii) captures that AMRs require different expected

synchronization time for different stopping points, while dedicated pickers require no syn-

chronization time. To do so, at τ I(te = 0), we find the (initial) cluster of stopping points

v ∈ V r that each resource k ∈ K should visit by solving the Linear Integer Program in (4)-

(10) that minimizes the maximum time expected to travel, wait, and pick all items across

the stopping points v ∈ V r and return back to the dropoff station. As minimizing the

exact traveling times within a cluster is computationally expensive, this formulation is mo-

tivated by the MIP-Diameter problem (Sağlam et al., 2006), which minimizes the maximum

traveling distance within a cluster.

Inputs include for each picking resource k ∈ K, their expected waiting time ωkv (an

approximation of ω̄kv with a known distribution), their expected picking time at stopping

point v ∈ V r denoted by svnv (sv is an approximation of s̄v), and a surrogate travel time,

denoted by thkv, which is calculated as the average travel time spent by picking resource
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k ∈ K from a v ∈ V r to all required stopping points and stations V̂ \ {v} using equation

(2) and (3).

thkv =

∑
j∈V̂ \{v} t

C
vj

|V̂ | − 1
∀v ∈ V r, k ∈ C (2) thkv =

∑
j∈V̂ \{v} t

D
vj

|V̂ | − 1
∀v ∈ V r, k ∈ D (3)

We define decision variables xkv having value 1 if picking resource k ∈ K will initially

be assigned to visit v ∈ V r and 0 otherwise. Decision variables tMk express the expected

amount of time by picking resource k ∈ K for their combined waiting, picking, and surrogate

traveling, and decision variable Z∆ expresses the expected amount of time the last resource

will return back to the dropoff station after completing their picking assignments.

min Z∆ (4)

s.t. Z∆ ≥ tMk ; ∀k ∈ K; (5)

tMk =
∑
v∈V r

xkvωkv +
∑
v∈V r

xkvsvnv +
∑
v∈V r

thkvxkv; ∀k ∈ K; (6)

∑
k∈K

xkv = 1; ∀v ∈ V r; (7)

xkv ∈ {0, 1}; ∀v ∈ V r, k ∈ K; (8)

tMk ≥ 0; ∀k ∈ K; (9)

Z∆ ≥ 0. (10)

The objective function in (4) minimizes the maximum expected pick completion time

across all resources by enforcing in (5) that Z∆ be greater than or equal to tMk ∀k ∈ K.

The expected completion time of each resource is a function of which v ∈ V r are assigned

to which resource, as enforced in (6). Constraints (7) ensure that each stopping point is

assigned to one and only one picking resource. Lastly, constraints set (8) ensure that all

xkv hold only binary values, constraints set (9) and (10) ensures non-negative values. After

solving (4) - (10), we define the initial non-sequenced assignments of stopping points for

each picking resource k ∈ K, denoted by V Λ
k , using (11).

V Λ
k = {v ∈ V r|xkv = 1} ∀k ∈ K (11)
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5.1.2 Determine Initial Sequences

We consider two alternatives to determine the initial sequence of the assignments in V Λ
k ∀k ∈

K. The first one prioritizes minimizing travel time ∀k ∈ K and the second alternative pri-

oritizes visiting lower synchronization time points earlier ∀k ∈ C.

Alternative 1: TSP-Based: The first alternative minimizes the travel time for each

k ∈ K by solving a separate Traveling Salesman Problem (TSP) that sequences V Λ
k in terms

of the minimum travel time of their route that starts at vg and ends at vp.

Alternative 2: Ranking-Based: The ranking-based alternative sequences stopping

points for AMRs in a descending manner of bvnv (or equivalently ascending order of expected

wait times per pick) for each v ∈ V Λ
k ∀k ∈ C. Because all dedicated pickers have zero wait

time, their sequences are determined using a TSP-based approach (similar to alternative 1).

For both alternatives, the output is a sequenced set of stopping points denoted by Rk(te)

= {Rk1(te), Rk2(te), ...}∀k ∈ K, where Rki(te) is the ith stopping point in the sequence

updated at te. We also define θk(te) as the current assignment for resource k updated at te

in (12).

θk(te) = Rk1(te) ∀k ∈ K (12)

5.1.3 Determine Initial Wave-Time Triggers

We set the wave time triggers for each picking resource k ∈ K so that all picking resources

return to the dropoff station, vp, by T but no earlier (unless all items have been picked).

To do this, we denote the wave-time trigger for picking resource k ∈ K updated at time te

as τ rk (te). This is set using equation (13) and (14), where tCθp and tDθp are the travel time

required from the current assignment θk(te) to vp for an AMR (tCθp), and a dedicated picker

(tDθp), respectively.

τ rk (te) = T − (tCθp) ∀k ∈ C (13) τ rk (te) = T − (tDθp) ∀k ∈ D (14)
The corresponding picking resource is sent to the dropoff station to ensure it arrives

there by the wavelength. Thus, when the time τ rk (te) is reached at epoch e+ 1, θk(te+1) is

set to vp.
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5.1.4 Determine Abandon Policy Triggers

Due to stochasticity in synchronization times, an AMR might end up waiting for a long

period of time, which reduces the available time to retrieve the remaining items in the

AMR’s sequence. To mitigate this risk, we create an abandonment policy, where a AMR

may abandon their current point because leaving and going to the next stopping point

provides a higher expected value of items picked and returned to the vp by T . To quantify

the value of such an abandon policy, we explore two solution approach variants: one with

and one without an abandon policy.

Alternative 1: Using Abandon Policy

To decide on the maximum waiting time a given AMR k ∈ C should continue waiting at

their current stopping point θk(te), we develop a constrained optimization model that is

solved independently for each k ∈ C. The decision variables are the allowable waiting times

at stopping point v ∈ Rk(te) denoted as tϵv. Input parameters are nv, T , and te.

max
∑

v∈Rk(te)

Fvnv (15)

s.t.
∑

v∈Rk(te)

tϵv ≤ T − te; (16)

tϵv ≥ 0; ∀v ∈ Rk(te). (17)

The objective function in (15) maximizes the expected number of items picked and

returned given the remaining time in the wave. Here, Fv denotes a function to calculate the

probability of at least one participating customer showing up within tϵv amount of time. In

(16), the total waiting allowed for all stopping points remaining in the resource’s sequence

is the time remaining in the wave. Lastly, constraints (17) enforce a non-negative waiting

time at each v ∈ Rk(te). Thus, at τ I , we solve (15)-(17) for all k ∈ C and set the abandon

trigger following equation (18).

τak (te) = te + tϵθk(te) ∀k ∈ C (18)

Alternative 2: No Abandon Policy: When the framework does not use an abandon

policy, we simply set the initial abandon triggers to the wavelength (i.e., τak (te) = T ∀k ∈

C), and do not update them during the wave.
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5.1.5 Deploy Resources

The last step in initialization is to send all resources k ∈ K to their first assigned point,

θk(τ
I). This is action α3 which occurs at epoch e1. Then the solution approach waits for a

new triggering event.

5.2 Updating Decisions

Figure 3: Updating decisions block for the heuristic approach

Whenever any triggering event occurs, we update decisions depending on which trig-

gering event was observed (see Figure 3). We denote the triggered resource at time te as

kψ(te).

5.2.1 Triggered by a Pick Completion (τ ck or τdk )

After a pick completion trigger, the approach considers whether or not to move not-yet

visited picking locations among the set of resources. If the system reaches a pick completion

trigger (i.e., τu = τ ck or τdk for any k ∈ K) at epoch e ∈ E, we first remove the picked

stopping point from the sequence of kψ and leave the other resources’ sequences as is. This

results in the pre-decision sequences Rq
k(te) given in equation (19).

Rq
k(te) =


Rk(te−1) \ {θk(te−1)} if k = kψ

Rk(te−1) if k ̸= kψ
(19)

Next, we follow the below-mentioned steps to transition from pre-decision sequences,

Rq
k(te) to post-decision sequence, Rk(te).
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Step 1: Using equation (20) and (21), we calculate the expected pick completion time,

tσk , for each k ∈ K, which is the sum of the travel time, the expected waiting time, and

the expected picking time at each v ∈ Rq
k(te), added to the epoch’s trigger time te. Let,

Rq
kN (te) denote the last stopping point to visit in the sequence of k ∈ K. Also, we calculate

tQk , the slack time for each k ∈ K, using equation (22).

tσk =

Rq
k,N−1(te)∑
i=Rq

k1(te)

Rq
kN (te)∑

j=Rq
k2(te)

tCij +
∑

v∈Rq
k(te)

ωkv +
∑

v∈Rq
k(te)

svnv + te ∀k ∈ C (20)

tσk =

Rq
k,N−1(te)∑
i=Rq

k1(te)

Rq
kN (te)∑

j=Rq
k2(te)

tDij +
∑

v∈Rq
k(te)

ωkv +
∑

v∈Rq
k(te)

svnv + te ∀k ∈ D (21)

tQk = max
k∈K

(tσk) − tσk ∀k ∈ K (22)

Step 2: Identify two disjoint sets of resources: (i) resources to consider adding stopping

points (denoted as the set KH) and (ii) resources to consider removing stopping points

(denoted as the set Km). Any resource not in Km are resources with the potential for add

stopping point(s), which we define as KH = K \ Km. The associated stopping points in

the sequences of Km is denoted by V m and defined by V m =
⋃

k∈Km

Rq
k(te) and the stopping

points of KH is denoted by V H and defined by V H =
⋃

k∈KH

Rq
k(te)

Km =


argmax
k∈K

(tσk) if |{k ∈ K : tσk > T}| = 0

{k ∈ K|tσk > T} if |{k ∈ K : tσk > T}| ≥ 1

(23)

Step 3: Define set G which represents the set of detour positions within each sequence

of a resource k ∈ KH . For instance, for any k ∈ KH , the first detour position will be in

between Rq
k1(te) and Rq

k2(te).

Step 4: Solve the multi-objective Mixed-Integer Linear Programming (MILP) model

in (24) to (34) to determine the decision variable values: (i) xij which is 1 if stopping point

i ∈ V m is inserted into position j ∈ G and 0 otherwise; (ii) tϕk which denotes the updated

expected pick completion time for picking resource k ∈ K; and (iii) ZΓ which denotes the

maximum value among all tϕk . Input parameters are Bjk, which is 1 if stopping point j ∈ G

is in the sequence of k ∈ KH and 0 otherwise, t+ij which expresses the amount of additional
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expected time to account for adding stopping point i ∈ V m in the position j ∈ G, (i.e.,

the expected detour time) which includes additional traveling, waiting and picking time

after insertion, and t−ik which denotes the amount of expected pick completion time to be

deducted from the sequence of picking resource k ∈ Km if stopping point i ∈ V m is moved

to another resource’s sequence.

min ZΓ (24)

min
∑
k∈K

tϕk (25)

s.t.
∑
i∈Vm

∑
j∈G

xijt
+
ijBjk ≤ tQk ; ∀k ∈ KH ; (26)

∑
i∈Vm

xij ≤ 1; ∀j ∈ G; (27)

∑
j∈G

xij ≤ 1; ∀i ∈ V m; (28)

∑
i∈Vm

∑
j∈G

xij ≤ 1; ; (29)

tϕk = tσk +
∑
i∈Vm

∑
j∈G

xijt
+
ijBjk; ∀k ∈ KH ; (30)

tϕk = tσk −
∑
i∈Vm

∑
j∈G

xijt
−
ik; ∀k ∈ Km; (31)

tϕk ≤ ZΓ; ∀k ∈ K; (32)

tϕk ≥ 0; ; (33)

ZΓ ≥ 0. (34)

The primary objective function (24) minimizes ZΓ, which in conjunction with constraint

set (32) minimizes the maximum tϕk . When multiple solutions achieve the same best primary

objective function value, then we prioritize solutions using the secondary objective function

(25), which minimizes the sum of all tϕk . Constraint set (26) ensures that the expected

pick completion time addition to picking resource k ∈ KH does not exceed the limit of

tQk . Constraint set (27) ensures that each detour position is filled by at most one stopping

point from V m. Similarly, constraints set (28) ensures that each stopping point in V m

is reallocated into at most one detour position. The set of constraints (29) limits the

amount of total reallocations performed to only one and this constraint is our source of

creating alternative methods. The updated expected pick completion time is calculated in
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constraint set (30) for the resources in KH and (31) for resources in Km. Lastly, inequalities

(33) and (34) ensure non-negative values of decision variables. In our solution framework,

we consider three different alternatives: Alternative 1: S: Single Reallocation: We

use constraints (29) to limit the total number of reallocations to one; Alternative 2:

M: Multiple Insertion: We do not use constraints (29) to allow for more than one

reallocations; Alternative 3: Z: Zero Updates: No reallocations.

After solving, the MILP (24) - (34), we get the optimal values of xij . For each values of

xij = 1, we perform two operations: (i) we insert i ∈ V m to the position of j ∈ G and (ii) we

remove i ∈ V m from the corresponding sequence of k ∈ Km to reconstruct the pre-decision

sequences, Rq
k(te) ∀k ∈ K, and achieve post-decision sequences Rk(te) ∀k ∈ K. Lastly, we

update the abandon triggers τak (te)∀k ∈ C where Rk(te) ̸= Rq
k(te) by solving the constrained

optimization model in (15) - (17) and then set τak (te) following equation (18). Additionally,

the wave-time triggers τ rk (te) for kψ(te) are also updated following equation (35) where γ is

the stopping point the picking resource has completed picking.

τ rk (te) =



T − (tCθp) ∀k ∈ C if te + tCγθ + tCθp + sθ < T

te ∀k ∈ C if te + tCγθ + tCθp + sθ ≥ T

T − (tDθp) ∀k ∈ D if te + tDγθ + tDθp + sθ < T

te ∀k ∈ D if te + tDγθ + tDθp + sθ ≥ T

(35)

5.2.2 Triggered by wave-time (τ rk ), abandon (τak (te)), or pick finish (τf ) trig-

ger

Whenever the picking system reaches a wave-time, abandon, or pick finish trigger, we also

make new decisions, which are described in Appendix B.

6 Computational Experiments

We design our computational experiments to answer questions a store might have prior

to deploying the proposed store fulfillment strategy: (1) How much advantage is there to

deploying dynamic vs static assignment policies? (2) In which situations is there value in a

store deploying an AMR abandon policy? (3) How does the allowed number of reallocation
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of stopping points impact picking performance? (4) How does the participation rate of

in-store customers affect such policies? (5) How are picking tasks distributed among the

dedicated pickers and the AMRs? (6) Are our solution approaches computationally tractable

for decision-making in practical settings? (7) Which policy should a store utilize? (8) How

many AMRs are needed to replace one dedicated picker? And lastly, (9) Is the proposed

approach economically viable?

To answer these questions, we evaluate the performance of our policy variants on a

set of computational experiments that integrate actual online order data, store layouts

and empirical consumer shopping behavior data. Our primary performance indicator is

calculated by ρ = nP

N representing the percentage of items released at the beginning of the

wave that are picked and returned back to the vp by the end of the wave. Here, nP denotes

the number of total items picked and returned to vp within T across all resources. We

use a three-letter acronym to denote the policy variants, with the first letter referring to

the initial sequencing alternative (R - Ranking, T - TSP) (Section 5.1.2), the second letter

for abandon policy (A - Abandon policy, N - No abandon policy) (Section 5.1.4), and the

third letter for the updating alternative (S - Single Insertion, M - Multiple Insertion, Z -

Zero updates) (Section 5.2.1). This leads to 12 different policy variants (See Appendix C).

Notably, the variants ending with NZ are static variants that make initial decisions at the

beginning of the wave and do not update these decisions throughout the wave.

The computational experiments use the grocery store layout described in Hui et al.

(2009), and empirical online order data from Instacart (2017). We map the product cate-

gories in the Instacart data set to the zones in Hui et al. (2009)’s store layout, and assume

each of the 134 product categories corresponds to a stopping point (i.e., |V s| = 134) (see

Appendix D). We set 0.6 m/s (Lee and Murray, 2019) as the traveling speed of the dedicated

human pickers traveling with a picking cart. For the AMRs, although they are operated

at a higher traveling speed in a warehouse environment, as our AMRs will be operating in

a retail environment, we set a low 0.4 m/s as the average AMR traveling speed. Combin-

ing these speeds with the layout and distances in Hui et al. (2009), we obtain tCij and tDij .

Furthermore, we consider the mean per item picking time to be the same for all product

categories and set sv = 25 seconds ∀v ∈ V s,∀k ∈ K, which captures both the searching and

picking time once a dedicated or in-store customer is at the stopping point (Zhang et al.,
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2023; Tompkins et al., 2010). Finally, we set the wavelength to be 30 minutes, i.e., T = 1800

seconds.

We generate 10 different order profile instances (see Appendix E), using actual online

order data from Instacart (2017). These instances represent multiple different orders that

have been assigned to be picked in a wave. The instances have varying levels of items to

be picked, and we arranged them in ascending order of N (i.e., instance 1 has the lowest

N and instance 10 the highest). In addition to differences in variations in the number of

items to pick N , each instance differs in the set of stopping points to be visited (V r) and

the number of items to be picked from each stopping point (nv). The mean arrival rates

of in-store customers willing to help with fulfillment at stopping point v ∈ V s, denoted

by λv is given in (36). This assumes in-store customers arrive at the store and then visit

subsequent stopping points for their own shopping following a Poisson process. Here, nζ is

the average number of customer arrivals to the store, bv is the average purchase rate by in-

store customers at stopping point v ∈ V r, and f denotes the estimated average participation

rate from in-store customers in helping the AMRs. We use (37) to estimate the expected

waiting time for an AMR at a stopping point, ωkv, which also relies on input dv, the average

dwell time of in-store customers at the area covered by v ∈ V r. Here, nζ is estimated to

be about 192 customers per hour on average for Walmart stores (Bhowmick and Pazour,

2024), and bv and dv are estimated from empirical data in Hui et al. (2009).

λv =
nζfbv
T

∀v ∈ V r (36) ωkv =
1

λv
− dv ∀v ∈ V r, k ∈ K (37)

Thus, we transform Fv in (15) in the abandon policy as Fv = 1 − eλvt
ϵ
v which is the

Poisson Cumulative Distribution Function for at least one participating in-store customer

showing up. This makes (15)-(17) a non-linear programming model, which we solve using

the Sequential Least Squares Programming (SLSQP) method. This gradient-based method

requires an initial solution, which we set using equation (38).

tηv =
( bvnv∑

v∈Rk(te)
bvnv

)
(T − te) ∀v ∈ Rk(te) (38)

While the rate of in-store customer participation is unknown, a survey in Dayarian and

Pazour (2022) found there is general interest from a high rate of in-store customers to

participate in crowdsourced picking opportunities. We consider different rates of partic-

ipating customers, specifically, considering 100, 125, 150, and 175 expected participating
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customers out of the 192 mean arrival of customers to the store. This results in 4 levels

of f = 52%, 65%, 78%, and 91%. For each level of f , we generate 100 random instances

of in-store customer arrival to each v ∈ V s. We solve TSPs for AMRs (Section 5.1.2) fol-

lowing a column generation method where at each iteration a master problem as well as a

subproblem is solved optimally following a bidirectional labeling algorithm with dynamic

halfway points (Tilk et al., 2017) which had quick convergence. As dedicated pickers get

assigned more v ∈ V r compared to AMRs as a result of no waiting time, following the same

method had slow convergence. Thus, we followed a compound method where we take the

best result out of an algorithm described by Santini et al. (2018) and Clarke and Wright

saving algorithm (Clarke and Wright, 1964) to determine the initial sequence for dedicated

pickers. Lastly, we ran our experiments on a computer with processor Intel(R) Core(TM)

i7-10510U CPU @1.80GHz to 2.30 GHz, 32.0 Gb of memory, Windows 11 Pro 64-bit, solver

version Gurobi 10.0.1, and Python 3.11.5.

6.1 Benchmarks

For comparison purposes, we provide the pick performance achieved when a store does not

deploy any AMRs, but instead has 1, 2, 3, or 4 dedication pickers (denoted as a resource mix

C0D1, C0D2, C0D3, and C0D4, respectively). To determine the results with only dedicated

pickers, we determine the initial picking assignments as described in Section 5.1.1 and then

sequence them using the TSP-based initial sequencing policy in Section 5.1.2. These deci-

sions do not require updating because, with dedicated pickers, the work is controllable and

does not change over the wave. As shown in Table 1, 1 dedicated picker (C0D1) is unable to

achieve ρ = 100% in any of the instances. As we increase the number of dedicated pickers

we can achieve ρ = 100% for the lower N instances only. To achieve ρ = 100% across all

instances requires 4 dedicated pickers. To deploy the same total number of resources and

to answer our first seven questions, in the next subsections we utilize a resource mix with

3 AMRs and 1 dedicated picker (i.e., a C3D1 mix). And in Table 1 we also display the

average percent picked (i.e., ρ) across each of the 10 instances, and for each of 12 variants.
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K
C0D1 C0D2 C0D3 C0D4

C3D1

Instances RAM RAS RAZ RNM RNS RNZ TAM TAS TAZ TNM TNS TNZ

1 75.00% 100.00% 100.00% 100.00% 99.27% 99.33% 93.22% 99.23% 99.30% 93.22% 95.52% 95.48% 90.60% 94.98% 94.89% 90.05%

2 61.11% 100.00% 100.00% 100.00% 99.58% 99.65% 95.42% 99.56% 99.65% 95.42% 96.30% 96.47% 93.52% 96.29% 96.47% 93.57%

3 62.96% 95.06% 100.00% 100.00% 96.77% 98.21% 91.11% 96.77% 98.21% 91.11% 93.72% 93.65% 87.81% 93.60% 94.02% 87.77%

4 64.71% 95.29% 100.00% 100.00% 94.78% 96.55% 87.75% 94.59% 96.48% 87.75% 88.30% 89.55% 77.26% 87.64% 88.52% 75.44%

5 49.44% 94.38% 100.00% 100.00% 95.15% 96.88% 86.84% 95.13% 96.85% 86.84% 94.76% 93.80% 81.35% 94.66% 96.12% 80.10%

6 60.00% 92.00% 100.00% 100.00% 92.73% 94.54% 86.33% 92.69% 94.50% 86.33% 92.41% 86.00% 79.87% 92.15% 90.21% 78.90%

7 44.34% 84.91% 100.00% 100.00% 84.36% 85.77% 78.08% 84.28% 85.74% 78.08% 81.03% 81.50% 70.97% 80.87% 80.75% 70.00%

8 54.70% 85.47% 100.00% 100.00% 91.93% 93.48% 84.43% 91.90% 93.45% 84.43% 88.79% 90.61% 75.44% 88.67% 90.41% 74.57%

9 44.00% 74.40% 96.80% 100.00% 81.39% 81.37% 81.52% 81.08% 81.16% 81.52% 78.48% 76.60% 73.34% 77.75% 76.51% 71.34%

10 41.35% 74.44% 95.49% 100.00% 78.70% 81.81% 77.20% 78.58% 81.72% 77.20% 73.79% 71.58% 71.33% 73.32% 72.75% 70.14%

Overall 55.76% 89.60% 99.64% 100.00% 91.46% 92.76% 86.19% 91.38% 92.71% 86.19% 88.31% 87.52% 80.15% 87.99% 88.07% 79.19%

Table 1: Average percent picked (ρ) for dedicated only benchmark policies and for the 12

solution variants with 3 AMRs and 1 dedicated picker.

6.2 Effect of a Dynamic vs. a Static Policy

First, we explore the impact of a store dynamically updating its resource allocation decisions

within a wave. To do so, in Figure 4(a), we display the difference in the performance of

a dynamic policy (i.e., the variants that end in either S or M which make updates after a

pick completion trigger τ ck or τdk ) to their static counterpart that make and fix decisions at

the beginning of the wave (i.e., the variants that end in Z). A positive difference means the

dynamic reallocation policy performs better than its static counterpart. In Figure 4(a), all

differences are positive, which means that a dynamic update of resource allocation is always

beneficial. On average, a dynamic approach can provide improvements of 5.10% (across all

instances) and is more valuable when a TSP-based initial sequencing policy is used versus a

ranking-based initial sequencing policy. In addition to variant influences, the characteristics

of the instances also influence the improvement values, and we find that improvement across

all instances can range from 0.25% to 16.02%.

INSIGHT 1: Picking performance rates can be increased on average by 5.10% by dynam-

ically updating decisions at each pick completion triggering event, rather than only making

assignment decisions at the beginning of each wave, and the improvements are more pro-

nounced for policies that use a TSP-based initial sequencing policy rather than a ranking-

based one.
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Figure 4: From left to right, change in ρ of (a) dynamically updating resource allocations,

and (b) using an AMR abandon policy.

6.3 Effect of AMR Abandon Policy

In Figure 4(b) we plot the improvement of performance from policies with an abandonment

policy (second letter A) minus those without an abandonment policy (second letter N).

For the R-variants, the decision to abandon or not has little impact on ρ. However, for

the T-variants the impact is higher and the highest positive impact is achieved for TAZ-

TNZ (with around a 0.95% average improvement). Such performance is significantly more

efficient if the abandon policy is coupled with a dynamic reallocation after pick completion

trigger policy (i.e., S or M) as TAM and TAS both have higher ρ than TAZ in Table 1. The

number of abandon triggers as well as abandonment events are low in general, but more

abandonment events occur for T-variants (TAZ-3578, TAM-884, TAS - 762) than R-variants

(RAM - 775, RAS - 420, RAZ - 0). The numbers are for total abandonment events across all

instances, which represents 4,000 waves, and thus, even the variant with the highest number

of abandonment events had fewer than one event per wave.

INSIGHT 2: An AMR abandonment policy impacts the picking performance if the store

deploys resources in a way that prioritizes minimizing travel distances (e.g., for policies

using TSP for initial sequencing) and when such abandonment policies are combined with

updating resource allocation after pick completion events. Yet, if a store deploys resources

that prioritize AMR synchronization times, an abandonment policy is so seldom needed that

its implementation is likely not practically warranted.

23



6.4 Effect of Number of Reallocations at Pick Completion Trigger

Figure 5: Effect of re-

allocation number at

pick completion trigger

for C3D1

Next, we explore the impact on pick performance of allowing single

versus multiple reallocations of stopping points among picking re-

sources after a pick completion trigger, i.e., after a τ ck or τdk trigger.

This is captured by the third letter in our variants, where a single

insertion (S) allows at most one stopping point to be moved from

a picking resource to another picking resource (see (29)), whereas

(M) allows unlimited reallocations (as (29) is removed from the

optimization model). To capture the effect of these contrasting

policies we plot in Figure 5 the average ρ of the single(S) variant

minus its multiple(M) counterpart variant; thus, positive values

mean the S-variant performed better than its M-variant counter-

part. S-variants perform better when coupled with ranking-based

initial sequencing. Yet, multiple insertions are preferred when cou-

pled with a TSP-based initial sequencing and an abandon policy (TAS-TAM). In the case

of no abandonment policy and a TSP-based initial sequencing (TNS-TNM), multiple and

single reallocations perform similarly.

INSIGHT 3: Exchanging only a single picking point among resources after a pick com-

pletion trigger provides performance benefits compared to multiple reallocation alternatives

when coupled with ranking-based initial sequencing. On the contrary, allowing multiple pick-

ing points to be exchanged is beneficial after a pick completion trigger if coupled with a

TSP-based initial sequencing approach and an AMR abandon policy.

6.5 Effect of Participation Rate of In-Store Customers

In this section, we explore the impact of participating in-store customers on the variants’

achieved picking performance. Table 2 breaks down ρ by participation rate. As the rate of

participating customers increases, the picking rate also increases. And for the R-variants

with dynamic reallocation policies after pick completion trigger (RAS, RAM, RNS, RNM),

we observe an increase of picking performance as f increases. However, for the other 8

variants when f = 91% the ρ values decrease slightly compared to f = 78%. For variants

prioritizing minimizing traveling times or ones that do not make dynamic updates (i.e.,
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reallocations), with such high participation rates, their decisions are made expecting a low

average AMR synchronization time, but due to the uncertainty in the system, this, in many

instances, is too optimistic, resulting in lower average picking performance. However, when

R-variants are coupled with dynamic reallocation of stopping points, this risk is avoided

and so increased expected participation rates, does not hurt ρ values.

f RAM RAS RAZ RNM RNS RNZ TAM TAS TAZ TNM TNS TNZ

52% 88.89% 90.00% 85.31% 88.84% 89.95% 85.31% 83.21% 82.45% 72.55% 82.90% 82.01% 71.75%

65% 90.52% 92.04% 86.19% 90.50% 91.99% 86.19% 86.69% 85.95% 79.66% 86.36% 86.77% 78.95%

78% 92.69% 94.32% 87.12% 92.55% 94.28% 87.12% 92.19% 91.32% 85.43% 92.01% 92.32% 84.66%

91% 93.76% 94.67% 86.14% 93.63% 94.59% 86.14% 91.15% 90.37% 82.97% 90.69% 91.17% 81.39%

Table 2: Effect of increasing participation rate across variants

INSIGHT 4: Ranking-based initial sequencing policies with dynamic reallocation methods

are recommended for high in-store customer participation rates.

6.6 Workload Distribution Among Resources

Figure 6: Utilization of AMRs across

all variants for C3D1 mix

Next, to better understand how AMRs are utilized,

we explore how work is distributed among the dedi-

cated picker and the AMRs. To do so, in Figure 6,

we plot the AMR’s picking utilization, which is the

ratio of items picked by all k ∈ C and the total items

picked in a wave by all k ∈ K, and the AMR’s vis-

iting utilization, which is the ratio of v ∈ V r visited

by all k ∈ C and all v ∈ V r visited by all k ∈ K.

The complement of these values is the utilization for

the single dedicated resource. Across the variants,

the three AMRs were used to pick around 60% of all items by visiting around 40% of the

stopping points. As our variants prioritize AMRs being assigned to stopping points with

high number of picks and low expected waiting time, across all variants, AMR’s picking

utilization is higher than its visiting utilization. This leads to our next insight:

INSIGHT 5: Stores can expect a significant amount of item picking done by AMRs

synchronizing with in-store customers: on average, across our experiments, three AMRs
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picked around 60% of the items, with the dedicated picker’s workload the remaining 40%.

6.7 Computational Time

We capture the computational time in seconds for five decision stages - clustering, sequenc-

ing, pick completion trigger, abandon trigger, and wave-time trigger (see Appendix F for

boxplot). Except for sequencing, the other four stages gets solved under a second, regard-

less of variant type. The sequencing stage requires the highest computational effort and

there are large differences in computational time based on which variant is used. Even with

sequential computations for each resource, the computational time for sequencing is less

than 7 seconds for the R-variants, and less than 14 seconds for the T-variants. If further

reductions are needed, parallel processing across resources can further reduce computational

times.

INSIGHT 6: The proposed solution approaches are computationally tractable for deploy-

ment in practical settings.

6.8 Recommended Policy Variants

RAS achieves the highest average pick rate and is the best variant in 9 out of 10 instances

(see Table 1). This is a policy that creates initial AMR sequences based on ranking stopping

points in descending order of expected per-pick waiting times, uses an abandonment pol-

icy, and reallocates the best single stopping point dynamically. The R-variants consistently

achieve improved ρ values compared to their counterpart T-variants, with average improve-

ments ranging from 0.32% to 12.31% across the instances. As previously discussed, the

store can expect a higher pick rate with this policy when there are higher rates of customers

willing to participate or more customers in the store.

INSIGHT 7: AMR ranking-based initial sequencing policies, where waiting time per

pick is arranged in an ascending manner, results in higher pick rates than ones based on

minimizing total travel time. Specifically, the recommended policy variant is where initial

sequencing is done through a ranking-based approach coupled with use of an abandon policy

and single reallocation of stopping points at pick completion events.

Thus, in the remaining computational experiments, we use the best-performing variant,

RAS.
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6.9 Reduction in Labor Requirements with AMRs

While a store should not expect to achieve the same level of performance by replacing a

dedicated picker with an AMR (due to slower travel times and stochastic synchronization

times), stores can expect high performance in systems where multiple AMRs augment the

work of a single dedicated picker (see Table 1).

Figure 7: Pick performance compar-

ison with and without AMRs

Our next set of experiments is designed to deter-

mine how many AMRs are needed to work with a

single dedicated worker to achieve the same level of

ρ as a system with 2 dedicated pickers but no AMRs

(i.e., with C0D2). We run additional experiments de-

ploying the RAS variant with the previously defined

10 order profile instances, considering the 4 f levels,

and for 100 different customer arrival patterns. Fig-

ure 7 plots ρ for different AMR levels and different

in-store customer rates f . As we increase the number of AMRs to assist with the picking

task of one dedicated picker, the ρ value increases. A system with 2 dedicated pickers (and

no AMRs) achieved ρ = 87.45%. This performance can be matched with one less dedicated

picker and 2 AMRs if f = 91% or with 3 AMRs if participating rates are lower. A similar

observation about C3D1 achieving equivalent performance can also be made by looking at

ρ values across 10 instances (see Appendix G)

INSIGHT 8: Three AMRs and a single dedicated picker can achieve equivalent picking

performance as two dedicated pickers.

6.10 Economic Analysis

To determine whether the proposed approach is economically viable, in this section we

conduct an economic analysis comparing the risk-adjusted cumulative costs of deploying a

C3D1 resource mix instead of the status quo store fulfillment policy with two dedicated

pickers (a C0D2 resource mix). We consider two AMR investment scenarios: (i) a purchase

model, where the store purchases the AMR upfront and (ii) a subscription model. Our

analysis captures in Year 0, initial costs of a store purchasing AMRs (for the purchasing

model) and initial deployment, training, and integration costs. Annual costs include AMR
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Figure 8: Economic analysis with sensitivity levels of compensation levels, churn rate, and

participation levels for purchase and subscription based model.

maintenance, AMR subscription fees (for the subscription model), training costs, dedicated

pickers labor costs, participating in-store customer compensation costs, non-participating

in-store customer churn rate costs, and online customer dissatisfaction costs. For the dedi-

cated picker case, we capture annual dedicated workers’ labor costs, in-store customer churn

rate costs, and online customer dissatisfaction costs. Data sources and further details are

provided in Appendix H.

We conduct a one-at-a-time sensitivity analysis with three parameters: Compensation

Per Pick (CPP), Churn Rate (CR), and participation level (f). We explore four levels of

CPP for participating in-store customers: $0.06, $0.12, $0.18, $0.24; four levels of CR of

non-participating customers: 1%, 2%, 3%, and 4%; and four levels of f shown in Table 2.

We consider base values of CR = 1%, CPP = $0.12 (which is estimated to be compensation

based on dedicated picker wages, see Appendix H), and f = 78% such that two of these

are always fixed while we vary the other parameter in Figure 8. Figures 8a and 8d show

that a purchase model achieves positive cost savings after 2, 2, 3, and 3 years, respectively

for CPP of $0.06, $0.12, $0.18, and $0.24. Whereas, a subscription model achieves cost

savings after 2, 2, 2, and 3 years, respectively, for the same ascending CPP levels, achieving
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cost savings at equal times or faster than the purchase model with a lower risk-adjusted

cumulative cost per year. Similar findings are seen with different levels of CR and f . In

Figures 8b and 8e, a positive cost saving is achieved after 2 years with the subscription

model for all churn rate CR levels except for CR = 4% (which occurs after 3 years). For

the purchase model, a positive saving is achieved after 3 years for all CR levels except for

CR = 1%, which occurs after 2 years. Figures 8c and 8d show that as the store incurs more

participation, faster positive cost savings are achieved.

INSIGHT 9: The proposed policy is an economically viable solution even when stores

purchase AMRs and when in-store customers are compensated for picking at similar wages

to dedicated pickers. Further, faster positive savings can be achieved with a subscription-

based model and higher participation rates.

7 Conclusions and Future Research Directions

To address the challenges associated with the increasing demand for online grocery services,

we propose an order-picking policy where AMRs synchronize with stochastically arriving

in-store customers to augment the picking tasks of manual dedicated pickers. After mod-

eling the problem as an MDP, we design a heuristic solution framework. Computational

experiments using actual online grocery order and empirical shopping behavior data illus-

trate the feasibility of such a policy to achieve similar picking performance as the status quo

(which is to deploy a limited set of dedicated pickers). However, performance varies based

on the resource mix, initialization, abandon policy, updating policies, and environmental

factors like participating in-store customers. AMR assignments where waiting time per pick

is arranged in an ascending manner result in higher pick rates than ones that create ini-

tial routes based on minimizing total travel time. Dynamic updates of resource allocation

at pick completion events can help the store to achieve higher picking performance. While

the AMR abandon policy insignificantly improves performance for ranking-based initially se-

quenced variants, such a policy has a higher positive impact when combined with TSP-based

initial sequencing policy followed by dynamic reallocation policies. Similarly, exchanging

only a single picking point among resources provides higher performance for ranking-based

initial sequencing, yet, allowing multiple points shows better outcomes for TSP-based ini-

tial sequencing policies. Additionally, when there are high participation rate from in-store
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customers, ranking-based initial sequencing policies are preferred. Such policies are found

to be computationally tractable for practical purposes, and can help the store to offload a

significant amount of tasks to AMRs. We find that three AMRs and one dedicated picker

can perform equivalently as two dedicated pickers, and such a policy is economically viable

even when stores purchase AMRs and when in-store customers are compensated for picking

at rates similar to dedicated pickers.

As the first research to study order-picking policies using AMRs and in-store customers

in retail stores, there are numerous future research directions. First, we considered a wave-

based policy, future research can create policies in wave-less systems. More research is

needed to better estimate in-store customers’ interests in participating and their behaviors

around AMRs. Additionally, policies can be developed with explicit modeling of congestion

and in-store customer behaviors. Further, as AMRs would be available to the store 24/7,

policies that consider other tasks such as replenishment, inventory checking, and customer

assistance can also be explored. Lastly, this work considered the layout and facility design

to be fixed; future research could jointly optimize other decisions, such as facility design,

inventory, store shelf design, and item allocation, to more efficiently deploy such policies.

References

Aull, B., Coggins, B., Kohli, S., and Marohn, E. (2022). The state of grocery in North
America. McKinsey & Company.

Azadeh, K., De Koster, R., and Roy, D. (2019). Robotized and automated warehouse
systems: Review and recent developments. Transportation Science, 53(4):917–945.

Azadeh, K., Roy, D., de Koster, R., and Khalilabadi, S. M. G. (2023). Zoning strategies for
human–robot collaborative picking. Decision Sciences.

Bayram, A. and Cesaret, B. (2021). Order fulfillment policies for ship-from-store implemen-
tation in omni-channel retailing. European Journal of Operational Research, 294(3):987–
1002.

Begley, S., Hancock, B., Kilroy, T., and Kohli, S. (2019). Automation in retail: An executive
overview for getting ready. McKinsey & Company Retail Insights.

Bhowmick, J. and Pazour, J. (2024). A connected in-store and online customer data set for
omnichannel retail logistics research. In IIE Annual Conference. Proceedings, pages 1–6.
Institute of Industrial and Systems Engineers (IISE).

Boysen, N., De Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce era:
A survey. European Journal of Operational Research, 277(2):396–411.

30



Brick Meets Clicks (2020). Online grocery shopping
surges to record levels in us during covid-19 crisis.
https://www.foodlogistics.com/transportation/press-release/21125307/brick-mee
ts-click-online-grocery-shopping-surges-to-record-levels-in-us-during-covid19
-crisis.

Caporaso, T., Panariello, D., Grazioso, S., Di Gironimo, G., and Villani, L. (2022). Robots
helping humans: Collaborative shelf refilling. In Robotics for Intralogistics in Supermar-
kets and Retail Stores, pages 117–135. Springer.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581.

Dayarian, I. and Pazour, J. (2022). Crowdsourced order-fulfillment policies using in-store
customers. Production and Operations Management, 31(11):4075–4094.

Difrancesco, R. M., van Schilt, I. M., and Winkenbach, M. (2021). Optimal in-store fulfill-
ment policies for online orders in an omni-channel retail environment. European Journal
of Operational Research, 293(3):1058–1076.

Eriksson, E., Norrman, A., and Kembro, J. (2022). Understanding the transformation
toward omnichannel logistics in grocery retail: a dynamic capabilities perspective. Inter-
national Journal of Retail & Distribution Management, 50(8/9):1095–1128.

Fager, P., Sgarbossa, F., and Calzavara, M. (2021). Cost modelling of onboard cobot-
supported item sorting in a picking system. International Journal of Production Research,
59(11):3269–3284.

Fragapane, G., de Koster, R., Sgarbossa, F., and Strandhagen, J. O. (2021). Planning and
control of autonomous mobile robots for intralogistics: Literature review and research
agenda. European Journal of Operational Research.

Ghelichi, Z. and Kilaru, S. (2021). Analytical models for collaborative autonomous mobile
robot solutions in fulfillment centers. Applied Mathematical Modelling, 91:438–457.

Hübner, A., Hense, J., and Dethlefs, C. (2022). The revival of retail stores via omnichannel
operations: A literature review and research framework. European Journal of Operational
Research, 302(3):799–818.

Hui, S. K., Bradlow, E. T., and Fader, P. S. (2009). Testing behavioral hypotheses using
an integrated model of grocery store shopping path and purchase behavior. Journal of
Consumer Research, 36(3):478–493.

Instacart (2017). The instacart online grocery shopping dataset 2017. https://www.
instacart.com/datasets/grocery-shopping-2017. Accessed: 2021-01-27.

Jacob, F., Grosse, E. H., Morana, S., and König, C. J. (2023). Picking with a robot colleague:
a systematic literature review and evaluation of technology acceptance in human–robot
collaborative warehouses. Computers & Industrial Engineering, page 109262.

31



Lee, H.-Y. and Murray, C. C. (2019). Robotics in order picking: evaluating warehouse
layouts for pick, place, and transport vehicle routing systems. International Journal of
Production Research, 57(18):5821–5841.

Löffler, M., Boysen, N., and Schneider, M. (2021). Picker routing in agv-assisted order
picking systems. INFORMS Journal on Computing.

Löffler, M., Boysen, N., and Schneider, M. (2023). Human-robot cooperation: Coordinating
autonomous mobile robots and human order pickers. Transportation Science.

Lorson, F., Fügener, A., and Hübner, A. (2023). New team mates in the warehouse: Human
interactions with automated and robotized systems. IISE Transactions, 55(5):536–553.

MacCarthy, B. L., Zhang, L., and Muyldermans, L. (2019). Best performance frontiers
for buy-online-pickup-in-store order fulfilment. International Journal of Production Eco-
nomics, 211:251–264.

Masel, D. T. and Mesa, A. (2018). Managing the order picking process in for click and
collect in grocery stores. In 15th IMHRC Proceedings (Savannah, Georgia. USA – 2018).

Mayumi Brewster (2022). Annual retail trade survey shows im-
pact of online shopping on retail sales during covid-19 pandemic.
https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-during-
pandemic.html.

Meller, R. D., Nazzal, D., and Thomas, L. M. (2018). Collaborative bots in distribution
centers. 15th IMHRC Proceedings (Savannah, Georgia. USA). 17.

Mou, S. (2022a). In-store order fulfilment in omni-channel supermarkets with heterogeneous
workforce: A bi-objective optimisation approach. Computers & Industrial Engineering,
171:108516.

Mou, S. (2022b). Integrated order picking and multi-skilled picker scheduling in omni-
channel retail stores. Mathematics, 10(9):1484.

Neves-Moreira, F. and Amorim, P. (2023). Playing hide and seek: tackling in-store picking
operations while improving customer experience. arXiv preprint arXiv:2301.02142.

Pasparakis, A., De Vries, J., and De Koster, R. (2023). Assessing the impact of human–
robot collaborative order picking systems on warehouse workers. International Journal of
Production Research, 61(22):7776–7790.

Pietri, N. O., Chou, X., Loske, D., Klumpp, M., and Montemanni, R. (2021). The buy-
online-pick-up-in-store retailing model: Optimization strategies for in-store picking and
packing. Algorithms, 14(12):350.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Repko, M. (2020). Grocers urgently need to fix broken online business model, as pan-
demic shifts more to web, report says. CNBC. https://www.cnbc.com/2020/07/09/
coronavirus-grocers-must-fix-broken-online-model-report-says.html.

32



Sağlam, B., Salman, F. S., Sayın, S., and Türkay, M. (2006). A mixed-integer program-
ming approach to the clustering problem with an application in customer segmentation.
European Journal of Operational Research, 173(3):866–879.

Santini, A., Plum, C. E., and Ropke, S. (2018). A branch-and-price approach to the feeder
network design problem. European Journal of Operational Research, 264(2):607–622.

Schäfer, F., Lorson, F., and Hübner, A. (2023). Finding the right one: Decision support for
selecting cost-efficient order picking solutions. IISE Transactions, pages 1–15.

Seghezzi, A., Siragusa, C., and Mangiaracina, R. (2022). Enhancing in-store picking for
e-grocery: an empirical-based model. International Journal of Physical Distribution &
Logistics Management, 52(4):301–323.

Shah, B. and Khanzode, V. (2017). A comprehensive review of warehouse operational issues.
International Journal of Logistics Systems and Management, 26(3):346–378.

Shen, H., Namdarpour, F., and Lin, J. (2022). Investigation of online grocery shopping and
delivery preference before, during, and after covid-19. Transportation Research Interdis-
ciplinary Perspectives, 14:100580.

Srinivas, S. and Yu, S. (2022). Collaborative order picking with multiple pickers and robots:
Integrated approach for order batching, sequencing and picker-robot routing. Interna-
tional Journal of Production Economics, 254:108634.

Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters:
Dynamic half-way points in bidirectional labeling for solving shortest path problems with
resource constraints faster. European Journal of Operational Research, 261(2):530–539.

Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A. (2010). Facilities
planning. John Wiley & Sons.

Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., and Thomas, B. W. (2020). On model-
ing stochastic dynamic vehicle routing problems. EURO Journal on Transportation and
Logistics, 9(2):100008.

Wang, H., Chen, W., and Wang, J. (2020). Coupled task scheduling for heterogeneous multi-
robot system of two robot types performing complex-schedule order fulfillment tasks.
Robotics and Autonomous Systems, 131:103560.

Winkelhaus, S., Zhang, M., Grosse, E. H., and Glock, C. H. (2022). Hybrid order picking:
A simulation model of a joint manual and autonomous order picking system. Computers
& Industrial Engineering, 167:107981.

Yokota, T. (2019). Min-max-strategy-based optimum co-operative picking with agvs in
warehouse. In 2019 58th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), pages 236–242. IEEE.

Zhang, J., Liu, F., Tang, J., and Li, Y. (2019). The online integrated order picking and
delivery considering pickers’ learning effects for an o2o community supermarket. Trans-
portation Research Part E: Logistics and Transportation Review, 123:180–199.

33



Zhang, M., Grosse, E. H., and Glock, C. H. (2023). Ergonomic and economic evaluation
of a collaborative hybrid order picking system. International Journal of Production Eco-
nomics, 258:108774.

Zhang, M., Winkelhaus, S., and Grosse, E. H. (2021). Evaluation of human workload in a
hybrid order picking system. IFAC-PapersOnLine, 54(1):458–463.

Zhang, N. and Pazour, J. (2019). Expected travel distance models for retail store order
fulfillment. In IIE Annual Conference. Proceedings, pages 94–99. Institute of Industrial
and Systems Engineers (IISE).

Zhong, Y., Zheng, X., and Xie, W. (2023). Fulfillment flexibility strategy for dual-channel
retail networks. IISE Transactions, pages 1–14.

Zhu, S., Wang, H., Zhang, X., He, X., and Tan, Z. (2022). A decision model on human-
robot collaborative routing for automatic logistics. Advanced Engineering Informatics,
53:101681.

Zou, Y., Zhang, D., and Qi, M. (2019). Order picking system optimization based on picker-
robot collaboration. In Proceedings of the 2019 5th International Conference on Industrial
and Business Engineering, pages 1–6.

Žulj, I., Salewski, H., Goeke, D., and Schneider, M. (2022). Order batching and batch
sequencing in an amr-assisted picker-to-parts system. European Journal of Operational
Research, 298(1):182–201.

34



Appendices/ Supplemental Materials
A Categorizing and Defining Transition Probabilities

We categorize the transition probabilities into two types. One is to transition to a pick
completion state se+1 by reaching either τ ck or τdk . The second type is to transition to a
non-pick completion state se+1 by τ rk or τak . The first type transitions with the probability
that a specific picking resource k ∈ K completes the required number of picks (nv) at
their currently assigned stopping point before the other deployed picking resources. For any
γ ∈ K this probability is calculated from three-time components: (1) travel time from the
current stopping point location, ∂γ , to the next assigned stopping point location, θγ , denoted
as tC∂θ ∨ tD∂θ, (2) uncertain waiting time at θγ denoted as ω̄γθ , and (3) uncertain picking
time at θγ denoted as s̄γθ. The travel time component can be of value 0 if any γ ∈ K in
the system has already reached θγ . Similarly, if synchronization with an in-store customer
at θγ has already occurred for an AMR, ω̄γθ = 0. However, to define the probability of
pick completion of γ ∈ K, we must also take into account the probability of any τ rk or a τak
happening before the pick completion of γ ∈ K. Thus, the transition probability at decision
epoch e of a picking resource γ ∈ K completing nv picks at θγ before the other picking
resources pick completion and other triggers can be defined simply by (39) and in detail by
(40) for any k ∈ C and (41) for any k ∈ D.

δpγe = probability
[
(pick completion by γ ∈ K before pick completion by k ∈ K \ γ),

(pick completion by γ ∈ K before wave-time trigger by any k ∈ K),

(pick completion by γ ∈ K before abandon trigger by any k ∈ K)
] (39)

δpCγe = probability
[
(tC∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ C < (tC∂θ + ω̄γθ + nθs̄θ + te)∀k ∈ C \ {γ},

(tC∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ C < (tD∂θ + ω̄γθ + nθs̄θ + te)∀k ∈ D,

(tC∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ C < (T − tCθp)∀k ∈ C,

(tC∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ C < (T − tDθp)∀k ∈ D,

(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (te|τu = τak )∀k ∈ K
]

(40)

δpDγe = probability
[
(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (tD∂θ + ω̄γθ + nθs̄θ + te)∀k ∈ D \ {γ},

(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (tD∂θ + ω̄γθ + nθs̄θ + te)∀k ∈ C,

(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (T − tCθp)∀k ∈ C,

(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (T − tDθp)∀k ∈ D,

(tD∂θ + ω̄γθ + nθs̄θ + te) for γ ∈ D < (te|τu = τak )∀k ∈ K
]

(41)
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The second type is the probability of reaching the wave-time trigger τ rγ of picking resource
γ ∈ K before any other any other τ rk∀k ∈ K \ {γ}, any pick completion trigger, and any
abandon trigger. This can be simplified by finding out the probability of the earliest wave-
time trigger happening before any resource completes a pick and before any τa. In other
words, it would be the probability of reaching state se+1 from state se, such that the
remaining time in the wave (T − te+1) would be equal to the maximum of the travel time
from current stopping point ∂γ to the dropoff station vp∀k ∈ K. Hence, this probability
can be defined by equation (42).

δre = probability
[
T − max (tCθp ∀k ∈ C, tDθp ∀k ∈ D) < (tCθp + ω̄kθ + nθs̄θ + te) ∀k ∈ C,

T − max (tCθp ∀k ∈ C, tDθp ∀k ∈ D) < (tDθp + ω̄kθ + nθs̄θ + te) ∀k ∈ D,

T − max (tCθp ∀k ∈ C, tDθp ∀k ∈ D) < (te|τu = τak )∀k ∈ K
]

(42)

Lastly, the transition probability for having a triggering event of type τak for resource
γ ∈ K can also be defined in a similar manner by (43)

δaγe = probability
[
(te|τu = τaγ ) < (tCθp + ω̄kθ + nθs̄θ + te) ∀k ∈ C,

(te|τu = τaγ ) < (tDθp + ω̄kθ + nθs̄θ + te) ∀k ∈ D,

(te|τu = τaγ ) < T − max (tCθp ∀k ∈ C, tDθp ∀k ∈ D),

(te|τu = τaγ ) < (te|τu = τak )∀k ∈ K \ {γ}
] (43)
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B Triggered by wave-time (τ rk ), abandon (τak (te)), or pick fin-
ish (τ f ) trigger

B.1 Triggered by wave-time trigger τ rk
Whenever the picking system reaches a wave-time trigger τu = τ rk for any picking resource
k ∈ K, kψ(te) is instructed to return to vp, hence θk(te) = vp for kψ(te). Here, kψ(te) not
only has to travel to vp if it was waiting there for synchronization but also if it was in the
process of picking item(s). Therefore, a stopping point v ∈ Rk(te) may have a fraction of
nv picked by a resource.

B.2 Triggered by abandon trigger τ ak (te):
Whenever τu = τak for any k ∈ C, we update the amount of time we should wait at θk(te−1)
for kψ(te) based on the abandon policy in Section 5.1.4 and update τak following equation
(44). Additionally, Rk(te) for kψ(te) also gets updated using equation (45). This is then
followed by updating the current assignment θk(te) of resource kψ(te) using equation (12)
and updating the wave-time trigger using equation (13) or (14). If the AMR is instructed to
stop waiting at Rk1(te−1) (i.e., tϵv = 0), the abandoned stopping point, denoted by va(te) gets
added to the end of any picking resource’s sequence providing the least increase of maximum
expected pick completion time, following equation (46). And we do not recalculate the
abandon trigger after adding this point (as this stopping point had already been given the
opportunity to synchronize).

τak (te) =

{
te + tϵv|v = Rk1(te−1) if tϵv > 0|v = Rk1(te−1)

te + tϵv|v = Rk2(te−1) if tϵv = 0|v = Rk1(te−1)
(44)

Rk(te) =

{
Rk(te−1) if tϵv > 0|v = Rk1(te−1)

Rk(te−1) \Rk1(te−1) if tϵv = 0|v = Rk1(te−1)
(45)

Rk(te) = Rk(te−1) ∪ va : min
(
max(tσk∀k ∈ K) at te −max(tσk∀k ∈ K) at te−1

)
(46)

B.3 Triggered by pick finish trigger τ f

This trigger is only set off when all picking resources are assigned to travel to the dropoff
station, whether by completing all the assigned picks for the wave, N , or being sent to vp
as a result of one or more τ rk . For any of these two scenarios, when the algorithm finds
θk(te) = vp ∀k ∈ K, we terminate the algorithm.
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C Variants of the Solutions Approach

Variants
Decision Stage Alternatives RAS RAM RAZ RNS RNM RNZ TAS TAM TAZ TNS TNM TNZ

Initial
Sequencing

Ranking(R) x x x x x x
TSP(T) x x x x x x

Abandon
Policy

Yes(A) x x x x x x
No(N) x x x x x x

Updating
Sequences

with reallocation(s)

Single(S) x x x x
Multiple(M) x x x x
Zero(Z) x x x x

Table 3: Decision alternatives and resulting variants

D Stopping Point to Product Category Mapping

Stopping
Point
Number

Product Category
Stopping
Point
Number

Product Category
Stopping
Point
Number

Product Category

1 prepared soups salads 46 mint gum 91 soy lactosefree
2 specialty cheeses 47 vitamins supplements 92 baby food formula
3 energy granola bars 48 breakfast bars pastries 93 breakfast bakery
4 instant foods 49 packaged poultry 94 tea
5 marinades meat preparation 50 fruit vegetable snacks 95 canned meat seafood
6 other 51 preserved dips spreads 96 lunch meat
7 packaged meat 52 frozen breakfast 97 baking supplies decor
8 bakery desserts 53 cream 98 juice nectars
9 pasta sauce 54 paper goods 99 canned fruit applesauce
10 kitchen supplies 55 shave needs 100 missing
11 cold flu allergy 56 diapers wipes 101 air fresheners candles
12 fresh pasta 57 granola 102 baby bath body care
13 prepared meals 58 frozen breads doughs 103 ice cream toppings
14 tofu meat alternatives 59 canned meals beans 104 spices seasonings
15 packaged seafood 60 trash bags liners 105 doughs gelatins bake mixes
16 fresh herbs 61 cookies cakes 106 hot dogs bacon sausage
17 baking ingredients 62 white wines 107 chips pretzels
18 bulk dried fruits vegetables 63 grains rice dried goods 108 other creams cheeses
19 oils vinegars 64 energy sports drinks 109 skin care
20 oral hygiene 65 protein meal replacements 110 pickled goods olives
21 packaged cheese 66 asian foods 111 plates bowls cups flatware
22 hair care 67 fresh dips tapenades 112 bread
23 popcorn jerky 68 bulk grains rice dried goods 113 frozen juice
24 fresh fruits 69 soup broth bouillon 114 cleaning products
25 soap 70 digestion 115 water seltzer sparkling water
26 coffee 71 refrigerated pudding desserts 116 frozen produce
27 beers coolers 72 condiments 117 nuts seeds dried fruit
28 red wines 73 facial care 118 first aid
29 honeys syrups nectars 74 dish detergents 119 frozen dessert
30 latino foods 75 laundry 120 yogurt
31 refrigerated 76 indian foods 121 cereal
32 packaged produce 77 soft drinks 122 meat counter
33 kosher foods 78 crackers 123 packaged vegetables fruits
34 frozen meat seafood 79 frozen pizza 124 spirits
35 poultry counter 80 deodorants 125 trail mix snack mix
36 butter 81 canned jarred vegetables 126 feminine care
37 ice cream ice 82 baby accessories 127 body lotions soap
38 frozen meals 83 fresh vegetables 128 tortillas flat bread
39 seafood counter 84 milk 129 frozen appetizers sides
40 dog food care 85 food storage 130 hot cereal pancake mixes
41 cat food care 86 eggs 131 dry pasta
42 frozen vegan vegetarian 87 more household 132 beauty
43 buns rolls 88 spreads 133 muscles joints pain relief
44 eye ear care 89 salad dressing toppings 134 specialty wines champagnes
45 candy chocolate 90 cocoa drink mixes

Table 4: Stopping point number and its mapped product category
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E Order Profiles

Instance
No Order Profile - (Stopping Point Number, Number of items to pick) N |V r|

1 (1, 1), (4, 1), (16, 1), (19, 1), (21, 2), (24, 7), (26, 4), (32, 1), (37, 1), (45, 1), (54, 2), (57, 2), (64, 1), (74, 1), (78, 3),
(81, 1), (83, 7), (86, 1), (93, 1), (98, 3), (100, 1), (101, 1), (108, 1), (115, 5), (120, 3), (121, 1), (123, 4), (127, 1), (129, 1) 60 30

2
(16, 2), (19, 1), (20, 1), (21, 3), (24, 7), (26, 2), (31, 3), (36, 1), (37, 2), (42, 1), (53, 1), (75, 1), (77, 3), (78, 1),
(83, 11), (84, 4), (86, 4), (107, 1), (109, 1), (110, 1), (112, 2), (114, 1), (115, 2), (120, 4), (121, 2), (123, 6), (128, 2),
(129, 2)

72 29

3
(3, 1), (4, 2), (16, 1), (19, 4), (21, 4), (24, 6), (31, 1), (36, 2), (37, 2), (45, 1), (50, 1), (54, 1), (59, 2), (61, 1), (67, 2),
(69, 1), (72, 1), (77, 2), (78, 1), (79, 2), (83, 6), (84, 5), (86, 1), (88, 1), (91, 1), (93, 4), (94, 1), (96, 4), (100, 4), (107, 2),
(108, 2), (110, 1), (112, 5), (116, 1), (120, 1), (121, 1), (123, 2), (127, 1)

81 39

4
(4, 1), (6, 1), (9, 1), (12, 2), (16, 2), (19, 1), (21, 1), (24, 12), (30, 2), (32, 2), (36, 1), (37, 1), (45, 1), (48, 1), (51, 1),
(52, 1), (54, 1), (56, 1), (66, 1), (70, 1), (74, 1), (82, 1), (83, 10), (84, 4), (85, 1), (86, 2), (87, 1), (91, 4), (96, 1), (98, 2),
(100, 2), (104, 3), (106, 5), (110, 1), (114, 2), (115, 1), (116, 1), (120, 2), (123, 5), (129, 1)

85 41

5
(3, 3), (16, 2), (17, 1), (19, 1), (20, 1), (21, 5), (24, 13), (26, 1), (31, 1), (35, 1), (36, 1), (37, 1), (48, 2), (60, 1), (62, 1),
(67, 1), (69, 2), (72, 1), (77, 1), (78, 2), (81, 3), (83, 8), (84, 2), (86, 1), (91, 1), (92, 1), (93, 1), (94, 4), (96, 1), (98, 2),
(99, 4), (100, 1), (104, 1), (107, 2), (108, 1), (112, 1), (115, 1), (116, 1), (117, 1), (120, 5), (122, 1), (123, 2), (128, 1), (131, 1)

89 45

6

(2, 2), (9, 1), (11, 1), (16, 4), (17, 2), (19, 2), (21, 4), (24, 6), (25, 1), (31, 3), (34, 1), (36, 1), (37, 1), (53, 1), (54, 1),
(59, 4), (63, 1), (67, 1), (69, 1), (71, 1), (72, 1), (74, 1), (75, 1), (78, 1), (81, 2), (83, 12), (84, 2), (85, 1), (86, 1), (91, 2),
(95, 1), (96, 4), (98, 1), (99, 1), (106, 1), (107, 3), (108, 1), (111, 1), (112, 1), (115, 2), (116, 3), (117, 1), (120, 3),
(123, 11), (128, 1), (129, 1), (133, 1)

100 48

7

(1, 1), (4, 1), (6, 1), (9, 2), (19, 2), (21, 2), (24, 15), (25, 1), (26, 1), (31, 3), (32, 1), (34, 1), (35, 1), (37, 1), (38, 1),
(43, 1), (45, 1), (50, 3), (52, 2), (53, 3), (54, 1), (61, 2), (62, 1), (66, 2), (67, 1), (72, 1), (75, 1), (78, 1), (79, 1), (80, 1),
(83, 8), (84, 4), (86, 1), (91, 1), (93, 2), (98, 2), (99, 1), (104, 1), (105, 3), (106, 2), (107, 2), (108, 1), (112, 2), (115, 5),
(120, 3), (121, 1), (123, 5), (125, 1), (129, 2), (130, 1), (131, 2)

106 52

8
(1, 1), (4, 1), (9, 2), (13, 2), (16, 2), (23, 1), (24, 11), (25, 1), (31, 3), (34, 1), (36, 2), (37, 4), (38, 1), (42, 1), (45, 2), (48, 2),
(50, 1), (53, 2), (59, 1), (61, 1), (64, 1), (67, 2), (69, 3), (77, 5), (78, 2), (79, 1), (81, 3), (83, 20), (84, 6), (86, 1), (89, 1),
(94, 2), (96, 1), (98, 1), (100, 1), (107, 4), (112, 1), (115, 6), (117, 3), (120, 4), (121, 1), (123, 4), (129, 1), (134, 1)

117 45

9

(3, 4), (4, 1), (5, 1), (8, 1), (9, 1), (20, 1), (21, 9), (23, 1), (24, 10), (26, 2), (31, 4), (32, 1), (33, 1), (37, 3), (38, 1), (42, 1),
(45, 2), (51, 1), (53, 1), (54, 1), (59, 1), (61, 1), (63, 1), (65, 1), (66, 2), (69, 2), (74, 1), (77, 2), (78, 1), (83, 10), (84, 5),
(85, 1), (86, 1), (89, 1), (91, 5), (94, 1), (95, 1), (98, 1), (106, 2), (107, 1), (108, 2), (112, 3), (115, 4), (116, 1), (120, 8),
(121, 4), (123, 11), (129, 3), (131, 1)

125 50

10

(2, 2), (3, 7), (5, 2), (12, 1), (16, 1), (17, 2), (20, 1), (21, 3), (23, 1), (24, 11), (26, 2), (30, 2), (32, 1), (34, 1), (36, 1), (37, 2),
(42, 1), (45, 3), (46, 1), (50, 1), (53, 2), (54, 2), (57, 1), (61, 1), (66, 1), (69, 3), (74, 1), (77, 4), (78, 1), (81, 4), (83, 11),
(84, 2), (88, 3), (91, 3), (92, 1), (93, 1), (94, 1), (96, 2), (98, 1), (106, 1), (107, 9), (108, 3), (110, 2), (115, 2), (116, 1),
(117, 5), (120, 10), (123, 4), (125, 1), (128, 2), (130, 1), (131, 1)

133 53

Table 5: Generated order instances from whole orders (Instacart, 2017)

39



F Boxplot of Computational Time

Figure 9: Boxplots of solving time in seconds for C3D1 instances across all 12 variants,
broken down by decision stage.

G Picking performance across instances

Instances/K C1D1 C2D1 C3D1 C4D1 C0D1 C0D2
1 95.79% 88.51% 99.33% 99.28% 75.00% 100.00%
2 78.66% 99.44% 99.65% 99.74% 61.11% 100.00%
3 84.53% 92.64% 98.21% 98.68% 62.96% 95.06%
4 82.26% 92.66% 96.55% 98.02% 64.71% 95.29%
5 79.69% 91.09% 96.88% 98.20% 49.44% 94.38%
6 70.42% 82.85% 94.54% 97.72% 60.00% 92.00%
7 72.88% 75.27% 85.77% 93.38% 44.34% 84.91%
8 74.67% 85.78% 93.48% 96.58% 54.70% 85.47%
9 64.27% 72.74% 81.37% 89.08% 44.00% 74.40%
10 62.72% 70.96% 81.81% 87.23% 41.35% 74.44%

Table 6: Picking performance across instances for increasing AMRs with one dedicated
picker compared to benchmark resource mix
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H Data and Calculations for Economic Evaluation

We present the data and calculations performed to conduct the economic analysis in Section
6.10. In this analysis, we compare the status quo (which is the resource mix with two
dedicated pickers C0D2) to an approach that deploys 3 AMRs and 1 dedicated picker. To
incorporate the time value of money and to adjust for associated risks, we transform all
costs beyond year 0 to the present value, by multiplying each year-end (or annual) costs by
the discount factor calculated for that year through (47).

Discount factor =
1

(1 + Discount rate)Year (47)

The cumulative risk-adjusted cost of operation up to any given year is then plotted in
Figure 8. For instance, the cumulative risk-adjusted cost of operations until year 3 consists
of year 0 costs and discounted year-end costs from year 1 through year 3. To perform this
analysis, we rely on the input data in Table 7 and the calculations in equations (52)-(60).

Cost Area Input Data Numerical Values Used

Dedicated Pickers

Wage per hour $ 17.50 1

Legally required benefit per hour $ 2.80 2

Wage increase per year 4.20% 5

Benefits increase per year 3.80%5

Churn rate dedicated case 1%5

AMR

AMR purchase cost $ 35,0006

Yearly AMR maintenance cost 20% of purchase cost 7

Monthly subscription cost $ 9508

One time initial deployment fee $ 75,0008

Number of cross-trained team members for AMR operation 1212

Required yearly training hours per team member 28

Percent of picks by AMRs 60% 17

One time internal integration cost $ 50,0008

Store

Number of online orders in a day 128 13

Operating days per year 3633

Operating hours per day 174

Mean items per online order 10.5 15

Number of in-store customers per week during peak hours 18,135 13

Spending per week per in-store customer $ 1649

Profit margin per item 4.40%16

Average churn rate in retail 5.5%18

Dissatisfied online customers not reordering 13%10

Dissatisfaction cost per online item not picked $0.0814

Mean online basket value $ 149.1011

Economic Discount rate 10% 8

Table 7: Input data for economic evaluation

H.1 In-store and online customer dissatisfaction costs
In our economic analysis, we capture dissatisfaction costs for both in-store and online cus-
tomers. In-store customer hassle costs occur in both the current store fulfillment operations
that use dedicated pickers to pick online orders, and would also occur with the proposed
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policy. We capture possible hassle costs for in-store customers around the picking resources
in peak hours when there is more than average (i.e., 192) in-store customer presence in the
store due to possible congestion. As a result, given some in-store customers may decide not
to return to the store, causing the store to lose profit on sales, we capture the lost profit due
to in-store customer hassle in (48) for the dedicated picker case and in (49) for the AMR
case. The equation for the AMR case assumes that only non-participating customers (i.e.,
1− f percent of in-store customers) would face the hassle costs. In our economic analysis,
we vary the churn rate (CR) (from 1% to 4%) of these non-participating in-store customers
who decide not to return to the store due to this hassle. The sensitivity range of CR was
motivated by the average CR in the retail (see Table 7) industry which occurs from multiple
sources of customer dissatisfaction. We also consider there is a churn rate when dedicated
pickers do store fulfillment (i.e., C0D2), which we fix at 1% in (48).

Lost profit due to in-store customer hassle
(Dedicated Picker Case) = Number of in-store customers per week during

peak hours × Churn rate dedicated case×
Spending per week per in-store customer×
Profit margin per item × Weeks in a year

(48)

Lost profit due to in-store customer hassle
(AMR case) =Number of in-store customers per week during

peak hours × (1− f)× Churn rate×
Spending per week per in-store customer×
Profit margin per item × Weeks in a year

(49)

We consider online customer dissatisfaction costs on two fronts: lost profit due to un-
successful item picking during waves, therefore, unable to sell unpicked items and lost profit
due to losing future online customers who did not receive all items that they have ordered
online, thus, dissatisfied.

Lost profit due to unsuccessful item picking =Number of online orders in a day×
Operating days per year × (1− ρ)×

(
Online basket value

Mean items per online order
× Profit margin per item)

(50)
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Lost profit due to online customer dissatisfaction =Number of online orders in a day×
Days worked in a year × (1− ρ)×

(
1

Mean items per online order
×

Dissatisfied online customers not reordering×
Online basket value × Profit margin)

(51)

H.2 Costs for Dedicated Pickers
We utilize (52) to calculate the year-end costs of a C0D2 resource pool. This assumes
2 dedicated pickers are needed for the entire time a store operates. As operations with
dedicated pickers do not incur any upfront cost, there is no cost considered at year 0.
Additionally, since we consider wage and benefits increase every year, we calculate the wage
increase factor using equation (53) and the benefits increase factor using equation (54).

1Walmart (2023). How much do Walmart associates make? https://corporate.walmart.com/
askwalmart/how-much-do-walmart-associates-make

2Bureau of Labor Statistics (2023). Employer costs for employee compensation – June 2023.
3Excluding two major holidays in the USA
4Data from Walmart stores found in Google maps
5Bureau of Labor Statistics (2023). Employment Cost Index - December 2023
6Marc Wulfraat (2023). Locus Robotics - An Independent Review of Autonomous Robots. https:

//mwpvl.com/html/locus_robotics_-_independent_consultant_review.html
7Lucas Systems (2020). The ROI of autonomous mobile robots in your dc. https://www.lucasware.

com/the-roi-of-autonomous-mobile-robots-in-your-dc/
8Forrester Research (2019). The Total Economic Impact of Locus Robotics.https://www.

thenewwarehouse.com/wp-content/uploads/2019/12/Total-Economic-Impact-of-Locus-Robotics_
June_2019F.pdf

9T. Ozbun (2024). Grocery shopping: U.S. Consumers’ Expenditure Per Week 2006-2023. Statista
10K. Ambrogio and A. Dalkoff, "Retailers and Customers Don’t See Eye to Eye on Returns or In-Store

Experiences," Oracle Retail, 2019.
11Grocery Doppio (2023). Q1 2023: State of Digital Grocery Per-

formance Scorecard. https://www.grocerydoppio.com/performance-scorecard/
q1-2023-state-of-digital-grocery-performance-scorecard

12Walmart (2021). Emphasizing Opportunity, Walmart Moves More As-
sociates to Full Time. https://corporate.walmart.com/news/2021/04/14/
emphasizing-opportunity-walmart-moves-more-associates-to-full-time

13Bhowmick, J. and Pazour, J. (2024). A connected in-store and online customer data set for omnichannel
retail logistics research. In IIE Annual Conference. Proceedings, pages 1–6. Institute of Industrial and
Systems Engineers (IISE)

14An estimation with the help of the data in Table 7
15nstacart (2017). The instacart online grocery shopping dataset 2017. https://www.

instacart.com/datasets/grocery-shopping-2017. Accessed: 2021-01-27
16Aull, B., Coggins, B., Kohli, S., and Marohn, E. (2022). The state of grocery in north america. McKinsey

& Company.
17Section 6.6
18Recurly Research, Churn Rate Benchmarks, Accessed:2024-05-02, https://recurly.com/research/

churn-rate-benchmarks/
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Year-end cost =
[
Number of dedicated pickers × Operating hours per day×
Operating days per year × ((Wage per hour × Wage increase factor)+
(Benefits per hour × Benefits increase factor))+
Lost profit due to in-store customer hassle+
Lost profit due to online customer dissatisfaction+
Lost profit due to unsuccessful item picking

]
× Discount factor

(52)

Wage increase factor = (1 + Wage increase rate)Year (53)

Benefits increase factor = (1 + Benefits increase rate)Year (54)

H.3 Costs for AMR Operation (Purchase Model)
We use (55)-(58) to calculate the costs for the AMR operation when a store purchases AMR
technology in year 0. Here, (55) is only applicable at year 0, whereas, (56) is used for year
1 onwards. Based on a dedicated picker’s wage per hour ($17.50), the average time for a
dedicated picker to pick an item once they arrive in front of the shelf (i.e., sv of 25 seconds),
and assuming this is the only task required, this results in $0.12 per pick. Thus, we vary
the CPP levels around this value. The percent of picks by AMRs is derived from Section
6.6 which refers to a 60% value for the C3D1 resource mix. The lost profit terms in (56) are
calculated following (50)-(51). Additionally, the lost profit due to customer hassle is defined
by (49), the wage increase factor follows (53), and the benefits increase factor follows (54).

Initial cost (Year 0) =One time deployment fee + One time internal integration cost+
Training cost + (AMR purchase cost × Number of AMRs)

(55)

Year-end costs =
[
AMR purhase cost × Number of AMRs × Maintenance+
Number of dedicated pickers × Hours worked per day×
Days worked in a year × ((Wage per hour × Wage increase factor)+
(Benefits per hour × Benefit increase factor)) + Yearly training cost+
In-store customer compensation+
Lost profit due to in-store customer hassle+
Lost profit due to online customer dissatisfaction+
Lost profit due to unsuccessful item picking

]
× Discount factor

(56)

In-store customer compensation =Compensation per pick × Utilization of AMRs
× Days in a year × Number of online orders in a day
× Mean items per online order

(57)
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Training cost =Number of cross-trained team members for AMR operation × Wage per hour
Required yearly training hours per team member×
Wage increase factor

(58)

H.4 Costs for AMR Operation (Subscription Model)
Lastly, we use (59)-(60) to calculate the costs for the AMR operation if a store obtains
the AMRs via a subscription model. The difference from the purchase model is the store
does not have to pay the initial price of the AMRs upfront, resulting in a lower initial
cost. However, from year 1 onwards, there is a subscription cost in addition to the cost we
considered in the purchase model (56). Similar to the purchase model, the lost profit terms
in (60) are calculated following (50)-(51) and (49), the Discount factor follows (47), in-store
customer compensation is calculated following (57), and yearly training cost through (58).

Initial cost (Year 0) =One time deployment fee + Internal integration cost+
Training cost

(59)

Year-end costs =
[
(Monthly subscription cost × Number of AMRs × 12)+

(AMR purhase cost × Number of AMRs × Maintenance)+
Number of dedicated pickers × Hours worked per day×
Days worked in a year × ((Wage per hour × Wage increase rate)+
(Benefits per hour × Benefit increase rate)) + Yearly training cost+
In-store customer compensation+
Lost profit due to in-store customer hassle+
Lost profit due to online customer dissatisfaction+
Lost profit due to unsuccessful item picking

]
× Discount factor

(60)
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