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Abstract

In this paper, we propose a new algorithm for solving monotone mixed variational inequal-
ity problems in real Hilbert spaces based on proximal gradient method. Our new algorithm
uses a novel explicit stepsize which is proved to be increasing to a positive limitation. This
property plays an important role in improving the speed of the algorithm. To the best of our
knowledge, it is the first time such a kind of stepsize has been proposed for the proximal
gradient method solving mixed variational inequality problems. We prove the weak con-
vergence and strong convergence with R-linear rate of our new algorithm under standard
assumptions. The reported numerical simulations for applications in sparse logistic re-
gression and image deblurring reveal the significant efficacy performance of our proposed
method compared to the recent ones.
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1. Introduction

The mixed variational inequality problems (MVIP) are known as generalizations of many
optimization problems arisen from nonlinear programming and variational analysis such as
minimization problems, linear complementary problems or variational inequalities. Its ap-
plications can be found in a variety of fields such as data science, image processing, mechan-
ics, control, economics, structural engineering, social sciences, etc. See, e.g., [1, 4, 5, 6, 7, 9,
11, 13, 14, 15, 19, 20, 21, 28] and the references therein. The formulation of considered MVIP
can be described as follows: Let H be a real Hilbert space endowed with the inner product
⟨., .⟩ and the associated norm ∥.∥; A : H → H be a single-valued mapping; g : H → R∪{+∞}
a proper, convex and lower semi-continuous function with dom(g) = {x ∈ H : g(x) < +∞} .
MVIP aims to find a point x∗ ∈ dom(g) such that

⟨Ax∗, y − x∗⟩+ g(y)− g(x∗) ≥ 0, ∀y ∈ dom(g). (1.1)

By Sol(g, A) we denote the solution set of Problem (1.1), i.e.,

Sol(g, A) = {x ∈ dom(g) : ⟨Ax, y − x⟩+ g(y)− g(x) ≥ 0, ∀y ∈ dom(g)}.
Email address: hoai.phamthi@hust.edu.vn (Pham Thi Hoai)
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It is known that MVIP has been extensively studied by many authors for theoretical as
well as algorithmic aspects. One of the traditional approaches for finding a member of
Sol(g, A) is the projection-type method. The advantage of this one is that these methods are
specifically well-adapted to the situation as A is not Lipschitz continuous or no estimation of
the Lipschitz constant is available. However, projection methods usually require line-search
procedures. One has to compute a resolvent of ∂g together with one projection onto some
half-space at each iteration. This costs expensive processing time in general. Moreover, the
line-search stepsize often decreases to zeros that can makes the speed of the algorithm slow
at large iterations. One can see [12, 17, 22, 23, 24, 25] and the references therein for more
details.

Recently, gradient proximal-type methods have been actively studied in [19, 20, 29] with
efficient computations. In Malitsky [19], the author proposed a proximal extrapolated gra-
dient method (PEGM) with line-search procedure. It is worth pointing out that, line-search
procedure over iterations probably increases the computation time of the method. How-
ever, as mentioned in [19] this kind of stepsize has a special property that ”possibility at
least theoretically to increase the stepsize from iteration to iteration” [19]. This advantage
point therefore may overcome the main drawback of line-search method (usually giving
the decreasing sequence of stepsize). After that, in 2019, the author continued to improve
the algorithm to avoid the expensive calculation of the line-search process of PEGM. In
particular, Malitsky [20] proposed another strategy of stepsize selection that can be easily
computed by a simple closed formulation while still keeping the ability to increase the se-
quence of stepsize. This algorithm is called an adaptive golden ratio algorithm (aGRAAL).
It is noticeable that the convergence of both PEGM and aGRAAL are obtained under the lo-
cal Lipschitzness of A and the MVIP is considered in a finite dimensional space. For MVIP
in general Hilbert spaces, very recently, Zhou et al. [29] introduced an explicit algorithm
for solving (1.1). The self-adaptive stepsizes designed in [29] are decreasing and converg-
ing to a positive lower bound. To obtain the convergence of their proposed algorithm, the
operator A needs to be globally Lipschitz. However, one know that the descent of the step-
size may take a disadvantage because of the possibility of slowing down the algorithm at
the last steps. Additionally, the explicit stepsize by Zhou et al. [29] may need the effort to
compute ρn that involves three norms in H and it costs not cheap if H is just finite but large
dimensional.

In this paper, we introduce an efficient gradient proximal algorithm which uses our new
adaptive stepsizes for solving the MVIP (1.1). Our stepsize can be computed easily by a
simple formula and no need any line-search computation. Moreover, the most prominent
feature of our new method is in the increasing property of the sequence of stepsize after a
finite number of iterations. To the best of our knowledge, it is the first time such a kind of
stepsize has been proposed. This provides a promising method which is able to overcome
the main drawbacks of the other ones. The weak convergence of our algorithm is obtained
for the monotone and globally Lipschitz A. If A satisfies the strong monotone condition we
obtain the R-linear convergence result. The numerical experiments for the two applications
in sparse logistic regression and image deblurring show the efficiency of our new method.

The rest of the paper is organized as follows. After collecting some definitions and
fundamental results in Section 2, we propose the new strategy of stepsize selection and the
convergence results in Section 3. Section 4 includes several numerical results to illustrate
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the performance of our algorithm in comparison to the other ones. The paper is closed with
some conclusions in Section 5.

2. Preliminaries

For a sequence {xk} ⊂ H, we denote strong convergence of {xk} to x ∈ H by xk → x and
weak convergence by xk ⇀ x. With a proper, convex and lower semicontinuous function
g : H → (−∞,+∞] we see that for each x ∈ H, the function

y 7→ g(y) +
1

2
∥y − x∥2

is proper, strongly convex and lower semicontinuous, thus the infimum is attained. The
unique minimum of

y 7→ g(y) +
1

2
∥y − x∥2 (2.1)

is called proximal point of g at x and it is denoted by proxg(x). Therefore the operator

proxg(x) : H → H

x 7→ argmin
y∈H

{
g(y) +

1

2
∥y − x∥2

}
is well-defined and is said to be the proximity operator of g. When g = ιC (the indicator
function of the convex set C ⊂ H), one has

proxιC (x) = PC(x) = argmin
y∈C

{
1

2
∥y − x∥2

}
, ∀x ∈ H.

The next lemmas are essential for our analysis in the sequel.

Lemma 2.1. ([2, Proposition 12.26]) Let g : H → (−∞,+∞] be a convex function, x ∈ H. Then
p = proxg(x) if and only if

⟨p− x, y − p⟩ ≥ g(p)− g(y) ∀y ∈ dom(g).

The result in the below lemma is easy to obtain from Lemma 2.1.

Lemma 2.2. Let λ > 0 and g be proper l.s.c. convex function. Then x∗ is a solution of (1.1) if and
only if

x∗ = proxλg(x
∗ − λAx∗).

Lemma 2.3. ([20, Lemma 2.1]) Let {ak}, {bk} be two sequences of nonnegative numbers fulfilling:

ak+1 ≤ ak − bk, ∀k ∈ N. (2.2)

Then {ak} is convergent and
+∞∑
k=0

bk < +∞.

Lemma 2.4. ([2, Lemma 2.39]) Let {xk} be a sequence in a real Hilbert space and let S be a
nonempty subset of H. Suppose that
(1) For every z ∈ S, lim

k→∞
∥xk − z∥ exists;

(2) Any weak cluster point of {xk} belongs to S.
Then, there exists x̄ ∈ S such that {xk} converges weakly to x̄.
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3. A novel explicit stepsize for proximal gradient method solving MVIP

From now on, we assume that the following conditions hold:

(A1) Sol(g, A) ̸= ∅;

(A2) The mapping A : domg → H is globally Lipschitz with Lipschitz constant L > 0 and A
is monotone;

(A3) g : H → (−∞,+∞] is proper, convex and lower semicontinuous function.

We now introduce our new proximal gradient algorithm (NPROX) solving MVIP under the
three conditions (A1), (A2) and (A3).

Algorithm 3.1 (NPROX)

Step 0 (Initialization). Let r ∈ (1, 2), ρ = 1+
√
1+4r
2r

; λ0 > 0, 0 < η1 < η0 < σ < σ < ρ
2

and a
positive real sequence {ξk} satisfying

+∞∑
k=0

ξk < +∞. (3.1)

Choose x0 = y0 ∈ H, x1 ∈ H and set k = 1.

Step 1. If
∥Axk − Axk−1∥ >

η0
λk−1

∥xk − xk−1∥ (3.2)

then

λk = η1
∥xk − xk−1∥

∥Axk − Axk−1∥
(3.3)

else

λk = (1 + ξk−1)λk−1. (3.4)

Step 2. compute

yk =
(ρ− 1)xk + yk−1

ρ
, (3.5)

xk+1 = prox λkg
(yk − λkAx

k). (3.6)

Set k := k + 1, and return to Step 1.

Thanks to the idea of [16, 9] our proposed stepsize in Algorithm 3.1 is proved to have inter-
esting properties as in Lemma 3.1 below.

Lemma 3.1. Let {λk} be the stepsizes sequence generated by Algorithm 3.1. Then
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(i) for all k ≥ 1 we have λk ≥ λmin := min
{

η1
L
, λ0

}
> 0;

(ii) {λk} is convergent;

(iii) there exists a positive integer k such that λk+1 ≥ λk for all k ≥ k.

Proof. (i) Since A is L− globally Lipschitz continuous then

∥Axk − Axk−1∥ ≤ L∥xk − xk−1∥ ∀k ≥ 0,

therefore λ1 ≥ min
{

η1
L
, λ0

}
. By induction, we obtain that the sequence {λk} is lower

bounded by min
{

η1
L
, λ0

}
.

(ii) Let uk = lnλk+1 − lnλk ∀k ≥ 0, we have uk = u+
k − u−

k , where

u+
k = max{0, uk}, u−

k = −min{0, uk}.

Then u+
k ≥ 0 and u−

k ≥ 0 ∀k ≥ 0.

From the definition of λk in Algorithm 3.1, we derive that

uk = ln
λk+1

λk

≤ ln(1 + ξk) ≤ ξk ∀k ≥ 0,

which implies u+
k ≤ ξk. Since

+∞∑
k=0

ξk is convergent, we obtain
+∞∑
k=0

u+
k < +∞. Observing

that
+∞∑
k=0

u−
k is a nonnegative series and using the following relation

lnλk+1 − lnλ0 =
k∑

i=0

ui =
k∑

i=0

(u+
i − u−

i ) =
k∑

i=0

u+
i −

k∑
i=0

u−
i , (3.7)

we see that if lim
k→+∞

k∑
i=0

u−
i = +∞ then

lim
k→+∞

(lnλk+1) = −∞ ⇐⇒ lim
k→+∞

λk = 0.

This contradicts (i) and we have the convergence of
+∞∑
k=0

u−
k . Finally, from (3.7) we get

the desired conclusion that lim
k→+∞

λk = λ∗ < +∞.

(iii) The third assertion is equivalent to showing that there exists k such that

∥Axk − Axk−1∥ ≤ η0
λk−1

∥xk − xk−1∥ ∀k ≥ k.

Suppose by contradiction that there exists {kj}, kj → +∞ such that

||Axkj − Axkj−1|| > η0
λkj−1

||xkj − xkj−1||.
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For this case

λkj = η1
||xkj − xkj−1||

∥Axkj − Axkj−1∥
Therefore

η1||xkj − xkj−1||
λkj

= ∥Axkj − Axkj−1∥ >
η0

λkj−1

||xkj − xkj−1||,

i.e.,
λkj

λkj−1

<
η1
η0

∀kj.

From (ii), we have
lim

kj→+∞
λkj = lim

kj→+∞
λkj−1 = lim

k→+∞
λk = λ∗ (3.8)

hence we deduce that
λ∗

λ∗ ≤ η1
η0

< 1.

It is a contradiction and we finish the proof.

Remark 3.2. From the definition of ρ in Algorithm 3.1 we easily obtain the following relation

(i) ρ > 1;

(ii) 1 +
1

ρ
− rρ = 0.

Next, we study the convergence of Algorithm 3.1. Firstly, we claim the weak conver-
gence of {xk} generated by Algorithm 3.1 in the following theorem.

Theorem 3.3. Under conditions (A1)-(A3), the sequence
{
xk
}

generated by Algorithm 3.1 con-
verges weakly to a solution of the problem (1.1).

Proof. Let z be a member of Sol(g, A). From (3.6) we have

xk+1 = proxg
(
yk − λkAx

k
)
.

Applying Lemma 2.1 derives〈
xk+1 − yk + λkAx

k, y − xk+1
〉
≥ λk

(
g
(
xk+1

)
− g(y)

)
, ∀y ∈ dom(g). (3.9)

Replace y by z we have that〈
xk+1 − yk + λkAx

k, z − xk+1
〉
≥ λk

(
g
(
xk+1

)
− g (z)

)
.

Hence, we get

2
〈
xk+1 − yk, z − xk+1

〉
+ 2λk

〈
Axk, z − xk+1

〉
≥ 2λk

(
g
(
xk+1

)
− g (z)

)
.
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It follows that∥∥xk+1 − z
∥∥2 ≤

∥∥yk − z
∥∥2 −

∥∥xk+1 − yk
∥∥2

+ 2λk

〈
Axk, z − xk+1

〉
+ 2λk

(
g (z)− g

(
xk+1

))
=
∥∥yk − z

∥∥2 −
∥∥xk+1 − yk

∥∥2
+ 2λk

〈
Axk, z − xk

〉
+ 2λk

〈
Axk, xk − xk+1

〉
+ 2λk

(
g (z)− g

(
xk+1

))
≤
∥∥yk − z

∥∥2 −
∥∥xk+1 − yk

∥∥2
+ 2λk

〈
Axk, xk − xk+1

〉
− 2λk

(〈
Axk, xk − z

〉
+ g

(
xk+1

)
− g(z)

)
. (3.10)

Now, in view of (3.9) we subtitue k by k − 1 to have〈
xk − yk−1 + λk−1Ax

k−1, y − xk
〉
≥ λk−1

(
g
(
xk
)
− g(y)

)
, ∀y ∈ dom(g). (3.11)

Replacing y by xk+1 in (3.11), we get the evaluation〈
xk − yk−1 + λk−1Ax

k−1, xk+1 − xk
〉
≥ λk−1

(
g
(
xk
)
− g

(
xk+1

))
. (3.12)

Multiplying both sides of (3.12) by 2λk

λk−1
> 0 and taking into account that xk − yk−1 =

ρ
(
xk − yk

)
, we arrive at

2
ρλk

λk−1

〈
xk − yk, xk+1 − xk

〉
+ 2λk

〈
Axk−1, xk+1 − xk

〉
≥ 2λk

(
g
(
xk
)
− g

(
xk+1

))
.

Therefore we continue getting the following estimate

0 ≤ ρλk

λk−1

(
||xk+1 − yk

∥∥2−
∥∥xk − yk

∥∥2−
∥∥xk+1 − xk∥2

)
+ 2λk

〈
Axk−1, xk+1 − xk

〉
+ 2λk

(
g
(
xk+1

)
− g

(
xk
))

. (3.13)

Adding both sides of relations (3.10) and (3.13), we see that

∥∥xk+1 − z
∥∥2 ≤

∥∥yk − z
∥∥2 −

(
1− ρλk

λk−1

)∥∥xk+1 − yk
∥∥2 − ρλk

λk−1

(∥∥xk − yk
∥∥2

+
∥∥xk+1 − xk

∥∥2
)

+ 2λk

〈
Axk − Axk−1, xk − xk+1

〉
− 2λk

(〈
Axk, xk − z

〉
+ g

(
xk
)
− g (z)

)
.
(3.14)

By the monotone of A and z ∈ Sol(g, A), we obtain〈
Axk, xk − z

〉
+ g

(
xk
)
− g (z) ≥

〈
Az, xk − z

〉
+ g

(
xk
)
− g (z) ≥ 0. (3.15)

Thus, we arrive at∥∥xk+1 − z
∥∥2 ≤

∥∥yk − z
∥∥2 −

(
1− ρλk

λk−1

)∥∥xk+1 − yk
∥∥2

− ρλk

λk−1

(∥∥xk − yk
∥∥2

+
∥∥xk+1 − xk

∥∥2
)
+ 2λk

〈
Axk − Axk−1, xk − xk+1

〉
.

(3.16)
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Now, since the positive series
+∞∑
k=0

ξk converges and 0 < η0 < σ, 1 < r < 2 then one can take

k1 ∈ N such that

ξk−1 < min

{
r − 1,

σ

η0
− 1

}
∀k ≥ k1. (3.17)

The way choosing k1 like that helps us to show the correctness of the following inequality

2λk

〈
Axk − Axk−1, xk − xk+1

〉
≤ σ(∥xk − xk−1∥2 + ∥xk+1 − xk∥2),∀k ≥ k1. (3.18)

Indeed, from Algorithm 3.1, if condition (3.2) is true then λk = η1
∥xk−xk−1∥

∥Axk−Axk−1∥ and we have
(3.18) easily by using Cauchy–Schwarz inequality as follows

2λk

〈
Axk − Axk−1, xk − xk+1

〉
≤ 2λk∥Axk − Axk−1∥∥xk − xk+1∥
= 2η1∥xk − xk−1∥∥xk − xk+1∥
< σ(∥xk − xk−1∥2 + ∥xk+1 − xk∥2). (3.19)

Otherwise, we have ∥Axk − Axk−1∥ ≤ η0
λk−1

∥xk − xk−1∥ and

2λk

〈
Axk − Axk−1, xk − xk+1

〉
≤ 2(1 + ξk−1)λk−1∥Axk − Axk−1∥∥xk − xk+1∥
≤ 2(1 + ξk−1)η0∥xk − xk−1∥∥xk − xk+1∥
≤ (1 + ξk−1)η0(∥xk − xk−1∥2 + ∥xk+1 − xk∥2). (3.20)

From (3.17) and (3.20) we obtain (3.18).
We continue to confirm that

1 +
1

ρ
− ρλk

λk−1

≥ 0 ∀k ≥ k1. (3.21)

Indeed, by Remark 3.2 we have 1 + 1
ρ
− rρ = 0. If condition (3.2) is right then it is obvious

to see that λk

λk−1
< η1

η0
< 1 < r and

1 +
1

ρ
− ρλk

λk−1

> 1 +
1

ρ
− rρ = 0.

The remaining case λk = (1 + ξk−1)λk−1, from (3.17) and (3.4) we deduce that

1 +
1

ρ
− ρλk

λk−1

= 1 +
1

ρ
− (1 + ξk−1)ρ > 1 +

1

ρ
− rρ = 0, ∀k ≥ k1.

Now, from Lemma 3.1, {λk} converges to λ∗ then we derive that

lim
k→+∞

ρλk

λk−1

= ρ > 2σ
(

because σ <
ρ

2

)
.

Therefore there exists k2 ≥ 1 such that

ρλk

λk−1

> 2σ, ∀k ≥ k2. (3.22)
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Taking into account that, in a real Hilbert space H, the equality

∥ax+ by∥2 = a∥x∥2 + b∥y∥2 − ab∥x− y∥2 (3.23)

keeps for all x, y ∈ H and a + b = 1, a, b ∈ R. On the other hand,it can be easily seen from
(3.5) that ρyk+1 = (ρ− 1)xk+1 + yk. Hence, applying (3.23) we obtain∥∥xk+1 − z

∥∥2
=

ρ

ρ− 1

∥∥yk+1 − z
∥∥2 − 1

ρ− 1

∥∥yk − z
∥∥2

+
1

ρ

∥∥xk+1 − yk
∥∥2

. (3.24)

Combining (3.16), (3.18) with (3.24) and ρ > 1 (in Remark 3.2), we get

ρ

ρ− 1

∥∥yk+1 − z
∥∥2 ≤ ρ

ρ− 1

∥∥yk − z
∥∥2 −

(
1 +

1

ρ
− ρλk

λk−1

)∥∥xk+1 − yk
∥∥2 − ρλk

λk−1

∥∥xk − yk
∥∥2

+ σ
∥∥xk − xk−1

∥∥2 −
(

ρλk

λk−1

− σ

)∥∥xk+1 − xk
∥∥2

, ∀k ≥ k1. (3.25)

From (3.21), (3.22) and (3.25) we obtain that

ρ

ρ− 1

∥∥yk+1 − z
∥∥2

+(2σ − σ)
∥∥xk+1 − xk

∥∥2 ≤ ρ

ρ− 1

∥∥yk − z
∥∥2

+

+ σ
∥∥xk − xk−1

∥∥2 − 2σ
∥∥xk − yk

∥∥2
, ∀k ≥ k0 = max{k1, k2}. (3.26)

Since σ < σ, then 2σ − σ > σ and we get from (3.26) that

ρ

ρ− 1

∥∥yk+1 − z
∥∥2

+σ
∥∥xk+1 − xk

∥∥2 ≤ ρ

ρ− 1

∥∥yk − z
∥∥2

+

+ σ
∥∥xk − xk−1

∥∥2 − 2σ
∥∥xk − yk

∥∥2
, ∀k ≥ k0 = max{k1, k2} (3.27)

Let
ak =

ρ

ρ− 1

∥∥yk − z
∥∥2

+ σ
∥∥xk − xk−1

∥∥2
,

bk = 2σ
∥∥xk − yk

∥∥2

then
ak+1 ≤ ak − bk, ∀k ≥ k0,

Thus, by Lemma 2.3, the limit lim
k→+∞

ak exists and is finite. In addition, lim
k→+∞

bk = 0 follows

the sequences
{
yk
}

and
{
xk
}

are bounded and

lim
k→+∞

∥∥xk − yk
∥∥2

= 0. (3.28)

From the equality xk − yk−1 = ρ
(
xk − yk

)
one easily obtains lim

k→+∞

∥∥xk − yk−1
∥∥2

= 0. There-

fore
∥∥xk+1 − yk

∥∥2 → 0 as k → +∞. This together with (3.28) imply that

lim
k→+∞

∥∥xk+1 − xk
∥∥2

= 0. (3.29)
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Let us show that any weakly cluster point of the sequence {yk} belongs to the solution set
Sol(g, A). Indeed, let x∗ be an arbitrary weakly cluster point of {yk}. Since {yk} is bounded,
there exists a subsequence {ykl} of {yk} such that ykl ⇀ x∗. By (3.28), we also have xkl ⇀ x∗.
Fix an arbitrary y ∈ dom(g), we have from (3.11) that〈

xkl − ykl−1 + λkl−1Ax
kl−1, y − xkl

〉
≥ λkl−1

(
g
(
xkl

)
− g(y)

)
. (3.30)

By using (3.30) we deduce that

λkl−1

(
g
(
xkl

)
− g(y)

)
≤

〈
xkl − ykl−1, y − xkl

〉
+ λkl−1

〈
Axkl−1, y − xkl

〉
=

〈
xkl − ykl−1, y − xkl

〉
+ λkl−1

〈
Axkl−1, y − xkl−1

〉
+ λkl−1

〈
Axkl−1, xkl−1 − xkl

〉
≤

〈
xkl − ykl−1, y − xkl

〉
+ λkl−1

〈
Ay, y − xkl−1

〉
+ λkl−1

〈
Axkl−1, xkl−1 − xkl

〉
, (3.31)

where last inequality is implied by the monotone of A. Let l → +∞ in (3.31), using the fact
lim

l→+∞
∥xkl − xkl−1∥ = lim

l→+∞
∥ykl−1 − xkl∥ = 0, lim

l→+∞
λkl−1 = λ∗ > 0, the bounded of {xk}, A

globally Lipschitz and g lower semicontinuous; we arrive at

⟨Ay, y − x∗⟩+ g(y)− g(x∗) ≥ 0. (3.32)

For any arbitrary x ∈ dom(g), let yt = tx + (1 − t)x∗, t ∈ (0, 1). Since dom(g) is convex,
yt ∈ dom(g). Putting y = yt in (3.32) we get

⟨Ayt, yt − x∗⟩+ g(yt)− g(x∗) ≥ 0.

Thus, by the convexity of g, we have

⟨Ayt, x− x∗⟩+ g(x)− g(x∗) ≥ 0. (3.33)

Since A is Lipschitz continuous, taking limit as t → 0 in the (3.33), we obtain

⟨Ax∗, x− x∗⟩+ g(x)− g(x∗) ≥ 0.

On the other hand, x ∈ dom(g) is arbitrary then we have x∗ ∈ Sol(g, A). Since x∗ is an
arbitrary weakly cluster point we can conclude that the set of all weakly cluster points
of {yk} belongs to the solution set Sol(g, A). Taking into account the convergence of the
sequence

{
ρ

ρ−1
∥yk − z∥2 + σ∥xk − xk−1∥2

}
and (3.29), we infer that the sequence

{
∥yk − z∥

}
is convergent. Hence, it follows from Lemma 2.4 that the sequence {yk} weakly converges
to a solution of the problem (1.1). Again by (3.28), we also obtain xk weakly converges to a
solution of the problem (1.1). This finishes the proof of the theorem.
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Remark 3.4. It is observed that if we set r = 1 in Algorithm 3.1 (NPROX) then ρ = 1+
√
5

2

which is known as golden ratio. However, in our algorithm we cannot choose such a r to
ensure the the convergence of NPROX. In the proof of Theorem 3.3, the argument related
to formulas (3.17), we need the condition r > 1 to confirm the existence of k1. In contrast,
this golden ratio is used adaptively in aGRAAL ([20] Algorithm 1) which is described as
ϕ ∈ (1, φ], where φ = 1+

√
5

2
. Therefore our algorithm is not a kind of golden ratio algorithm

and it is different from aGRAAL.

We next deals with the convergence rate of Algorithm 3.1. In order to establish the
R-linear convergence, we assume that the operator A is strongly monotone on domg with
modulus γ > 0, i.e., for any x, y ∈ domg

⟨Ax− Ay, x− y⟩ ≥ γ∥x− y∥2. (3.34)

Theorem 3.5. Assume that Problem (1.1) satifies the conditions (A1) - (A3) and A is strongly
monotone on domg with modulus γ > 0. Then the sequence

{
xk
}

generated by Algorithm 3.1
converges R- linearly to x∗ ∈ Sol(g, A), i.e., there exists an integer number k̂, and D > 0, δ ∈ (0, 1)

such that ∥xk − x∗∥ ≤ Dδk, ∀k ≥ k̂.

Proof. By using the similar argument of the proof of Theorem 3.3 we update the inequality
(3.15) by〈
Axk, xk − z

〉
+g

(
xk
)
−g (z) ≥

〈
Az, xk − z

〉
+g

(
xk
)
−g (z)+γ∥xk−z∥2 ≥ γ∥xk−z∥2 (3.35)

and therefore the inequality (3.16) becomes∥∥xk+1 − z
∥∥2 ≤

∥∥yk − z
∥∥2 −

(
1− ρλk

λk−1

)∥∥xk+1 − yk
∥∥2 − ρλk

λk−1

(∥∥xk − yk
∥∥2

+
∥∥xk+1 − xk

∥∥2
)
+

+ 2λk

〈
Axk − Axk−1, xk − xk+1

〉
− 2λkγ∥xk − z∥2. (3.36)

Consequently we get the following inequality from (3.26)

ρ

ρ− 1

∥∥yk+1 − z
∥∥2

+(2σ − σ)
∥∥xk+1 − xk

∥∥2 ≤ ρ

ρ− 1

∥∥yk − z
∥∥2

+ σ
∥∥xk − xk−1

∥∥2

− 2σ
∥∥xk − yk

∥∥2 − 2λkγ∥xk − z∥2, ∀k ≥ k0. (3.37)

Next, because of the global Lipschitzness and the strong monotone of A we derive that
0 < γ ≤ L. Therefore

0 < 2γλmin ≤ 2Lλmin ≤ L
η1
L

= 2η1 < 2σ ∀k ≥ 0.

As a result we obtain that

2σ
∥∥xk − yk

∥∥2
+ 2λkγ∥xk − z∥2 ≥ 2λminγ

(
∥xk − yk∥2 + ∥xk − z∥2

)
≥ λminγ∥yk − z∥2. (3.38)

Thus, from (3.37) we arrive at

ρ

ρ− 1

∥∥yk+1 − z
∥∥2

+ (2σ − σ)
∥∥xk+1 − xk

∥∥2 ≤
(

ρ

ρ− 1
− γλmin

)∥∥yk − z
∥∥2

+ σ
∥∥xk − xk−1

∥∥2
, ∀k ≥ k0, (3.39)
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that is equivalent to

∥∥yk+1 − z
∥∥2

+ (2σ − σ)
ρ− 1

ρ

∥∥xk+1 − xk
∥∥2 ≤

(
1− γλmin

ρ− 1

ρ

)∥∥yk − z
∥∥2

+

+ σ
ρ− 1

ρ

∥∥xk − xk−1
∥∥2

, ∀k ≥ k0. (3.40)

Now, taking Γ = max
{
1− γλmin

ρ−1
ρ
, σ
2σ−σ

}
then Γ ∈ (0, 1) and (3.40) follows

∥∥yk+1 − z
∥∥2
+(2σ−σ)

ρ− 1

ρ

∥∥xk+1 − xk
∥∥2 ≤ Γ

(∥∥yk − z
∥∥2

+ (2σ − σ)
ρ− 1

ρ

∥∥xk − xk−1
∥∥2
)
, ∀k ≥ k0.

(3.41)
It follows that

∥∥yk+1 − z
∥∥2

+(2σ − σ)
ρ− 1

ρ

∥∥xk+1 − xk
∥∥2 ≤

≤ Γk−k0+1

(∥∥yk0 − z
∥∥2

+ (2σ − σ)
ρ− 1

ρ

∥∥xk0 − xk0−1
∥∥2
)
, ∀k ≥ k0. (3.42)

Setting

M =

∥∥yk0 − z
∥∥2

+ (2σ − σ)ρ−1
ρ

∥∥xk0 − xk0−1
∥∥2

Γk0−1
,

then (3.42) can be rewrite as∥∥yk+1 − z
∥∥2

+ (2σ − σ)
ρ− 1

ρ

∥∥xk+1 − xk
∥∥2 ≤ MΓk, ∀k ≥ k0. (3.43)

Thus ∥∥xk+1 − xk
∥∥ ≤ Kδk, ∀k ≥ k0, (3.44)

where
K =

Mρ

(2σ − σ)(ρ− 1)
, δ =

√
Γ ∈ (0, 1).

Now taking n2 > n1 ≥ k0 arbitrary and using (3.44) we derive that

∥xn2 − xn1∥ ≤
n2−1∑
k=n1

∥∥xk+1 − xk
∥∥ ≤ Kδn1

1− δ
. (3.45)

Therefore {xk} is a Cauchy sequence and then has a limitation x∗. By tending n2 to infinity
in (3.45) we have

∥xn1 − x∗∥ ≤ Kδn1

1− δ
, ∀n1 ≥ k0. (3.46)

Combining the result of Theorem 1 we conclude that {xk} R-linearly converges to a unique
solution x∗ of problem (1.1) with D = K

1−δ
and k̂ = k0.
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4. Numerical results

In this section, we consider the following problem that has a lot of applications in many
areas

min
x∈Rn

f(x) + g(x), (4.1)

where f : Rn → R ∪ {+∞} is a smooth convex function, dom(f) is convex, f is globally
Lipschitz gradient over int(dom(f)); g : Rn → R ∪ {+∞} is proper convex, lower sem-
incontinuous and nonsmooth in general, dom(g) ⊂ int(dom(f)). It is worth noting that (4.1)
is called a composite optimization model that can be rewritten as the following inclusion
problem:

finding x∗ ∈ Rn such that 0 ∈ (∇f + ∂g)(x∗). (4.2)

Problem (4.2) is indeed (2.1) with Ax = ∇f(x) and the function g(x) keeps the same. To
investigate the performance of our new proposed algorithm, we implement NPROX ( Algo-
rithm 3.1) and the recent algorithms proposed for solving MVIP. Which include Algorithm
3 in [19] (PEGM), Algorithm 1 in [20] (aGRAAL) and Algorithm 4 in [29] (Zhou et al. Algo.).
The two concrete applications of (4.1) consisting of sparse logistic regression and image de-
blurring are used for testing. We run all the programs on a PC Core i7 1360P 2.2GHz, Ram
16Gb (onboard) LPDDR5x 7500.

To execute NPROX we use the positive convergent series
+∞∑
k=0

ξk as follows

ξk−1 =
α(log(t.k))β

ks
, α, β, t > 0; s > 1,∀k ≥ 1.

4.1. Sparse logistic regression
In this section, by using Python 3.9 we coded the mentioned algorithms for sparse logis-

tic regression - one of popular problems in machine learning. We aim to find x ∈ Rn such
that minimizing the loss function given by

h(x) =
N∑
i=1

log (1 + exp (−bi ⟨ai, x⟩)) + γ∥x∥1,

where ai ∈ Rn, bi ∈ {−1, 1}, i = 1, ..., N are observations; and γ > 0 is a regularization
parameter. It is clear that problem min

x∈Rn
h(x) is a kind of problem (4.1) with

f(x) =
N∑
i=1

log (1 + exp (−bi ⟨ai, x⟩)) ; g(x) = γ∥x∥1.

The tested data are taken from LIBSVM1 library including: a9a; kdda.t.bz2; real − sim.bz2;
ijcnn1.bz2. We choose x0 = zeros(n), x1 = x0 + 10−9random(n), γ = 0.005∥BT b∥∞ (B com-
posed by ai, i = 1, ..., N, b = (bi)

N
i=1) for all algorithms. The parameters2 for each algorithm

as follows:
1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
2The parameters for PEGM, aGRAAL, Zhou et al. Algo. are chosen based on the corresponding reference

[19, 20, 29].
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PEGM: a = 0.41
(
2 − 1

θ

)
, θ = 2, σ = 0.7, λ0 = a ∥x1−x0∥

∥Ax1−Ax0∥ , λmax = 107; Err = ∥xn+1 −
yn∥+ ∥xn − yn∥;

aGRAAL: φ = 1.5, λ0 =
φ
2

∥x1−x0∥
∥Ax1−Ax0∥ , ρ = 1

φ
+ 1

φ2 , λ̄ = 107, Err = ∥zk+1 − z̄k∥+ ∥z̄k − zk∥;

Zhou et al. Algo.: δ = 0.6, µ1 = 0.001, ϵ = 5, η = 0.005, Err = ∥un+1 − un∥+ ∥un − vn∥;

NPROX: λ0 = 0.001, r = 10
9

, ρ = 1+
√
1+4r
2r

, η0 = 0.2, η1 = 0.15, ξk−1 = 0.9(log k)5

k1.1
, k ≥ 1,

Err = ∥xk+1 − yk∥+ ∥xk − yk∥.

Each algorithm terminates either Err< 10−10 or the number of iterations larger than Nmax,
where Nmax is 10000 for a9a and real− sim.bz2; 3000 for kdda.t.bz2 and 7000 for ijcnn1.bz2.

Denoting h∗ as the mininmum of h(xk) obtained by all algorithms. The computational
results are shown in Fig 1, 2, 3, 4 for the data sets a9a, kdda.t.bz2, real− sim.bz2, ijcnn1.bz2,
respectively. The provided line graphs reveals the deviation of h(xk) and h∗ with respect to
the number of iterations and the running time. It is noticeable that almost figures experi-
enced the best performance of NPROX for both of iterations and execution time in compar-
ison with the remaining ones. It is worth noting that for a9a, real − sim.bz2, ijcnn1.bz2 in
Fig 1, 3, 4 the number of iterations of PEGM is less than aGRAAL but PEGM takes larger
running time. The reason is due to the line-search computation in each iteration of PEGM
that makes it slower. Conversely, during the execution both of aGRAAL and NPROX use
adaptive stepsize hence take little time so that the bigger iterations still give the faster run-
ning time compared to PEGM. This phenomenon is also stated in Fig. 2 for kdda.t.bz2 data
set. Regarding the iteration, PEGM is better than NPROX but for the running time NPROX
is clearly faster.
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Figure 1: The numerical result of the data a9a (N = 32561, n = 123).
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Figure 2: The numerical result of the data kdda.t.bz2 (N = 510302, n = 2014669).
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Figure 3: The numerical result of the data real − sim.bz2 (N = 72309, n = 20958).
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Figure 4: The numerical result of the data ijcnn1.bz2 (N = 49990, n = 22).
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4.2. Image deblurring
In this section, we present the experiments for a wavelet-based image deblurring prob-

lem as follows

min
x∈Rn

{ 1

2
∥Ux− c∥2 + ζ∥Wx∥1

}
, (4.3)

where c is a vectorized observed image, the matrix U = MW with a blur operator M and an
inverse of a three stage Haar wavelet transform W and the regularization parameter ζ > 0.
Obviously, (4.3) belongs to the class of problem (4.1) with

f(x) =
1

2
∥Ux− c∥2 and g(x) = ζ∥Wx∥1.

We do the experiment for the RGB image ”Girl.tif”3 size 256 × 256. And therefore n =
256× 256× 3 = 196608. Firstly, this image is blurred and corrupted by one of the following
blur types:

1. Motion blur with motion length of 10 pixels and motion orientation 60◦.
2. Gaussian blur of filter size 7× 7 with standard deviation 8.

After that, we add an additive zero-mean white Gaussian noise with standard deviation
10−3 to the obtained images. The pairs of original image final and noisy image are presented
in Fig. 5, 6 and Fig. 8, 9 corresponding to the mentioned blur types. For each algorithm, the
used parameters4 are the following:

PEGM: a = 0.41
(
2− 1

θ

)
, θ = 2, σ = 0.7, λ0 = a ∥x1−x0∥

∥Ax1−Ax0∥ , λmax = 107.

aGRAAL: φ = 1.5, λ0 =
φ
2

∥x1−x0∥
∥Ax1−Ax0∥ , ρ = 1

φ
+ 1

φ2 , λ̄ = 107.

Zhou et al. Algo.: δ = 0.6, µ1 = 0.3, ϵ = 5, η = 0.005.

NPROX: λ0 = 0.9, r = 1.01, ρ = 1+
√
1+4r
2r

, η0 = 0.35ρ, η1 = 0.01η0, and

ξk−1 =
0.05(log(1.3k))6.7

k1.03
, k ≥ 1.

The quality of the restoration is measured by PSNR (the peak signal-to-noise ratio) in deci-
bel (dB):

PSNR(x) = 10 log10

(
2552

MSE

)
,

with

MSE =
1

n

√√√√ n∑
j=1

(x̄(j)− x(j))2,

where x̄ is the original image.

3http://fantacci.wikidot.com/licap
4The parameters for PEGM, aGRAAL, Zhou et al. Algo. are chosen based on the corresponding references

[19, 20, 29].
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We set ζ = 2e−5 and stopping criterion is either PSNR ≥ 40 or the maximum iteration over
3000. For this experiment, code is written by Matlab 2019. The restored images obtained
by the considered algorithms are shown in Fig. 7 and Fig. 11 for Gaussian and motion
noise, respectively. We also report the evolution of the objective value and PSNR in Fig.
11 and Fig. 12 in both aspects of iterations and running time. The obtained results show
that NPROX works better than all the remaining ones for both of considered blur types. In
particular, it achieves the requirement PSNR in very fewer iterations and less computation
time compared to the other methods.

Figure 5: Original image (left); the blurred and noisy image by Gaussian (right).

Figure 6: Original image (left); blurred and noisy image (right) with a zoom patch.
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Figure 7: Restored images by considered algorithms for the case of Gaussian blur.

Figure 8: Original image (left); the blurred and noisy image by motion blur (right).
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Figure 9: Original image; the motion blurred image (right) with a zoom patch.

Figure 10: Restored images by considered algorithms for the case of motion blur
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Zhou et al. Algo.
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Zhou et al. Algo.
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Zhou et al. Alg.

PEGM
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NPROX

Zhou et al. Algo.

PEGM
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Figure 11: Evolution of the objective value and PSNR for the case of Gaussian blur.
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Zhou et al. Algo.
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Figure 12: Evolution of the objective value and PSNR for the case of motion blur.

5. Conclusions

In this paper, we propose a novel stepsize selection for proximal gradient method solving
mixed variational inequality problems (MVIP) in Hilbert spaces. We not only show the
weak and R-linear convergence of the proposed algorithm under the standard assumptions
of (MVIP) but also assert the increasing of the sequence of our stepsize from some fixed
iteration. This interesting property can help to speed up the algorithm in general. The illus-
tration for applications in sparse logistic regression and image deblurring problem show the
efficiency of the proposed method. For the future research, one can consider the operator A
under more general assumptions such as locally Lipschitz or nonmonotone.
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