T-semidefinite programming relaxation with third-order tensors for constrained polynomial optimization

Hiroki Marumo ${ }^{1} \quad$ Sunyoung Kim ${ }^{2} \quad$ Makoto Yamashita ${ }^{1}$

February 13, 2024

Abstract

We study T-semidefinite programming (SDP) relaxation for constrained polynomial optimization problems (POPs). T-SDP relaxation for unconstrained POPs was introduced by Zheng, Huang and Hu in 2022. In this work, we propose a T-SDP relaxation for POPs with polynomial inequality constraints and show that the resulting T-SDP relaxation formulated with third-order tensors can be transformed into the standard SDP relaxation with block-diagonal structures. The convergence of the T-SDP relaxation to the optimal value of a given constrained POP is established under moderate assumptions as the relaxation level increases. Additionally, the feasibility and optimality of the T-SDP relaxation are discussed. Numerical results illustrate that the proposed T-SDP relaxation enhances numerical efficiency.

Key words. T-SDP relaxation, constrained polynomial optimization, third-order tensors, convergence to the optimal value, block-diagonal structured SDP relaxation, numerical efficiency.

AMS Classification. 90C22, 90C25, 90C26.

1 Introduction

We consider constrained polynomial optimization problems (POPs):

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, \quad i=1, \ldots, r \tag{K}
\end{array}
$$

[^0]where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{1}, \ldots, g_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are real-valued polynomials. Without loss of generality, we assume that no constant exists in the objective function. The feasible set of $\left(\mathbb{P}_{K}\right)$ is denoted as $K:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, \quad i=1, \ldots, r\right\}$.

Constrained POP $\left(\mathbb{P}_{K}\right)$ has been widely studied in the field of optimization such as 0-1 integer programming and non-convex quadratic optimization, and has various applications in medical bioengineering [4, 31], signal processing [10, 20], materials engineering [24], and computer vision [5].

As POP $\left(\mathbb{P}_{K}\right)$ is known to be NP-hard, finding a global optimal solution of $\left(\mathbb{P}_{K}\right)$ is a significant challenge. A widely adopted strategy in solving $\left(\mathbb{P}_{K}\right)$ has been the use of semidefinite programming (SDP) relaxation based on Putinar's Positivstellensatz [19] by Lasserre [9]. Parrilo also proposed the SDP relaxation problem through the sum-of-squares (SOS) polynomial relaxation [18], which is viewed as the dual of Lasserre's SDP relaxation. While Nesterov and Nemirovskii [15] theoretically showed that SDP problems can be solved in polynomial time, the size of SDP relaxation problems for POPs becomes increasingly large [16] with the degree and the number of variables of POPs. Thus solving the SDP problems is challenging due to computational costs [25]. In fact, for POPs of degree d with n variables, the size of the variable matrix in the SDP problem amounts to $s(d):=\binom{n+d}{d}$. To address this challenge, various approaches have been proposed, such as exploiting the sparse structures of $\left(\mathbb{P}_{K}\right)$ [27, 28, 21] and employing weaker relaxations as diagonally-dominant-sum-of-squares relaxation [1].

For the difficulty in solving large-sized SDP relaxations of constrained POPs, our objective is to employ a third-order tensor and propose a relaxation method for constrained POP $\left(\mathbb{P}_{K}\right)$. The third-order tensor has been studied in many applications [17, 26]. Furthermore, Kilmer, Martin and Perrone [7] introduced the product in third-order tensors, an extension of the product of matrices, and third-order tensors have become gradually popular in recent years $[2,11,23]$.

Applying the product in third-order tensors, Zheng et al. [33] introduced semidefiniteness and SDP in third-order tensors (referred to as semidefinite tensor and T-SDP, respectively). Semidefinite tensor and T-SDP serve as extensions of semidefinite matrices and SDPs, respectively. The entire set of semidefinite tensors is nonempty, closed, convex, pointed cone, and self-dual. Under these properties, duality theorems and optimality conditions have been shown for T-SDP as well as for SDP. While various application problems can be formulated as T-SDP, no solver has currently been developed to directly solve the T-SDP problem. Therefore, it is common to use the structural advantage of third-order tensors to convert the problem into an equivalent SDP problem and solve it by applying existing solvers such as $[13,29,30]$.

As the close relationship between SOS relaxation and SOS polynomials, semidefinite third-order tensor and T-SDP are based on the SOS polynomial with a block circulant structure, commonly referred to as block circulant SOS polynomials [32]. This block circulant SOS polynomial can be viewed as an extension of SOS polynomials.

The purpose of this paper is to introduce a relaxation by the block circulant SOS polynomial instead of the SOS relaxation for constrained POPs in [8] to increase the efficiency of solving SDP relaxations of $\left(\mathbb{P}_{K}\right)$. The SOS relaxation proposed in [8] is called the SOS relaxation or the basic SOS relaxation in this paper. Let the degree of $f(x)$ and $g_{i}(x)$ be d and w_{i}, respectively, and a positive integer N, the relaxation level, such that $2 N \geq d$
and $2 N \geq \max _{i}\left\{w_{i}\right\}$, and $\tilde{w}_{i}=\left\lceil w_{i} / 2\right\rceil, i=1, \ldots, r$. With positive integers m_{0}, l_{0}, m_{i}, and l_{i} such that $s(N)=m_{0} l_{0}, s\left(N-\tilde{w}_{i}\right)=m_{i} l_{i}, i=1, \ldots, r$, we employ $2 N$-degree l_{0}-block circulant SOS polynomials and $2\left(N-\tilde{w}_{i}\right)$-degree l_{i}-block circulant SOS polynomials for our block-circulant SOS relaxation. If we choose $l_{i}=1, i=0, \ldots, r$, the proposed block circulant SOS relaxation coincides with the basic SOS relaxation. The proposed block circulant SOS relaxation relies on the existence of $2 N$-degree l_{0} and $2\left(N-\tilde{w}_{i}\right)$-degree l_{i}-block circulant SOS polynomials for $\left(\mathbb{P}_{K}\right)$. Thus, the choice of m_{i} and $l_{i}, i=0, \ldots, r$ is essential for numerical efficiency, as shown in Section 4.1.

We first show that the block circulant SOS relaxation problem can be described as an equivalent T-SDP problem. Then, the T-SDP relaxation problem is equivalently transformed into an SDP problem of smaller size than the SDP problem from the basic SOS relaxation. Therefore, the T-SDP relaxation is expected to reduce the computational time. Indeed, we observe the computational advantage through numerical experiments presented in Section 4.1. For instance, the computational time for a constrained POP is reduced from 1264 seconds by the basic SOS relaxation to 633 seconds by the proposed relaxation based on circulant SOS polynomials with appropriate block sizes, under a mild assumption.

The main contributions of this paper are:

- We propose a T-SDP relaxation for constrained POPs, extending the result in [33] for unconstrained POPs.
- By transforming the T-SDP relaxation problem derived from a block circulant SOS relaxation for a constrained POP into the equivalent SDP problem of smaller size with the block-diagonal structure, the computational efficiency of solving the constrained POP is increased.
- We analyze the feasibility and global optimality of the T-SDP relaxation problem, and prove the convergence of the T-SDP relaxation sequence to the optimal value of $\left(\mathbb{P}_{K}\right)$ under an assumption that extends Putinar's Positivstellensatz.

The remaining of our paper is organized as follows. In Section 2, we describe the basic definitions of third-order tensor and block diagonalization, which are important for the equivalent transformation from T-SDP to SDP. Based on these definitions, we introduce the concepts of semidefiniteness and the T-SDP problem over third-order tensors and show that the T-SDP problem can be transformed into an equivalent SDP. We also define the block circulant SOS polynomial, an extension of the SOS polynomial, and introduce an important theorem that holds for semidefinite tensors. In Section 3, we propose a block circulant SOS relaxation method that extends the basic SOS relaxation method for constrained POPs, and show that the relaxation problem can be described by a T-SDP form. We also show that it has an advantage in problem size compared to the SDP relaxation. In addition, we provide theoretical analysis such as feasibility and global optimality for the T-SDP relaxation problem. In Section 4, we compare the proposed T-SDP relaxation method with the SDP relaxation using a set of test problems for constrained POPs. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Notation

Throughout this paper, \mathbb{R}^{n} denotes the set consisting of all real vectors of size n, \mathbb{C}^{n} the set consisting of all complex vectors of size n, and \mathbb{N}^{n} the set of nonnegative integers. We use $\mathbb{R}^{m \times n}$ to denote the set of $m \times n$ real matrices, $\mathbb{C}^{m \times n}$ the set of $m \times n$ complex matrices, $\mathbb{R}^{m \times n \times l}$, which is an array with one dimension added to the matrix, the set of $m \times n \times l$ real third-order tensors. We consider only real third-order tensors in this paper. The n th-order identity matrix is denoted by I_{n} and the n th-order zero matrix by O_{n}, or I and O. The zero tensor is denoted by \mathcal{O}. The identity tensor is defined in Section 2.2.

The transpose of a matrix A is denoted by A^{\top}, the conjugate by \bar{A}, and the conjugate transpose by A^{H}. We denote the set consisting of all real symmetric (complex hermitian) matrices of size $n \times n$ as $\mathbb{S}^{n \times n}\left(\mathbb{H}^{n \times n}\right)$. $A \succ(\succeq) O$ denotes that a matrix A is positive definite (positive semidefinite), while the set of all real symmetric positive definite (positive semidefinite) matrices of size $n \times n$ is denoted by $\mathbb{S}_{++}^{n \times n}\left(\mathbb{S}_{+}^{n \times n}\right)$. Similarly, we denote the set of all complex hermitian positive definite (positive semidefinite) matrices of size $n \times n$ as $\mathbb{H}_{++}^{n \times n}\left(\mathbb{H}_{+}^{n \times n}\right)$.

The inner product of two matrices in $\mathbb{R}^{m \times n}$ is defined as $\langle A, B\rangle:=\operatorname{Tr}\left(A^{\top} B\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}$ $[A]_{(i, j)}[B]_{(i, j)}$, where $[A]_{(i, j)},[B]_{(i, j)}$ denote the (i, j) th elements of A, B, respectively. The inner product of two third-order tensors \mathcal{A} and \mathcal{B} in $\mathbb{R}^{m \times n \times l}$ is defined as $\langle\mathcal{A}, \mathcal{B}\rangle:=\sum_{i=1}^{m} \sum_{j=1}^{n}$ $\sum_{k=1}^{l}[\mathcal{A}]_{(i, j, k)}[\mathcal{B}]_{(i, j, k)}$, where $[\mathcal{A}]_{(i, j, k)},[\mathcal{B}]_{(i, j, k)}$ denote the (i, j, k) th elements of \mathcal{A}, \mathcal{B}, respectively. A symbol \otimes denotes the Kronecker product of two matrices.

2.2 Third-order tensor

For a third-order tensor $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$, we consider \mathcal{A} as a stack of frontal slices $A^{(i)} \in$ $\mathbb{R}^{m \times n}, i=1, \ldots, l$, as proposed in $[7]$ where several operators on $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$ were introduced as follows:

$$
\operatorname{bcirc}(\mathcal{A}):=\left[\begin{array}{ccccc}
A^{(1)} & A^{(l)} & A^{(l-1)} & \ldots & A^{(2)} \\
A^{(2)} & A^{(1)} & A^{(l)} & \ldots & A^{(3)} \\
A^{(3)} & A^{(2)} & A^{(1)} & \ldots & A^{(4)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A^{(l)} & A^{(l-1)} & A^{(l-2)} & \ldots & A^{(1)}
\end{array}\right], \quad \operatorname{unfold}(\mathcal{A}):=\left[\begin{array}{c}
A^{(1)} \\
A^{(2)} \\
A^{(3)} \\
\vdots \\
A^{(l)}
\end{array}\right]
$$

$$
\operatorname{bcirc}_{l}^{-1}(\operatorname{bcirc}(\mathcal{A})):=\mathcal{A}, \quad \operatorname{fold}_{l}(\operatorname{unfold}(\mathcal{A})):=\mathcal{A}
$$

Let bcirc : $\mathbb{R}^{m \times n \times l} \rightarrow \mathbb{R}^{m l \times n l}$ be the operator that arranges each frontal slice of \mathcal{A} into a block circulant matrix, unfold : $\mathbb{R}^{m \times n \times l} \rightarrow \mathbb{R}^{m l \times n}$ be the operator that arranges each frontal slice of \mathcal{A} in columns. bcirc $_{l}^{-1}$ and fold l_{l} are operators that are the inverse operations of bcirc and unfold with l, respectively. From the definition of bcirc, it clearly holds that

$$
\begin{equation*}
\langle\mathcal{A}, \mathcal{B}\rangle=\frac{1}{l}\langle\operatorname{bcirc}(\mathcal{A}), \operatorname{bcirc}(\mathcal{B})\rangle . \tag{1}
\end{equation*}
$$

It is known that any circulant matrix $A \in \mathbb{R}^{n \times n}$ can be diagonalized with the normalized discrete Fourier transform (DFT) matrix, where the DFT matrix is the Fourier matrix of
size $n \times n$ defined as

$$
F_{n}:=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^{2} & \ldots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \ldots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{(n-1) 2} & \ldots & \omega^{(n-1)(n-1)}
\end{array}\right], \quad \omega:=e^{\frac{2 \pi i}{n}} .
$$

Using this, the block circulant matrix $\operatorname{bcirc}(\mathcal{A})$ can be block-diagonalized with the Kronecker product.
Lemma 1. [6] Any third-order tensor $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$ can be block-diagonalized as

$$
\left(F_{l}^{\mathrm{H}} \otimes I_{m}\right) \operatorname{bcirc}(\mathcal{A})\left(F_{l} \otimes I_{n}\right)=\operatorname{Diag}\left(A_{1}, A_{2}, \ldots, A_{l}\right)=\left[\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{l}
\end{array}\right]
$$

where $A_{1} \in \mathbb{R}^{m \times n}, A_{i} \in \mathbb{C}^{m \times n}$ and $A_{i}=\overline{A_{l+2-i}}, i=2, \ldots, l$.
In what follows, we define the product and transposition of third-order tensors and extend the semidefiniteness to the space of third-order tensors, and introduce some theorems on semidefinite tensors.

Definition 2. [7, Definition 4.1] Let $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$ and $\mathcal{B} \in \mathbb{R}^{n \times p \times l}$ be two third-order tensors. Then, the product of third order tensors $\mathcal{A} * \mathcal{B} \in \mathbb{R}^{m \times p \times l}$ is defined by

$$
\mathcal{A} * \mathcal{B}:=\operatorname{fold}_{l}(\operatorname{bcirc}(\mathcal{A}) \operatorname{unfold}(\mathcal{B})) .
$$

In the case of $l=1$, the third-order tensors $\mathcal{A} \in \mathbb{R}^{m \times n \times l}, \mathcal{B} \in \mathbb{R}^{n \times p \times l}$ are the matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, respectively, and $\operatorname{bcirc}(A)=A$ and $\operatorname{unfold}(B)=B$ hold for $l=1$, thus the product in the third-order tensors $\mathcal{A} * \mathcal{B}$ is the matrix product $A B$.

We call a third-order tensor whose first frontal slice is the identity matrix and the other frontal slices are the zero matrix the identity tensor \mathcal{I}. The identity tensor \mathcal{I} is defined as a third-order tensor whose first frontal slice is the identity matrix and the other frontal slices are the zero matrix. For a third-order tensor $\mathcal{A} \in \mathbb{R}^{n \times n \times l}$ and the identity tensor $\mathcal{I} \in \mathbb{R}^{n \times n \times l}$, we have $\mathcal{A} * \mathcal{I}=\mathcal{I} * \mathcal{A}=\mathcal{A}$.
Definition 3. [7, Definition 4.7] If $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$ is a third-order tensor, then the transpose \mathcal{A}^{\top} is obtained by transposing each of the frontal slices $A^{(i)}$ and then reversing the order of transposed frontal slices 2 through l. Furthermore, $\mathcal{A} \in \mathbb{R}^{m \times m \times l}$ is called a symmetric sensor if $\mathcal{A}^{\top}=\mathcal{A}$. We denote the set of all real symmetric tensors of size $m \times m \times l$ as $\mathbb{S}^{m \times m \times l}$.

Definition 4. [33, Definition 6] Let $\mathcal{A} \in \mathbb{S}^{m \times m \times l}$ be a symmetric tensor. We say \mathcal{A} is symmetric positive (semi)definite, if and only if,

$$
\langle\mathcal{X}, \mathcal{A} * \mathcal{X}\rangle>(\geq) 0
$$

holds for any $\mathcal{X} \in \mathbb{R}^{m \times 1 \times l} \backslash\{\mathcal{O}\}\left(\right.$ for any $\mathcal{X} \in \mathbb{R}^{m \times 1 \times l}$).

We denote $\mathcal{A} \succ_{\mathcal{T}}(\succeq \mathcal{T}) \mathcal{O}$ if $\mathcal{A} \in \mathbb{S}^{m \times m \times l}$ is positive (semi)definite, and $\mathbb{S}_{++}^{m \times m \times l}\left(\mathbb{S}_{+}^{m \times m \times l}\right)$ denotes the set of all real symmetric positive (semi)definite tensors of size $m \times m \times l$. The set $\mathbb{S}_{+}^{m \times m \times l}$ is a nonempty, closed, convex, and pointed cone [33, Proposition 3]. Moreover, $\mathbb{S}_{+}^{m \times m \times l}=\left(\mathbb{S}_{+}^{m \times m \times l}\right)^{*}$ holds for the dual cone $\left(\mathbb{S}_{+}^{m \times m \times l}\right)^{*}$ of $\mathbb{S}_{+}^{m \times m \times l}$ (the self-duality) [33, Theorem 9].

Theorem 5. [33, Theorem 4] Let $\mathcal{A} \in \mathbb{S}^{m \times m \times l}$ be a symmetric tensor. Then, the following statements are equivalent:
(i) $\mathcal{A} \in \mathbb{S}_{+}^{m \times m \times l}$.
(ii) $\operatorname{bcirc}(\mathcal{A}) \in \mathbb{S}_{+}^{m l \times m l}$.
(iii) The block-diagonal matrix Diag $\left(A_{1}, \ldots, A_{l}\right)$, which is a block diagonalization of A, is a hermitian positive semidefinite matrix. In other words, $A_{1} \in \mathbb{S}_{+}^{m \times m}, A_{i} \in \mathbb{H}_{+}^{m \times m}, i=$ $2, \ldots, l$.

2.3 SDP in third-order tensor space

We discuss an SDP problem in the space of third order tensors (T-SDP) in this section using the semidefiniteness in third-order tensor defined in Section 2.2. We also describe that a T-SDP problem can be converted into an SDP problem in complex space. The transformed SDP can be solved using existing SDP solvers, for instance Mosek [14], which is used to solve the SDP in our numerical experiments in Section 4.1.

An SDP problem is defined as:
minimize $\langle C, X\rangle$ subject to $\left\langle A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, r, \quad X \succeq O$,
where $X \in \mathbb{S}^{m \times m}$ is the decision variable, $C, A_{i} \in \mathbb{S}^{m \times m}$ and $b \in \mathbb{R}^{r}$ are given symmetric matrices and a vector, respectively. Its dual problem is described as:

$$
\text { maximize } \sum_{i=1}^{r} b_{i} y_{i} \text { subject to } \sum_{i=1}^{r} y_{i} A_{i}+S=C, \quad S \succeq O,
$$

where $y \in \mathbb{R}^{r}$ is the decision variable and $S \in \mathbb{S}^{m \times m}$ is the slack variable.
Now, we extend the SDP problem in the space of symmetric matrices to the space of third-order tensors by extending the real symmetric matrices C, A_{i}, X to real symmetric tensors $\mathcal{C}, \mathcal{A}_{i}, \mathcal{X} \in \mathbb{S}^{m \times m \times l}$ and the semidefinite constraint $X \succeq O$ to $\mathcal{X} \succeq \mathcal{T} \mathcal{O}$. A T-SDP problem is defined as:

$$
\begin{equation*}
\text { minimize }\langle\mathcal{C}, \mathcal{X}\rangle \text { subject to }\left\langle\mathcal{A}_{i}, \mathcal{X}\right\rangle=b_{i}, \quad i=1, \ldots, r, \quad \mathcal{X} \succeq \mathcal{T} \mathcal{O} . \tag{PTSDP}
\end{equation*}
$$

Similarly, its dual problem is defined as:

$$
\begin{equation*}
\text { maximize } \sum_{i=1}^{r} b_{i} y_{i} \text { subject to } \sum_{i=1}^{r} y_{i} \mathcal{A}_{i}+\mathcal{S}=\mathcal{C}, \quad \mathcal{S} \succeq \mathcal{T} \mathcal{O} \tag{DTSDP}
\end{equation*}
$$

Clearly, an SDP problem can be considered as a special case of T-SDP at $l=1$.
The following duality theorem holds for T-SDP as well as SDP.

Theorem 6. [33, Theorem 11] Let $F(P), F(D), p^{*}$, and d^{*} be defined as follows:

$$
\begin{aligned}
& F(P)=\left\{\mathcal{X} \in \mathbb{S}^{m \times m \times l} \mid\left\langle\mathcal{A}_{i}, \mathcal{X}\right\rangle=b_{i}, i=1, \ldots, r, \mathcal{X} \succeq \mathcal{T} \mathcal{O}\right\} \\
& F(D)=\left\{(y, \mathcal{S}) \in \mathbb{R}^{r} \times \mathbb{S}^{m \times m \times l} \mid \sum_{i=1}^{r} y_{i} \mathcal{A}_{i}+\mathcal{S}=\mathcal{C}, \mathcal{S} \succeq \mathcal{T} \mathcal{O}\right\} \\
& p^{*}=\inf \{\langle\mathcal{C}, \mathcal{X}\rangle \mid \mathcal{X} \in F(P)\}, \quad d^{*}=\sup \{\langle b, y\rangle \mid(y, \mathcal{S}) \in F(D)\}
\end{aligned}
$$

Suppose that $\mathcal{X} \in F(P)$ and $(y, \mathcal{S}) \in F(D)$. Then, $\langle b, y\rangle \leq\langle\mathcal{C}, \mathcal{X}\rangle$. In addition, if one of (PTSDP) or (DTSDP) is bounded below and strictly feasible, then the other is solvable and $p^{*}=d^{*}$.

Based on [33], we briefly describe a method for solving the T-SDP problem by transforming it into an equivalent SDP problem over the complex space. For every third-order tensor $\mathcal{C} \in \mathbb{S}^{m \times m \times l}, \operatorname{bcirc}(\mathcal{C})$ can be block-diagonalized as

$$
\operatorname{bcirc}(\mathcal{C})=\left(F_{l} \otimes I_{m}\right) \operatorname{Diag}\left(C_{1}, C_{2}, \ldots, C_{l}\right)\left(F_{l}^{\mathrm{H}} \otimes I_{m}\right)
$$

Thus, for the objective function of (PTSDP), we obtain

$$
\begin{aligned}
\langle\mathcal{C}, \mathcal{X}\rangle & =\frac{1}{l}\langle\operatorname{bcirc}(\mathcal{C}), \operatorname{bcirc}(\mathcal{X})\rangle=\frac{1}{l} \operatorname{Tr}(\operatorname{bcirc}(\mathcal{C}) \operatorname{bcirc}(\mathcal{X})) \\
& =\frac{1}{l} \operatorname{Tr}\left(\left(F_{l} \otimes I_{m}\right) \operatorname{Diag}\left(C_{1}, \ldots, C_{l}\right)\left(F_{l}^{\mathrm{H}} \otimes I_{m}\right)\left(F_{l} \otimes I_{m}\right) \operatorname{Diag}\left(X_{1}, \ldots, X_{l}\right)\left(F_{l}^{\mathrm{H}} \otimes I_{m}\right)\right) \\
& =\frac{1}{l} \operatorname{Tr}\left(\operatorname{Diag}\left(C_{1}, \ldots, C_{l}\right) \operatorname{Diag}\left(X_{1}, \ldots, X_{l}\right)\right)=\frac{1}{l} \sum_{k=1}^{l}\left\langle C_{k}, X_{k}\right\rangle,
\end{aligned}
$$

using (1) for the first equality and the commutative property of trace for the fourth equality.
Similarly, using the block-diagonalized matrix $\operatorname{Diag}\left(A_{1}^{i}, \ldots, A_{l}^{i}\right)$ of \mathcal{A}_{i}, we have $\left\langle\mathcal{A}_{i}, \mathcal{X}\right\rangle=$ $\frac{1}{l} \sum_{k=1}^{l}\left\langle A_{k}^{i}, X_{k}\right\rangle$. From Theorem $5, \mathcal{X} \succeq \mathcal{T} \mathcal{O}$ is equivalent to $X_{1}, \ldots, X_{l} \succeq O$. Since l is an integer such that $l \geq 1$, we can replace $\frac{1}{l} X_{k}$ by X_{k} without loss of generality. Consequently, (PTSDP) and (DTSDP) are transformed into SDP problems in the space of complex matrices:
$\min \sum_{k=1}^{l}\left\langle C_{k}, X_{k}\right\rangle$ sub. to $\sum_{k=1}^{l}\left\langle A_{k}^{i}, X_{k}\right\rangle=b_{i}, \quad i=1, \ldots, r, \quad X_{1}, \ldots, X_{l} \succeq O, \quad(\mathrm{PCSDP})$
$\max \sum_{i=1}^{r} b_{i} y_{i}$ sub. to $\sum_{i=1}^{r} y_{i} A_{k}^{i}+S_{k}=C_{k}, \quad k=1, \ldots, l, \quad S_{1}, \ldots, S_{l} \succeq O, \quad(\mathrm{DCSDP})$
where $X_{k} \in \mathbb{H}^{m \times m}, y \in \mathbb{R}^{r}$ and $S_{k} \in \mathbb{H}^{m \times m}$ are the decision variables, and $C_{k}, A_{k}^{i} \in \mathbb{H}^{m \times m}$ are obtained from the diagonalization.

Since Lemma 1 holds for block diagonal matrices as described in Section 2.2, (PCSDP) can be transformed into an equivalent problem of smaller size depending on the values of l, even or odd.
Case 1: l is even

Let $C_{k}, A_{k}^{i}, X_{k}, k=1, \ldots, l$ be the blocks in the block diagonalized matrix of $\mathcal{C}, \mathcal{A}_{i}, \mathcal{X}$ in (PTSDP). Then, the following relation holds for C_{k}, A_{k}^{i}, X_{k} by (1):

$$
\begin{aligned}
& C_{1} \in \mathbb{S}^{m \times m}, C_{\frac{l+2}{2}} \in \mathbb{S}^{m \times m}, C_{k} \in \mathbb{H}^{m \times m}, C_{k}=\overline{C_{l+2-k}}, \\
& A_{1}^{i} \in \mathbb{S}^{m \times m}, A_{\frac{l+2}{2}}^{i} \in \mathbb{S}^{m \times m}, A_{k}^{i} \in \mathbb{H}^{m \times m}, A_{k}^{i}=\overline{A_{l+2-k}^{i}}, \quad i=1 \ldots, r, \\
& X_{1} \in \mathbb{S}^{m \times m}, X_{\frac{l+2}{2}} \in \mathbb{S}^{m \times m}, X_{k} \in \mathbb{H}^{m \times m}, X_{k}=\overline{X_{l+2-k}}
\end{aligned}
$$

For the objective function of (PCSDP), we obtain

$$
\begin{aligned}
\sum_{k=1}^{l}\left\langle C_{k}, X_{k}\right\rangle & =\left\langle C_{1}, X_{1}\right\rangle+\left\langle C_{\frac{l+2}{2}}, X_{\frac{l+2}{2}}\right\rangle+\sum_{k=2}^{\frac{l}{2}}\left(\left\langle C_{k}, X_{k}\right\rangle+\left\langle\overline{C_{k}}, \overline{X_{k}}\right\rangle\right) \\
& =\left\langle C_{1}, X_{1}\right\rangle+\left\langle C_{\frac{l+2}{2}}, X_{\frac{l+2}{2}}\right\rangle+2 \sum_{k=2}^{\frac{l}{2}}\left\langle C_{k}, X_{k}\right\rangle
\end{aligned}
$$

using the fact that the inner product of the two hermitian matrices is equal to the inner product of their conjugates in the second equality. Similarly, we obtain

$$
\sum_{k=1}^{l}\left\langle A_{k}^{i}, X_{k}\right\rangle=\left\langle A_{1}^{i}, X_{1}\right\rangle+\left\langle A_{\frac{l+2}{2}}^{i}, X_{\frac{l+2}{2}}\right\rangle+2 \sum_{k=2}^{\frac{l}{2}}\left\langle A_{k}^{i}, X_{k}\right\rangle, \quad i=1, \ldots, r
$$

Therefore, (PCSDP) is equivalent to the following problem:

$$
\begin{array}{r}
\operatorname{minimize} \quad\left\langle C_{1}, X_{1}\right\rangle+2 \sum_{k=2}^{\frac{l}{2}}\left\langle C_{k}, X_{k}\right\rangle+\left\langle C_{\frac{l+2}{2}}, X_{\frac{l+2}{2}}\right\rangle \\
\text { subject to }\left\langle A_{1}^{i}, X_{1}\right\rangle+2 \sum_{k=2}^{\frac{l}{2}}\left\langle A_{k}^{i}, X_{k}\right\rangle+\left\langle A_{\frac{l+2}{2}}^{i}, X_{\frac{l+2}{2}}\right\rangle=b_{i}, \quad i=1, \ldots, r, \tag{P'CSDP}\\
X_{1}, \ldots, X_{\frac{l+2}{2}} \succeq O
\end{array}
$$

Case 2: l is odd

As in Case 1, the following relation holds for C_{k}, A_{k}^{i}, X_{k} by (1):

$$
\begin{aligned}
& C_{1} \in \mathbb{S}^{m \times m}, C_{k} \in \mathbb{H}^{m \times m}, C_{k}=\overline{C_{l+2-k}}, \\
& A_{1}^{i} \in \mathbb{S}^{m \times m}, A_{k}^{i} \in \mathbb{H}^{m \times m}, A_{k}^{i}=\overline{A_{l+2-k}^{i}}, \quad i=1 \ldots, r, \\
& X_{1} \in \mathbb{S}^{m \times m}, X_{k} \in \mathbb{H}^{n \times n}, X_{k}=\overline{X_{l+2-k}} .
\end{aligned}
$$

Therefore, (PCSDP) is equivalent to the following problem:

$$
\begin{gathered}
\text { minimize } \quad\left\langle C_{1}, X_{1}\right\rangle+2 \sum_{k=2}^{\frac{l+1}{2}}\left\langle C_{k}, X_{k}\right\rangle \\
\text { subject to }\left\langle A_{1}^{i}, X_{1}\right\rangle+2 \sum_{k=2}^{\frac{l+1}{2}}\left\langle A_{k}^{i}, X_{k}\right\rangle=b_{i}, \quad i=1, \ldots, r, \\
X_{1}, \ldots, X_{\frac{l+1}{2}} \succeq O
\end{gathered}
$$

(P"CSDP)

We have shown that (PTSDP) with a third-order tensor of size $m \times m \times l$ can be transformed into (PCSDP) which includes the sum of l third-order tensors of size $m \times m$ matrices. Furthermore, (PCSDP) can be transformed into (P'CSDP) and (P"CSDP) which include the sum of $\frac{l+2}{2}$ or $\frac{l+1}{2}$ matrices of size $m \times m$, respectively, depending on even or odd value of l. These properties will be used to propose a T-SDP relaxation for constrained POPs.

2.4 Block circulant SOS polynomials

In this section, we first define the SOS polynomial with block circulant structure, referred to as block circulant SOS polynomial, and then explain the relationship between the block circulant SOS polynomial and semidefinite tensor.

We first describe some notation. A real-valued polynomial $f(x)$ of degree $d, d \in \mathbb{N}$, is expressed as

$$
\begin{equation*}
f(x)=\sum_{0 \leq|\alpha| \leq d} b_{\alpha} x^{\alpha} \text { with } x^{\alpha}:=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}, b_{\alpha}:=b_{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \in \mathbb{R} \text { and }|\alpha|:=\sum_{i=1}^{r} \alpha_{i} \leq d \tag{2}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{N}^{n}$. Let

$$
[x]_{d}:=\left[1, x_{1}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{1}^{d}, \ldots, x_{n}^{d}\right]^{\top}
$$

and let $s(d)=\binom{n+d}{d}$ be the dimension of $[x]_{d}$. Let $\mathbb{R}[x]_{d}$ be the set of all d-degree real-valued polynomials. If $f(x) \in \mathbb{R}[x]_{d}$ and $f(x) \geq 0$ for any $x \in \mathbb{R}^{n}$, then f is called a nonnegative polynomial. The set of all nonnegative polynomials is denoted by $\mathbb{R}_{+}[x]_{d}$. We say that q is an SOS polynomial if the real-valued polynomial $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be expressed as $q(x)=\sum_{i} \bar{q}_{i}^{2}(x)$ with some real-valued polynomial $\bar{q}_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. It is well-known that a nonnegative polynomial is not necessarily an SOS polynomial except for special cases [22].

Definition 7. [32, Definition 3] Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real-valued polynomial of degree $2 d$, and m and l be positive integers such that $s(d)=m \cdot l$. Then we say q is an l-block circulant SOS polynomial if

$$
q(x)=\sum_{i=1}^{r} \sum_{j=1}^{l}\left(\left(q_{j}^{i}\right)^{\top}[x]_{d}\right)^{2}
$$

where q_{j}^{i} is the j-th column vector of $\operatorname{bcirc}\left(\operatorname{fold}_{l}\left(q^{i}\right)\right)$ for some generators $\left\{q^{1}, \ldots, q^{r}\right\} \subset \mathbb{R}^{s(d)}$.
Example 8. (3-block circulant SOS polynomial)
A polynomial q in 2 variables (x_{1} and x_{2}) defined by

$$
q(x)=21+8 x_{2}+9 x_{1}^{2}+20 x_{1} x_{2}+33 x_{2}^{2}+8 x_{1} x_{2}^{2}+9 x_{1}^{4}+12 x_{1}^{3} x_{2}+21 x_{1}^{2} x_{2}^{2}+9 x_{2}^{4}
$$

is a 3-block circulant SOS polynomial. Two generators q^{1}, q^{2} for $q(x)$ are

$$
q^{1}=[2,0,0,0,0,3]^{\top}, \quad q^{2}=[4,0,1,0,0,0]^{\top} .
$$

We see that

$$
\operatorname{bcirc}\left(\operatorname{fold}_{3}\left(q^{1}\right)\right)=\left[\begin{array}{c:c:c}
2 & 0 & 0 \\
0 & 3 & 0 \\
\hdashline 0 & 2 & 0 \\
0 & 0 & 3 \\
\hdashline 0 & 0 & 2 \\
3 & 0 & 0
\end{array}\right], \quad \operatorname{bcirc}\left(\operatorname{fold}_{3}\left(q^{2}\right)\right)=\left[\begin{array}{c:c:c}
4 & 0 & 1 \\
0 & 0 & 0 \\
\hdashline 1 & 4 & 0 \\
0 & 0 & 0 \\
\hdashline 0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right] .
$$

From $[x]_{2}:=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]^{\top}$, we have

$$
\begin{aligned}
\sum_{i=1}^{2} \sum_{j=1}^{3}\left(\left(q_{j}^{i}\right)^{\top}[x]_{2}\right)^{2}= & \left(2+3 x_{2}^{2}\right)^{2}+\left(3 x_{1}+2 x_{2}\right)^{2}+\left(3 x_{1}^{2}+2 x_{1} x_{2}\right)^{2} \\
& +\left(4+x_{2}\right)^{2}+\left(4 x_{2}+x_{1} x_{2}\right)^{2}+\left(1+4 x_{1} x_{2}\right)^{2}
\end{aligned}
$$

which is equivalent to q.
If $l=1$ in Definition 7, then $\operatorname{bcirc}\left(\operatorname{fold}_{l}\left(q^{i}\right)\right)=q^{i}$, thus q_{j}^{i} is q^{i} itself. Thus, a 1-block circulant SOS polynomial is an SOS polynomial.

Theorem 9. [32] Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real-valued polynomial of degree $2 d$, and m and l be positive integers such that $s(d)=m \cdot l$. Then, the following statements are equivalent:
(i) q is an l-block circulant SOS polynomial
(ii) There exists an l-block circulant matrix $A \in \mathbb{S}_{+}^{m l \times m l}$ such that each block $A^{(1)}, \ldots, A^{(l)} \in$ $\mathbb{R}^{m \times m}$ and q can be expressed by

$$
q(x)=\left\langle A,[x]_{d}[x]_{d}^{\top}\right\rangle
$$

(iii) There exists a semidefinite tensor $\mathcal{A} \in \mathbb{S}_{+}^{m \times m \times l}$ and $[\mathcal{X}]_{d}^{l}=\operatorname{fold}_{l}\left([x]_{d}\right)$ such that \bar{f} can be expressed by

$$
q(x)=\left\langle\mathcal{A},[\mathcal{X}]_{d}^{l} *\left([\mathcal{X}]_{d}^{l}\right)^{\top}\right\rangle
$$

In the case of $l=1$ in Theorem 9, the semidefinite 1-block circulant matrix in (ii) is a semidefinite matrix. Moreover, since the third-order tensor \mathcal{A} in (iii) becomes a matrix and $[\mathcal{X}]_{d}^{l}$ a vector $[x]_{d},(i i)$ and $(i i i)$ are equivalent. For $l \geq 2$, the l-block circulant matrix A in (ii) can be regarded as a 1-block circulant matrix when the entire matrix is considered as a single block. As a result, an l-block circulant SOS polynomial is also an SOS polynomial. Consequently, we have the following relation:

$$
\begin{equation*}
\Sigma^{l}[x]_{d}(l \geq 2) \subseteq \Sigma^{1}[x]_{d} \subseteq \mathbb{R}_{+}[x]_{d} \tag{3}
\end{equation*}
$$

where $\Sigma^{l}[x]_{d}$ denotes the set of l-block circulant SOS polynomials of degree d.

3 T-SDP relaxations for constrained POPs

In this section, we propose a T-SDP relaxation method for the constrained POP $\left(\mathbb{P}_{K}\right)$, which is an extension of the SDP relaxation method in Section 2.3. Then, we show that the proposed T-SDP relaxation can be reduced to a smaller SDP using the properties of T-SDP than the SDP problem from the basic SOS relaxation. We also discuss the feasibility and global optimality of the proposed method.

3.1 SDP relaxation in the third-order tensor space

To derive T-SDP relaxation for $\left(\mathbb{P}_{K}\right)$, we let $\tilde{w}_{i}=\left\lceil w_{i} / 2\right\rceil$, where w_{i} is the degree of $g_{i}(x)$ and define a positive integer N called the relaxation level such that $2 N \geq d$ and $2 N \geq \max _{i}\left\{w_{i}\right\}$. We also determine certain positive integers m_{0}, l_{0}, m_{i}, and $l_{i}, i=1, \ldots, r$ such that

$$
\begin{equation*}
s(N)=m_{0} l_{0}, \quad s\left(N-\tilde{w}_{i}\right)=m_{i} l_{i}, \quad i=1, \ldots, r \tag{4}
\end{equation*}
$$

For the discussion of the optimal value of $\left(\mathbb{P}_{K}\right)$, we introduce the following assumptions. We should mention that the convexity and connectivity of the feasible set K are not assumed here.

Assumption 10. [9, Assumption 4.1] The set $K=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, \quad i=1, \ldots, r\right\}$ is compact and there exists a real-valued polynomial $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\left\{x \in \mathbb{R}^{n} \mid u(x) \geq 0\right\}$ is compact, then

$$
\begin{equation*}
u(x)=u_{0}(x)+\sum_{i=1}^{r} g_{i}(x) u_{i}(x) \quad \text { for all } x \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

where $u_{i}(x), i=0, \ldots, r$ are SOS polynomials.
Assumption 11. The set $K=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, \quad i=1, \ldots, r\right\}$ is compact. If $p_{K}^{*}=$ $\min _{x \in K} f(x)$, for any $\epsilon>0$,

$$
\begin{equation*}
f(x)-p_{K}^{*}+\epsilon=q_{0}(x)+\sum_{i=1}^{r} g_{i}(x) q_{i}(x) \quad \text { for all } x \in K \tag{6}
\end{equation*}
$$

where $q_{0}(x)$ is a $2 N$-degree l_{0}-block circulant SOS polynomial, $q_{i}(x), i=1, \ldots, r$ are $2(N-$ \tilde{w}_{i})-degree l_{i}-block circulant SOS polynomials.

We note that Assumption 10 is commonly used and Assumption 11 is an extension of Putinar's Positivstellensatz [19], which was used in the SDP relaxation [9] for the objective function f. In Assumption 11, q_{0} and q_{i} need to be l_{0} - and l_{i}-block circulant SOS polynomials instead of SOS polynomials. Thus, Assumption 11 always holds if $l_{0}=1$ and $l_{i}=1$ under the condition for Putinar's Positivstellensatz.

We extend the basic SOS relaxation method based on the generalized Lagrange function by Kim et al. [8] to SOS relaxations using block circulant SOS polynomials. The generalized Lagrangian function for $\left(\mathbb{P}_{K}\right)$ is defined as

$$
L\left(x, \phi_{1}, \ldots, \phi_{r}\right):=f(x)-\sum_{i=1}^{r} g_{i}(x) \phi_{i}(x), \quad \phi_{i}(x) \in \Sigma^{l_{i}}[x]_{2\left(N-\tilde{w}_{i}\right)}
$$

Here, the l_{i}-block circulant SOS polynomials ϕ_{i} is used. Then, the Lagrangian dual problem for $\left(\mathbb{P}_{K}\right)$ can be expressed as

$$
\max _{\phi_{i}} \min _{x} L\left(x, \phi_{1}, \ldots, \phi_{r}\right) .
$$

Now, we consider the following problem with fixed $\phi_{i}(x)$:

$$
\begin{equation*}
\min _{x} L\left(x, \phi_{1}, \ldots, \phi_{r}\right), \tag{7}
\end{equation*}
$$

which can be regarded as an unconstrained problem and also be written as

$$
\begin{equation*}
\max \gamma \text { s.t. } L\left(x, \phi_{1}, \ldots, \phi_{r}\right)-\gamma \geq 0 \tag{8}
\end{equation*}
$$

Then, we can apply l_{0}-block circulant SOS relaxation [32] to (7), or equivalently to (8):

$$
\begin{equation*}
\max _{\gamma, \phi_{i}} \gamma \text { s.t. } L\left(x, \phi_{1}, \ldots, \phi_{r}\right)-\gamma \in \Sigma^{l_{0}}[x]_{2 N} \tag{9}
\end{equation*}
$$

In the problem (9), the constraint $L\left(x, \phi_{1}, \ldots, \phi_{r}\right)-\gamma \in \Sigma^{l_{0}}[x]_{2 N}$ is equivalent to the existence of some $\phi_{0}(x) \in \Sigma^{l_{0}}[x]_{2 N}$ such that $L\left(x, \phi_{1}, \ldots, \phi_{r}\right)-\gamma=\phi_{0}(x)$. Thus, $\left(\mathbb{P}_{K}\right)$ can be relaxed to the following problem:
maximize $\quad \gamma$
subject to $\quad f(x)-\gamma \in \Gamma:=\left\{\phi_{0}+\sum_{i=1}^{r} g_{i}(x) \phi_{i}(x) \mid \phi_{0} \in \Sigma^{l_{0}}[x]_{2 N}, \phi_{i} \in \Sigma^{l_{i}}[x]_{2\left(N-\tilde{w}_{i}\right)}\right\}$.
$\left(\tilde{\mathbb{P}}_{K}\right)$
By Assumption 11, ($\tilde{\mathbb{P}}_{K}$) has a feasible solution. Moreover, the optimal value of ($\tilde{\mathbb{P}}_{K}$) is not greater than the optimal value of $\left(\mathbb{P}_{K}\right)$, based on the inclusion relations between the set of block circulant SOS polynomials and the set of nonnegative polynomials (3), i.e., $\max \left(\tilde{\mathbb{P}}_{K}\right) \leq \min \left(\mathbb{P}_{K}\right)$.

Next, we show that the relaxation problem $\left(\tilde{\mathbb{P}}_{K}\right)$ of $\left(\mathbb{P}_{K}\right)$ can be transformed into an equivalent problem using the T-SDP discussed in Section 2.3. With a monomial vector $[x]_{N}$, we define monomial tensors by

$$
\mathcal{X}_{0}:=\operatorname{fold}_{l_{0}}\left([x]_{N}\right), \quad \mathcal{X}_{i}:=\operatorname{fold}_{l_{i}}\left([x]_{N-\tilde{w}_{i}}\right), \quad i=1, \ldots, r .
$$

We determine third-order tensors $\mathcal{A}_{\alpha} \in \mathbb{R}^{m_{0} \times m_{0} \times l_{0}}, \mathcal{D}_{i \alpha} \in \mathbb{R}^{m_{i} \times m_{i} \times l_{i}}$ such that

$$
\begin{align*}
\mathcal{X}_{0} * \mathcal{X}_{0}^{\top} & =\sum_{0 \leq|\alpha| \leq 2 N} \mathcal{A}_{\alpha} x^{\alpha} \tag{10}\\
g_{i}(x) \mathcal{X}_{i} * \mathcal{X}_{i}^{\top} & =\sum_{0 \leq|\alpha| \leq 2 N} \mathcal{D}_{i \alpha} x^{\alpha}, \quad i=1, \ldots, r . \tag{11}
\end{align*}
$$

If $l_{0}=1$ and $l_{i}=1$ in (4), then fold $_{1}\left([x]_{N}\right)=[x]_{N}$ and fold ${ }_{1}\left([x]_{N-\tilde{w}_{i}}\right)=[x]_{N-\tilde{w}_{i}}$ hold and the monomial tensors \mathcal{X}_{0} and \mathcal{X}_{i} become the monomial vectors, and the third-order
tensors $\mathcal{A}_{\alpha}, \mathcal{D}_{i \alpha}$ to be determined become the matrices $A_{\alpha} \in \mathbb{R}^{m_{0} l_{0} \times m_{0} l_{0}}, D_{i \alpha} \in \mathbb{R}^{m_{i} l_{i} \times m_{i} l_{i}}$. By Theorem 9, the condition $f(x)-\gamma \in \Gamma$ in $\left(\tilde{\mathbb{P}}_{K}\right)$ can be expressed as

$$
\begin{align*}
f(x)-\gamma & =\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle \\
& =\sum_{0 \leq|\alpha| \leq 2 N}\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle x^{\alpha}+\sum_{i=1}^{r} \sum_{0 \leq|\alpha| \leq 2 N}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle x^{\alpha}, \tag{12}
\end{align*}
$$

where $\mathcal{Z}_{0} \succeq \mathcal{T} \mathcal{O}, \mathcal{Z}_{i} \succeq \mathcal{T} \mathcal{O}$ are semidefinite tensors. Since the objective function $f(x)$ has no constant term $(f(0)=0)$, by comparing the coefficients on both sides of (12) using (2), we obtain

$$
\begin{aligned}
-\gamma & =\left\langle\mathcal{Z}_{0}, \mathcal{A}_{0}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i 0}\right\rangle \\
b_{\alpha} & =\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle, \quad 0<|\alpha| \leq 2 N
\end{aligned}
$$

Consequently, we obtain the T-SDP problem that is equivalent to problem $\left(\tilde{\mathbb{P}}_{K}\right)$:

$$
\begin{array}{ll}
\text { maximize } & -\left\langle\mathcal{Z}_{0}, \mathcal{A}_{0}\right\rangle-\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i 0}\right\rangle \\
\text { subject to } \quad\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle=b_{\alpha}, \quad 0<|\alpha| \leq 2 N, \\
\mathcal{Z}_{0} \succeq \mathcal{T} \mathcal{O}, \quad \mathcal{Z}_{i} \succeq \mathcal{T} \mathcal{O}, \quad i=1, \ldots, r .
\end{array}
$$

The above $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ is an extension of the SDP relaxation problem derived from Parrilo's SOS relaxation [18] to a T-SDP problem. The dual problem $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ of $\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}$ is expressed as

$$
\begin{array}{ll}
\text { minimize } & \sum_{0<|\alpha| \leq 2 N} b_{\alpha} y_{\alpha} \\
\text { subject to } & \sum_{0<|\alpha| \leq 2 N} \mathcal{A}_{\alpha} y_{\alpha} \succeq \mathcal{T}-\mathcal{A}_{0}, \\
& \sum_{0<|\alpha| \leq 2 N} \mathcal{D}_{i \alpha} y_{\alpha} \succeq \mathcal{T}-\mathcal{D}_{i 0}, \quad i=1, \ldots, r .
\end{array}
$$

We notice that if we let $\mathcal{M}_{N}^{l_{0}}(y):=\mathcal{A}_{0}+\sum_{0<|\alpha| \leq 2 N} \mathcal{A}_{\alpha} y_{\alpha}, \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right):=\mathcal{D}_{i 0}+$ $\sum_{0<|\alpha| \leq 2 N} \mathcal{D}_{i \alpha} y_{\alpha}$, then the constraints of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ can be written as $\mathcal{M}_{N}^{l_{0}}(y) \succeq \mathcal{T} \mathcal{O}$, $\mathcal{M}_{N}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}, i=1, \ldots, r$. For the primal problem $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$, its dual $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ is an extension of the SDP relaxation problem derived by Lasserre's SDP relaxation [9] to a T-SDP problem. The positive integers l_{0} and l_{i} determined to satisfy (4) are the parameters in the block circulant SOS relaxation. By choosing a relaxation level N, l_{0} and l_{i}, the relaxation problems $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ are uniquely determined.

From (4), (10) and (11), the size of the T-SDP relaxation problem $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ is given with $\mathcal{A}_{\alpha}, \mathcal{Z}_{0} \in \mathbb{S}^{m_{0} \times m_{0} \times l_{0}}$ and $\mathcal{D}_{i \alpha}, \mathcal{Z}_{i} \in \mathbb{S}^{m_{i} \times m_{i} \times l_{i}}$. As discussed in Section 2.3, ($\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}$) can be transformed into an equivalent SDP of smaller size, depending on even or odd l_{0}, l_{i}, which includes hermitian matrices of size determined by the sum of $\frac{l_{0}+2}{2}$ or $\frac{l_{0}+1}{2}$ of $m_{0} \times m_{0}$ size and the sum of $\frac{l_{i}+2}{2}$ or $\frac{l_{i}+1}{2}$ of $m_{i} \times m_{i}$ size. In this case, we need to transform the SDP formulated with complex matrices to real-symmetric matrices [13].

For the case of $l_{0}=1$ and $l_{i}=1$, the T-SDP relaxation problem $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ coincides with the SDP relaxation problem which involves real symmetric matrices of size $m_{0} l_{0}$ and $m_{i} l_{i}$. Therefore, the T-SDP relaxation problem can be reduced to a smaller problem than the SDP relaxation in [9], as shown in Table 1.

Table 1: Comparing the number and size of positive semidefinite (PSD) matrices for the basic SOS relaxation and the block circulant SOS relaxation

Relaxation	number and size of PSD matrices in N th-level relaxation
Basic SOS	$\left[1^{*}\left(\binom{n+N}{N} \times\binom{ n+N}{N}\right)\right.$ PSD matrix,
	$1^{*}\left(\sum_{i=1}^{r}\binom{n+N-\tilde{w}_{i}}{N-\tilde{w}_{i}} \times\binom{ n+N-\tilde{w}_{i}}{N-\tilde{w}_{i}}\right.$ PSD matrices $]$
	$\left[\left(\frac{l_{0}+2}{2}\right.\right.$ or $\left.\frac{l_{0}+1}{2}\right) *\left(\frac{\binom{n+N}{N}}{l_{0}} \times \frac{\binom{n+N}{N}}{l_{0}}\right)$ PSD matrices,
Block circulant SOS	$\left(\sum_{i=1}^{r} \frac{l_{i}+2}{2}\right.$ or $\left.\sum_{i=1}^{r} \frac{l_{i}+1}{2}\right) *\left(\frac{\binom{n+N-\tilde{w}_{i}}{N-\tilde{w}_{i}}}{l_{i}} \times \frac{\binom{n+N-\tilde{w}_{i}}{N-\tilde{w}_{i}}}{l_{i}}\right)$ PSD matrices $]$

3.2 Feasibility and global optimality

We present theoretical analysis of the T-SDP relaxation problems $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ for the constrained POPs proposed in Section 3.1. We also show that the sequence of relaxation problems $\left\{\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}\right\}$ for a relaxation level N converges to the optimal value of $\left(\mathbb{P}_{K}\right)$ when $N \rightarrow \infty$.

Using the relation between block circulant SOS polynomials and semidefinite block circulant matrices described in Section 2.4, we present the following theorem, which serves as a necessary and sufficient condition for the feasibility of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$.
Theorem 12. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real-valued polynomial of degree d with the zero constant term. Assume that there exist the positive integers $m_{0}, l_{0}, m_{i}, l_{i}, i=1, \ldots, r$ such that $s(N)=$ $m_{0} l_{0}, s\left(N-\tilde{w}_{i}\right)=m_{i} l_{i}$. Then $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ has a feasible solution if and only if there exists some $\gamma \in \mathbb{R}$ and third-order tensors $\mathcal{Z}_{0} \in \mathbb{S}_{+}^{m_{0} \times m_{0} \times l_{0}}, \mathcal{Z}_{i} \in \mathbb{S}_{+}^{m_{i} \times m_{i} \times l_{i}}, i=1, \ldots, r$ such that

$$
f(x)-\gamma=\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle
$$

Proof. Assume that $\left(\mathcal{Z}_{0}, \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{r}\right)$ is a feasible solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$. More precisely,

$$
\begin{aligned}
\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle & =b_{\alpha}, \quad 0<|\alpha| \leq 2 N \\
\mathcal{Z}_{0} & \succeq \mathcal{T} \mathcal{O}, \quad \mathcal{Z}_{i} \succeq \mathcal{T} \mathcal{O}, \quad i=1, \ldots, r .
\end{aligned}
$$

Since the objective function in $\left(\mathbb{P}_{K}\right)$ has no constant term, we have

$$
\begin{aligned}
f(x) & =\sum_{0<|\alpha| \leq 2 N} b_{\alpha} x^{\alpha}=\sum_{0<|\alpha| \leq 2 N}\left(\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle x^{\alpha}+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle x^{\alpha}\right) \\
& =\sum_{0<|\alpha| \leq 2 N}\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle x^{\alpha}+\sum_{i=1}^{r} \sum_{0<|\alpha| \leq 2 N}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle x^{\alpha} \\
& =\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle-\left\langle\mathcal{Z}_{0}, \mathcal{A}_{0}\right\rangle+\sum_{i=1}^{r}\left(g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle-\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i 0}\right\rangle\right),
\end{aligned}
$$

where (10) and (11) are used in the last equality. Since $\mathcal{A}_{0} \in \mathbb{R}^{m_{0} \times m_{0} \times l_{0}}, \mathcal{D}_{i 0} \in \mathbb{R}^{m_{i} \times m_{i} \times l_{i}}$ are all 0 except for the $(1,1,1)$ th element, which is 1 by its definition,

$$
f(x)+\left[\mathcal{Z}_{0}\right]_{(1,1,1)}+\sum_{i=1}^{r}\left[\mathcal{Z}_{i}\right]_{(1,1,1)}=\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\boldsymbol{\top}}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle
$$

The desired result follows by setting $\gamma=-\left[\mathcal{Z}_{0}\right]_{(1,1,1)}-\sum_{i=1}^{r}\left[\mathcal{Z}_{i}\right]_{(1,1,1)}$.
On the other hand, assume that $\gamma \in \mathbb{R}$ and $\mathcal{Z}_{0} \in \mathbb{S}_{+}^{m_{0} \times m_{0} \times l_{0}}, \mathcal{Z}_{i} \in \mathbb{S}_{+}^{m_{i} \times m_{i} \times l_{i}}, i=1, \ldots, r$ exist such that

$$
f(x)-\gamma=\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\boldsymbol{\top}}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle
$$

Then, from (10) and (11), we have

$$
f(x)=\sum_{0<|\alpha| \leq 2 N}\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle x^{\alpha}+\left\langle\mathcal{Z}_{0}, \mathcal{A}_{0}\right\rangle+\sum_{0<|\alpha| \leq 2 N} \sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle x^{\alpha}+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i 0}\right\rangle+\gamma
$$

Therefore, by comparing the coefficients for each monomial on both sides, we obtain

$$
\begin{aligned}
\left\langle\mathcal{Z}_{0}, \mathcal{A}_{0}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i 0}\right\rangle+\gamma & =0 \\
\left\langle\mathcal{Z}_{0}, \mathcal{A}_{\alpha}\right\rangle+\sum_{i=1}^{r}\left\langle\mathcal{Z}_{i}, \mathcal{D}_{i \alpha}\right\rangle & =b_{\alpha}, \quad 0<\alpha \leq 2 N
\end{aligned}
$$

Thus, $\mathcal{Z}_{0} \in \mathbb{S}_{+}^{m_{0} \times m_{0} \times l_{0}}, \mathcal{Z}_{i} \in \mathbb{S}_{+}^{m_{i} \times m_{i} \times l_{i}}, i=1, \ldots, r$ are feasible solutions of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$.
We show the relation between the SDP relaxation problem by Parrilo [18] and the TSDP relaxation problem of the proposed method in the following theorem. In particular, we discuss the necessary and sufficient conditions under which the optimal values of SDP relaxation and T-SDP relaxation are equivalent.
Theorem 13. Let $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$ be the $S D P$ relaxation problem for $\left(\mathbb{P}_{K}\right)$ with $l_{0}=1, l_{1}=$ $1, \ldots, l_{r}=1$ and $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ be the T-SDP relaxation problem with $l_{0}, l_{1}, \ldots, l_{r}$ such that $\max \left\{l_{0}, l_{1}, \ldots, l_{r}\right\} \geq 2$. Let the optimal values of the relaxation problem be $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$, $\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$, respectively. Then $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)=\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ if and only if there exist optimal solutions Z_{0}^{*}, Z_{i}^{*} of $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$ represented by l_{0}-block circulant and l_{i}-block circulant matrices, respectively.

Proof. From Theorem 12, the constraints of $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$ is equivalent to

$$
f(x)-\gamma=\left\langle Z_{0},[x]_{N} *[x]_{N}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle Z_{i},[x]_{N-\tilde{w}_{i}} *[x]_{N-\tilde{w}_{i}}^{\top}\right\rangle
$$

and the constraints of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ is equivalent to

$$
f(x)-\gamma=\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle
$$

Then,

$$
\begin{aligned}
& \left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle \\
= & \frac{1}{l_{0}} \operatorname{Tr}\left(\operatorname{bcirc}\left(\mathcal{X}_{0}\right)^{\top} \operatorname{bcirc}\left(\mathcal{Z}_{0}\right) \operatorname{bcirc}\left(\mathcal{X}_{0}\right)\right)+\sum_{i=1}^{r} g_{i}(x) \frac{1}{l_{i}} \operatorname{Tr}\left(\operatorname{bcirc}\left(\mathcal{X}_{i}\right)^{\top} \operatorname{bcirc}\left(\mathcal{Z}_{i}\right) \operatorname{bcirc}\left(\mathcal{X}_{i}\right)\right) \\
= & \frac{1}{l_{0}}\left\langle\operatorname{bcirc}\left(\mathcal{X}_{0}\right), \operatorname{bcirc}\left(\mathcal{Z}_{0}\right) \operatorname{bcirc}\left(\mathcal{X}_{0}\right)\right\rangle+\sum_{i=1}^{r} g_{i}(x) \frac{1}{l_{i}}\left\langle\operatorname{bcirc}\left(\mathcal{X}_{i}\right), \operatorname{bcirc}\left(\mathcal{Z}_{i}\right) \operatorname{bcirc}\left(\mathcal{X}_{i}\right)\right\rangle \\
= & \left\langle\operatorname{unfold}\left(\mathcal{X}_{0}\right), \operatorname{bcirc}\left(\mathcal{Z}_{0}\right) \operatorname{unfold}\left(\mathcal{X}_{0}\right)\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\operatorname{unfold}\left(\mathcal{X}_{i}\right), \operatorname{bcirc}\left(\mathcal{Z}_{i}\right) \operatorname{unfold}\left(\mathcal{X}_{i}\right)\right\rangle \\
= & \left\langle\operatorname{bcirc}\left(\mathcal{Z}_{0}\right),[x]_{N} *[x]_{N}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\operatorname{bcirc}\left(\mathcal{Z}_{i}\right),[x]_{N-\tilde{w}_{i}} *[x]_{N-\tilde{w}_{i}}^{\top}\right\rangle .
\end{aligned}
$$

Hence, we have $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right) \geq \max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ since a feasible solution $\left(\mathcal{Z}_{0}^{*}, \mathcal{Z}_{1}^{*}, \ldots, \mathcal{Z}_{r}^{*}\right)$ of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ becomes a feasible solution of $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$.

Now, we assume that $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)=\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$. Let $\left(\mathcal{Z}_{0}^{*}, \mathcal{Z}_{1}^{*}, \ldots, \mathcal{Z}_{r}^{*}\right)$ be an optimal solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$. Then $\left(\operatorname{bcirc}\left(\mathcal{Z}_{0}^{*}\right), \operatorname{bcirc}\left(\mathcal{Z}_{1}^{*}\right), \ldots, \operatorname{bcirc}\left(\mathcal{Z}_{r}^{*}\right)\right)$ is an optimal solution of $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$. Clearly, $\operatorname{bcirc}\left(\mathcal{Z}_{0}^{*}\right)$ and $\operatorname{bcirc}\left(\mathcal{Z}_{i}^{*}\right)$ are l_{0}-block circulant and l_{i}-block circulant matrices, respectively. On the other hand, we can take $\operatorname{bcirc}_{l_{0}}^{-1}\left(Z_{0}^{*}\right), \operatorname{bcirc}_{l_{i}}^{-1}\left(Z_{i}^{*}\right)$, assuming that there exists an optimal solution Z_{0}^{*} and Z_{i}^{*} of $\left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)$ represented as l_{0} block circulant and l_{i}-block circulant matrices, respectively, which is also a feasible solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$. Consequently, $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right) \leq \max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ holds, and together with $\max \left(\mathbb{Q}_{N}^{1, \ldots, \ldots, 1}\right) \geq \max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$, we have $\max \left(\mathbb{Q}_{N}^{1,1, \ldots, 1}\right)=\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$.

Now, we discuss the global optimality of the T-SDP relaxation problem and the convergence of the relaxation problem sequence $\left\{\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}\right\}$ with respect to the relaxation level N, extending the Lasserre's hierarchy in [9].

Theorem 14. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real-valued polynomial of degree d and K be the compact set. Let Assumption 11 hold, and let $p_{K}^{*}:=\min _{x \in K} f(x)$. Let x^{*} be a global optimal solution of $\left(\mathbb{P}_{K}\right)$ and

$$
y^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*},\left(x_{1}^{*}\right)^{2}, x_{1}^{*} x_{2}^{*}, \ldots,\left(x_{n}^{*}\right)^{2}, \ldots,\left(x_{1}^{*}\right)^{2 N}, \ldots,\left(x_{n}^{*}\right)^{2 N}\right]^{\top} .
$$

Then,
(a) For fixed parameters l_{0}, l_{i}, we have

$$
\inf \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right) \uparrow p_{K}^{*},
$$

as $N \rightarrow \infty$. Moreover, for N sufficiently large, there is no duality gap between $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and its dual $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ if K has a nonempty interior.
(b) If $f(x)-p_{K}^{*}$ can be represented in the form (6), i.e.,

$$
f(x)-p_{K}^{*}=q_{0}(x)+\sum_{i=1}^{r} g_{i}(x) q_{i}(x)
$$

for a block circulant SOS polynomial $q_{0}(x)$ of degree at most $2 N$, and some block circulant SOS polynomials $q_{i}(x)$ of degree at most $2\left(N-\tilde{w}_{i}\right)$, then

$$
\min \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}=p_{K}^{*}=\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)
$$

and y^{*} is a global minimizer of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$.
Proof. (a) Let x^{*} be a global optimal solution of $\left(\mathbb{P}_{K}\right)$, and

$$
y^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*},\left(x_{1}^{*}\right)^{2}, x_{1}^{*} x_{2}^{*}, \ldots,\left(x_{n}^{*}\right)^{2}, \ldots,\left(x_{1}^{*}\right)^{2 N}, \ldots,\left(x_{n}^{*}\right)^{2 N}\right]^{\top} .
$$

Then, $\mathcal{M}_{N}^{l_{0}}\left(y^{*}\right)=\operatorname{fold}_{l_{0}}\left(y^{*}\right) *\left(\operatorname{fold}_{l_{0}}\left(y^{*}\right)\right)^{\top}, \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y^{*}\right)=g_{i}\left(x^{*}\right) \operatorname{fold}_{l_{i}}\left(y^{*}\right) * \operatorname{fold}_{l_{i}}\left(y^{*}\right)^{\top}, i=$ $1, \ldots, r$ are semidefinite tensors. Moreover, since b_{α} are the coefficients corresponding to the monomials $x^{\alpha}, \sum_{0<\alpha \leq 2 N} b_{\alpha} y_{\alpha}^{*}$ is equal to p_{K}^{*}. Therefore, y^{*} is a feasible solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ with the objective function value p_{K}^{*}, hence, $\inf \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*} \leq p_{K}^{*}$.

Now, for fixed $l_{0}, l_{1}, \ldots, l_{r}$, we consider any $N^{\prime} \geq N$ such that $s(N)=m_{0} l_{0}, s(N-$ $\left.\tilde{w}_{i}\right)=m_{i} l_{i}$ and $s\left(N^{\prime}\right)=m_{0}^{\prime} l_{0}, s\left(N^{\prime}-\tilde{w}_{i}\right)=m_{i}^{\prime} l_{i}$. In this case, since $s\left(N^{\prime}\right)-s(N)$ and $s\left(N^{\prime}-\tilde{w}_{i}\right)-s\left(N-\tilde{w}_{i}\right)$ obviously have factors l_{0} and l_{i}, respectively, it is possible to represent $\mathcal{M}_{N}^{l_{0}}(y)$ and $\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$ to be subtensors of $\mathcal{M}_{N^{\prime}}^{l_{0}}(y)$ and $\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$, respectively, by arranging the monomial vectors appropriately when creating the T-SDP relaxation problem. Specifically, if $\mathcal{M}_{N^{\prime}}^{l_{0}}(y) \succeq \mathcal{T} \mathcal{O}$ and $\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}$, then $\mathcal{M}_{N}^{l_{0}}(y), \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$ can be formed such that $\mathcal{M}_{N}^{l_{0}}(y) \succeq \mathcal{T} \mathcal{O}, \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}$, respectively (the details are described in the subsequent discussion and Example 15). Thus, for any solution y of $\left(\mathbb{Q}_{N^{\prime}}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$, the adequate truncated vector y^{\prime} is a feasible solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$. Since $2 N^{\prime} \geq 2 N \geq d, b_{\alpha}$ corresponding to $|\alpha|>\binom{n+d}{d}$ is 0 , therefore, $\sum_{0<|\alpha| \leq 2 N} b_{\alpha} y_{\alpha}=\sum_{0<|\alpha| \leq 2 N^{\prime}} b_{\alpha} y_{\alpha}^{\prime}$ holds. Then the objective value in the feasible solution y of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ is equal to that in the feasible solution y^{\prime} of $\left(\mathbb{Q}_{N^{\prime}}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$. Therefore, $\inf \left(\mathbb{Q}_{N^{\prime}}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*} \geq \inf \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ for $N^{\prime} \geq N$.

From Assumption 11,

$$
f(x)-p_{K}^{*}+\epsilon=q_{0}(x)+\sum_{i=1}^{r} g_{i}(x) q_{i}(x)
$$

where $q_{0}(x)$ is an l_{0}-block circulant SOS polynomial of degree $2 N$ and $q_{i}(x)$ is an l_{i}-block circulant SOS polynomials of degree $2\left(N-\tilde{w}_{i}\right)$. In addition, from the definition of the
block circulant SOS polynomial, there exist t_{0} and $t_{k}, k=1, \ldots, r, q_{0}$, and q_{i} that can be expressed as

$$
\begin{gathered}
q_{0}(x)=\sum_{j=1}^{t_{0}} \sum_{k=1}^{l_{0}}\left(\left(u_{j k}^{0}\right)^{\top}[x]_{N}\right)^{2} \\
q_{i}(x)=\sum_{j=1}^{t_{i}} \sum_{k=1}^{l_{i}}\left(\left(u_{j k}^{i}\right)^{\mathrm{\top}}[x]_{N-\tilde{w}_{i}}\right)^{2}, \quad i=1, \ldots, r
\end{gathered}
$$

We define

$$
\mathcal{Z}_{0}:=\operatorname{bcirc}_{l_{0}}^{-1}\left(\sum_{j=1}^{t_{0}} \sum_{k=1}^{l_{0}} u_{j k}^{0}\left(u_{j k}^{0}\right)^{\boldsymbol{\top}}\right), \quad \mathcal{Z}_{i}:=\operatorname{bcirc}_{l_{i}}^{-1}\left(\sum_{j=1}^{t_{i}} \sum_{k=1}^{l_{i}} u_{j k}^{i}\left(u_{j k}^{i}\right)^{\boldsymbol{\top}}\right), \quad i=1, \ldots, r .
$$

Then, from Theorem 5 , we have $\mathcal{Z}_{0}, \mathcal{Z}_{k} \succeq \mathcal{T} \mathcal{O}$. Since

$$
\begin{aligned}
f(x)-p_{K}^{*}+\epsilon & =q_{0}(x)+\sum_{i=1}^{r} g_{i}(x) q_{i}(x) \\
& =\left\langle\sum_{j=1}^{t_{0}} \sum_{k=1}^{l_{0}} u_{j k}^{0}\left(u_{j k}^{0}\right)^{\top},[x]_{N}[x]_{N}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\sum_{j=1}^{t_{i}} \sum_{k=1}^{l_{i}} u_{j k}^{i}\left(u_{j k}^{i}\right)^{\top},[x]_{N-\tilde{w}_{i}}[x]_{N-\tilde{w}_{i}}^{\top}\right\rangle \\
& =\left\langle\mathcal{Z}_{0}, \mathcal{X}_{0} * \mathcal{X}_{0}^{\top}\right\rangle+\sum_{i=1}^{r} g_{i}(x)\left\langle\mathcal{Z}_{i}, \mathcal{X}_{i} * \mathcal{X}_{i}^{\top}\right\rangle
\end{aligned}
$$

holds from Theorem $12,\left(\mathcal{Z}_{0}, \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{r}\right)$ is a feasible solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and $\left[\mathcal{Z}_{0}\right]_{(1,1,1)}+$ $\sum_{k}\left[\mathcal{Z}_{k}\right]_{(1,1,1)}=-\left(p_{K}^{*}-\epsilon\right)$. Thus, we obtain

$$
\begin{equation*}
p_{K}^{*}-\epsilon \leq \sup \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right) \leq \inf \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*} \leq p_{K}^{*} . \tag{13}
\end{equation*}
$$

Next, we prove that there is no duality gap between $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and its dual $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ * for any N such that $N \geq N_{0}$ where N_{0} is an initial relaxation level. Let μ be a probability measure with uniform distribution in K, which has a strictly positive density f with respect to the Lebesgue measure and satisfies that

$$
y_{\alpha}=\int x^{\alpha} d \mu<+\infty, \quad \text { for all } \alpha \text { such that } 0 \leq|\alpha| \leq 2 N_{0} .
$$

Then, from the discussion in Theorem 6 in [32], it follows that $\mathcal{M}_{N}^{l_{0}}\left(y_{\mu}\right) \succ_{\mathcal{T}} \mathcal{O}$ and $\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y_{\mu}\right) \succ_{\mathcal{T}} \mathcal{O}, i=1, \ldots, r$ for $y_{\mu}=\left\{y_{\alpha}\right\}$, which is a feasible interior point of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$. In addition, $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$ is bounded below by (13). By strong duality of T-SDP in Theorem 6, this indicates that $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ is solvable, together with $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ is feasible, and there is no duality gap between $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$ and $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$.
(b) If $f(x)-p_{K}^{*}$ can be expressed as in (6), then we can construct matrices $\mathcal{Z}_{0} \succeq \mathcal{T} \mathcal{O}$, $\mathcal{Z}_{i} \succeq \mathcal{T} \mathcal{O}, i=1, \ldots, r$ to be a feasible solution of ($\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}$) whose objective value is $-\left[\mathcal{Z}_{0}\right]_{(1,1,1)}-\sum_{k}\left[\mathcal{Z}_{k}\right]_{(1,1,1)}=p_{K}^{*}$ with polynomials $q_{0}(x)$ and $q_{i}(x)$ of degree at most $2 N$ and
$2\left(N-\tilde{w}_{i}\right)$, respectively, as in the proof of (a). As a result, from $p_{K}^{*} \leq \sup \left(\mathbb{Q}_{N}^{l_{0} l_{1}, \ldots, l_{r}}\right) \leq$ $\inf \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*} \leq p_{K}^{*}$, we have $\max \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)=p_{K}^{*}=\min \left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$, and $\left(\mathcal{Z}_{0}, \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right)$ is an optimal solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)$. Furthermore, since b_{α} are the coefficients corresponding to each monomial, we clearly see that y^{*} is a global optimal solution of $\left(\mathbb{Q}_{N}^{l_{0}, l_{1}, \ldots, l_{r}}\right)^{*}$.

For any two third-order tensors $\mathcal{A} \in \mathbb{R}^{m \times n \times l}$ and $\mathcal{B} \in \mathbb{R}^{m^{\prime} \times n^{\prime} \times l}, \mathcal{A}$ is called a subtensor of \mathcal{B} if each frontal slice $\mathcal{A}^{(i)}$ of \mathcal{A} is a principal submatrix of each frontal slice $\mathcal{B}^{(i)}$ of \mathcal{B}, respectively.

We illustrate the proof of (a) in Theorem 14 with the following examples.
Example 15. We let $n=2$, the relaxation level $N=2$ and $N^{\prime}=3$. We fix $l_{0}=2$.
In this case, $s(N)=6$. We derive T-SDP relaxation by a monomial vector

$$
[x]_{2}=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]^{\top} .
$$

Then $\mathcal{M}_{2}^{2}(y)$ is a third-order tensor of size $3 \times 3 \times 2$ whose frontal slices are given by

$$
\mathcal{M}_{2}^{2}(y)^{(1)}=\left[\begin{array}{ccc}
1+y_{40} & y_{10}+y_{31} & y_{01}+y_{22} \\
y_{10}+y_{31} & y_{20}+y_{22} & y_{11}+y_{13} \\
y_{01}+y_{22} & y_{11}+y_{13} & y_{02}+y_{04}
\end{array}\right], \quad \mathcal{M}_{2}^{2}(y)^{(2)}=\left[\begin{array}{ccc}
2 y_{20} & y_{11}+y_{30} & y_{02}+y_{21} \\
y_{11}+y_{30} & 2 y_{21} & 2 y_{12} \\
y_{21}+y_{02} & 2 y_{12} & 2 y_{03}
\end{array}\right] .
$$

With $s\left(N^{\prime}\right)=10$, T-SDP relaxation can be derived using a monomial vector

$$
[x]_{3}=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right]^{\top}
$$

Then, $\mathcal{M}_{3}^{2}(y)$ is a third-order tensor of size $5 \times 5 \times 2$ whose frontal slices are given by

$$
\begin{aligned}
& \mathcal{M}_{3}^{2}(y)^{(1)}= {\left[\begin{array}{ccccc}
1+y_{04} & y_{10}+y_{32} & y_{01}+y_{23} & y_{20}+y_{14} & y_{11}+y_{05} \\
y_{10}+y_{32} & y_{20}+y_{60} & y_{11}+y_{51} & y_{30}+y_{42} & y_{21}+y_{33} \\
y_{01}+y_{23} & y_{11}+y_{51} & y_{02}+y_{42} & y_{21}+y_{33} & y_{12}+y_{24} \\
y_{20}+y_{14} & y_{30}+y_{42} & y_{21}+y_{33} & y_{40}+y_{24} & y_{32}+y_{15} \\
y_{11}+y_{05} & y_{21}+y_{33} & y_{12}+y_{24} & y_{31}+y_{15} & y_{22}+y_{06}
\end{array}\right], } \\
& \mathcal{M}_{3}^{2}(y)^{(2)}=\left[\begin{array}{ccccc}
2 y_{02} & y_{12}+y_{30} & y_{03}+y_{21} & y_{12}+y_{22} & y_{30}+y_{13} \\
y_{12}+y_{30} & 2 y_{40} & 2 y_{31} & y_{22}+y_{50} & y_{13}+y_{42} \\
y_{03}+y_{21} & 2 y_{31} & 2 y_{22} & y_{13}+y_{41} & y_{04}+y_{32} \\
y_{12}+y_{22} & y_{22}+y_{50} & y_{13}+y_{42} & 2 y_{32} & 2 y_{23} \\
y_{03}+y_{13} & y_{13}+y_{42} & y_{04}+y_{32} & 2 y_{23} & 2 y_{14}
\end{array}\right] .
\end{aligned}
$$

Obviously, $\mathcal{M}_{2}^{2}(y)$ is not a subtensor of $\mathcal{M}_{3}^{2}(y)$. However, if we derive the T-SDP relaxation problem by a monomial vector

$$
[x]_{3}=\left[1, x_{1}, x_{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right]^{\top},
$$

then each frontal slice of $\mathcal{M}_{3}^{2}(y)$ is given by

$$
\begin{gathered}
\mathcal{M}_{3}^{2}(y)^{(1)}=\left[\begin{array}{ccc:cc}
1+y_{40} & y_{10}+y_{31} & y_{01}+y_{22} & y_{30}+y_{32} & y_{21}+y_{23} \\
y_{10}+y_{32} & y_{20}+y_{22} & y_{11}+y_{13} & y_{40}+y_{23} & y_{31}+y_{14} \\
y_{01}+y_{22} & y_{11}+y_{13} & y_{02}+y_{04} & y_{31}+y_{14} & y_{22}+y_{05} \\
\hdashline y_{30}+y_{32} & y_{40}+y_{23} & y_{31}+y_{14} & y_{24}+y_{60} & y_{51}+y_{15} \\
y_{21}+y_{23} & y_{31}+y_{14} & y_{22}+y_{05} & y_{51}+y_{15} & y_{42}+y_{06}
\end{array}\right], \\
\mathcal{M}_{3}^{2}(y)^{(2)}=\left[\begin{array}{ccc:cc}
2 y_{20} & y_{11}+y_{30} & y_{02}+y_{21} & y_{12}+y_{50} & y_{03}+y_{41} \\
y_{11}+y_{30} & 2 y_{21} & 2 y_{12} & y_{22}+y_{41} & y_{13}+y_{32} \\
y_{02}+y_{21} & 2 y_{12} & 2 y_{03} & y_{13}+y_{432} & y_{04}+y_{23} \\
\hdashline y_{12}+y_{50} & y_{22}+y_{41} & y_{13}+y_{32} & 2 y_{42} & 2 y_{33} \\
y_{03}+y_{41} & y_{13}+y_{32} & y_{04}+y_{23} & 2 y_{33} & 2 y_{24}
\end{array}\right],
\end{gathered}
$$

where $\mathcal{M}_{2}^{2}(y)$ is a subtensor of $\mathcal{M}_{3}^{2}(y)$.
Example 15 illustrates that for any N and N^{\prime} such that $N^{\prime} \geq N$, if l_{0} is fixed, $\mathcal{M}_{N}^{l_{0}}(y)$ can be formed to be a subtensor of $\mathcal{M}_{N^{\prime}}^{l_{0}}(y)$ by arranging the monomial vector $[x]_{N^{\prime}}$ for the derivation of T-SDP relaxation with relaxation level N^{\prime} such that the monomial tensor fold $l_{0}\left([x]_{N}\right)$ is a subtensor of fold $l_{0}\left([x]_{N^{\prime}}\right)$. Similarly, if l_{i} corresponding to each constraint is fixed, $\mathcal{M}_{N}^{l_{i}}\left(g_{i} y\right)$ can be formed to be a subtensor of $\mathcal{M}_{N^{\prime}}^{l_{i}}\left(g_{i} y\right)$ by appropriately arranging the monomial vectors $[x]_{N^{\prime}-\tilde{w}_{i}}$. For example, consider a constrained POP in two variables ($n=2$) with the objective function of degree $d=6$, the number of constraints $r=2$, and degree $w_{i}=1, i=1,2$ for each constraint. Let $\left(\mathbb{Q}_{N}^{5,2,2}\right)^{*}$ denote the T-SDP relaxation obtained with the relaxation level $N=3$. Then $s(N)=10, s\left(N-\tilde{w}_{i}\right)=6, l_{0}=5$ and $l_{i}=2$. Furthermore, if the relaxation level $N^{\prime}=4$, then $s\left(N^{\prime}\right)=15, s\left(N^{\prime}-\tilde{w}_{i}\right)=10$, and if $m_{0}^{\prime}=3, m_{i}^{\prime}=5$, then $s\left(N^{\prime}\right)=m_{0}^{\prime} l_{0}$ and $s\left(N^{\prime}-\tilde{w}_{i}\right)=m_{i}^{\prime} l_{i}$. Thus, we can also derive the T-SDP relaxation with $l_{0}=5$ and $l_{i}=2$, denoted by $\left(\mathbb{Q}_{N^{\prime}}^{5,2,2}\right)^{*}$. In (a) of Theorem 14, we have claimed that the relation $\inf \left(\mathbb{Q}_{N}^{5,2,2}\right)^{*} \leq \inf \left(\mathbb{Q}_{N^{\prime}}^{5,2,2}\right)^{*}$ holds. Conversely, if $N^{\prime \prime}=5$, then $s\left(N^{\prime \prime}\right)=21$ and $s\left(N^{\prime \prime}-\tilde{w}_{i}\right)=15$, but there are no positive integers $m_{0}^{\prime \prime}$ and $m_{i}^{\prime \prime}$ such that $s\left(N^{\prime \prime}\right)=m_{0}^{\prime \prime} l_{0}$ and $s\left(N^{\prime \prime}-\tilde{w}_{i}\right)=m_{i}^{\prime \prime} l_{i}$. Therefore, any T-SDP relaxation with relaxation level $N^{\prime \prime}=5$ has no relation to $\left(\mathbb{Q}_{N}^{5,2,2}\right)^{*}$ or $\left(\mathbb{Q}_{N^{\prime}}^{5,2,2}\right)^{*}$. Clearly, if we fix $l_{0}=1$ and $l_{i}=1$, then $\inf \left(\mathbb{Q}_{N}^{1,1,1}\right)^{*} \leq \inf \left(\mathbb{Q}_{N^{\prime}}^{1,1,1}\right)^{*}$ for any $N^{\prime} \geq N$.

We have mentioned that "if $\mathcal{M}_{N^{\prime}}^{l_{0}}(y) \succeq \mathcal{T} \mathcal{O}$ and $\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}$, then $\mathcal{M}_{N}^{l_{0}}(y)$, $\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$ can be constructed such that $\mathcal{M}_{N}^{l_{0}}(y) \succeq \mathcal{T} \mathcal{O}, \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}$, respectively" in the proof of (a) of Theorem 14. As discussed earlier, $\mathcal{M}_{N}^{l_{0}}(y), \mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$ can be constructed to be subtensors of $\mathcal{M}_{N^{\prime}}^{l_{0}}(y), \mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)$, respectively, in the T-SDP relaxation with relaxation level N such that $N^{\prime} \geq N$, by appropriately arranging the monomial vectors. Therefore, from the definition of subtensor, $\operatorname{bcirc}\left(\mathcal{M}_{N}^{l_{0}}(y)\right)$ and $\operatorname{bcirc}\left(\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)\right)$ are the principal submatrices of $\operatorname{bcirc}\left(\mathcal{M}_{N^{\prime}}^{l_{0}}(y)\right)$ and $\operatorname{bcirc}\left(\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)\right)$, respectively. Now, if we assume $\mathcal{M}_{N^{\prime}}^{l_{0}}(y) \succeq_{\mathcal{T}} \mathcal{O}$ and $\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{T} \mathcal{O}$, then we obtain $\operatorname{bcirc}\left(\mathcal{M}_{N^{\prime}}^{l_{0}}(y)\right) \succeq O$, $\operatorname{bcirc}\left(\mathcal{M}_{N^{\prime}-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)\right) \succeq O$ from Theorem 5. A matrix A is positive semidefinite if and only if the determinants of all principal minors of A are nonnegative, so that the determinant of all principal minors of $\operatorname{bcirc}\left(\mathcal{M}_{N}^{l_{0}}(y)\right)$, $\operatorname{bcirc}\left(\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)\right)$ also are nonnegative, respectively. Therefore, $\operatorname{bcirc}\left(\mathcal{M}_{N}^{l_{0}}(y)\right) \succeq O$ and $\operatorname{bcirc}\left(\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right)\right) \succeq O$. Thus, by Theorem 5 ,
$\mathcal{M}_{N}^{l_{0}}(y) \succeq \mathcal{O}$ and $\mathcal{M}_{N-\tilde{w}_{i}}^{l_{i}}\left(g_{i} y\right) \succeq \mathcal{O}$ follows.

4 Numerical experiments

We compare the basic SOS relaxation [8] with the T-SDP relaxation proposed in Section 3.1 for constrained POPs with ten test problems and show that the proposed T-SDP relaxation is more efficient than the basic SOS relaxation. The test problems are presented in detail in Appendix, some of which were from [3, 33, 12], and the number of variables of the test problems ranges from 2 to 19 and the degree from 2 to 40, as shown in Table 2.

For the experiments, the basic SOS relaxation method and the proposed block circulant SOS relaxation method were applied to obtain the SDP relaxation problem and the T-SDP relaxation problem, respectively. Then, the T-SDP relaxation problem was transformed into an equivalent SDP problem as described in Section 2.3. For computation, we used Julia 1.7.3 with Mosek [14] on a PC (Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, 16GB, windows 10 Pro).

Problems 1 [3], 2, 3, 4 [33, Example 2] in Section 4.1 demonstrate that the block circulant SOS relaxation takes shorter computational time than the basic SOS relaxation method. Problem 5 [12, st_bpaf1b] illustrates a case where the block circulant SOS relaxation problem is not feasible. With problem 6 [3, Problem 2.9.1], we demostrate that the block circulant SOS relaxation can be an alternative approach to the basic SOS relaxation for the SDP relaxation problem with numerical instability, which can be viewed as an additional benefit of the proposed T-SDP relaxation to its capability of handling larger-sized problems described in Section 3.1. For problem 7 [12, st_e34], we compare the basic SOS relaxation with the proposed block circulant SOS relaxation for large size problem. Problems 8, 9, 10 show the numerical efficiency of the proposed T-SDP relaxation.

Table 2: Test problems. n : the number of variable, d : the degree of f, $\max w_{i}$: the maximum of the degree of constraints, N : the relaxation level used to generate the SDP relaxation and the T-SDP relaxation, $s(N)=\binom{n+N}{N}$, and $s\left(N-\tilde{w}_{i}\right)=\binom{n+N-\tilde{w}_{i}}{N-\tilde{w}_{i}}$.

No.	n	d	$\max _{i}\left\{w_{i}\right\}$	N	$s(N)$	$s\left(N-\tilde{w}_{i}\right)$
$1[3]$	10	2	1	2	66	11
2	2	40	2	20	231	210
3	2	20	2	10	281	220
4 [33, Example 2]	2	58	2	29	465	435
5 [12, st_bpaf1b]	10	2	1	3	286	66
6 [3, Problem 2.9.1]	3	1	2	6	84	56
7 [12, st_e34]	6	1	1	5	462	210
8	11	6	2	3	364	78
9	19	4	2	2	210	20
10	19	4	2	2	210	20

4.1 Numerical results

Tables 3 and 4 report the numerical results on problems 1-5 and 6-10, respectively. In the tables, "Relax." denotes the SDP relaxation or T-SDP relaxation. In this subsection, the SDP relaxation and the T-SDP relaxation correspond to the basic SOS relaxation and the proposed block circulant SOS relaxation, respectively. "Pn" (pattern) describes the block sizes, more precisely, the sizes are arranged with the following columns " $\left(m_{0}, l_{0}\right)$ " and " $\left(m_{i}, l_{i}\right)$ ". For instance, $\left(m_{0}, l_{0}\right)=(66,1)$ and $\left(m_{0}, l_{0}\right)=(11,1)$ indicates that $\phi_{0} \in \Sigma^{1}[x]_{2 N}$ and $\phi_{i} \in \Sigma^{1}[x]_{2\left(N-\tilde{w}_{i}\right)}$ in the feasible set Γ of the relaxation problem ($\tilde{\mathbb{P}}_{K}$) which results in the T-SDP relaxation equivalent to the basic SOS relaxation. For $\left(m_{0}, l_{0}\right)=(11,6)$ and $\left(m_{i}, l_{i}\right)=(11,1)$, we have $\phi_{0} \in \Sigma^{6}[x]_{2 N}$ and $\phi_{i} \in \Sigma^{1}[x]_{2\left(N-\tilde{w}_{i}\right)}$ in Γ. More precisely, the 6 -block circulant SOS polynomial is employed to ϕ_{0} and an SOS polynomial to ϕ_{i}. Tables 3 and 4 also include the numbers and sizes of positive semidefinite matrices based on Table 1. "\# of var." and "\# of nnz" indicate the number of decision variables in the variable matrix and the number of nonzero elements of the SDP to be solved, respectively, and "Opt.val" denotes its optimal value. "CPU1", "CPU2", and "Tot." denote the time for generating the SDP problem to be solved, the computational time for solving the SDP problem, which are added to show the total time in seconds, respectively.

4.1.1 Problem 1

In Table 3, we see that the number of decision variables for the proposed T-SDP relaxation method is 1804 is smaller than 3003 for the SDP relaxation method, resulting in shorter CPU1 (the computational time to generate the SDP problem). However, the T-SDP relaxation took slightly longer computation time in CPU2. This has been caused by the larger number of nonzero elements shown in the column of "\# of nnz." Nevertheless, we can see in the "Tot." column that the T-SDP relaxation consumed shorter overall computing time.

4.1.2 Problem 2

For problem 2, Table 3 displays the results by the SDP relaxation (Pn 1) and two T-SDP relaxations (Pn 2 and Pn 3). The difference between Pn 2 and Pn 3 is that the block circulant SOS relaxation was applied only to ϕ_{0} for T-SDP (Pn 2) in the feasible set Γ of $\left(\tilde{\mathbb{P}}_{K}\right)$ whereas the block circulant SOS relaxation was applied to both ϕ_{0} and ϕ_{i} for T-SDP (Pn 3).

We observe in Table 3 that the number of decision variables is significantly reduced to 97464 and 53364 in T-SDP (Pn 2) and T-SDP (Pn 3), respectively, from 115416 in the SDP relaxation (Pn 1). As a result, the time for generating the SDP problem to be solved for both T-SDP relaxations is reduced. However, the computational cost of solving the resulting T-SDP (Pn 2) is slightly higher than the SDP relaxation for the same reason mentioned in problem 1. On the other hand, the number of decision variables in T-SDP (Pn 3) is much smaller than that in T-SDP (Pn 2), and thus the computational time for solving T-SDP (Pn 3) was shorter than that for the SDP relaxation, even when the number of nonzero elements is taken into account. Hence, the total time for both T-SDP (Pn 2) and T-SDP $(\operatorname{Pn} 3)$ is less that that of the SDP relaxation $(\operatorname{Pn} 1)$.
Table 3: Comparison of SDP and T-SDP relaxation for Problems 1-5.

Relax.	Pn.	$\left(m_{0}, l_{0}\right)$	$\left(m_{i}, l_{i}\right)$	No. * size of PSD matrix	\# of var	\# of nnz	Opt.val	CPU1(s)	CPU2(s)	Tot.(s)
Problem 1 (the known optimal value is 0.375)										
SDP	1	$(66,1)$	$(11,1)$	$\left[1^{*}(66 \times 66), 12 *(11 \times 11)\right]$	3003	8228	0.37500	2.99	0.42	3.41
T-SDP	2	$(11,6)$	$(11,1)$	$\left[4^{*}(22 \times 22), 12 *(11 \times 11)\right]$	1804	45884	0.37500	2.22	0.66	2.88
Problem 2 (the known optimal value is 14)										
SDP	1	$(231,1)$	$(210,1)$	$\left[1^{*}(231 \times 231), 4^{*}(210 \times 210)\right]$	115416	406161	14.00000	66.66	13.14	79.80
T-SDP	2	$(33,7)$	$(210,1)$	$\left[4^{*}(66 \times 66), 4^{*}(210 \times 210)\right]$	97464	931200	14.00000	53.84	15.89	69.73
T-SDP	3	$(33,7)$	$(105,2)$	[$\left.4^{*}(66 \times 66), 8 * 105 \times 105\right]$	53364	1269808	14.00000	32.61	4.64	37.25
Problem 3 (the known optimal value is 1)										
SDP	1	$(286,1)$	$(220,1)$	[1* $\left.286 \times 286), 6^{*}(220 \times 220)\right]$	186901	662596	1.00000	187.55	20.16	207.71
T-SDP	2	$(143,2)$	$(220,1)$	$\left[2^{*}(143 \times 143), 6^{*}(220)\right]$	166452	743413	1.00000	186.36	19.30	205.66
T-SDP	3	$(286,1)$	$(110,2)$	$\left[1^{*}(286 \times 286), 12^{*}(110 \times 110)\right]$	114301	1229508	1.00000	110.60	14.92	125.52
T-SDP	4	$(143,2)$	$(110,2)$	$\left[2^{*}(143 \times 143), 12^{*}(110 \times 110)\right]$	93852	1310326	1.00000	99.61	12.75	112.36
T-SDP	5	$(26,11)$	$(220,1)$	$\left[6^{*}(52 \times 52), 6^{*}(220 \times 220)\right]$	154128	2082916	1.00000	176.65	25.88	202.53
T-SDP	6	$(26,11)$	$(110,2)$	[6* 52$\left.), 12^{*}(110 \times 110)\right]$	81528	2649828	1.00000	88.60	15.97	104.57
Problem 4 (the known optimal value is 1)										
SDP	1	$(465,1)$	$(435,1)$	$\left[1^{*}(465 \times 465), 2^{*}(435 \times 435)\right]$	298005	1351575	1.00000	329.86	64.16	394.02
T-SDP	2	$(93,5)$	$(435,1)$	$\left[3^{*}(186 \times 186), 2^{*}(435 \times 435)\right]$	241833	2972864	1.00000	306.78	63.17	369.95
T-SDP	3	$(31,15)$	$(435,1)$	$\left[8^{*}(62 \times 62), 2^{*}(435 \times 435)\right]$	205284	5633042	1.00000	221.96	52.91	274.87
Problem 5 (the known optimal value is -42.96256)										
SDP	1	$(286,1)$	$(66,1)$	$\left[1^{*}(286 \times 286), 30^{*}(66 \times 66)\right]$	107371	438988	-42.96256	509.51	421.66	931.17
T-SDP	2	$(143,2)$	$(66,1)$	$\left[2^{*}(143 \times 143), 30^{*}(66 \times 66)\right]$	86922	520338	-42.96255	428.96	449.61	878.57
T-SDP	3	$(143,2)$	$\left\{\begin{array}{l} (66,1) \\ (33,2) \end{array}\right.$	$\begin{gathered} {[2 *(143 \times 143),} \\ 10 *(66 \times 66), 40 *(33 \times 33)] \end{gathered}$	65142	648402	-42.96256	334.09	455.33	782.42
T-SDP	4	$(143,2)$	$(33,2)$	$\left[2^{*}(143 \times 143), 60^{*}(33 \times 33)\right]$	54252	869670	infeasible	-	-	-

Table 4: Comparison of SDP and T-SDP relaxation for Problems 6-10.

Relax.	Pn.	$\left(m_{0}, l_{0}\right)$	$\left(m_{i}, l_{i}\right)$	No. * size of PSD matrix	\# of var.	\# of nnz	Opt.val	CPU1(s)	CPU2(s)	Tot.(s)
Problem 6 (the known optimal value is -4)										
SDP	1	$(84,1)$	$(56,1)$	[1* $\left.{ }^{*} 84 \times 84\right), 8^{*}(56 \times 56]$	16338	82320	-3.99972	4.30	1.63	5.93
T-SDP	2	$(42,2)$	$(56,1)$	[2* $\left.\left.2^{*} 42 \times 42\right), 8^{*}(56 \times 56)\right]$	14754	89192	-3.99998	4.09	1.45	5.54
T-SDP	3	$(42,2)$	$(28,2)$	[$\left.2^{*}(42 \times 42), 16^{*}(28 \times 28)\right]$	8302	160448	-3.99999	3.04	1.47	4.51
Problem 7										
SDP	1	$(462,1)$	$(210,1)$	[$\left.1^{*}(462 \times 462), 16^{*}(210 \times 210)\right]$	461433	2462544	1.56195×10^{-2}	1877.58	437.64	2315.22
T-SDP	2	$(231,2)$	$(210,1)$	[$\left.2^{*}(1231 \times 1231), 16^{*}(210 \times 210)\right]$	408072	2675042	1.56195×10^{-2}	1225.32	246.63	1471.95
T-SDP	3	$(231,2)$	$\left\{\begin{array}{l}(210,1) \\ (105,2)\end{array}\right.$	$\begin{gathered} {[2 *(231 \times 231),} \\ 4 *(210 \times 210), 24 *(105 \times 105)] \end{gathered}$	275772	4897672	1.56195×10^{-2}	927.21	305.72	1232.93
T-SDP	4	$(42,11)$	$\left\{\begin{array}{l} (210,1) \\ (105,2) \end{array}\right.$	$\begin{gathered} {[6 *(84 \times 84),} \\ 4 *(210 \times 210), 24 *(105 \times 105)] \end{gathered}$	243600	8057606	1.56195×10^{-2}	999.07	387.34	1386.41
Problem 8										
SDP	1	$(364,1)$	$(78,1)$	[1* $\left.(364 \times 364), 24^{*}(78 \times 78)\right]$	140374	546208	-2.71766	964.06	300.58	1264.64
T-SDP	2	$(182,2)$	$(78,1)$	[$\left.2^{*}(91 \times 91), 24^{*}(78 \times 78)\right]$	107250	678036	-2.71766	542.06	227.47	769.53
T-SDP	3	$(182,2)$	$\left\{\begin{array}{l}(78,1) \\ (39,2)\end{array}\right.$	$\begin{gathered} {[2 *(91 \times 91),} \\ 2 *(78 \times 78), 44 *(39 \times 39)] \end{gathered}$	73788	928920	-2.71766	302.05	331.75	633.80
T-SDP	4	$(182,2)$	$(39,2)$	$\left[2^{*}(91 \times 91), 48^{*}(39 \times 39)\right]$	70746	1067368	-2.71766	374.34	368.06	742.40
Problem 9										
SDP	1	$(210,1)$	$(20,1)$	[$\left.1^{*}(210 \times 210), 40^{*}(20 \times 20)\right]$	30555	90500	-4.46273	160.40	46.52	206.92
T-SDP	2	$(105,2)$	$(20,1)$	$\left[2^{*}(105 \times 105), 40^{*}(20 \times 20)\right]$	19530	134062	-8.27671	64.45	57.25	121.70
T-SDP	3	$(105,2)$	$(10,2)$	[2*(105 $\times 105$), $80 *(10 \times 10)]$	15530	177874	infeasible	-	-	-
T-SDP	4	$(42,5)$	$(20,1)$	[3 * $\left.(84 \times 84), 40^{*}(20 \times 20)\right]$	19110	439292	infeasible	-	-	-
Problem 10										
SDP	1	$(210,1)$	$(20,1)$	[1* 210×210), $\left.40^{*}(20 \times 20)\right]$	30555	90500	-1.00000	91.22	80.02	171.24
T-SDP	2	$(105,2)$	$(20,1)$	[2* 105×105), $40 *(20 \times 20)]$	19530	134062	-1.00000	78.67	51.16	129.83
T-SDP	3	$(42,5)$	$(20,1)$	[3 * $\left.(84 \times 84), 40^{*}(20 \times 20)\right]$	19110	439292	-1.00000	71.22	36.36	107.58
T-SDP	4	$(21,10)$	$(20,1)$	$\left[6^{*}(42 \times 42), 40^{*}(20 \times 20)\right]$	13818	810308	-1.00000	52.20	53.69	105.89
T-SDP	5	$(42,5)$	$(10,2)$	$\left[3 *(84 \times 84), 80^{*}(10 \times 10)\right]$	15110	483104	-1.00000	52.68	39.89	92.57

4.1.3 Problem 3

The results for problem 3 show that the number of variables in the T-SDP relaxations is less than that of the SDP relaxation. Consequently, it took less time to solve the T-SDP relaxations than the SDP relaxation as shown in the last column. As the number of variables in the T-SDP relaxations decreases, the number of nonzero elements increases from 662596 in the SDP relaxation to 2649828 for T-SDP in the last row. The total times for all T-SDP relaxations are shorter than that for the SDP relaxation.

4.1.4 Problem 4

As shown in the column CPU1 on problem 4, generating T-SDP relaxation problems consumed shorter computational time than the SDP relaxation. Also, two T-SDP relaxations, (Pn 2) and (Pn 3), spent less computational time than that of the SDP relaxation, despite the increase in the number of nonzero elements.

4.1.5 Problem 5

T-SDP relaxation problems may become infeasible depending on the values of m_{i} and l_{i}, as illustrated with this problem. In Table 3, the T-SDP relaxation (Pn 4) is obtained by using the 2-block circulant SOS polynomial for ϕ_{0} and the 2-block circulant SOS polynomial for ϕ_{i} which corresponds to the constraints for upper and lower bounds on each variable x_{1}, \ldots, x_{10}, and SOS polynomials to ϕ_{i} which is associated with the other inequality constraints in the feasible set Γ. This is described as $(66,1)$ and $(33,2)$ in the $\left(m_{i}, l_{i}\right)$ column.

As discussed in Section 3, Assumption 11 must hold for the T-SDP relaxation problem to have a feasible solution, but here we see that Assumption 11 no longer holds. The T-SDP relaxation (Pn 4) becomes infeasible, as shown in the last row of Table 3, when the number of blocks l_{0} or l_{i} is increased in the block circulant SOS relaxation. However, the T-SDP relaxations (Pn 2) and (Pn 3) are still feasible and computationally less expensive than the SDP relaxation.

4.1.6 Problem 6

We observe the effectiveness of the T-SDP relaxation methods with this problem. It is known that the optimal value obtained by the SDP relaxation with relaxation order $N=4$ is -4 [9]. The optimal value with $N=6$, however, is -3.99972 , which may contain numerical error. If the basic SOS relaxations with increasing the degree of the SOS polynomials is employed, then the optimal value by the SDP relaxation with a larger relaxation level approaches the optimal value of the original POP. We mention that the results in Table 4 do not follow the theoretical result, which may be caused by the numerical instability of the SDP relaxation problem. In such cases, the T-SDP relaxation is still effective, and by changing parameters such as l_{0} and l_{i}, another T-SDP relaxation problem can be generated. In particular, the smaller positive semidefinite matrices may improve the numerical accuracy.

4.1.7 Problem 7

The results by the T-SDP relaxation (Pn 3) and (Pn 4) were obtained by applying the 2-block and 11-block circulant SOS polynomial, respectively. The 2-block circulant SOS polynomial for ϕ_{i} corresponds to the constraints for upper and lower bounds on each variable x_{1}, \ldots, x_{6}, and the SOS polynomial for ϕ_{i} is associated with the other inequality constraints in the feasible set K of $\left(\tilde{\mathbb{P}}_{K}\right)$, as in problem 5 .

In the rows for problem 7 in Table 4, we see that the number of variables in the T-SDP relaxation is smaller than that of the SDP relaxation, which results in faster computational time for CPU1 in all T-SDP cases. In particular, when the block circulant SOS polynomial was used to ϕ_{i} in the feasible set Γ, a significant reduction in the number of decision variables and CPU1 can be observed. For CPU2, as in the previous problems, there exists a trade-off between the increase in the number of nonzero elements and the decrease in the number of decision variables. Hence, increasing the parameters l_{0} and l_{i} does not necessarily reduce the computational time. We observe that all T-SDP relaxations outperform the SDP relaxation in terms of the total time.

4.1.8 Problem 8

We see that the T-SDP relaxation efficiently provides an accurate optimal value for largesized problems for this problem. The number of decision variables in the T-SDP relaxation is smaller that that of the SDP relaxation, which leads to shorter CPU1 time in all cases. In particular, CPU1 consumed by the T-SDP relaxation $(\operatorname{Pn} 3)$ is less than $\frac{1}{3}$ of that of the SDP relaxation. For CPU2, only the T-SDP relaxation (Pn 2) took less time compared to the SDP relaxation, but all T-SDP relaxations outperform the SDP relaxation in terms of the total time.

4.1.9 Problem 9

We discuss the performance of the T-SDP relaxation with two similar problems, 9 and 10. The objective functions of two problems are similar in that they have the same number of variables $n=19$ and degree $d=4$. The constraints of the problems are equivalent. The T-SDP relaxation becomes infeasible for problem 9, while it provides an accurate optimal value for problem 10.

In Table 4, the optimal value of the T-SDP relaxation (Pn 2) is smaller than that of the SDP relaxation, indicating that a weak lower bound was attained. In addition, the T-SDP relaxation (Pn 3) and (Pn 4) were infeasible. Thus, the T-SDP relaxation may not work effectively for some problems, especially for the cases where the objective function does not satisfy Assumption 11 on the block circulant SOS polynomials.

4.1.10 Problem 10

We discuss cases where the T-SDP relaxation performs well for the problems with the same number of variables and degree as problem 9. The objective function of problem 10 contains a block circulant SOS polynomial.

In the results for problem 10 in Table 4, we see that the performance of the T-SDP relaxation is better than the SDP relaxation, unlike problem 9. For CPU1, all T-SDP relaxations spent shorter computational time than the SDP relaxation. Furthermore, all T-SDP relaxations perform superior to the SDP relaxation for CPU2.

5 Concluding remarks

We have proposed a relaxation method for constrained POPs using block circulant SOS polynomials. The proposed block circulant SOS relaxation method is an extension of the SOS relaxation method proposed by Parrilo [18], and also an extension of T-SDP relaxation for unconstrained POPs [33] in the sense that it can be transformed into an equivalent T-SDP using the third-order tensor. Theoretical analysis of the feasibility and global optimality of the T-SDP relaxation problem have been studied, and the convergence of the sequence of T-SDP relaxations with increasing the relaxation level has been established.

The T-SDP relaxation method has shown to perform superior in computation to the SDP relaxation method from the basic SOS relaxation as it induces smaller-sized problem. The computational results in Section 4 show that the T-SDP relaxation method provides the same quality of optimal values as the SDP relaxation method with shorter computational time under Assumption 11.

For future study, it will be interesting to exploit sparsity for further improving the numerical efficiency. As in [27], the chordal sparsity of the block circulant SOS relaxation method can be developed for further reducing the computational cost. Another issue is to develop an SDP solver that directly solves T-SDP, instead of converting the T-SDP relaxation to an equivalent SDP relaxation. Then the computational time for the transformation can be saved. However, as mentioned earlier, the advantage of reducing the size of the relaxation problem when transforming from T-SDP to SDP may not be achieved in some case, which may require careful investigation.

References

[1] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: Lp and socpbased alternatives to sum of squares optimization. In 201448 th annual conference on information sciences and systems (CISS), pages 1-5. IEEE, 2014.
[2] M. Du, T. Luo, H. Xu, Y. Song, and C. Wang. Robust HDR video watermarking method based on saliency extraction and T-SVD. The Visual Computer, 38(11):37753789, 2022.
[3] C. Floudas and P. Pardalos. A Collection of Test Problems for Constrained Global Optimization Algorithms. Lecture notes in computer science. Springer-Verlag, 1990.
[4] A. Ghosh, E. P. Tsigaridas, M. Descoteaux, P. Comon, B. Mourrain, and R. Deriche. A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation
distribution function in diffusion mri. In 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pages pages-237, 2008.
[5] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003.
[6] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover. Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM Journal on Matrix Analysis and Applications, 34(1):148-172, 2013.
[7] M. E. Kilmer, C. D. Martin, and L. Perrone. A third-order generalization of the matrix svd as a product of third-order tensors. Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008.
[8] S. Kim, M. Kojima, and H. Waki. Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM Journal on Optimization, 15(3):697-719, 2005.
[9] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on optimization, 11(3):796-817, 2001.
[10] B. Mariere, Z.-Q. Luo, and T. N. Davidson. Blind constant modulus equalization via convex optimization. IEEE Transactions on Signal Processing, 51(3):805-818, 2003.
[11] C. D. Martin, R. Shafer, and B. LaRue. An order-p tensor factorization with applications in imaging. SIAM Journal on Scientific Computing, 35(1):A474-A490, 2013.
[12] A. Meeraus. Globallib. https://github.com/GAMS-dev/gamsworld/tree/master/ GlobalLib.
[13] Mosek. Mosek modeling cookbook, 2020.
[14] Mosek. Mosek optimizer API for Julia. 2023.
[15] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, 1994.
[16] J. Nie and L. Wang. Regularization methods for SDP relaxations in large-scale polynomial optimization. SIAM Journal on Optimization, 22(2):408-428, 2012.
[17] D. Nion and N. D. Sidiropoulos. Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor. IEEE Transactions on Signal Processing, 57(6):22992310, 2009.
[18] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96:293-320, 2003.
[19] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal, 42(3):969-984, 1993.
[20] L. Qi and K. Lay Teo. Multivariate polynomial minimization and its application in signal processing. Journal of Global Optimization, 26:419-433, 2003.
[21] Z. Qu and X. TANG. Correlatively sparse lagrange multiplier expression relaxation for polynomial optimization. SIAM Journal on Optimization, 34(1):127-162, 2024.
[22] B. Reznick. Some concrete aspects of Hilbert's 17th problem. Contemporary mathematics, 253:251-272, 2000.
[23] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller. Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Transactions on Image Processing, 23(4):1678-1693, 2014.
[24] S. Soare, J. W. Yoon, and O. Cazacu. On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. International Journal of Plasticity, 24(6):915-944, 2008.
[25] D. Sun, K.-C. Toh, Y. Yuan, and X.-Y. Zhao. SDPNAL+: A matlab software for semidefinite programming with bound constraints (version 1.0). Optimization Methods and Software, 35(1):87-115, 2020.
[26] D. Tao, S. Maybank, W. Hu, and X. Li. Stable third-order tensor representation for colour image classification. In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05), pages 641-644. IEEE, 2005.
[27] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on Optimization, 17(1):218-242, 2006.
[28] J. Wang, V. Magron, and J.-B. Lasserre. Tssos: A moment-sos hierarchy that exploits term sparsity. SIAM Journal on Optimization, 31:30-58, 2021.
[29] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of sdpa 6.0 (semidefinite programming algorithm 6.0). Optimization Methods and Software, 18(4):491-505, 2003.
[30] M. Yamashita, K. Fujisawa, and M. Kojima. Sdpara: Semidefinite programming algorithm parallel version. Parallel Computing, 29(8):1053-1067, 2003.
[31] S. Zhang, K. Wang, B. Chen, and X. Huang. A new framework for co-clustering of gene expression data. In Pattern Recognition in Bioinformatics: 6th IAPR International Conference, PRIB 2011, Delft, The Netherlands, November 2-4, 2011. Proceedings 6, pages 1-12. Springer, 2011.
[32] M.-M. Zheng, Z.-H. Huang, and S.-L. Hu. Unconstrained minimization of blockcirculant polynomials via semidefinite program in third-order tensor space. Journal of Global Optimization, 84(2):415-440, 2022.
[33] M.-M. Zheng, Z.-H. Huang, and Y. Wang. T-positive semidefiniteness of third-order symmetric tensors and t-semidefinite programming. Computational Optimization and Applications, 78:239-272, 2021.

Appendix

Problem 1 [3]

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{9} x_{i} x_{i+1}+\sum_{i=1}^{9} x_{i} x_{i+2}+x_{1} x_{7}+x_{1} x_{9}+x_{1} x_{10}+x_{2} x_{10}+x_{4} x_{7} \\
\text { subject to } & \sum_{i=1}^{10} x_{i}=1 \\
& x_{i} \geq 0, \quad i=1, \ldots, 10
\end{aligned}
$$

Problem 2

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{40}+x_{1}^{18} x_{2}^{20}+x_{1}^{14} x_{2}^{24}+x_{1}^{26} x_{2}^{8}+x_{1}^{22} x_{2}^{12}+x_{1}^{26} x_{2}^{4} \\
& +x_{1}^{22} x_{2}^{8}+x_{1}^{18} x_{2}^{8}+x_{1}^{14} x_{2}^{12}+x_{1}^{2} x_{2}^{20}+x_{1}^{20}+x_{1}^{12} x_{2}^{2}+x_{1}^{8} x_{2}^{6}+x_{2}^{2} \\
\text { subject to } & x_{1}, x_{2} \in\{-1,+1\}
\end{array}
$$

Problem 3

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{20}+x_{2}^{2} x_{3}^{2}-2.0 x_{2} x_{3}^{3}+x_{3}^{4}-4.0 x_{2} x_{3}^{2}+4.0 x_{3}^{3}+4.0 x_{3}^{2} \\
\text { subject to } & x_{1}, x_{2}, x_{3} \in\{-1,+1\}
\end{array}
$$

Problem 4 [33, Example 2]

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}^{10} x_{2}^{4}+x_{1}^{8} x_{2}^{12}+x_{1}^{24} x_{2}^{2}+x_{1}^{24} x_{2}^{6}+x_{1}^{32} x_{2}^{2}+x_{1}^{8} x_{2}^{28}+x_{1}^{28} x_{2}^{12} \\
& +x_{1}^{10} x_{2}^{32}+x_{1}^{42} x_{2}^{4}+x_{1}^{30} x_{2}^{18}+x_{1}^{20} x_{2}^{30}+x_{1}^{12} x_{2}^{40}+x_{1}^{6} x_{2}^{48}+x_{1}^{2} x_{2}^{54}+x_{2}^{58} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

Problem 5 [12, st_bpaf1b]

$$
\begin{aligned}
& \operatorname{minimize} \quad x_{1} x_{6}+2 x_{1}-2 x_{6}+x_{2} x_{7}+4 x_{2}-x_{7}+x_{3} x_{8} \\
&+8 x_{3}-2 x_{8}+x_{4} x_{9}-x_{4}-4 x_{9}+x_{5} x_{10}-3 x_{5}+5 x_{10} \\
&-8 x_{1}-6 x_{3}+7 x_{4}-7 x_{5} \leq 1 \\
& \text { subject to } \quad=3 \\
&-6 x_{1}+2 x_{2}+3 x_{3}-9 x_{4}-3 x_{5} \leq 3 \\
& 6 x_{1}-7 x_{3}-8 x_{4}+2 x_{5} \leq 5 \\
&-x_{1}+x_{2}-8 x_{3}-5 x_{5} \leq 4, \\
& 4 x_{1}-7 x_{2}+4 x_{3}+5 x_{4}+x_{5} \leq 0 \\
& 5 x_{7}-4 x_{8}+9 x_{9}-7 x_{10} \leq 0 \\
& 7 x_{6}+4 x_{7}+3 x_{8}+7 x_{9}+5 x_{10} \leq 7 \\
& 6 x_{6}+x_{7}-8 x_{8}+8 x_{9} \leq 3 \\
&-3 x_{6}+2 x_{7}+7 x_{8}+x_{10} \leq 6 \\
&-2 x_{6}-3 x_{7}+8 x_{8}+5 x_{9}-2 x_{10} \leq 2 \\
& 0 \leq x_{i} \leq 20, \quad i=1, \ldots, 10 .
\end{aligned}
$$

Problem 6 [3, Problem 2.9.1]

$$
\begin{aligned}
& \operatorname{minimize} \quad-2 x_{1}+x_{2}-x_{3} \\
& \text { subject to } \quad x^{\top} B^{\top} B x-2 r^{\top} B x+\|r\|^{2}-0.25\|b-v\|^{2} \geq 0 \\
& x_{1}+x_{2}+x_{3} \leq 4 \\
& x_{1} \leq 2 \\
& x_{3} \leq 3 \\
& 3 x_{2}+x_{3} \leq 6 \\
& x_{i} \geq 0, \quad i=1, \ldots, 3 .
\end{aligned}
$$

Here,

$$
B=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
-2 & 1 & -1
\end{array}\right], \quad b=\left[\begin{array}{l}
3 \\
0 \\
4
\end{array}\right], \quad v=\left[\begin{array}{c}
0 \\
-1 \\
-6
\end{array}\right], \quad r=\left[\begin{array}{c}
1.5 \\
-0.5 \\
-5
\end{array}\right]
$$

Problem 7 [12, st_e34]

$$
\begin{aligned}
& \text { minimize } \\
& \text { subject to } \\
& 4.3 x_{1}+31.8 x_{2}+63.3 x_{3}+15.8 x_{4}+68.5 x_{5}+4.7 x_{6} \\
& 17.1 x_{1}-169 x_{1} x_{3}+204.2 x_{3}-3580 x_{3} x_{5}+623.4 x_{5}-3810 x_{4} x_{6} \\
& +212.3 x_{4}+1495.5 x_{6}-18500 x_{4} x_{6}+38.2 x_{2} \geq 4.97, \\
& 17.9 x_{1}-139 x_{1} x_{3}+113.9 x_{3}-2450 x_{4} x_{5}+169.7 x_{4}+337.8 x_{5} \\
& -16600 x_{4} x_{6}+1385.2 x_{6}-17200 x_{5} x_{6}+36.8 x_{2} \geq-1.88, \\
& 26000 x_{4} x_{5}-70 x_{4}-819 x_{5}-273 x_{2} \geq-69.08, \\
& 159.9 x_{1}-14000 x_{1} x_{6}+2198 x_{6}-311 x_{2}+587 x_{4}+391 x_{5} \geq-118.02, \\
& 0 \leq x_{1} \leq 0.31, \\
& 0 \leq x_{2} \leq 0.046 \\
& 0 \leq x_{3} \leq 0.068 \\
& 0 \leq x_{4} \leq 0.042 \\
& 0 \leq x_{5} \leq 0.028
\end{aligned}
$$

Problem 8

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{11}}{\operatorname{minimize}} & \sum_{0<\alpha \leq 6} \operatorname{rand}(0: 1)_{\alpha} x^{\alpha} \\
\text { subject to } & \sum_{i=1}^{11} x_{i}^{2}=1, \\
& -1 \leq x_{i} \leq 1, \quad i=1, \ldots, 11
\end{array}
$$

where $\operatorname{rand}(0: 1)_{\alpha}$ is a random number of 0 or 1 .
Problem 9

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{19}}{\operatorname{minimize}} & \sum_{0<\alpha \leq 4} \operatorname{rand}(0: 1)_{\alpha} x^{\alpha} \\
\text { subject to } & \sum_{i=1}^{19} x_{i}^{2}=1 \\
& -1 \leq x_{i} \leq 1, \quad i=1, \ldots, 19
\end{array}
$$

where $\operatorname{rand}(0: 1)_{\alpha}$ is a random number of 0 or 1 as in Problem 8.
Problem 10

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{4}+x_{1}^{2} x_{12}^{2}+2.0 x_{1}^{2} x_{12} x_{17}+x_{1}^{2} x_{17}^{2}+2.0 x_{1} x_{2} x_{3} x_{12}+2.0 x_{1} x_{2} x_{3} x_{17}+x_{2}^{2} x_{3}^{2} \\
& +x_{2}^{2} x_{4}^{2}+x_{2}^{2} x_{15}^{2}+2.0 x_{2} x_{3}^{2} x_{15}+2.0 x_{2} x_{3} x_{7} x_{15}+x_{3}^{4}+2.0 x_{3} x_{7}+x_{3}^{2} x_{7}^{2}+x_{3}^{2} x_{8}^{2} \\
& +x_{3}^{2} x_{19}^{2}+2.0 x_{3} x_{4} x_{8} x_{19}+2.0 x_{3} x_{4} x_{12} x_{19}+x_{4}^{2} x_{8}^{2}+2.0 x_{4}^{2} x_{8} x_{12}+x_{4}^{2} x_{12}^{2}+x_{4}^{2} x_{13}^{2} \\
& +x_{5}^{2} x_{9}^{2}+2.0 x_{5}^{2} x_{9} x_{14}+2.0 x_{5}^{2} x_{9} x_{18}+x_{5}^{2} x_{14}^{2}+2.0 x_{5}^{2} x_{14} x_{18}+x_{5}^{2} x_{18}^{2}+x_{5}^{2} x_{19}^{2} \\
& +x_{6}^{2} x_{16}^{2}+2.0 x_{6} x_{7} x_{8} x_{16}+2.0 x_{6} x_{7} x_{12} x_{16}+x_{7}^{2} x_{8}^{2}+2.0 x_{7}^{2} x_{8} x_{12}+x_{7}^{2} x_{12}^{2}+x_{7}^{2} x_{13}^{2} \\
& +x_{8}^{2} x_{12}^{2}+2.0 x_{8}^{2} x_{12} x_{17}+x_{8}^{2} x_{17}^{2}+2.0 x_{8} x_{9} x_{10} x_{12}+2.0 x_{8} x_{9} x_{10} x_{17}+x_{9}^{2} x_{10}^{2} \\
& +x_{9}^{2} x_{11}^{2}+x_{10}^{2} x_{12}^{2}+2.0 x_{10}^{2} x_{12} x_{17}+x_{10}^{2} x_{17}^{2}+2.0 x_{10} x_{11} x_{12}^{2}+2.0 x_{10} x_{11} x_{12} x_{17} \\
& +x_{11}^{2} x_{12}^{2}+x_{11}^{2} x_{13}^{2}+x_{12}^{2} x_{16}^{2}+2.0 x_{12} x_{13} x_{14} x_{16}+2.0 x_{12} x_{13} x_{16} x_{18}+x_{13}^{2} x_{14}^{2} \\
& +2.0 x_{13}^{2} x_{14} x_{18}+x_{13}^{2} x_{18}^{2}+x_{13}^{2} x_{19}^{2}+x_{15}^{2} x_{19}^{2}+2.0 x_{15} x_{17}^{2} x_{19}+2.0 x_{15} x_{18} x_{19}^{2} \\
\text { subject to } \quad & \sum_{i=1}^{19} x_{i}^{2}=1,
\end{array}
$$

[^0]: ${ }^{1}$ Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1-W8-29 Oh-Okayama, Meguro-ku, Tokyo 152-8552, Japan. (marumo.h.ac@m.titiech.ac.jp) (Makoto. Yamashita@c.titech.ac.jp). The research of Makoto Yamashita was partially supported by JSPS KAKENHI Grant Number 21K11767.
 ${ }^{2}$ Department of Mathematics, Ewha W. University, 52 Ewhayeodae-gil, Sudaemoon-gu, Seoul 03760, Korea (skim@ewha.ac.kr). This work was supported by NRF 2021-R1A2C1003810.

