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Abstract

Partial inverse combinatorial optimization problems are bilevel optimization problems in which the
leader aims to incentivize the follower to include a given set of elements in the solution of their combinato-
rial problem. If the set of required elements defines a complete follower solution, the inverse combinatorial
problem is solvable in polynomial time as soon as this holds true for the follower problem. In contrast, the
same is not necessarily true for partial inverse problems, e.g. the partial inverse min cut problem has been
shown to be NP-complete. In this paper, we consider partial inverse combinatorial optimization problems
in which weights can only be increased. Furthermore, we assume that the lower-level combinatorial prob-
lem can be solved as a linear program. In this setting of allowing only weight increases, we show that the
partial inverse shortest path problem on a directed acyclic graph is NP-complete even if only a single arc
is required to be part of a shortest path. Moreover, the partial inverse assignment problem with a single
required edge is NP-complete. For solving partial inverse combinatorial optimization problems with only
weight increases, we present a novel branch-and-bound scheme that exploits the difference in complexity
between complete inverse and partial inverse versions of a problem. For both primal heuristics and node
relaxations, our scheme uses auxiliary problems that are basically complete inverse problems on similar
instances, while branching is done on follower variables. We test our approach on partial inverse shortest
path, assignment and min cut problems, and computationally compare it to an MPCC reformulation as
well as a decomposition scheme.

Keywords: Bilevel Optimization, Inverse Problems, Mixed-Integer Programming, Branch and Bound

Mathematics Subject Classification: 90C11, 90C26, 90C27, 90C60, 91A65

1 Introduction

A partial inverse combinatorial problem (PICP) is a bilevel optimization problem in which the leader aims
to find minimal-weight modifications for the objective of a follower’s combinatorial problem such that a
lower-level optimal solution will be chosen that extends a given partial lower-level solution. It is therefore
a bilevel optimization problem with bound constraints on lower-level variables on the upper level. Such
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Figure 1: Completing partial min cut by min cut after contraction of required parts is not optimal, as demon-
strated in this example instance inspired by [15]: Require the partial cut {s, c} , {a, t}. The contracted graph
with vertices {s, c} , {a, t} , b allows two cuts I = ({s, c, b} , {a, t}) with value 5 or J = ({s, c} , {a, t, b}) with
value 4. However, reducing capacities for I by 3 (reduce capacity of arc ba to 0) is better than decreasing
weights for J by 4 (reduce capacity of arcs sb, ct both by 2 to 0).
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Figure 2: Shortest path completion is not optimal: Let k ≥ 3. The shortest s-a-path is via vertex c. The
inverse shortest path problem for edges {sc, ca, ab} adds weight k to arc cb and k − 1 to cd or db, so in total
2k − 1. In contrast, only a total weight of k + 1 is added to arc sc for the complete path {sa, ab}.

problems arise e.g. in economic applications in which a planner wants rational followers to act in a desired
way, see e.g. [10]. A PICP can also model parameter estimation problems from data science, in which the
goal is to find reasonable values for a set of unknown parameters that explain partially observable follower
behavior, see e.g. [24].

A complete inverse combinatorial problem (ICP), i.e. an ICP for which the predefined partial lower-
level solution in fact specifies a complete solution, is solvable in polynomial time as soon as the lower-
level problem is solvable in polynomial time [2]. In contrast, a partial inverse combinatorial problem can
be NP-hard even if the lower-level problem is an ‘easy’ combinatorial optimization problem solvable in
polynomial time. Hence, the main difficulty of a PICP can be seen in determining which lower-level feasible
solution will turn out to be optimal in an optimal solution of the PICP. Note that the number of candidate
lower-level feasible solutions can be exponential. It is natural to guess that this lower-level solution will be
a minimal (complete) lower-level solution that extends the partial solution. However, this is not guaranteed
in general. For example, the partial inverse min cut problem (PIMCP) cannot be solved by the method of
first computing a lower-level completion and then solving an inverse min cut problem, see Figure 1 for a
small example. In fact, the PIMCP is NP-complete [15]. However, some PICPs can be solved via minimal
lower-level completions in polynomial time, for example the partial inverse shortest path problem (PISPP)
on directed acyclic graphs (DAGs), see Theorem 2.9, or the partial inverse assignment problem (PIAP)
[29]. This, however, may change again in the presence of additional constraints, e.g. bounds on weight
modifications, see Figure 2 for an illustrating example on the PISPP on DAGs with only weight increases;
an example for PIAP can be found in [28]. A solution based on a minimal completion can have a value with
an arbitrarily large gap to the optimal value, as the example in Figure 2 shows.
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The main contribution of this paper is a novel branch-and-bound method for a certain class of NP-
complete PICPs in which weights can only be increased – which we denote by PICP-W+. The main idea is
to exploit the above-mentioned fact that many such problems are solvable in polynomial time as soon as
we consider complete instead of partial versions of the respective ICPs. We will heavily make use of this for
both the primal and dual bounding procedure. Throughout this work, we use shortest path problems on
a directed acyclic graph, assignment problems and min cut problems as example cases. Despite examples
like the ones in Figure 2, it turns out that solutions based on minimal completions can be used to obtain
strong primal bounds in all these cases. For obtaining dual bounds we propose a construction that yields
a problem sharing essential similarities with a complete ICP and which can be explicitly modelled as an
ICP for two out of three of the example cases. This construction requires valid and strong dual bounds
on the lower-level objective in an optimal solution, which are efficiently obtainable if weights can only be
increased. In a computational study on the example problem classes, we show that the resulting algorithm
is already competitive even without any other, classical, relaxation techniques or primal heuristics, when
compared to a state-of-the-art solver applied to a single-level reformulation. In addition, we fill some gaps
in the complexity landscape of the problems considered, by giving proofs for the NP-completeness of
PISPP-W+ on a directed acyclic graph and the PIAP-W+, in both cases with a single required arc. Instances
from both problem classes are relevant for the computational study.

In this work, we will use the optimistic assumption, i.e. if the follower is indifferent towards two or more
solutions, they will choose the one most favourable to the leader. For optimistic PICPs, the existence of one
lower-level optimal solution fulfilling the upper level’s requirements suffices. In contrast, for PICPs with a
pessimistic stance every lower-level optimal solution must fulfil the upper-level’s requirements. For PICPs,
however, solving the optimistic or the pessimistic version is essentially the same from an algorithmic point
of view, see Section 2.6.

In the following Section 2, we formally define PICPs, give optimality conditions and describe PICPs that
we use in the following. Furthermore, we provide a literature review, present general solution approaches
and briefly discuss the pessimistic version of PICPs. Afterwards in Section 3, we prove two complexity
results on PISPP-W+ and PIAP-W+, i.e. PISPP respectively PIAP with only weight increases. In Section 4,
we present our branch-and-bound method for PICP-W+. The main emphasis is on primal and dual bound-
ing procedures used for pruning, but we also briefly discuss other aspects. Computational results for three
example classes of PICP-W+ are given in Section 5.

2 Partial inverse combinatorial problems (PICPs)

2.1 Definition and notation

The partial inverse combinatorial problem (PICP) in the general form can be formulated as follows:

min
w,y

∑
e∈E

|we|

s.t. lw ≤ w ≤ uw

ye = 1 ( e ∈ R )

y ∈ argmin
y′∈Y

(d+ w)⊤y′,

where the lower-level problem is a combinatorial problem whose feasible set Y ⊆ {0, 1}n consists of 0-
1 vectors and is independent of the upper-level variables. Upper-level variables w modify the lower-level
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objective function (d+w)⊤y, where the parameter vector d specifies initial weights and y are the lower-level
characteristic vectors. By slight abuse of notation, we sometimes also identify y with the set {e ∈ E | ye = 1}
if no confusion is possible. Note that the above problem formulation implies the optimistic assumption. On
the upper level, upper-level variables w may be bounded from below by lw and from above by uw. If lw

and/or uw are not specified, we assume that arbitrary weight modifications in the respective direction are
allowed. We call R the set of required elements, i.e. the set of elements for which the leader has to ensure that
they will be part of a lower-level optimal solution.

We use the ℓ1-norm for measuring weight modifications, thus minimize
∑

e |we| on the upper level. De-
pending on the application, a weighted sum might be more appropriate. We use unit weights for simplicity
of notation, although a generalization of our algorithmic results to the weighted case is easily possible.
This also holds if there are more general partial-solution constraints on the upper level that also exclude
elements from a lower-level solution. If a specific lower-level solution is uniquely determined by R, the
PICP is in fact a complete ICP.

We may assume that lw ≤ 0 ≤ uw (possibly +/−∞) by modifying d accordingly and adding a constant
offset in the objective of the upper level. If lw = 0, the problem only allows weights to be increased. We
denote this by adding the suffix ‘W+’ to the name of the respective PICP class. Similarly, if uw = 0, we have
a PICP in which weights can only be decreased, denoted by the suffix ‘W-’.

2.2 Optimality conditions

Next, we give some necessary conditions for an optimal solution of a PICP. They are a generalization of
[29, Lemma 1].

Lemma 2.1. Let (w∗, y∗) be an optimal solution. Then the following holds:

1. If y∗e = 1 then w∗
e ≤ 0.

2. If y∗e = 0 then w∗
e ≥ 0.

3.
∑

e |w∗
e | ≥ miny

{
d⊤y | y ∈ Y, ye = 1 ∀e ∈ R

}
−miny

{
d⊤y | y ∈ Y

}
In case the upper-level restrictions define a unique lower-level solution and the lower-level problem

can be formulated as a linear program (LP), then also the inverse problem can be formulated as an LP. This
result is based on duality theory [2].

Inequality 3 in the above lemma is satisfied with equality if the lower-level problem is an LP with all
variables in the objective as can be shown based on duality [29, Theorem 3]. However, the inequality can
be strict in general as the following example shows.

Example 2.2. Let Y = {{A,B} , {A,C} , {B,D} , {E}} with dA = dB = 5, dC = dD = 2, dE = 6 and
R = {A,B}. The only lower-level solution including R is the set {A,B} with a total weight of 10. The
minimal lower-level solution is {E} with weight 6. However, there is no feasible weight modification of
total weight 10− 6 = 4.

2.3 Easy lower-level problems

In the following, we consider PICPs with lower-level problems that can be solved as linear programming
problems.

Assumption 2.3. We assume that the lower-level problem is given as a linear program such that for all
objectives there is an optimal 0-1 solution.
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Figure 3: Reducing only the weight of the required arc sb in this instance of the PISPP will not give a bilevel-
feasible solution due to the negative weights on arcs ba, as. The reduction of the weight of arc sb would
need to be at least 2 − 10 − 3 = −11 resulting in a negative cycle through s, b, a. An optimal solution is to
reduce the weight of arc sb by one and decreasing the weight of arc bt by 10 to 0. Only reducing the weight
of arc bt is also not a solution.

The corresponding ICPs where R defines a complete lower-level solution have been considered in [2].
Based on this assumption, we have the following problem formulation, where we use equality constraints
and non-negative variables on the lower level.

min
w,y

∑
e∈E

|we| (PICP)

s.t. lw ≤ w ≤ uw

ye = 1 ( e ∈ R )

y ∈ argmin
y′

{
(d+ w)⊤y′ : Ay′ = b, y′ ≥ 0

}
For some lower-level problems, some (auxiliary) variables need to have an unmodifiable coefficient of zero
in the lower-level objective. In order to include such lower-level problems using the above formulation,
it can be necessary to prevent non-zero weight modifications for these variables by setting the according
upper-level bounds to zero. This situation for example appears for the PIMCP, one of our three example
classes of PICPs described below.

Example: assignment The assignment problem is to find a minimum-weight perfect matching in a bipar-
tite graph. It can be formulated as the LP

min
y

d⊤y :
∑

ye∈δ(v)

ye = 1 ∀v ∈ V, y ≥ 0


which fulfils Assumption 2.3, e.g. [19, Theorem 11.4]. There are no variables that do not appear in the
objective. The partial inverse assignment problem (PIAP) is to find minimal weight modifications such that
there is a minimal assignment containing some specified edges.

Example: shortest path The shortest path problem is to find a minimal weighted path from a source s
to a sink t. It can be formulated as an LP fulfilling Assumption 2.3 via one unit of flow leaving the source
(and entering the sink) and flow conservation constraints at all non-terminal nodes. The partial inverse
shortest path problem (PISPP) is to find minimal weight modifications such that there is a shortest s-t-path
that contains some specified arcs.
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This problem description can be problematic in case of cycles. Arcs that are required in PISPP may
only be included within a 0-weight cycle as part of a solution in the above LP formulation. This does
not solve PISPP as a path visits every node at most once. Furthermore, when regarding the shortest path
problem only decreasing weights of required arcs can fail as the lower-level problem turns unbounded due
to negative cycles, see Figure 3. Hence, for simplicity we add the following assumption.

Assumption 2.4. For a shortest path problem on the lower level, we assume that the considered graph is
acyclic.

Example: min cut The minimum s, t-cut problem is to find a partition of the vertex set of a graph such
that the total capacity of all arcs with tail in the set containing s and head in the set containing t is minimal.

Assumption 2.5. For a min cut problem on the lower level, we assume that all arc capacities are non-
negative, i.e. d+ w ≥ 0 for all feasible w.

The following LP formulation of the min cut problem is based on having variables yuv for all arcs and
variables zv for all vertices. It fulfils Assumption 2.3. A variable zv indicates whether the vertex v is on the
same side of the cut as the source s (zv = 1) or the sink t (zv = 0). For an arc (u, v), the variable zuv indicates
whether the arc is forward-crossing the cut and hence needs to be counted.

min
y,z

(d+ w)⊤y

s.t. yuv − zu + zv ≥ 0 ( (u, v) ∈ E )

yuv ≥ 0 ( (u, v) ∈ E )

zs = 1

zt = 0

The dual of the min cut problem is the max flow problem. For a flow xuv , flow conservation at all vertices
except the source and sink is required. Furthermore, the flow on every arc is at most the arcs’ modified
capacity duv + wuv .

The partial inverse min cut problem (PIMCP) is to find minimal modifications of capacities such that
there is a minimal s, t-cut with some specified vertices on the same side as the source respectively the sink.
This is the definition also used in [15] where this problem is shown to be NP-hard.

An alternative definition would require some arcs to be (forward-)crossing the cut instead of fixing some
vertices on either side of the cut. This implies that head and tail of these arcs have to be on the same side of
the cut as the sink and source, respectively. Thus, the above definition fixing vertices is more general and
includes the other one.

In contrast to the previous two example problems, the variables that are fixed on the upper level of the
PIMCP are not those whose weight is modified. While some variables corresponding to vertices are fixed
on the upper level, they are not part of the lower-level objective. The lower-level objective only depends on
the variables corresponding to arcs. Weight modifications for the vertex variables have to be explicitly set
to zero.

When formulating the inverse min cut problem as a single-level problem, we need to explicitly require
that there is no flow on backward crossing arcs. Otherwise, there can be cycles of flow due to the require-
ment of saturated required arcs, see Figure 4. Forbidding flow on arcs of a partial cut that are already fixed
as backward-crossing thus improves the formulation for the PIMCP.
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Figure 4: Partial Inverse Min Cut Problem (PIMCP) with arc ab required to cross the cut: Prevent that arcs
sa, ab, bc, ct are saturated and ac has flow 4.

2.4 Existing literature

Related problems

A PICP is a specific type of bilevel problem with coupling constraints. These are constraints on the upper-
level that explicitly depend on lower-level variables, see e.g. [18]. Alternative names for coupling con-
straints are connecting constraints, cf. [23], or joint constraints, cf. [7]. Coupling constraints pose several
difficulties [23, 18]. For example, the inducible region of a bilevel continuous problem with coupling con-
straints is not necessarily connected. Many methods and implementations for bilevel linear problems do
not allow the existence of coupling constraints, see [7]. The algorithm proposed by Fischetti et al. in [11]
based on the high point relaxation can deal with coupling constraints. However, for this algorithm both
lower-level objective and constraints have to be linear in both upper- and lower-level variables. In PICPs
the lower-level objective is bilinear in upper- and lower-level variables.

In PICPs the lower-level objective depends on the upper-level variables, but the feasible area does not.
Furthermore, the upper-level objective is independent of the lower-level variables. These are properties
shared with a certain type of interdiction problems. Interdiction problems (or ‘interdiction games’) are
bilevel problems in which the leader can forbid the follower to use certain structures such that the fol-
lower’s optimal solution gets worse. There are two versions, with either the leader having a budget for
interdiction or a target for the lower-level objective. Considering the budget version, there is no distinc-
tion between optimistic and pessimistic interdiction problems as both levels share the objective function.
However, it is especially the target version that is structurally similar to PICPs. In contrast to PICPs, in
interdiction problems the leader variables are typically binary. Allowing continuous interdiction seems to
be more difficult [22]. Either the lower-level feasible set depends on the leader’s decision which elements
are interdicted, or a large extra-weight is added for the corresponding elements in the lower-level objec-
tive function [17]. In the latter case, the problem’s structure is similar to the one of PICPs. Interdiction
problems represent a particularly well-studied subclass of bilevel problems and several specialized meth-
ods have been developed for them. Interdiction problems can be solved via decomposition approaches
that are strengthened by cuts based on the lower-level problem, e.g. [12, 14, 27]. Problems that have been
considered as lower-level problem for interdiction include both problems solvable in polynomial time like
shortest path [17] and matching [30], as well as NP-complete problems like knapsack [12] or max clique
[14]. For further references also see [18, 25, 27] and references therein.

(Complete) Inverse combinatorial problems (ICPs)

In the literature, the term inverse combinatorial problem (ICP) usually means that in fact a full follower solu-
tion is specified that shall become optimal by minimal weight modifications. In this paper, we often add
the word complete for clarity and contrast to the partial in PICP.

Complete ICPs with a polynomial solvable problem on the lower level are solvable in polynomial time
[2]. The proof in [2] can easily be adapted by changing the corresponding constraints to show the following
theorem:
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Figure 5: partial inverse min spanning tree problem with R = {ae, bc, cd}: Considering only the triangle
bcd increasing the weight of edge bd by one is better than decreasing both edges bc, cd each by one. For the
edge ae ∈ R decreasing its weight by one is better than increasing either the two edges ab, ad or the two
edges eb, ed each by one. In total, the minimal weight modification by either only increasing or decreasing
is 3 while the optimum is increasing the weight of bd and decreasing the weight of ae has an objective value
of 2.

Theorem 2.6. If the lower level problem is solvable in polynomial time for every linear cost function, then the
corresponding inverse problems with only weight increase (ICP-W+) respectively only weight decrease (ICP-W-)
are also solvable in polynomial time.

In case of an LP on the lower level, a single-level reformulation based on strong duality or KKT con-
ditions simplifies to an LP for a complete lower-level solution. Combinatorial methods for ICPs are often
based on problem-specific solution methods for the underlying combinatorial problem or closely related
problems. For example, the inverse shortest path problem can be reduced to a shortest path problem and
the inverse assignment problem can be solved via an assignment problem [2]. The inverse min cut prob-
lem can be solved based on a max-flow evaluation [3]. Algorithms for some ICPs with additional integer
requirements are given in [1]. For further results on ICPs, the reader is referred to the surveys [16, 8] and
references therein.

Complete ICPs with a problem that is NP-complete on the lower level are coNP-complete [5]. There
are solution methods based on enumeration of the lower-level feasible solutions [26, 4].

Partial inverse combinatorial problems (PICPs)

In contrast to the (complete) ICP, the PICP isNP-hard for a general problem that is solvable in polynomial
time. Table 1 provides an overview of complexity results for some particularly well-known combinatorial
problems of that type. Furthermore, even if a version of a PICP happens to be solvable in polynomial time,
it may become NP-hard once only weight increases are allowed or more general bounds on the weight
modifications are added. To the best of our knowledge, no solution methods tailored to PICPs that are
NP-complete have been proposed in the literature.

Checking feasibility of a given solution in case the lower-level problem is solvable as an LP can be done
by simply adding constraints fixing the required parts of the solution to the LP and comparing to an opti-
mal lower-level solution. Combinatorial methods for some problems based on considering an accordingly
smaller graph are given in Section 4.1 below.

When discussing PICPs, one has to distinguish whether weights can be changed arbitrarily or whether
they are to be only increased or only decreased. In general, none of these cases is reducible to another.
For an example of the partial inverse min spanning tree problem where neither exclusively decreasing nor
increasing can produce an optimal solution, see Figure 5. However, if there are no constraints on the weight
modifications, for several underlying problems – like shortest path (without negative cycles), assignment
or min cut – it suffices to only decrease weights [2]. If the underlying problem allows assuming without



9

W- W+
Min Spanning Tree P [6] NP-complete [21]
Min Spanning Tree with |R| = 1 P P [21]
Min Basis of Matroid P [31] NP-complete
Shortest path (already feasibility) NP-complete Theorem 2.8 NP-complete
Shortest path on DAG P Theorem 2.9 NP-complete
Shortest path on DAG with |R| = 1 P NP-complete Theorem 3.1
LP in standard form with opt. 0-1 solution P [29] NP-complete
Assignment P [29] NP-complete
Assignment with |R| = 1 P NP-complete Theorem 3.2
Min cut NP-complete [15] NP-complete

Table 1: Complexity results for different PICPs. For problems below the middle horizontal line, results for
W- also apply to general weight modifications.

loss of generality that weights will only be decreased in the (complete) ICP, then this remains true for the
corresponding PICP. This result has been established for the PIMCP based on the respective result for the
complete inverse min cut problem [15, Lemma 3.1]. Similarly, it can directly be adapted for assignment and
shortest path problems based on the corresponding complete ICPs [2].

In general, only changing the weights of required elements in R may not yield an optimal solution of a
PICP as the following example shows. It is also easy to see that only increasing weights may not yield an
optimal solution.

Example 2.7. Let the lower-level feasible solutions be the three sets {A,B} , {A,C} , {B,C} with original
weights dA = dB = 2, dC = 1, and R = {A,B}. This is already a complete solution. When only adapting
the weights of the required elements, we need to reduce the weight of both A and B by one each, i.e. have
an objective value of two. However, only increasing the weight of the third element C by one is also feasible
and has an objective value of one.

Partial inverse combinatorial problems with only weight decreases (PICP-W-)

Polynomial algorithms are known for some PICPs where weights can only be decreased (PICP-W-). They
are based on first evaluating a complete lower-level solution and then modifying the weights accordingly.
In particular, a minimal lower-level solution fulfilling the partial-solution constraints on the upper level is
used in these methods.

This approach works for the minimum spanning tree problem [6] and more generally for the minimum
basis problem in a matroid on the lower level [31]. An optimal lower-level completion can be found by a
greedy approach. Weight modifications are evaluated using the fundamental circuit or fundamental cocir-
cuit of required elements.

Furthermore, such a minimal completion can be used if the lower-level problem can be formulated as a
linear program in standard form minx

{
c⊤x | Ax = b, x ≥ 0

}
such that for all weight functions c an optimal

0-1 solution exists [29]. Based on complementary slackness and duality of LPs, first R is completed to a
feasible lower-level solution. Then the according weight modifications are evaluated. For example, PIAP
can be solved with this method [29].

This LP-based method might include unnecessary lower-level substructures that get a modified weight
of 0. For example, cycles of zero weight can be included in the lower-level solution when applying this
method to PISPP or PISPP-W-. This is not feasible in the combinatorial sense. The inclusion of cycles can
be prevented by adding constraints to the LP that at most one outgoing arc per vertex is chosen. However,
then the LP in standard form includes slack variables that are not part of the objective function. In contrast,
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the LP-based method mentioned above assumes that all lower-level variables are included with weights
that can be modified in the objective function [29].

It is already NP-hard to determine feasibility of an instance of PISPP on a general graph. A cycle-free
solution only exists if there are vertex-disjoint paths connecting the respective parts with source and sink.
NP-completeness for PISPP thus follows from the NP-completeness of the vertex-disjoint path problem,
e.g. [6].

Theorem 2.8. PISPP on a directed graph is NP-complete.

Proof. An instance of PISPP on a directed graph is only feasible if there are vertex-disjoint paths connecting
the required arcs with the source and sink. For R = {ab} with s ̸= a and b ̸= t, we need vertex-disjoint s-a-
and b-t-paths. This is the 2-paths-problem which is NP-complete [13, Lemma 3]. □

In contrast, the existence of the corresponding vertex-disjoint paths can easily be determined on a di-
rected acyclic graph. Moreover, optimal weight reductions for PISPP on a DAG can be evaluated in poly-
nomial time if weights of arcs in R can be reduced arbitrarily.

Theorem 2.9. PISPP on a DAG is solvable in polynomial time by only reducing the weights of required arcs.

Proof. If |R| = 1, one first evaluates a shortest path and a shortest path including R. Reducing the weight
of the required arc by the weight difference of the shortest path completion and the shortest path solves
the problem. If |R| > 1, PISPP can be solved by iteratively reducing the weights of the required arcs using
a topological ordering. Starting with the arc a1 ∈ R that is closest to the source, use the tail of the second
closest required arc a2 ∈ R as preliminary sink to reduce the weight of a1. Continue by reducing the weight
of ai by using the tail of the next-closest arc ai+1 as preliminary sink until the sink is reached. Observe that
a first part of a shortest path using a required arc is given by the previous iteration’s path. Thus, PISPP on
a DAG is solvable via a number of shortest path evaluations linear in |R| if arbitrary weight decreases are
allowed. □

Similarly to PISPP on general graphs, PIMCP is NP-complete and cannot be solved via the LP-based
method. The min cut problem can be formulated as an LP with variables corresponding to the vertices and
to the arcs. Only variables corresponding to arcs are included with nonzero weight in the objective function
and only these weights can be modified. The min cut problem is a problem where some weights are fixed
to zero and cannot be modified. Thus, the LP-based method described above cannot be applied. PIMCP is
NP-complete also when weight decreases for the arcs are allowed [15].

Partial inverse combinatorial problems with only weight increases (PICP-W+)

The only PICP with only weight increases (PICP-W+) that has been studied so far is, to the best of our
knowledge, the partial inverse min spanning tree problem. If |R| = 1, it is solvable in polynomial time [21].
As soon as |R| > 1, the partial inverse min spanning tree problem with only weight increases is NP-
complete [21]. We show in Section 3 that for both the shortest path problem on a directed acyclic graph and
the assignment problem, the corresponding PICP-W+ is already NP-complete if |R| = 1.

Other norms

Instead of minimizing the ℓ1-norm of the modifications, other objective functions are possible, e.g. see [16]
and references therein. PICPs with ℓ∞ instead of ℓ1 are considered as preprocessing problems for underly-
ing problems like the shortest path problem or the assignment problem in [20].
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2.5 Solution approaches

Bilevel problems like PICPs can be solved via singe-level reformulations, decomposition approaches or
branch-and-bound schemes. We shortly explain single-level-reformulation and decomposition approaches
for PICPs in the following. Details on our branch-and-bound scheme are given in Section 4.

Single-level reformulation: via KKT conditions or strong duality

A single-level reformulation of a PICP where the lower-level problem can be written as a parametric LP can
be obtained by replacing the lower-level problem by its primal and dual constraints as well as optimality
conditions. For the latter, one can use the KKT conditions/complementarity or strong duality. In the first
case, there are many rather simple, local bilinear constraints while in the latter case only one, however,
more complicate bilinear constraint is added. The bilinearity of the strong duality constraint stems from
the bilinearity of the lower-level objective function when simultaneously regarding both upper- and lower-
level variables.

In the dual of the lower-level problem, the feasible region is dependent on the upper-level variables w,
instead of the objective. The dual lower-level problem with dual variables x is the following LP:

max
λ

λ⊤b

s.t. λ⊤A ≤ d+ w.

While the primal lower-level objective is bilinear in the upper- and lower-level variables, the dual lower-
level constraints are linear in both the upper- and lower-level variables.

Optimality conditions based on complementary slackness are

0 = ye(λ
⊤Ae − de − we) (e ∈ E),

where e are the indices of the primal variables. Combining the lower-level primal and dual constraints with
the optimality conditions, we obtain the following single-level reformulation for the PICP:

min
w,y,λ

∑
e∈E

|we| (KKT-1level)

s.t. ye = 1 ( e ∈ R )

lw ≤ w ≤ uw

λ⊤A ≤ d+ w

Ay = b

0 = ye(λ
⊤Ae − de − we) ( e ∈ E )

Instead of using complementary slackness as optimality condition, one can also require strong duality to
hold, i.e. require that primal and dual objective have the same value by adding the constraint

λ⊤b = (d+ w)⊤y.

If a complete lower-level solution y is fixed on the upper level, the nonlinear constraints in the above
single-level reformulation simplify to linear (in some cases trivial) constraints. The two approaches via
complementary slackness or strong duality then both result in an LP.

In case of only a partial lower-level solution being required on the upper level, bilinear constraints
remain. In the reformulation via complementary slackness, there is one bilinear constraint per lower-level
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variable that is not fixed on the upper level. When we only keep those bilinear constraints that simplify
to linear constraints by plugging in the lower-level variables that are fixed on the upper level and remove
all other bilinear constraints, we obtain an LP relaxation of the original problem. We will later use this
relaxation to obtain lower bounds, see Section 4.3.2.

The nonlinear single-level reformulation can be formulated as a mixed-integer linear program via big-M
constraints. However, weight modifications do not necessarily have upper bounds in the problem formu-
lation. When implementing this approach for comparison, we therefore use indicator constraints for the
solver.

Decomposition

PICP can be reformulated by enumerating the finite number of lower-level feasible solutions. This decom-
position approach is a generalization of a cutting plane algorithm for inverse mixed-integer linear programs
[26, 4]. It is similar to cutting plane algorithms for interdiction problems, e.g. [9].

For every lower-level feasible solution, the lower-level objective has to be at least as large as for a lower-
level feasible solution that also fulfils the partial-solution constraints on the upper level.

min
w,y

∑
e∈E

|we|

s.t. ye = 1 ( e ∈ R )

lw ≤ w ≤ uw

Ay = b

(d+ w)⊤y ≤ (d+ w)⊤z ( z ∈ {z ∈ {0, 1}n : Az = b} )

As the lower-level objective is bilinear, we get a program with bilinear constraints. These constraints can
be reformulated using big M-constraints. For implementing these constraints, one can use indicator con-
straints provided by the used solver.

Instead of enumerating all constraints for lower-level feasible solutions z, it suffices to only add those
that are otherwise violated. This can be done by a decomposition approach. In order to find constraints
that have to be added to the master problem, solve the lower-level problem with the current best weight
modifications. If the obtained lower-level solution has an objective that is less than the one of the current
lower-level solution fulfilling the partial-solution constraints, the corresponding constraint has to be added
to the master problem. In case the objectives are the same, the optimal weight modifications have been
found and we terminate.

Using combinatorial algorithms to solve the lower-level problem can be advantageous, especially if sev-
eral lower-level optimal solutions are evaluated. For example, for the shortest path problem, it is possible
to obtain all shortest paths by using Dijkstra’s algorithm with only small extra effort in comparison to eval-
uating a single shortest path. Evaluating a max flow for the min cut problem allows finding two different
minimal cuts at once. Adding all corresponding constraints at once to the master problem results in a better
performance.

2.6 Pessimistic PICPs

So far and after this subsection, the optimistic version is considered. For PICPs, solving the optimistic or
the pessimistic version is not much different from an algorithmic point of view though there are different
objectives on the two levels.

Theorem 2.10 (Pessimistic PICP). Let (w∗, y∗) be an optimal solution to an optimistic PICP, PICP-W+ or PICP-
W-. Then we have:
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1. If w∗ ̸= 0, a pessimistic optimum is not attained.

2. If no proper subset of y∗ is again a feasible lower-lever solution, then for every ε > 0 there is a pessimistic
feasible solution with value |w∗|+ ε that is easily computable from (w∗, y∗).

Proof. 1. Let w∗ ̸= 0 and assume that (ŵ, ŷ) is a pessimistic optimal solution. This implies that we
have (d + ŵ)⊤ŷ < (d + ŵ)⊤y for all y ∈ Y . Since the inequality is strict, it still holds for all w with
∥ŵ − w∥ ≤ ε for ε sufficiently small. Due to w∗ ̸= 0, also ŵ ̸= 0 since a pessimistic optimum cannot
have a better objective value than an optimistic optimum. We can therefore choose w̄ between 0 and
w with ∥ŵ − w̄∥ ≤ ε. Therefore, (w̄, ŷ) is still feasible in all three problem cases PICP, PICP-W+ and
PICP-W-, and also strictly improves the upper-level objective, contradicting that (ŵ, ŷ) was assumed
to be a pessimistic optimal solution.

2. Since (w∗, y∗) is an optimistic optimal solution, we have (d + w∗)⊤y∗ ≤ (d + w∗)⊤y for y ∈ Y . For
PICP and PICP-W+, we distribute ε on all elements that are not used in the optimal solution y∗, i.e.
for m = |{e | y∗e = 0}|, set wp

e = w∗
e + ε/m if y∗e = 0 and wp

e = w∗
e otherwise. The lower-level objective

value of y∗ does not change but is now by at least ε smaller than the objective of any other y ∈ Y ,
as every other feasible lower-level solution contains at least one element that is not part of y∗. Thus,
(wp, y∗) is a pessimistic bilevel-feasible solution with upper-level objective value |wp| = |w∗|+ ε. For
PICP-W- (and PICP), a similar construction can be applied, decreasing the weight of all elements of
y∗ that are also in R by an equal share of ε.

□

The condition in the first part of Theorem 2.10 is easy to check for. This is also true for the condition
in the second part once y∗ is available. The latter condition is necessary since in the opposite case, i.e. if
there is a lower-level solution ȳ ∈ Y that is strictly contained in y∗, every additional weight put onto ȳ also
affects y∗, so y∗ cannot be turned into a pessimistic optimal solution. In fact, the pessimistic problem can
be infeasible if only y∗ but not ȳ is bilevel-feasible. As can be seen from the proof of Theorem 2.10, the
assumption is only necessary for PICP-W+ since PICP and PICP-W- offer the option of decreasing weights
for elements in y∗ that are not in ȳ.

3 Complexity results

3.1 PISPP with only weight increases (PIAP-W+) on a DAG

Theorem 3.1. The partial inverse shortest path problem (PISPP) on a directed acyclic graph with only weight in-
creases is NP-complete, even if |R| = 1.

TheNP-completeness of PISPP-W+ with |R| = 1 is in contrast to the analogue case in the partial inverse
min spanning tree problem, which is solvable in polynomial time [21]. The following proof is an adaption of
the proof forNP-completeness of the preprocessing shortest path problem on a DAG [20]. In comparison to
PISPP, the preprocessing shortest path problem is to minimize the maximal modification of any arc instead
of the sum of the absolute changes.

Proof. The proof is a reduction from the well-knownNP-complete problem 3-SAT. Let an instance of 3-SAT
is given by its variables X = {x1, ..., xn} and clauses B = {B1, ..., Bm}with each clause consisting of (up to)
three literals Bj = {bj1, bj2, bj3} for j ∈ [m]. In the following, we create an acyclic directed graph G = (V,A)
with costs d such that satisfying assignments for the 3-SAT instance correspond to s0-tm-paths that use arc
(sn, t0), and vice versa. In the adaption for PISPP, other weights for the so-called shortcut arcs are used in
comparison to the proof in [20]. Furthermore, we simplified the graph by not including arcs between the
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variable- and clause-paths and renamed the auxiliary vertices. Direct conclusions of the construction that
do not depend on the weights given in [20] remain true.

Construction of instance We construct a graph consisting of two parts, the first corresponding to the
variables and the second part corresponding to the clauses. These two parts are similarly structured parallel
paths via xi, xi and bj1, bj2, bj3 respectively. We denote both the literal and its corresponding vertex in the
constructed instance of PISPP-W+ with bjk as it should be clear which is meant. The parts for the respective
variables and clauses are connected with auxiliary variables s0, ..., sn and t0, ..., tm respectively. The two
parts are connected by one arc (sn, t0) that is the unique element in R. For a sketch, see Figure 6.

The first part of the graph includes vertices xi, xi and s0, ..., sn connected by 4n arcs (si−1, xi), (xi, si),
(si−1, xi), (xi, si) for i ∈ [n]. An s0-sn-path corresponds to a truth assignment as every such path either
includes xi or xi for all i ∈ [n].

The second part of the graph corresponding to the clauses consists of vertices t0, ..., tm between ‘parallel’
vertices bjk, j ∈ [m], k ∈ [3]. They are connected by arcs (tj−1, bjk), (bjk, tj) for j ∈ [m], k ∈ [3] such
that for every clause Bj = {bj1, bj2, bj3} there are three parallel paths from tj−1 to tj via the three literals
respectively. A t0-tm-path corresponds to choosing one literal from every clause. So far, all arcs have unit
weights d and costs c are one unit per unit weight increase.

Furthermore, for every literal bjk a shortcut arc is added from xi if bjk = xi and from xi if bjk = xi.
Shortcut arcs (xi, bjk) or (xi, bjk) obtain a weight of 2(n − i + j). Then the corresponding path using a
shortcut arc is exactly one unit shorter than the path via (sn, t0). Assume that the cost c for weight increase
of a shortcut arc is n+2m+1. Replace shortcut arcs by the according number of parallel arcs and introduce
auxiliary ‘inbetween’-vertices.

In total, we have:

V (G) = {xi, xi : i ∈ [n]} ∪ {s0, ..., sn} ∪ {bj1, bj2, bj3 : j ∈ [m]} ∪ {t0, ..., tm}
A(G) = {(si−1, xi), (xi, si), (si−1, xi), (xi, si) : i ∈ [n]}

∪ {(tj−1, bjk), (bjk, tj) : k ∈ [3], j ∈ [m]}
∪ {(sn, t0)}
∪ {(xi, bjk) : xi = bjk, i ∈ [n], j ∈ [m], k ∈ [3]}
∪ {(xi, bjk) : xi = bjk, i ∈ [n], j ∈ [m], k ∈ [3]}

R = {(sn, t0)}

d(a) =

{
2(n− i+ j), if a ∈ {(xi, bjk), (xi, bjk)}
1, else

c(a) =

{
n+ 2m+ 1, if a ∈ {(xi, bjk), (xi, bjk)}
1, else

The construction can be done in polynomial time.
By construction, the following observations hold:

1. Vertices xi, xi have exactly one ingoing arc (si−1, xi), (si−1, xi) respectively.
Vertices bjk have exactly one outgoing arc (bjk, tj).

2. Every directed path P in G from node s0 to tn includes either arc (sn, t0) or includes exactly one
shortcut arc.

3. Every s0-tm-path P using arc (sn, t0) has (original) weight d(P ) = 2n+ 2m+ 1.
Every s0-tm-path Q using a shortcut arc has (original) weight d(Q) = 2n+ 2m.
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Figure 6: Sketch of complexity proof graph with x1 = b13, x1 = bm3, xn = b11

4. Let P be an s0-tn-path containing arc (sn, t0). Then |P ∩ {xi, xi}| = 1 for every i ∈ [n] and for every
j ∈ [m] there is a k ∈ [3] such that bjk ∈ P .

Claim The 3-SAT instance is satisfiable if and only if there is an s0-tn-path P in G and weight modifica-
tions w that fulfil the following three conditions:

1. The arc (sn, t0) is part of P ,

2. the weighted additional costs are at most n+ 2m, so
∑

a∈A cawa ≤ n+ 2m, and

3. P is a shortest path in G with weights d+ w.

Forward-direction Let x∗ be a satisfying truth assignment (more than one such x∗ might exist). At least
one literal of every clause is satisfied as x∗ is a satisfying truth assignment by assumption. In order to
simplify notation, reorder literals of clauses such that bj1 is satisfied by x∗ for every j ∈ [m].

Let V ∗ bet the following (sub)set of true literals

V ∗ = {xi : x
∗
i = 1} ∪ {xi : x

∗
i = 0} ∪ {bj1 : j ∈ [m]} .

Then there is a unique s0-tn-path P through all vertices in V ∗ (and all vertices si, tj , i ∈ [n]0, j ∈ [m]0).
Set additional weights w to one for edges (si, xi) and (si, xi) that are not part of P as well as for all arcs
(bj2, tj), (bj3, tj), j ∈ [m]. Let w(a) = 0 for all remaining arcs, in particular all shortcut arcs:

w(a) =

{
1, a ∈ {(si, xi) : xi /∈ V ∗} ∪ {(si, xi) : xi /∈ V ∗} ∪ {(bjk, tj) : j ∈ [m], k ∈ {2, 3}}
0, else.

First, we argue that (sn, t0) is part of P . By construction P is via b11 and either xn or xn. Thus, P could
only include a shortcut arc (xn, b11) or (xn, b11) preventing that (sn, t0) is part of P . If xn ∈ V ∗, the existence
of a shortcut arc (xn, b11) would imply that b11 = xn, contradicting the construction of V ∗. Analogously,
there is no arc (xn, b11) in case xn ∈ V ∗. The only path from xn or xn to b11 without a shortcut arc is via
(sn, t0).

Second, we need that the total weighted additional costs are at most n + 2m. Corresponding to the n
variables, we either have w(si, xi) = 1 or w(si, xi) = 1 and for every of the m clauses there are exactly two
arcs (bjk, tj) with additional weight of one each. For all remaining arcs, there is no weight modification.
The total additional weight is n+ 2m.

As third property, we need to prove that P is a shortest path in G with respect to weights d + w. By
construction there is no additional weight for all arcs of P . Thus, the weight of P with respect to d + w is
the same as with respect to d. Additionally using the third observation, we obtain

(d+ w)(P ) = d(P ) = 2n+ 2m+ 1.
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In the following we argue that any other s0-tm-path Q has at least the weight of P . If Q contains no shortcut
arc, then the modified weight of Q is at least as large as the one of P as weight modifications are non-
negative.

For the remaining, assume Q contains a shortcut arc. Then the original length of Q is one unit shorter
than P , so d(Q) = 2n + 2m. According to the second observation, exactly one shortcut arc is part of Q.
There are six possible forms for a shortcut arc: (xi, bjk) or (xi, bjk) for k ∈ {1, 2, 3}. We argue that in every
case, there exists at least one arc a along Q with w(a) = 1, such that Q is at least as long as P .

First, we consider a shortcut arc (xi, bj1). By construction, we have bj1 = xi. According to the first
observation, (si, xi) is the only ingoing arc of xi, so (si, xi) ∈ Q. Due to the reordering of clause-literals, we
know that bj1 is fulfilled, x∗

i = 0. The additional weight for arc (si, xi) is thus set to one, w(si, xi) = 1, such
that Q has at least same length as P .

For a shortcut arc (xi, bj1) being part of Q the argumentation is similar as in the previous case. By
construction, we have bj1 = xi and x∗

i = 1. Again, according to the first observation, the arc (si, xi) is part
of Q as it is the only ingoing arc of xi. We have set w(si, xi) = 1, so Q is at least as long as P .

In the final case, let the shortcut arc be (xi, bjk) or (xi, bjk) for k ∈ {2, 3}. By construction, as noted in
the first observation, the only outgoing arc of bjk is (bjk, tj) which is thus part of Q. The additional weight
of this arc (bjk, tj) is set to one, such that Q has at least the length of P .

Every satisfying truth assignment x∗ thus corresponds to a solution of PISPP-W+ in the described in-
stance.

Backward direction Let wa be arc weights with
∑

a cawa ≤ n+2m such that P is a shortest s0-tm-path with
respect to d+w and (sn, t0) ∈ P . By the second observation, P then contains no shortcut arc. Additionally,
using the fourth observation, we have that P contains xi or xi for all i ∈ [n]. Define a truth assignment x∗

by x∗
i = 1 if and only if xi ∈ P .

We claim that x∗ satisfies every clause Bj . We can assume w(a) = 0 for all arcs a of P as w ≥ 0.
Furthermore, there are also no weight increases for shortcut arcs, due to costs of n+2m+1 per unit weight
increase on shortcut arcs. Exactly one bjk, k ∈ [3] is part of P for every j ∈ [m] by the fourth observation.

Let bjk be part of path P , then bjk is fulfilled by the above-defined truth assignment. First, assume
bjk = xi. Then by construction (xi, bjk) is a shortcut arc. If xi ∈ P , then using the shortcut arc would reduce
the length of the path, which is a contradiction to P being a shortest path. Thus xi ∈ P and xi /∈ P and
we have set x∗

i = 0 such that bjk is fulfilled. Similarly, for bjk = xi, we get that bjk is fulfilled as xi ∈ P so
x∗
i = 1.

Thus, a solution of PISPP-W+ satisfying the listed conditions corresponds to a satisfying truth assign-
ment x∗. □

3.2 PIAP with only weight increases (PIAP-W+)

Theorem 3.2. The Partial Inverse Assignment Problem with only weight increases (PIAP-W+) is NP-complete
even if |R| = 1.

The PIAP with arbitrary weight modifications is solvable in polynomial time, similar to PISPP on a
DAG [29]. The solution is based on only reducing weights of arcs in |R|. Our result for PIAP-W+ is a
strengthening of the NP-completeness-result for PIAP with general bounds on the allowed weight mod-
ifications [28]. The reduction from PISPP-W+ to PIAP-W+ is based on the analogue problems under ℓ∞
instead of ℓ1 [20, Theorem 7].

Proof. First, feasibility of a PIAP-W+ solution can be determined in polynomial time. This requires solving
two assignment problems on the graph with the according weight modifications – one of them fixing R to
be part of the solution – and comparing their objective value.
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We prove NP-hardness of PIAP-W+ with |R| = 1 by a reduction from PISPP-W+ on a DAG with
|R| = 1, which we have just shown to be NP-hard, see Theorem 3.1. Let an instance for PISPP-W+ on a
weighted acyclic digraph with two distinct vertices s, t and R = {a} consisting of a single required arc be
given. Without loss of generality we assume that the source s has only outgoing arcs and the sink t has only
ingoing arcs. We split all other nodes into two nodes with all ingoing respectively outgoing arcs incident
and connect them by a new node splitting edge each. Let ANS be the set of all such node-splitting edges.
We set the weight for node-splitting edges to 0, while all remaining edge weights remain unchanged. For
PIAP-W+ we will ignore all arc directions. By construction the obtained undirected graph is bipartite.

If the terminal nodes s, t were removed, choosing all node-splitting arcs would constitute the minimal
assignment (of weight 0). However, if s, t are included, the optimal solution is given by all non-node-
splitting arcs of a shortest s-t-path and the node-splitting arcs for the remaining nodes, which are not on
the s-t-path. This assignment is obtained as the symmetric difference of the path (considered as a set of
arcs) with the set ANS.

Without loss of generality, we may assume that only weights of arcs not in ANS will be increased in an
optimal solution of PIAP-W+. One could assure that by replacing every edge in ANS by sufficiently many
parallel edges, e.g. as many as the degree of the corresponding node.

One can now easily show that from an s-t-path we can easily construct an assignment with the same
weight and vice versa: Given an s-t-path, the symmetric difference with the node splitting arcs results in
the none-node splitting arcs of the path and node-splitting arcs for all nodes that are not on the path. Due
to arcs in ANS having weight 0, the assignment has the same weight as the path.

Given an assignment, the symmetric difference with ANS results in an s-t-path after adding node-
splitting arcs for vertices that are incident to non-node-splitting arcs in the assignment. Note that the
orientation of arcs in the path are correct as by construction for each node exactly one ingoing and one
outgoing arc must be part of the assignment. Furthermore, no cycles can be present in addition to the
path as the original graph was assumed to be acyclic. By an analogue argumentation as above, the assign-
ment and path have the same weight. Let a in the PISPP-W+ instance be also be required in the PIAP-W+
instance. Due to the direct correspondence of solutions described above, we conclude that PIAP-W+ is
NP-complete. □

4 Branch and bound for PICP-W+

We propose to solve PICP-W+ by a branch-and-bound method. We branch on the (upper-level-copies of
the) lower-level variables, extending the set of required elements R for branch-and-bound nodes lower in
the tree. Each node n in the branch-and-bound tree corresponds to a PICP-W+ for some R(n) ⊇ R, while
each leaf is a complete ICP. An optimal solution (w∗, y∗) will therefore be contained in the leaf representing
y∗ and each subtree for which the corresponding R(n) is contained in y∗. As usual for branch-and-bound
methods, we hope to obtain strong bounds that will allow us to prune parts of the tree at an early stage.
Based on problem knowledge, in every branching step several lower-level variables may be fixed at once.
Adding more coupling constraints to the problem formulation might sound counter-intuitive since some
solution methods for bilevel programs rather have to assume that there are no coupling constraints. How-
ever, here the added coupling constraints fix variables such that the number of free variables is reduced.
Furthermore, the used methods for dual bounds turn out to be powerful, also because some information
can be re-used. At the leaves of the branch-and-bound tree, where a complete lower-level solution is fixed,
the single-level reformulation simplifies to a linear program.

The main focus of our algorithm lies on the novel bounding procedures. At any node, we may solve
a subproblem for obtaining a primal bound. This bound turns out to be quite strong even for the root
node, so we have a good incumbent right from the start, see Section 4.2 below. In fact, this heuristic picks
a specific leaf of the branch-and-bound tree and evaluates it beforehand. Dual bounding strategies will
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be described in Section 4.3, where one type of subproblem will provide reasonable bounds for low-depth
nodes while the other becomes tight when approaching leaves. Bounding procedures are applicable to
general PICP-W+ of type (PICP) and form the basis for a general branch-and-bound method. However,
we also briefly discuss suitable branching, node selection and propagation strategies that we use for our
prototype implementation. Problem-specific components and intuitions are explained on the examples
of the partial inverse shortest path, assignment and min cut problems. For a summary of the proposed
method, see Algorithm 2.

Example: shortest path In case of PISPP-W+, the lower-level variables indicate for every arc of the graph
whether it is part of the considered path. At a branch-and-bound tree node, one or several subpaths are
required.

Instead of branching on whether a single arc is part of a path, we branch on sets from which exactly one
arc is part of a path. Any inclusion-wise minimal s, t-cut provides a set of arcs of which exactly one is part
of any lower-level solution. Note that not every arc in such an s, t-cut can be part of a path as there might be
no connection to other required parts. We can reduce the number of arcs for which no connection to other
required parts exists by using the in- respectively outgoing arcs of a vertex at either end of a so far required
subpath, the source or the sink. Still, there can be arcs such that no completion to a feasible path exists such
that the corresponding subtrees can be pruned once infeasibility is noticed.

When branching at the in-/outgoing arcs, there is one child for every arc in the branch-and-bound tree.
The variable corresponding to the chosen arc is set to 1 and the variables corresponding to the other incident
arcs is set to 0. Variables corresponding to arcs that are not part of any feasible path can be fixed as well.
Notice that the obtained branch-and-bound tree is in general not binary. The number of children is the
in-/out-degree of the vertex where branching takes place. The depth of the branch-and-bound tree is the
number of arcs on the respective s-t-path and thus in general different for different leaves.

Example: assignment For PIAP-W+, branching can be based on vertices of the problem graph, similarly
to PISPP-W+. For every vertex, exactly one arc incident has to be part of an assignment. The number of
children of a branch-and-bound tree node is the degree of a vertex minus the number of already covered
neighbours. The obtained branch-and-bound tree is in general not binary and has a maximal depth of half
the number of vertices in the graph. However, it can be very wide if the graph is dense. Thus, a binary
branching strategy on whether a single arc is used can also be advantageous.

Example: min cut Recall that in PIMCP-W+, there are two types of lower-level variables corresponding
to the vertices and the arcs of the problem’s graph. As a partial cut is given by two sets J, J , it is straight-
forward to branch on the vertices. A vertex is assigned to either the side of the source or the sink. Variables
corresponding to arcs can be fixed as soon as both end vertices are assigned. The resulting branch-and-
bound tree is binary and has (without further considerations) a maximum depth equal to the number of
vertices that are not assigned initially.

Alternatively, one could branch on whether an arc is forward-crossing the cut. However, the number of
arcs is larger and fewer partially fixed configurations could be extended to a feasible solution.

4.1 Minimal lower-level completion

For obtaining a first incumbent as well as during the branch-and-bound search, we use a minimal lower-
level complete solution that extends the partial required solution. We call y a minimal lower-level completion
of R ⊂ E if

y ∈ argmin
y

{
d⊤y : y ∈ Y, ye = 1 ∀e ∈ R

}
.
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If the lower-level problem is given as a linear program, a minimal lower-level completion can be com-
puted efficiently by adding the upper-level constraints on lower-level variables to the lower-level problem,
reducing the set of feasible lower-level solutions:

min
y

d⊤y

s.t. ye = 1 ( e ∈ R )

Ay = b

y ≥ 0.

In case there is no such y, the problem instance is infeasible. A minimal lower-level solution satisfying the
upper-level constraints can also be evaluated by combinatorial methods based on the lower-level problem.

Example: shortest path For a shortest path in a directed acyclic graph, several subpaths are ordered by
the topological order. A minimal completion is obtained by adding shortest paths (with respect to d without
modifications) in the missing parts. There is at most one more missing part than the number of required
arcs in the partial solution. This is the case if no required arc is incident to another required arc, the source
or the sink.

Example: assignment In case the lower-level problem is an assignment problem, remove the already cov-
ered vertices from the graph. Solving the assignment problem in the remaining graph provides a minimal
complete lower-level solution that extends the required partial solution.

Example: min cut If the underlying problem is a min cut problem, the required auxiliary graph is obtained
by contracting the given subsets of vertices that are on either side. Afterwards, one evaluates a min cut in
the remaining graph with respect to capacities d.

4.2 Primal bounding: complete ICP for minimal lower-level completion

Solving the complete ICP for a minimal lower-level completion turns out to yield a good initial upper-level
solution for pruning at an early stage. A general LP-based method as well as combinatorial methods for the
three example problems for evaluating a lower-level solution y∗ are described in the previous Section 4.1.
Remember that ICPs can be solved in polynomial time if the lower-level problem can be solved in polyno-
mial time [2]. One can also use the described heuristic at any other branch-and-bound node than the root
in order to obtain a primal bound.

4.3 Dual bounding

We propose two main strategies for obtaining dual bounds for a partial lower-level solution based on the
two single-level reformulations via the KKT conditions respectively strong duality. The bounding strategy
based on strong duality, described in Subsection 4.3.1, turns out to be good at the beginning, close to the root
of the branch-and-bound tree. It is not necessarily tight for a complete lower-level solution. In contrast, the
other bounding strategy is based on the KKT conditions and becomes tighter when the lower-level partial
solution is close to a complete solution, see Subsection 4.3.1. For tree nodes where the required set is a
subset of the minimal completion used for the initial solution, we will only try to bound with the first
method described in the following.
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4.3.1 Require lower-level objective to be at least value ℓ

Let ℓ be a valid lower bound on the lower-level objective value of any bilevel-feasible solution. We obtain
a relaxation when requiring the lower-level objective value to be at least ℓ instead of fixing the required
elements. In the following, we show that the relaxation can be evaluated as a single-level LP. Afterwards,
we explain how the bound provided is globally valid and can be re-used for pruning throughout the branch-
and-bound search.

If weights can only be increased, an ℓ as required can be obtained as the optimal value ℓ(R(i)) of a
minimal lower-level completion of R(i). Hence, the optimal objective value r(ℓ) of the following bilevel
problem yields a lower bound on the upper-level objective:

r(ℓ) = min
w

∑
e∈E

we (Req-ℓ-Relax)

s.t. 0 ≤ w

ℓ ≤ min
{
(d+ w)⊤y | Ay = b, y ≥ 0

}
.

Next, we show that this problem of the upper level requiring the lower-level objective to be at least ℓ can be
solved as a single-level LP based on strong duality.

Theorem 4.1. The lower bound r(ℓ) on the upper-level objective can be obtained by solving a single-level LP.

Proof. Only the lower-level problem’s objective in Program (Req-ℓ-Relax) is used. As the lower level is an
LP, by strong duality, the dual problem has the same optimal objective value. Thus, we can replace the lower
level by its dual maxλ

{
λ⊤b | λ⊤A ≤ d+ w

}
. Observe that the dual objective is linear and only depends on

the lower-level dual variables λ. The upper-level variables w are included in the constraints. The bilinear
primal lower-level objective results in constraints that are linear in both the upper-level variables w and the
lower-level dual variables λ.

Instead of explicitly solving for a maximal lower-level solution, we can combine the selection of the dual
variables λ with the upper level choices. In total, we have

r(ℓ) = min
w

{∑
e

we | 0 ≤ w, ℓ ≤ min
y

{
(d+ w)⊤y | Ay = b, y ≥ 0

}}

= min
w

{∑
e

we | 0 ≤ w, ℓ ≤ max
λ

{
λ⊤b | λ⊤A ≤ d+ w

}}

= min
w,λ

{∑
e

we | 0 ≤ w, ℓ ≤ λ⊤b, λ⊤A ≤ d+ w

}
.

□

This bound can be reused for further partial solutions as it only depends on the value ℓ, and not the
node ℓ was obtained from. First, by storing the tuple (ℓ, r(ℓ)) one can save the evaluation of the LP if the
same ℓ is encountered for another node. Furthermore, the minimal required additional weight r(ℓ) is a
non-decreasing function in ℓ. If for some node i with ℓ(i) the value r(ℓ(i)) was already at least as large as the
incumbent’s objective value c such that i can be pruned, we can directly prune all other nodes i′ with partial
solutions with ℓ(i

′) ≥ ℓ(i) without evaluating the LP. Similarly, if a value ℓ(i) did not suffice for pruning, the
same will hold for all ℓ ≤ ℓ(i), see Figure 7. Thus, we can save time and directly continue without evaluating
the exact value of r(ℓ). For the latter strategy, we only need to save the smallest respectively largest value of
ℓ such that r(ℓ) is at least as large respectively smaller than the current incumbent’s value c, see Algorithm
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0

cannot prune

largest known
ℓ for which
r(ℓ) < c

evaluate
(Req-ℓ-Relax)

smallest known ℓ
for which c ≤ r(ℓ)

prune

ℓ
bound on lower-

level objective value

Figure 7: Strategy on whether to solve (Req-ℓ-Relax) based on newly encountered ℓ(i). The function r for
the minimal amount of required additional weight for inducing a lower-level solution of length ≥ ℓ is
nondecreasing. Breakpoints may shift left once a better incumbent is found. Furthermore, if pruning by ℓ(i)

fails, one may attempt to prune using an only locally valid ℓ.

s a b c t
1 1 1 1

1

2

Figure 8: Require shortest path length bound not tight: For R = {ab} the minimal completion has length
ℓ = 4. Requiring the shortest s-t-path to have length at least 4 has an optimal solution of only adding
w(sa) = 1 which is less than the optimal objective value of 2 = 1 + 1 = w∗(ac) + w∗(at).

1. The use of this strategy can be increased by a node selection rule based on the minimal required objective
value, see Section 4.5. If a small ℓ is known early, many branch-and-bound tree nodes can be pruned by
only a value lookup.

This bound is not tight. For an example with the shortest path problem, see Figure 8.

Algorithm 1 Check-bound-by-min-completion-length(ℓ)

Require: Global variables ℓbranch, ℓbound ▷ Initialization ℓbranch ← 0, ℓbound ←∞,
reused for subsequent calls

if ℓbranch < ℓ < ℓbound then ▷ Update ℓbound or ℓbranch
if c ≤ r(ℓ) then ▷ (Req-ℓ-Relax)

ℓbound ← ℓ
else

ℓbranch ← ℓ

return (ℓ ≥ ℓbound) ▷ True or False

A tighter though not reusable version r(ℓ, R(i)) can be obtained by using in addition to the required
minimal length ℓ the set of required elements R(i) for the current branch-and-bound node i. First, weights of
elements in R(i) will not be increased in an optimal upper-level solution. Thus, the weight modifications for
elements in R(i) can be fixed to 0. Furthermore, the corresponding dual constraints for these elements have
to be fulfilled with equality due to complementarity. By adding these constraints to the LP reformulation
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for (Req-ℓ-Relax), we obtain the following stronger bound:

r(ℓ, R(i)) = min
w,λ

∑
e

we (Req-(ℓ, R(i))-Relax)

s.t. λ⊤b ≥ ℓ

λ⊤A− w ≤ d

λ⊤Ae − we = de ( e ∈ R(i) )

we = 0 ( e ∈ R(i) )

w ≥ 0

These two additional sets of constraints may lead to a tighter bound. Thus, forbidding a weight increase for
required elements in (Req-ℓ-Relax) and requesting the corresponding dual constraints to be fulfilled with
equality tightens the bound – at the cost of re-usability.

Example: shortest path The necessary minimal total weight modification for a shortest s-t-path having a
length of at least ℓ is solvable as a (complete) inverse shortest path problem in an auxiliary graph. Add to a
graph an additional s-t-path via an auxiliary node with length set to ℓ.

Example: min cut Similarly to requiring a shortest path to have a minimum length, it is possible to require
a min cut to have at least some specified capacity by solving a complete inverse min cut problem in a
modified graph. To this end, add a single arc from the original sink to a new sink with capacity ℓ. This new
arc in the modified graph is the only forward-crossing arc of the cut with all original vertices on one side
and the new sink on the other side. The PIMCP for this cut is equivalent to our problem of requiring a min
cut in the original graph to have at least a capacity ℓ.

Example: assignment In contrast to the previous two examples, it is unclear how requiring a minimal
perfect matching to be at least ℓ can be formulated as an inverse assignment problem.

4.3.2 LP-relaxation of single-level reformulation via KKT conditions

The LP-relaxation of the single-level reformulation based on the KKT conditions provides a lower bound
on the required additional weights. The single-level reformulation via the KKT conditions has a nonlinear
constraint for every lower-level variable, see (KKT-1level). The dual constraints are linear. The nonlin-
ear constraints on complementary slackness simplify to linear constraints if the corresponding lower-level
variables are fixed on the upper level. We drop all bilinear constraints of (KKT-1level) that correspond to
unfixed lower-level variables. Then, we obtain the following linear relaxation that provides a lower bound
for the overall solution

crelax(R) = min
w,y,λ

∑
e∈E

|we| (LP-relax-KKT)

s.t. λ⊤A ≤ d+ w

Ay = b

ye = 1 ( e ∈ R )

0 = λ⊤Ae − de − we ( e ∈ R )

lw ≤ w ≤ uw.
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If all lower-level variables are fixed (i.e. at the leaves of the branch-and-bound tree), this is a complete
ICP. Hence, we will denote the solution value of (LP-relax-KKT) in case of a complete solution J also by
cinv(J). Otherwise, it is a subproblem that can be interpreted as one or multiple complete ICPs restricted
to subinstances. The optimality of these subproblems is necessary such that we obtain a lower bound. It is
not sufficient in general, so the bound is not tight.

Example: shortest path The LP-relaxation of the KKT-reformulation is the inverse multi-path problem for
inclusion-wise maximal required subpaths. Before explaining why this is the case, we describe the inverse
multi-path problem.

The inverse multi-path problem is to find minimal weight modifications such that several given paths
are shortest paths between the respective terminals. While sharing the weight modifications, the shortest
path problems for paths Mi = {si, . . . , ti}, i ∈ [m] on the lower level are independent of each other. Consid-
ering the single-level reformulation via the KKT conditions, there are separate lower-level dual variables for
every such path. The difference between any two dual variables is the minimal distance between the corre-
sponding vertices. Along an arc this is at most the arc’s length including a possibly non-zero modification.
For the arcs chosen to be part of the respective path this has to be tight.

min
∑
e∈E

we

s.t. duv + wuv ≥ xi
v − xi

u ( ∀(u, v) ∈ E, i ∈ [m] )

duv + wuv = xi
v − xi

u ( ∀(u, v) ∈Mi, i ∈ [m] )

xi ≥ 0 ( i ∈ [m] )

Except for fixed offsets between the dual variables corresponding to different required paths, the minimal
distances are the same as weight modifications are shared. Thus, the dual variables of several required paths
can be combined to one set of distances. Combining, the obtained formulation is exactly the LP-relaxation
of the KKT-reformulation of the PISPP.

Example: assignment In the single-level reformulation for the problem with an assignment problem on
the lower level, there is a nonlinear constraint for every edge. For a chosen edge, this implies that the
corresponding dual constraint has to be fulfilled while it simplifies to a true statement otherwise. Thus,
the relaxation for the assignment problem corresponds to the inverse assignment problem on the subgraph
induced by the vertices incident to edges in R.

Example: min cut In the LP-relaxation of the KKT-based reformulation for the min cut problem, a flow
is evaluated such that the required forward-crossing arcs are saturated. The dual problem of the min cut
problem is the max flow problem. The complementarity constraints fix that the forward-crossing arcs of
the cut are saturated. If only weight increases are allowed this means that only capacities of arcs that do not
cross the cut are increased. Increased capacities of other arcs can be necessary such that flow can reach these
arcs from the source, respectively leave it towards the sink. On paths from the source to the sink without
a fixed arc to be crossing the cut, there can be any feasible flow not necessarily saturating any arc. Already
fixed nodes without a neighbour that is fixed to be on the other side of the cut have no effect on this lower
bound.

4.4 Pruning by infeasibility: subtrees for non-extendable partial solutions

When detecting partial solutions R(i) that cannot be extended to feasible lower-level solutions irrespective
of weight modifications, the corresponding subtree can be pruned. In general, one can try to evaluate a
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Algorithm 2 Branch-and-bound for partial inverse combinatorial problems

H ← {R} , ℓbranch ← 0, ℓbound ←∞ ▷ Global variables
c← cinv(argmin

{
d⊤y : y ∈ Y, ye = 1 ∀e ∈ R

}
) ▷ Inverse problem for minimal completion

while H ̸= ∅ do
choose R(i) ∈ H , remove R(i) from H
ℓ← min

{
d⊤y : y ∈ Y, ye = 1 ∀e ∈ R(i)

}
▷ Minimal completion length

if Check-bound-by-min-completion-length(ℓ) then ▷ See Algorithm 1
continue

else if R(i) is complete lower-level solution then
if cinv(R

(i)) < c then ▷ Inverse Problem
c← cinf(R

(i)), ℓbranch ← 0

else if R(i) is subsolution of initial solution (min-completion) then
branch on lower-level variables, add new children to H

else if c > r(ℓ, R(i)) and crelax(R
(i)) < c then ▷ (Req-(ℓ, R(i))-Relax), (LP-relax-KKT)

branch on lower-level variables, add new children to H

return c

minimal completion according to Subsection 4.1 in every step. Depending on the lower-level problem,
combinatorial properties can be exploited. Furthermore, based on upper-level constraints on weight modi-
fications, further (partial) lower-level solutions can be infeasible. Problem-specific methods are mentioned
as part of Section 4.7 on propagation.

4.5 Node selection: minimal completion value

The node selection is based on the minimal completion value of the lower level. Maximizing the number
of trees that can be bounded by a simple dictionary lookup minimizes the number of LPs that need to be
solved. If the minimal lower-level value ℓ of the considered tree node is at least the current bound ℓb, no
further evaluation is required, see Section 4.3.1. Thus, the goal is to have ℓb as small as possible at an early
stage. This is best achieved by choosing a tree node with best minimal completion value ℓ on the lower
level.

4.6 Branching

We aim to identify problem-specific subsets of variables such that exactly one is set to one or only branch on
a subset of the lower-level variables. In case of the shortest path or the assignment problem, a MIP solver
should find these sets as well, while it is not that clear for the min cut problem. This reduces the size of
the branch-and-bound tree in comparison to simply branching on every lower-level variable independently.
Furthermore, we try to avoid the creation of branches that do not contain any feasible lower-level solutions.

Example: shortest path A simple path contains exactly one element from every inclusion-wise minimal
cut between the path’s source and sink. In particular, arcs that are in an inclusion-wise minimal cut together
with some required arc of the current partial solution cannot be part of a feasible solution. Furthermore, if
an arc is not part of any simple path between required parts of the partial solution, it cannot be part of a
feasible solution. An easily identifiable set of arcs to branch on is the set of all out-/ingoing arcs of either
the head or tail of a so far required subpath, the problem’s source or sink. The respective out-/indegree
of the respective vertex provides an upper bound for the number of children. By directly checking for the
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existence of a path to the next required part, the number of children can turn out to be smaller. The vertex to
branch at can be chosen for example such that it maximizes or minimizes the number of children, prolongs
a shortest or longest (w.r.t. to the original weight or the number of arcs) subpath, a subpath incident to the
problem’s source or sink or where a missing part is closed as soon as possible for at least one child. The
choice of some of these rules can coincide for some instances.

Example: assignment For PIAP, we can branch at a vertex that is not covered yet. Every vertex is covered
by exactly one edge in an assignment. Thus, taking the edges that are incident to some not-yet-covered
vertex provides a set of variables from which always exactly one has to be used. Different rules to choose
a free vertex to branch at are possible. Choosing a vertex of maximal degree with respect to the remaining
free arcs results in many children. In contrast, only few children are obtained when taking a vertex of
minimal degree with respect to free arcs. Other possible choices are with respect to the sum over weights
of free incident arcs that is maximized or minimized.

Example: min cut Lower-level variables of the LP for the min cut problem describe the partition of ver-
tices and indicate for arcs whether they are forward-crossing the cut. It suffices to only branch on variables
that fix vertices to either side of the cut. Whether arcs forward-cross the cut is then given and should be
explicitly fixed.

Any partition of the vertex set is a feasible cut. However, there might not be an upper-level solution
when only increasing weights is allowed. As the capacity of a cut only depends on arcs forward-crossing
the cut, bounding methods only consider these arcs. Thus, it is reasonable to branch such that more arcs
have both end vertices assigned after every step. This is the case when branching is done at a vertex that is
both a successor of a vertex in S and a predecessor of a vertex in S. If no such vertex exists, at least in one of
the two branches a new forward-crossing arc is fixed when we branch at a vertex that is either of the two.

4.7 Propagation

For a partial lower-level solution, all feasible completions might include certain further lower-level ele-
ments. Using these implications explicitly as soon as they are detected, we can prevent to solve subprob-
lems at branch-and-bound tree nodes with a single child and reduce the height of the branch-and-bound
tree. The following propagation methods are based on the specific lower-level problems.

Example: shortest path In PISPP, there is an upper-level solution for every simple path. Thus, we only
need to consider whether a partial solution can be extended to a simple path. E.g., arcs that would create
a cycle can be excluded directly. If there is only one possibility to continue a path because of a single out-
/ingoing arc at a non-terminal node that is at the end/start of a partial path, the respective arc has to be
included.

Example: assignment Similarly as for paths, there is an upper-level solution for every assignment. How-
ever, not every partial assignment can be extended to an assignment. If the induced subgraph of the not-
yet-covered vertices has a connected component with an odd number of vertices, the instance is infeasible.
In particular, this covers the case of an isolated vertex that cannot be completed to an assignment. This is
not a sufficient condition. For example, there is no assignment in the complete bipartite graph K2,4 though
it has an even number of vertices. If there is a vertex with degree one in the induced subgraph of the
not-yet-covered vertices, the respective incident arc has to be included in the partial solution.
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Example: min cut In contrast to shortest path and assignment, every partial cut can be extended to a cut
by any allocation of the remaining vertices to either side. However, for a min cut problem on the lower level
with only weight increases, an upper-level solution might not exist. For every vertex v ∈ S that is incident
to a cut-crossing arc, v must be reachable from the source s within the set S. If there is a vertex v ∈ S that is
currently not reachable from s within S and there is only one incoming arc to v from a not assigned vertex
u ∈ V \ (S ∪ S̄), then u needs to be part of S as well. For S̄ an analogue argument with vertices from which
the sink t is not reachable holds as well.

During the described branching, we only fix the variables corresponding to vertices. As soon as both
end vertices of an arc have been assigned, it is fixed whether the arc is forward-crossing and thus the
corresponding variable can be explicitly fixed.

5 Computational Results

5.1 Implementation, software and computing infrastructure

For our implementation we use Python (version 3.8.10) and Gurobi (version 10.0.2) as (I)LP-solver via the
Python library gurobipy. Handling of graphs and some combinatorial subproblems are based on Networkx
3.1. Computations are run on an AMD EPYC 7742 64-Core Processor. For all computations a single core
is allocated and the number of threads used by Gurobi is limited to one. This is done for reasons of fair
comparison, since our prototype implementation is not parallelized,

Branch and bound We implement a basic branch-and-bound scheme in Python, solving the LPs with
Gurobi via gurobipy. Minimal completions for the shortest path problem are evaluated with the bidirec-
tional Dijkstra algorithm implemented in networkx. For underlying assignment or min cut problems, the
according LP for minimal completion is solved with Gurobi, as well as all LPs for the dual bounds.

Single-level reformulation with indicator constraints The single-level reformulations are implemented
with gurobipy using built-in indicator constraints. Preliminary experiments have shown that the reformu-
lation based on strong duality can be solved significantly faster than the one based on complementarity
constraints. Thus, we only consider the version via duality in the following.

Decomposition The decomposition approach is implemented in Python using gurobipy and Gurobi as
solver for the master problem. For the assignment and the min cut problem, we use an implementation with
Gurobi via gurobipy for solving the subproblems, while we use implementations of Dijkstra’s algorithm
provided in networkx for the shortest path problem. However, in comparison to the other two solution
approaches, the decomposition approach performs poorly in preliminary tests if only a single lower-level
solution is found in every iteration. For the shortest path problem, adding several feasible lower-level
solutions at once determined by using Dijkstra’s algorithm showed a significant advantage over adding
only a single one a time. Thus, we only include a comparison to this superior approach for computations
in case of the shortest path problem.

5.2 Instances

The used test instances are all randomly generated such that the required properties are fulfilled. In the fol-
lowing, we describe the used methods. The numbers of vertices respectively edges are input parameters to
the generation of all instances. Weights are always chosen uniformly at random from the set {1, 2, ..., 1000}.
As it turns out, performance of the three methods depends to a large degree on the density of the graph for
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partial inverse shortest path, assignment and min cut problems, so we discuss sets of test instances with
varying density. Instances are available on request.

Shortest path For testing the different methods for PISPP, we randomly generate directed acyclic graphs.
Given a number of vertices, we start with a path of according length and add shortcuts until the required
number of edges is reached.

We use the following procedure with different random seeds: Independently choose two random ver-
tices. If they are the same vertex or in case there is already an edge between these two vertices, repeat
picking two vertices at random. Otherwise, add an arc according to the topological order defined by the
path. Source and sink for the problem are the terminal vertices of the path. A randomly chosen arc from
the graph is fixed as the unique required arc in R for the PISPP instance.

By construction, the topological ordering is unique. Furthermore, vertices close to the source have large
out-degree and vertices close to the sink have large in-degree. The expected total degree is the same for all
vertices.

Assignment We generate random bipartite graphs for computations for PIAP. For a given even number
of vertices, fix a partition. Choose one vertex from each of the two sets uniformly at random and add an
edge if it is not already present until the required number of edges is reached.

Min cut From a set of the corresponding number of vertices, two vertices are fixed as source and sink,
respectively. For an arc we randomly choose a tail from all vertices except the sink and a head from all
vertices except the source. As we do not want loops, we skip in case the same (non-terminal) vertex has
been chosen. The same applies if there is already the according arc. Otherwise, the arc is added to a graph
with a randomly chosen weight.

The constructed graph may consist of more than one connected component. In case the terminal vertices
are in different connected components, we directly detect infeasibility of the instance and do not consider
it further. Connected components without the terminal vertices are removed.

A random vertex is chosen to be fixed on either side of the cut to complete an instance for PIMCP.

5.3 Computations

For all three problems, we use a time limit of one hour for every instance and method. For instances that
are not solved within the time limit, we use the time limit as running time for computing figures like mean
or standard deviation.

5.3.1 Partial inverse shortest path

We consider instances with 1000 nodes, see Figure 9 respectively Table 2. In dense graphs, it turns out
that the initial feasible solution found by our proposed heuristic via a minimal completion is often optimal.
Furthermore, the method based on the minimal required length of a shortest path described in Section 4.3.1
provides in most cases directly the required bound to show optimality. In contrast, in sparse graphs, both
the decomposition approach and Gurobi dealing with the single-level reformulation are superior. In case
of the decomposition approach, each time the subproblem is solved, several optimal lower-level optimal
solutions are evaluated. For graphs with an intermediate density, the running time for all three methods is
rather large. In further experiments with larger instances, only sparse graphs could be solved by Gurobi
and dense graphs could be solved with our branch-and-bound method.
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Figure 9: Performance for PISPP on instances with one required arc and graphs with 1000 vertices and 100
instances each with 50 000 arcs (upper left), 100 000 arcs, 200 000 arcs and 490 000 arcs (lower right). Time
limit 1 hour per instance.

Which branching rule performs best mainly dependents on the instance type, i.e. the graph structure.
For the described instances, the branching rules of prolonging the required path on the end where more
arcs are incident worked best. As a result, a maximal number of children is created.

5.3.2 Partial inverse assignment

For PIAP, the success of our branch-and-bound method heavily depends on whether the bounds obtained
at the root node already agree, and the result is quite lopsided either way: If the heuristic solution is optimal
and the dual bound based on the minimal required size allows showing this, branch-and-bound (or rather:
bound) is at least twice respectively three times as fast as Gurobi, see Figure 10. Otherwise, our own
implemented branch-and-bound is not able to solve the problem to optimality within the time limit of one
hour. However, some of these instances can be solved by Gurobi within the time limit. The maximal time
needed by our method if it solves the instance is for all classes of graphs smaller than the according minimal
time needed by Gurobi, see Table 3 for statistics on the running times of solved instances.

Denser graphs seem to be more difficult for PIAP. The number of solved instances decreases for both
methods if instances have increasing density.
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Number of edges Method Solved Mean [s] Std [s] Min [s] 25% [s] 50% [s] 75% [s] Max of solved [s]

50 000 B & B 98 181.1 578.8 8.2 20.8 35.9 78.9 2182.9
Gurobi 100 45.3 45.8 14.1 20.8 26.3 49.6 301.4
Decomposition 99 153.9 451.1 8.1 24.3 49.2 81.8 2458.1

100 000 B & B 95 583.3 831.7 17.6 68.2 287.9 671.3 2161.1
Gurobi 100 108.4 89.3 30.6 63.1 80.2 110.4 635.1
Decomposition 98 439.0 649.5 23.7 67.2 233.5 484.3 2983.6

200 000 B & B 69 1458.6 1572.3 26.1 42.7 499.5 3600.0 3264.1
Gurobi 99 603.6 727.2 27.6 111.5 322.6 866.0 2953.4
Decomposition 64 1544.9 1616.0 15.0 230.7 475.4 3600.0 2965.2

490 000 B & B 97 211.3 662.7 68.5 73.1 75.7 79.8 2913.6
Gurobi 100 289.3 381.4 67.8 131.2 165.8 235.2 2729.6
Decomposition 96 237.0 690.1 40.3 84.3 96.7 106.7 145.1

Table 2: Statistics on running times (in seconds) for PISPP as in Figure 9
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Figure 10: Performance for PIAP on instances with 3000 vertices, (all together), 50 000 (left) respectively
100 000 edges, 1h time

Number of edges Method Solved Mean [s] Std [s] Min [s] 25% [s] 50% [s] 75% [s] Max of solved [s]

50 000 B & B 62 1382.0 1745.2 13.7 14.1 32.8 3600.0 45.4
Gurobi 94 368.9 889.0 48.4 66.1 99.9 145.1 3271.2

100 000 B & B 29 2574.1 1613.4 53.1 67.3 3600.0 3600.0 75.8
Gurobi 66 1542.8 1555.6 174.6 242.1 484.6 3600.0 3248.3

Table 3: Statistics on running times (in seconds) for PIAP as in Figure 10
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Figure 11: PIMCP - sparse vs dense graph: 100 instances, each with 150 vertices, 10 000 arcs (left) respec-
tively 220 000 arcs, time limit of 1 hour (though 1 min suffices in all cases of 2.2e5 arcs, see Table 4)

Number of arcs Method Solved Mean [s] Std [s] Min [s] 25% [s] 50% [s] 75% [s] Max of solved [s]

10 000 B & B 24 2801.7 1456.4 1.0 3600.0 3600.0 3600.0 2769.8
Gurobi 22 2896.4 1371.0 1.0 3600.0 3600.0 3600.0 3468.6

220 000 B & B 100 2.9 0.3 2.3 2.6 2.8 3.0 3.8
Gurobi 100 11.9 5.5 2.5 7.9 11.5 15.9 28.2

Table 4: Statistics on running times (in seconds) for PIMCP as in Figure 11

5.3.3 Partial inverse min cut

Similarly to partial inverse shortest path, our prototype branch-and-bound implementation outperforms
Gurobi on dense graphs, see Figure 11. However, the amount of time needed by any method is quite small
with less than one minute for dense graphs, see Table 4. In contrast, only few sparse graphs are solved by
either method within a time limit of one hour per instance. For those instance solved faster by our own
branch-and-bound method, the factor of time needed by Gurobi can be quite large in some cases.

6 Conclusion

This paper proposes one of the first algorithmic contributions to solving NP-complete PICPs in which
weights can only be increased. Our algorithm uses a branch-and-bound scheme with novel primal and
dual bounding procedures that exploit the specific structure of these problems – in particular that prob-
lems resembling complete ICPs can be solved efficiently. For three example test cases using shortest path,
assignment and minimum cut problems on the lower level, our prototype implementation is already com-
petitive with a state-of-the-art solver applied to a single-level reformulation, even though it is implemented
in python and doesn’t enjoy access to all the features of a mature solver. The computational study sug-
gests that the strengths of both methods are somewhat supplementary. In case of underlying shortest path
or min cut problem instances, dense graphs favour our branch-and-bound implementation while Gurobi
solving the single-level reformulation is superior on sparse graphs. For PIAP, our heuristic in combination
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with the dual bound performs much better for dense graphs. It is not unusual for our method to solve an
instance right at the root node or shortly afterwards, resulting in a large speed-up. That means that a com-
bination might yield a significantly more powerful method, e.g. by integrating our bounding subproblems
into Gurobi (or any other suitable solver). Indeed, we observed that already the bounds we generate at the
root node can be hard for Gurobi to reproduce for certain instances and might be very valuable.

In the paper we contributed two complexity results on versions of PICP being NP-complete. For such
problems one can, however, ask for milder conditions than completeness of the solution provided by R on
when the problem becomes solvable in polynomial time. Such insights may be used to guide branching
decisions. For example, is PISPP-W+ still NP-complete if all of R is connected to the source or sink? If the
answer was no, one consequence could be that branching should aim to achieve this quickly. Finally, one
could try to extend our algorithmic ideas to PICPs with more difficult combinatorial problems on the lower
level.
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