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Abstract

We study T-semidefinite programming (SDP) relaxation for constrained polynomial
optimization problems (POPs). T-SDP relaxation for unconstrained POPs was intro-
duced by Zheng, Huang and Hu in 2022. In this work, we propose a T-SDP relaxation
for POPs with polynomial inequality constraints and show that the resulting T-SDP
relaxation formulated with third-order tensors can be transformed into the standard
SDP relaxation with block-diagonal structures. The convergence of the T-SDP relax-
ation to the optimal value of a given constrained POP is established under moderate
assumptions as the relaxation level increases. Additionally, the feasibility and opti-
mality of the T-SDP relaxation are discussed. Numerical results illustrate that the
proposed T-SDP relaxation enhances numerical efficiency.
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ficiency.
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1 Introduction

We consider constrained polynomial optimization problems (POPs):

minimize f(x)

subject to gi(x) ≥ 0, i = 1, . . . , r,
(PK)
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where f : Rn → R and g1, . . . , gr : Rn → R are real-valued polynomials. Without loss of
generality, we assume that no constant exists in the objective function. The feasible set of
(PK) is denoted as K := {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , r}.

Constrained POP (PK) has been widely studied in the field of optimization such as 0-1
integer programming and non-convex quadratic optimization, and has various applications
in medical bioengineering [4, 31], signal processing [10, 20], materials engineering [24], and
computer vision [5].

As POP (PK) is known to be NP-hard, finding a global optimal solution of (PK) is
a significant challenge. A widely adopted strategy in solving (PK) has been the use of
semidefinite programming (SDP) relaxation based on Putinar’s Positivstellensatz [19] by
Lasserre [9]. Parrilo also proposed the SDP relaxation problem through the sum-of-squares
(SOS) polynomial relaxation [18], which is viewed as the dual of Lasserre’s SDP relaxation.
While Nesterov and Nemirovskii [15] theoretically showed that SDP problems can be solved
in polynomial time, the size of SDP relaxation problems for POPs becomes increasingly
large [16] with the degree and the number of variables of POPs. Thus solving the SDP
problems is challenging due to computational costs [25]. In fact, for POPs of degree d with
n variables, the size of the variable matrix in the SDP problem amounts to s(d) :=

(
n+d
d

)
. To

address this challenge, various approaches have been proposed, such as exploiting the sparse
structures of (PK) [27, 28, 21] and employing weaker relaxations as diagonally-dominant-
sum-of-squares relaxation [1].

For the difficulty in solving large-sized SDP relaxations of constrained POPs, our objec-
tive is to employ a third-order tensor and propose a relaxation method for constrained POP
(PK). The third-order tensor has been studied in many applications [17, 26]. Furthermore,
Kilmer, Martin and Perrone [7] introduced the product in third-order tensors, an extension
of the product of matrices, and third-order tensors have become gradually popular in recent
years [2, 11, 23].

Applying the product in third-order tensors, Zheng et al. [33] introduced semidefiniteness
and SDP in third-order tensors (referred to as semidefinite tensor and T-SDP, respectively).
Semidefinite tensor and T-SDP serve as extensions of semidefinite matrices and SDPs, re-
spectively. The entire set of semidefinite tensors is nonempty, closed, convex, pointed cone,
and self-dual. Under these properties, duality theorems and optimality conditions have been
shown for T-SDP as well as for SDP. While various application problems can be formulated
as T-SDP, no solver has currently been developed to directly solve the T-SDP problem.
Therefore, it is common to use the structural advantage of third-order tensors to convert
the problem into an equivalent SDP problem and solve it by applying existing solvers such
as [13, 29, 30].

As the close relationship between SOS relaxation and SOS polynomials, semidefinite
third-order tensor and T-SDP are based on the SOS polynomial with a block circulant
structure, commonly referred to as block circulant SOS polynomials [32]. This block circu-
lant SOS polynomial can be viewed as an extension of SOS polynomials.

The purpose of this paper is to introduce a relaxation by the block circulant SOS poly-
nomial instead of the SOS relaxation for constrained POPs in [8] to increase the efficiency
of solving SDP relaxations of (PK). The SOS relaxation proposed in [8] is called the SOS
relaxation or the basic SOS relaxation in this paper. Let the degree of f(x) and gi(x) be
d and wi, respectively, and a positive integer N , the relaxation level, such that 2N ≥ d
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and 2N ≥ maxi{wi}, and w̃i = dwi/2e, i = 1, . . . , r. With positive integers m0, l0, mi, and
li such that s(N) = m0l0, s(N − w̃i) = mili, i = 1, . . . , r, we employ 2N -degree l0-block
circulant SOS polynomials and 2(N − w̃i)-degree li-block circulant SOS polynomials for
our block-circulant SOS relaxation. If we choose li = 1, i = 0, . . . , r, the proposed block
circulant SOS relaxation coincides with the basic SOS relaxation. The proposed block cir-
culant SOS relaxation relies on the existence of 2N -degree l0 and 2(N − w̃i)-degree li-block
circulant SOS polynomials for (PK). Thus, the choice of mi and li, i = 0, . . . , r is essential
for numerical efficiency, as shown in Section 4.1.

We first show that the block circulant SOS relaxation problem can be described as an
equivalent T-SDP problem. Then, the T-SDP relaxation problem is equivalently trans-
formed into an SDP problem of smaller size than the SDP problem from the basic SOS
relaxation. Therefore, the T-SDP relaxation is expected to reduce the computational time.
Indeed, we observe the computational advantage through numerical experiments presented
in Section 4.1. For instance, the computational time for a constrained POP is reduced from
1264 seconds by the basic SOS relaxation to 633 seconds by the proposed relaxation based
on circulant SOS polynomials with appropriate block sizes, under a mild assumption.

The main contributions of this paper are:

• We propose a T-SDP relaxation for constrained POPs, extending the result in [33] for
unconstrained POPs.

• By transforming the T-SDP relaxation problem derived from a block circulant SOS
relaxation for a constrained POP into the equivalent SDP problem of smaller size with
the block-diagonal structure, the computational efficiency of solving the constrained
POP is increased.

• We analyze the feasibility and global optimality of the T-SDP relaxation problem,
and prove the convergence of the T-SDP relaxation sequence to the optimal value of
(PK) under an assumption that extends Putinar’s Positivstellensatz.

The remaining of our paper is organized as follows. In Section 2, we describe the basic
definitions of third-order tensor and block diagonalization, which are important for the
equivalent transformation from T-SDP to SDP. Based on these definitions, we introduce
the concepts of semidefiniteness and the T-SDP problem over third-order tensors and show
that the T-SDP problem can be transformed into an equivalent SDP. We also define the block
circulant SOS polynomial, an extension of the SOS polynomial, and introduce an important
theorem that holds for semidefinite tensors. In Section 3, we propose a block circulant SOS
relaxation method that extends the basic SOS relaxation method for constrained POPs,
and show that the relaxation problem can be described by a T-SDP form. We also show
that it has an advantage in problem size compared to the SDP relaxation. In addition,
we provide theoretical analysis such as feasibility and global optimality for the T-SDP
relaxation problem. In Section 4, we compare the proposed T-SDP relaxation method with
the SDP relaxation using a set of test problems for constrained POPs. Finally, we conclude
in Section 5.
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2 Preliminaries

2.1 Notation

Throughout this paper, Rn denotes the set consisting of all real vectors of size n, Cn the set
consisting of all complex vectors of size n, and Nn the set of nonnegative integers. We use
Rm×n to denote the set of m × n real matrices, Cm×n the set of m × n complex matrices,
Rm×n×l, which is an array with one dimension added to the matrix, the set of m×n× l real
third-order tensors. We consider only real third-order tensors in this paper. The nth-order
identity matrix is denoted by In and the nth-order zero matrix by On, or I and O. The
zero tensor is denoted by O. The identity tensor is defined in Section 2.2.

The transpose of a matrix A is denoted by AT, the conjugate by A, and the conjugate
transpose by AH. We denote the set consisting of all real symmetric (complex hermitian)
matrices of size n × n as Sn×n (Hn×n). A � (�)O denotes that a matrix A is positive
definite (positive semidefinite), while the set of all real symmetric positive definite (positive
semidefinite) matrices of size n× n is denoted by Sn×n++ (Sn×n+ ). Similarly, we denote the set
of all complex hermitian positive definite (positive semidefinite) matrices of size n × n as
Hn×n

++ (Hn×n
+ ).

The inner product of two matrices in Rm×n is defined as 〈A,B〉 := Tr(ATB) =
∑m

i=1

∑n
j=1

[A](i,j)[B](i,j), where [A](i,j), [B](i,j) denote the (i, j)th elements of A, B, respectively. The in-

ner product of two third-order tensors A and B in Rm×n×l is defined as 〈A,B〉 :=
∑m

i=1

∑n
j=1∑l

k=1[A](i,j,k)[B](i,j,k), where [A](i,j,k), [B](i,j,k) denote the (i, j, k)th elements of A, B, respec-
tively. A symbol ⊗ denotes the Kronecker product of two matrices.

2.2 Third-order tensor

For a third-order tensor A ∈ Rm×n×l, we consider A as a stack of frontal slices A(i) ∈
Rm×n, i = 1, . . . , l, as proposed in [7] where several operators onA ∈ Rm×n×l were introduced
as follows:

bcirc(A) :=


A(1) A(l) A(l−1) . . . A(2)

A(2) A(1) A(l) . . . A(3)

A(3) A(2) A(1) . . . A(4)

...
...

...
. . .

...
A(l) A(l−1) A(l−2) . . . A(1)

 , unfold(A) :=


A(1)

A(2)

A(3)

...
A(l)

 ,
bcirc−1l (bcirc(A)) := A, foldl(unfold(A)) := A.

Let bcirc : Rm×n×l → Rml×nl be the operator that arranges each frontal slice of A into a
block circulant matrix, unfold : Rm×n×l → Rml×n be the operator that arranges each frontal
slice of A in columns. bcirc−1l and foldl are operators that are the inverse operations of
bcirc and unfold with l, respectively. From the definition of bcirc, it clearly holds that

〈A,B〉 =
1

l
〈bcirc(A), bcirc(B)〉 . (1)

It is known that any circulant matrix A ∈ Rn×n can be diagonalized with the normalized
discrete Fourier transform (DFT) matrix, where the DFT matrix is the Fourier matrix of
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size n× n defined as

Fn :=
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω(n−1)2 . . . ω(n−1)(n−1)

 , ω := e
2πi
n .

Using this, the block circulant matrix bcirc(A) can be block-diagonalized with the Kronecker
product.

Lemma 1. [6] Any third-order tensor A ∈ Rm×n×l can be block-diagonalized as

(FH
l ⊗ Im)bcirc(A)(Fl ⊗ In) = Diag(A1, A2, . . . , Al) =


A1

A2

. . .

Al

 ,
where A1 ∈ Rm×n, Ai ∈ Cm×n and Ai = Al+2−i, i = 2, . . . , l.

In what follows, we define the product and transposition of third-order tensors and
extend the semidefiniteness to the space of third-order tensors, and introduce some theorems
on semidefinite tensors.

Definition 2. [7, Definition 4.1] Let A ∈ Rm×n×l and B ∈ Rn×p×l be two third-order
tensors. Then, the product of third order tensors A ∗ B ∈ Rm×p×l is defined by

A ∗ B := foldl (bcirc(A)unfold(B)) .

In the case of l = 1, the third-order tensors A ∈ Rm×n×l, B ∈ Rn×p×l are the matrices
A ∈ Rm×n, B ∈ Rn×p, respectively, and bcirc(A) = A and unfold(B) = B hold for l = 1,
thus the product in the third-order tensors A ∗ B is the matrix product AB.

We call a third-order tensor whose first frontal slice is the identity matrix and the other
frontal slices are the zero matrix the identity tensor I. The identity tensor I is defined
as a third-order tensor whose first frontal slice is the identity matrix and the other frontal
slices are the zero matrix. For a third-order tensor A ∈ Rn×n×l and the identity tensor
I ∈ Rn×n×l, we have A ∗ I = I ∗ A = A.

Definition 3. [7, Definition 4.7] If A ∈ Rm×n×l is a third-order tensor, then the transpose
AT is obtained by transposing each of the frontal slices A(i) and then reversing the order
of transposed frontal slices 2 through l. Furthermore, A ∈ Rm×m×l is called a symmetric
sensor if AT = A. We denote the set of all real symmetric tensors of size m × m × l as
Sm×m×l.

Definition 4. [33, Definition 6] Let A ∈ Sm×m×l be a symmetric tensor. We say A is
symmetric positive (semi)definite, if and only if,

〈X ,A ∗ X〉 > (≥)0

holds for any X ∈ Rm×1×l \ {O}(for any X ∈ Rm×1×l).
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We denoteA �T (�T )O ifA ∈ Sm×m×l is positive (semi)definite, and Sm×m×l++ (Sm×m×l+ )
denotes the set of all real symmetric positive (semi)definite tensors of size m×m× l. The
set Sm×m×l+ is a nonempty, closed, convex, and pointed cone [33, Proposition 3]. Moreover,
Sm×m×l+ = (Sm×m×l+ )∗ holds for the dual cone (Sm×m×l+ )∗ of Sm×m×l+ (the self-duality) [33,
Theorem 9].

Theorem 5. [33, Theorem 4] Let A ∈ Sm×m×l be a symmetric tensor. Then, the following
statements are equivalent:

(i) A ∈ Sm×m×l+ .

(ii) bcirc(A) ∈ Sml×ml+ .

(iii) The block-diagonal matrix Diag(A1, . . . , Al), which is a block diagonalization of A, is
a hermitian positive semidefinite matrix. In other words, A1 ∈ Sm×m+ , Ai ∈ Hm×m

+ , i =
2, . . . , l.

2.3 SDP in third-order tensor space

We discuss an SDP problem in the space of third order tensors (T-SDP) in this section using
the semidefiniteness in third-order tensor defined in Section 2.2. We also describe that a
T-SDP problem can be converted into an SDP problem in complex space. The transformed
SDP can be solved using existing SDP solvers, for instance Mosek [14], which is used to
solve the SDP in our numerical experiments in Section 4.1.

An SDP problem is defined as:

minimize 〈C,X〉 subject to 〈Ai, X〉 = bi, i = 1, . . . , r, X � O,

where X ∈ Sm×m is the decision variable, C,Ai ∈ Sm×m and b ∈ Rr are given symmetric
matrices and a vector, respectively. Its dual problem is described as:

maximize
r∑
i=1

biyi subject to
r∑
i=1

yiAi + S = C, S � O,

where y ∈ Rr is the decision variable and S ∈ Sm×m is the slack variable.
Now, we extend the SDP problem in the space of symmetric matrices to the space of

third-order tensors by extending the real symmetric matrices C,Ai, X to real symmetric
tensors C,Ai,X ∈ Sm×m×l and the semidefinite constraint X � O to X �T O. A T-SDP
problem is defined as:

minimize 〈C,X〉 subject to 〈Ai,X〉 = bi, i = 1, . . . , r, X �T O. (PTSDP)

Similarly, its dual problem is defined as:

maximize
r∑
i=1

biyi subject to
r∑
i=1

yiAi + S = C, S �T O. (DTSDP)

Clearly, an SDP problem can be considered as a special case of T-SDP at l = 1.
The following duality theorem holds for T-SDP as well as SDP.
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Theorem 6. [33, Theorem 11] Let F (P ), F (D), p∗, and d∗ be defined as follows:

F (P ) =
{
X ∈ Sm×m×l

∣∣ 〈Ai,X〉 = bi, i = 1, . . . , r, X �T O
}
,

F (D) =

{
(y,S) ∈ Rr × Sm×m×l

∣∣∣∣∣
r∑
i=1

yiAi + S = C, S �T O

}
,

p∗ = inf {〈C,X〉 | X ∈ F (P )} , d∗ = sup {〈b, y〉 | (y,S) ∈ F (D)} .

Suppose that X ∈ F (P ) and (y,S) ∈ F (D). Then, 〈b, y〉 ≤ 〈C,X〉. In addition, if one of
(PTSDP) or (DTSDP) is bounded below and strictly feasible, then the other is solvable and
p∗ = d∗.

Based on [33], we briefly describe a method for solving the T-SDP problem by trans-
forming it into an equivalent SDP problem over the complex space. For every third-order
tensor C ∈ Sm×m×l, bcirc(C) can be block-diagonalized as

bcirc(C) = (Fl ⊗ Im)Diag(C1, C2, . . . , Cl)(F
H
l ⊗ Im).

Thus, for the objective function of (PTSDP), we obtain

〈C,X〉 =
1

l
〈bcirc(C), bcirc(X )〉 =

1

l
Tr(bcirc(C)bcirc(X ))

=
1

l
Tr((Fl ⊗ Im)Diag(C1, . . . , Cl)(F

H
l ⊗ Im)(Fl ⊗ Im)Diag(X1, . . . , Xl)(F

H
l ⊗ Im))

=
1

l
Tr(Diag(C1, . . . , Cl)Diag(X1, . . . , Xl)) =

1

l

l∑
k=1

〈Ck, Xk〉,

using (1) for the first equality and the commutative property of trace for the fourth equality.
Similarly, using the block-diagonalized matrix Diag(Ai1, . . . , A

i
l) ofAi, we have 〈Ai,X〉 =

1
l

∑l
k=1〈Aik, Xk〉. From Theorem 5, X �T O is equivalent to X1, . . . , Xl � O. Since

l is an integer such that l ≥ 1, we can replace 1
l
Xk by Xk without loss of generality.

Consequently, (PTSDP) and (DTSDP) are transformed into SDP problems in the space of
complex matrices:

min
l∑

k=1

〈Ck, Xk〉 sub. to
l∑

k=1

〈Aik, Xk〉 = bi, i = 1, . . . , r, X1, . . . , Xl � O, (PCSDP)

max
r∑
i=1

biyi sub. to
r∑
i=1

yiA
i
k + Sk = Ck, k = 1, . . . , l, S1, . . . , Sl � O, (DCSDP)

where Xk ∈ Hm×m, y ∈ Rr and Sk ∈ Hm×m are the decision variables, and Ck, A
i
k ∈ Hm×m

are obtained from the diagonalization.
Since Lemma 1 holds for block diagonal matrices as described in Section 2.2, (PCSDP)

can be transformed into an equivalent problem of smaller size depending on the values of l,
even or odd.
Case 1: l is even
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Let Ck, A
i
k, Xk, k = 1, . . . , l be the blocks in the block diagonalized matrix of C,Ai,X in

(PTSDP). Then, the following relation holds for Ck, A
i
k, Xk by (1):

C1 ∈ Sm×m, C l+2
2
∈ Sm×m, Ck ∈ Hm×m, Ck = Cl+2−k,

Ai1 ∈ Sm×m, Ail+2
2

∈ Sm×m, Aik ∈ Hm×m, Aik = Ail+2−k, i = 1. . . . , r,

X1 ∈ Sm×m, X l+2
2
∈ Sm×m, Xk ∈ Hm×m, Xk = Xl+2−k.

For the objective function of (PCSDP), we obtain

l∑
k=1

〈Ck, Xk〉 = 〈C1, X1〉+
〈
C l+2

2
, X l+2

2

〉
+

l
2∑

k=2

(
〈Ck, Xk〉+

〈
Ck, Xk

〉)
= 〈C1, X1〉+

〈
C l+2

2
, X l+2

2

〉
+ 2

l
2∑

k=2

〈Ck, Xk〉 ,

using the fact that the inner product of the two hermitian matrices is equal to the inner
product of their conjugates in the second equality. Similarly, we obtain

l∑
k=1

〈
Aik, Xk

〉
=
〈
Ai1, X1

〉
+
〈
Ail+2

2

, X l+2
2

〉
+ 2

l
2∑

k=2

〈
Aik, Xk

〉
, i = 1, . . . , r.

Therefore, (PCSDP) is equivalent to the following problem:

minimize 〈C1, X1〉+ 2

l
2∑

k=2

〈Ck, Xk〉+
〈
C l+2

2
, X l+2

2

〉

subject to
〈
Ai1, X1

〉
+ 2

l
2∑

k=2

〈
Aik, Xk

〉
+
〈
Ail+2

2

, X l+2
2

〉
= bi, i = 1, . . . , r,

X1, . . . , X l+2
2
� O.

(P’CSDP)

Case 2: l is odd
As in Case 1, the following relation holds for Ck, A

i
k, Xk by (1):

C1 ∈ Sm×m, Ck ∈ Hm×m, Ck = Cl+2−k,

Ai1 ∈ Sm×m, Aik ∈ Hm×m, Aik = Ail+2−k, i = 1. . . . , r,

X1 ∈ Sm×m, Xk ∈ Hn×n, Xk = Xl+2−k.

Therefore, (PCSDP) is equivalent to the following problem:

minimize 〈C1, X1〉+ 2

l+1
2∑

k=2

〈Ck, Xk〉

subject to
〈
Ai1, X1

〉
+ 2

l+1
2∑

k=2

〈
Aik, Xk

〉
= bi, i = 1, . . . , r,

X1, . . . , X l+1
2
� O.

(P”CSDP)
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We have shown that (PTSDP) with a third-order tensor of size m × m × l can be
transformed into (PCSDP) which includes the sum of l third-order tensors of size m ×m
matrices. Furthermore, (PCSDP) can be transformed into (P’CSDP) and (P”CSDP) which
include the sum of l+2

2
or l+1

2
matrices of size m × m, respectively, depending on even or

odd value of l. These properties will be used to propose a T-SDP relaxation for constrained
POPs.

2.4 Block circulant SOS polynomials

In this section, we first define the SOS polynomial with block circulant structure, referred
to as block circulant SOS polynomial, and then explain the relationship between the block
circulant SOS polynomial and semidefinite tensor.

We first describe some notation. A real-valued polynomial f(x) of degree d, d ∈ N, is
expressed as

f(x) =
∑

0≤|α|≤d

bαx
α with xα := xα1

1 x
α2
2 · · ·xαnn , bα := bα1α2···αn ∈ R and |α| :=

r∑
i=1

αi ≤ d,

(2)

for x ∈ Rn and α ∈ Nn. Let

[x]d := [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n]T,

and let s(d) =
(
n+d
d

)
be the dimension of [x]d. Let R[x]d be the set of all d-degree real-valued

polynomials. If f(x) ∈ R[x]d and f(x) ≥ 0 for any x ∈ Rn, then f is called a nonnegative
polynomial. The set of all nonnegative polynomials is denoted by R+[x]d. We say that
q is an SOS polynomial if the real-valued polynomial q : Rn → R can be expressed as
q(x) =

∑
i q̄

2
i (x) with some real-valued polynomial q̄i : Rn → R. It is well-known that a

nonnegative polynomial is not necessarily an SOS polynomial except for special cases [22].

Definition 7. [32, Definition 3] Let q : Rn → R be a real-valued polynomial of degree 2d,
and m and l be positive integers such that s(d) = m · l. Then we say q is an l-block circulant
SOS polynomial if

q(x) =
r∑
i=1

l∑
j=1

((
qij
)T

[x]d

)2
,

where qij is the j-th column vector of bcirc(foldl(q
i)) for some generators {q1, . . . , qr} ⊂ Rs(d).

Example 8. (3-block circulant SOS polynomial)
A polynomial q in 2 variables (x1 and x2) defined by

q(x) = 21 + 8x2 + 9x21 + 20x1x2 + 33x22 + 8x1x
2
2 + 9x41 + 12x31x2 + 21x21x

2
2 + 9x42

is a 3-block circulant SOS polynomial. Two generators q1, q2 for q(x) are

q1 = [2, 0, 0, 0, 0, 3]T, q2 = [4, 0, 1, 0, 0, 0]T.
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We see that

bcirc(fold3(q
1)) =


2 0 0
0 3 0
0 2 0
0 0 3
0 0 2
3 0 0

 , bcirc(fold3(q
2)) =


4 0 1
0 0 0
1 4 0
0 0 0
0 1 4
0 0 0

 .

From [x]2 := [1, x1, x2, x
2
1, x1x2, x

2
2]

T, we have

2∑
i=1

3∑
j=1

((qij)
T[x]2)

2 = (2 + 3x22)
2 + (3x1 + 2x2)

2 + (3x21 + 2x1x2)
2

+ (4 + x2)
2 + (4x2 + x1x2)

2 + (1 + 4x1x2)
2,

which is equivalent to q.

If l = 1 in Definition 7, then bcirc(foldl(q
i)) = qi, thus qij is qi itself. Thus, a 1-block

circulant SOS polynomial is an SOS polynomial.

Theorem 9. [32] Let q : Rn → R be a real-valued polynomial of degree 2d, and m and l be
positive integers such that s(d) = m · l. Then, the following statements are equivalent:

(i) q is an l-block circulant SOS polynomial

(ii) There exists an l-block circulant matrix A ∈ Sml×ml+ such that each block A(1), . . . , A(l) ∈
Rm×m and q can be expressed by

q(x) =
〈
A, [x]d[x]Td

〉
(iii) There exists a semidefinite tensor A ∈ Sm×m×l+ and [X ]ld = foldl([x]d) such that f̄ can

be expressed by

q(x) =
〈
A, [X ]ld ∗

(
[X ]ld

)T〉
.

In the case of l = 1 in Theorem 9, the semidefinite 1-block circulant matrix in (ii) is a
semidefinite matrix. Moreover, since the third-order tensor A in (iii) becomes a matrix and
[X ]ld a vector [x]d, (ii) and (iii) are equivalent. For l ≥ 2, the l-block circulant matrix A in
(ii) can be regarded as a 1-block circulant matrix when the entire matrix is considered as a
single block. As a result, an l-block circulant SOS polynomial is also an SOS polynomial.
Consequently, we have the following relation:

Σl[x]d (l ≥ 2) ⊆ Σ1[x]d ⊆ R+[x]d, (3)

where Σl[x]d denotes the set of l-block circulant SOS polynomials of degree d.
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3 T-SDP relaxations for constrained POPs

In this section, we propose a T-SDP relaxation method for the constrained POP (PK),
which is an extension of the SDP relaxation method in Section 2.3. Then, we show that the
proposed T-SDP relaxation can be reduced to a smaller SDP using the properties of T-SDP
than the SDP problem from the basic SOS relaxation. We also discuss the feasibility and
global optimality of the proposed method.

3.1 SDP relaxation in the third-order tensor space

To derive T-SDP relaxation for (PK), we let w̃i = dwi/2e, where wi is the degree of gi(x) and
define a positive integer N called the relaxation level such that 2N ≥ d and 2N ≥ maxi{wi}.
We also determine certain positive integers m0, l0, mi, and li, i = 1, . . . , r such that

s(N) = m0l0, s(N − w̃i) = mili, i = 1, . . . , r. (4)

For the discussion of the optimal value of (PK), we introduce the following assumptions.
We should mention that the convexity and connectivity of the feasible set K are not assumed
here.

Assumption 10. [9, Assumption 4.1] The set K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , r} is
compact and there exists a real-valued polynomial u : Rn → R such that {x ∈ Rn | u(x) ≥ 0}
is compact, then

u(x) = u0(x) +
r∑
i=1

gi(x)ui(x) for all x ∈ Rn, (5)

where ui(x), i = 0, . . . , r are SOS polynomials.

Assumption 11. The set K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , r} is compact. If p∗K =
minx∈K f(x), for any ε > 0,

f(x)− p∗K + ε = q0(x) +
r∑
i=1

gi(x)qi(x) for all x ∈ K, (6)

where q0(x) is a 2N-degree l0-block circulant SOS polynomial, qi(x), i = 1, . . . , r are 2(N −
w̃i)-degree li-block circulant SOS polynomials.

We note that Assumption 10 is commonly used and Assumption 11 is an extension of
Putinar’s Positivstellensatz [19], which was used in the SDP relaxation [9] for the objective
function f . In Assumption 11, q0 and qi need to be l0- and li-block circulant SOS polynomials
instead of SOS polynomials. Thus, Assumption 11 always holds if l0 = 1 and li = 1 under
the condition for Putinar’s Positivstellensatz.

We extend the basic SOS relaxation method based on the generalized Lagrange function
by Kim et al. [8] to SOS relaxations using block circulant SOS polynomials. The generalized
Lagrangian function for (PK) is defined as

L(x, φ1, . . . , φr) := f(x)−
r∑
i=1

gi(x)φi(x), φi(x) ∈ Σli [x]2(N−w̃i).

11



Here, the li-block circulant SOS polynomials φi is used. Then, the Lagrangian dual problem
for (PK) can be expressed as

max
φi

min
x

L(x, φ1, . . . , φr).

Now, we consider the following problem with fixed φi(x):

min
x

L(x, φ1, . . . , φr), (7)

which can be regarded as an unconstrained problem and also be written as

max γ s.t. L(x, φ1, . . . , φr)− γ ≥ 0. (8)

Then, we can apply l0-block circulant SOS relaxation [32] to (7), or equivalently to (8):

max
γ,φi

γ s.t. L(x, φ1, . . . , φr)− γ ∈ Σl0 [x]2N . (9)

In the problem (9), the constraint L(x, φ1, . . . , φr)− γ ∈ Σl0 [x]2N is equivalent to the exis-
tence of some φ0(x) ∈ Σl0 [x]2N such that L(x, φ1, . . . , φr) − γ = φ0(x). Thus, (PK) can be
relaxed to the following problem:

maximize γ

subject to f(x)− γ ∈ Γ :=

{
φ0 +

r∑
i=1

gi(x)φi(x)

∣∣∣∣∣ φ0 ∈ Σl0 [x]2N , φi ∈ Σli [x]2(N−w̃i)

}
.

(P̃K)
By Assumption 11, (P̃K) has a feasible solution. Moreover, the optimal value of (P̃K)

is not greater than the optimal value of (PK), based on the inclusion relations between the
set of block circulant SOS polynomials and the set of nonnegative polynomials (3), i.e.,
max(P̃K) ≤ min(PK).

Next, we show that the relaxation problem (P̃K) of (PK) can be transformed into an
equivalent problem using the T-SDP discussed in Section 2.3. With a monomial vector [x]N ,
we define monomial tensors by

X 0 := foldl0([x]N), X i := foldli([x]N−w̃i), i = 1, . . . , r.

We determine third-order tensors Aα ∈ Rm0×m0×l0 , Diα ∈ Rmi×mi×li such that

X 0 ∗ X T
0 =

∑
0≤|α|≤2N

Aαxα (10)

gi(x)X i ∗ X T
i =

∑
0≤|α|≤2N

Diαxα, i = 1, . . . , r. (11)

If l0 = 1 and li = 1 in (4), then fold1([x]N) = [x]N and fold1([x]N−w̃i) = [x]N−w̃i hold
and the monomial tensors X 0 and X i become the monomial vectors, and the third-order
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tensors Aα,Diα to be determined become the matrices Aα ∈ Rm0l0×m0l0 , Diα ∈ Rmili×mili .
By Theorem 9, the condition f(x)− γ ∈ Γ in (P̃K) can be expressed as

f(x)− γ =
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
=

∑
0≤|α|≤2N

〈Z0,Aα〉xα +
r∑
i=1

∑
0≤|α|≤2N

〈Z i,Diα〉xα, (12)

where Z0 �T O, Z i �T O are semidefinite tensors. Since the objective function f(x) has
no constant term (f(0) = 0), by comparing the coefficients on both sides of (12) using (2),
we obtain

−γ = 〈Z0,A0〉+
r∑
i=1

〈Z i,Di0〉

bα = 〈Z0,Aα〉+
r∑
i=1

〈Z i,Diα〉, 0 < |α| ≤ 2N.

Consequently, we obtain the T-SDP problem that is equivalent to problem (P̃K):

maximize − 〈Z0,A0〉 −
r∑
i=1

〈Z i,Di0〉

subject to 〈Z0,Aα〉+
r∑
i=1

〈Z i,Diα〉 = bα, 0 < |α| ≤ 2N,

Z0 �T O, Z i �T O, i = 1, . . . , r.

(Ql0,l1,...,lr
N )

The above (Ql0,l1,...,lr
N ) is an extension of the SDP relaxation problem derived from Parrilo’s

SOS relaxation [18] to a T-SDP problem. The dual problem (Ql0,l1,...,lr
N )∗ of Ql0,l1,...,lr

N is
expressed as

minimize
∑

0<|α|≤2N

bαyα

subject to
∑

0<|α|≤2N

Aαyα �T −A0,∑
0<|α|≤2N

Diαyα �T −Di0, i = 1, . . . , r.

(Ql0,l1,...,lr
N )∗

We notice that if we let Ml0
N(y) := A0 +

∑
0<|α|≤2N Aαyα, Mli

N−w̃i(giy) := Di0 +∑
0<|α|≤2N Diαyα, then the constraints of (Ql0,l1,...,lr

N )∗ can be written as Ml0
N(y) �T O,

Mli
N(giy) �T O, i = 1, . . . , r. For the primal problem (Ql0,l1,...,lr

N ), its dual (Ql0,l1,...,lr
N )∗ is

an extension of the SDP relaxation problem derived by Lasserre’s SDP relaxation [9] to a
T-SDP problem. The positive integers l0 and li determined to satisfy (4) are the parame-
ters in the block circulant SOS relaxation. By choosing a relaxation level N , l0 and li, the
relaxation problems (Ql0,l1,...,lr

N ) and (Ql0,l1,...,lr
N )∗ are uniquely determined.

13



From (4), (10) and (11), the size of the T-SDP relaxation problem (Ql0,l1,...,lr
N ) is given

with Aα,Z0 ∈ Sm0×m0×l0 and Diα,Z i ∈ Smi×mi×li . As discussed in Section 2.3, (Ql0,l1,...,lr
N )

can be transformed into an equivalent SDP of smaller size, depending on even or odd l0, li,
which includes hermitian matrices of size determined by the sum of l0+2

2
or l0+1

2
of m0×m0

size and the sum of li+2
2

or li+1
2

of mi×mi size. In this case, we need to transform the SDP
formulated with complex matrices to real-symmetric matrices [13].

For the case of l0 = 1 and li = 1, the T-SDP relaxation problem (Ql0,l1,...,lr
N ) coincides

with the SDP relaxation problem which involves real symmetric matrices of size m0l0 and
mili. Therefore, the T-SDP relaxation problem can be reduced to a smaller problem than
the SDP relaxation in [9], as shown in Table 1.

Table 1: Comparing the number and size of positive semidefinite (PSD) matrices for the
basic SOS relaxation and the block circulant SOS relaxation

Relaxation number and size of PSD matrices in Nth-level relaxation

Basic SOS
[ 1*(

(n+N
N

)
×
(n+N
N

)
) PSD matrix,

1*(
∑r
i=1

(n+N−w̃i
N−w̃i

)
×
(n+N−w̃i
N−w̃i

)
) PSD matrices]

Block circulant SOS

[( l0+2
2

or l0+1
2

) *

((
n+N
N

)
l0

×
(
n+N
N

)
l0

)
PSD matrices,

(∑r
i=1

li+2
2

or
∑r
i=1

li+1
2

)
*

((
n+N−w̃i
N−w̃i

)
li

×
(
n+N−w̃i
N−w̃i

)
li

)
PSD matrices]

3.2 Feasibility and global optimality

We present theoretical analysis of the T-SDP relaxation problems (Ql0,l1,...,lr
N ) and (Ql0,l1,...,lr

N )∗

for the constrained POPs proposed in Section 3.1. We also show that the sequence of

relaxation problems
{

(Ql0,l1,...,lr
N )∗

}
for a relaxation level N converges to the optimal value

of (PK) when N →∞.
Using the relation between block circulant SOS polynomials and semidefinite block cir-

culant matrices described in Section 2.4, we present the following theorem, which serves as
a necessary and sufficient condition for the feasibility of (Ql0,l1,...,lr

N ).

Theorem 12. Let f : Rn → R be a real-valued polynomial of degree d with the zero constant
term. Assume that there exist the positive integers m0, l0,mi, li, i = 1, . . . , r such that s(N) =
m0l0, s(N − w̃i) = mili. Then (Ql0,l1,...,lr

N ) has a feasible solution if and only if there exists
some γ ∈ R and third-order tensors Z0 ∈ Sm0×m0×l0

+ , Z i ∈ Smi×mi×li+ , i = 1, . . . , r such that

f(x)− γ =
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
.

Proof. Assume that (Z0,Z1, . . . ,Zr) is a feasible solution of (Ql0,l1,...,lr
N ). More precisely,

〈Z0,Aα〉+
r∑
i=1

〈Z i,Diα〉 = bα, 0 < |α| ≤ 2N

Z0 �T O, Z i �T O, i = 1, . . . , r.
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Since the objective function in (PK) has no constant term, we have

f(x) =
∑

0<|α|≤2N

bαx
α =

∑
0<|α|≤2N

(
〈Z0,Aα〉xα +

r∑
i=1

〈Z i,Diα〉xα
)

=
∑

0<|α|≤2N

〈Z0,Aα〉xα +
r∑
i=1

∑
0<|α|≤2N

〈Z i,Diα〉xα

=
〈
Z0,X 0 ∗ X T

0

〉
− 〈Z0,A0〉+

r∑
i=1

(
gi(x)

〈
Z i,X i ∗ X T

i

〉
− 〈Z i,Di0〉

)
,

where (10) and (11) are used in the last equality. Since A0 ∈ Rm0×m0×l0 , Di0 ∈ Rmi×mi×li

are all 0 except for the (1, 1, 1)th element, which is 1 by its definition,

f(x) + [Z0](1,1,1) +
r∑
i=1

[Z i](1,1,1) =
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
.

The desired result follows by setting γ = −[Z0](1,1,1) −
∑r

i=1[Z i](1,1,1).
On the other hand, assume that γ ∈ R and Z0 ∈ Sm0×m0×l0

+ , Z i ∈ Smi×mi×li+ , i = 1, . . . , r
exist such that

f(x)− γ =
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
.

Then, from (10) and (11), we have

f(x) =
∑

0<|α|≤2N

〈Z0,Aα〉xα + 〈Z0,A0〉+
∑

0<|α|≤2N

r∑
i=1

〈Z i,Diα〉xα +
r∑
i=1

〈Z i,Di0〉+ γ.

Therefore, by comparing the coefficients for each monomial on both sides, we obtain

〈Z0,A0〉+
r∑
i=1

〈Z i,Di0〉+ γ = 0

〈Z0,Aα〉+
r∑
i=1

〈Z i,Diα〉 = bα, 0 < α ≤ 2N.

Thus, Z0 ∈ Sm0×m0×l0
+ , Z i ∈ Smi×mi×li+ , i = 1, . . . , r are feasible solutions of (Ql0,l1,...,lr

N ). �
We show the relation between the SDP relaxation problem by Parrilo [18] and the T-

SDP relaxation problem of the proposed method in the following theorem. In particular,
we discuss the necessary and sufficient conditions under which the optimal values of SDP
relaxation and T-SDP relaxation are equivalent.

Theorem 13. Let (Q1,1,...,1
N ) be the SDP relaxation problem for (PK) with l0 = 1, l1 =

1, . . . , lr = 1 and (Ql0,l1,...,lr
N ) be the T-SDP relaxation problem with l0, l1, . . . , lr such that

max{l0, l1, . . . , lr} ≥ 2. Let the optimal values of the relaxation problem be max(Q1,1,...,1
N ),

max(Ql0,l1,...,lr
N ), respectively. Then max(Q1,1,...,1

N ) = max(Ql0,l1,...,lr
N ) if and only if there exist

optimal solutions Z∗0 , Z∗i of (Q1,1,...,1
N ) represented by l0-block circulant and li-block circulant

matrices, respectively.
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Proof. From Theorem 12, the constraints of (Q1,1,...,1
N ) is equivalent to

f(x)− γ =
〈
Z0, [x]N ∗ [x]TN

〉
+

r∑
i=1

gi(x)
〈
Zi, [x]N−w̃i ∗ [x]TN−w̃i

〉
,

and the constraints of (Ql0,l1,...,lr
N ) is equivalent to

f(x)− γ =
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
.

Then,

〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
=

1

l0
Tr
(
bcirc(X 0)

Tbcirc(Z0)bcirc(X 0)
)

+
r∑
i=1

gi(x)
1

li
Tr
(
bcirc(X i)

Tbcirc(Z i)bcirc(X i)
)

=
1

l0
〈bcirc(X 0), bcirc(Z0)bcirc(X 0)〉+

r∑
i=1

gi(x)
1

li
〈bcirc(X i), bcirc(Z i)bcirc(X i)〉

= 〈unfold(X 0), bcirc(Z0)unfold(X 0)〉+
r∑
i=1

gi(x) 〈unfold(X i), bcirc(Z i)unfold(X i)〉

=
〈
bcirc(Z0), [x]N ∗ [x]TN

〉
+

r∑
i=1

gi(x)
〈
bcirc(Z i), [x]N−w̃i ∗ [x]TN−w̃i

〉
.

Hence, we have max(Q1,1,...,1
N ) ≥ max(Ql0,l1,...,lr

N ) since a feasible solution (Z∗0,Z∗1, . . . ,Z∗r) of
(Ql0,l1,...,lr

N ) becomes a feasible solution of (Q1,1,...,1
N ).

Now, we assume that max(Q1,1,...,1
N ) = max(Ql0,l1,...,lr

N ). Let (Z∗0,Z∗1, . . . ,Z∗r) be an op-
timal solution of (Ql0,l1,...,lr

N ). Then (bcirc(Z∗0), bcirc(Z∗1), . . . , bcirc(Z∗r)) is an optimal so-
lution of (Q1,1,...,1

N ). Clearly, bcirc(Z∗0) and bcirc(Z∗i ) are l0-block circulant and li-block
circulant matrices, respectively. On the other hand, we can take bcirc−1l0 (Z∗0), bcirc−1li (Z∗i ),

assuming that there exists an optimal solution Z∗0 and Z∗i of (Q1,1,...,1
N ) represented as l0-

block circulant and li-block circulant matrices, respectively, which is also a feasible solu-
tion of (Ql0,l1,...,lr

N ). Consequently, max(Q1,1,...,1
N ) ≤ max(Ql0,l1,...,lr

N ) holds, and together with
max(Q1,1,...,1

N ) ≥ max(Ql0,l1,...,lr
N ), we have max(Q1,1,...,1

N ) = max(Ql0,l1,...,lr
N ). �

Now, we discuss the global optimality of the T-SDP relaxation problem and the conver-

gence of the relaxation problem sequence
{

(Ql0,l1,...,lr
N )∗

}
with respect to the relaxation level

N , extending the Lasserre’s hierarchy in [9].

Theorem 14. Let f : Rn → R be a real-valued polynomial of degree d and K be the compact
set. Let Assumption 11 hold, and let p∗K := minx∈K f(x). Let x∗ be a global optimal solution
of (PK) and

y∗ = [x∗1, . . . , x
∗
n, (x

∗
1)

2, x∗1x
∗
2, . . . , (x

∗
n)2, . . . , (x∗1)

2N , . . . , (x∗n)2N ]T.
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Then,
(a) For fixed parameters l0, li, we have

inf(Ql0,l1,...,lr
N ) ↑ p∗K ,

as N → ∞. Moreover, for N sufficiently large, there is no duality gap between (Ql0,l1,...,lr
N )

and its dual (Ql0,l1,...,lr
N )∗ if K has a nonempty interior.

(b) If f(x)− p∗K can be represented in the form (6), i.e.,

f(x)− p∗K = q0(x) +
r∑
i=1

gi(x)qi(x)

for a block circulant SOS polynomial q0(x) of degree at most 2N , and some block circulant
SOS polynomials qi(x) of degree at most 2(N − w̃i), then

min (Ql0,l1,...,lr
N )∗ = p∗K = max (Ql0,l1,...,lr

N )

and y∗ is a global minimizer of (Ql0,l1,...,lr
N )∗.

Proof. (a) Let x∗ be a global optimal solution of (PK), and

y∗ = [x∗1, . . . , x
∗
n, (x

∗
1)

2, x∗1x
∗
2, . . . , (x

∗
n)2, . . . , (x∗1)

2N , . . . , (x∗n)2N ]T.

Then,Ml0
N(y∗) = foldl0(y

∗)∗ (foldl0(y
∗))T,Mli

N−w̃i(giy
∗) = gi(x

∗)foldli (y∗)∗ foldli (y∗)T , i =
1, . . . , r are semidefinite tensors. Moreover, since bα are the coefficients corresponding to
the monomials xα,

∑
0<α≤2N bαy

∗
α is equal to p∗K . Therefore, y∗ is a feasible solution of

(Ql0,l1,...,lr
N )∗ with the objective function value p∗K , hence, inf (Ql0,l1,...,lr

N )∗ ≤ p∗K .
Now, for fixed l0, l1, . . . , lr, we consider any N ′ ≥ N such that s(N) = m0l0, s(N −

w̃i) = mili and s(N ′) = m′0l0, s(N
′ − w̃i) = m′ili. In this case, since s(N ′) − s(N) and

s(N ′−w̃i)−s(N−w̃i) obviously have factors l0 and li, respectively, it is possible to represent
Ml0

N(y) and Mli
N−w̃i(giy) to be subtensors of Ml0

N ′(y) and Mli
N ′−w̃i(giy), respectively, by

arranging the monomial vectors appropriately when creating the T-SDP relaxation problem.
Specifically, if Ml0

N ′(y) �T O and Mli
N ′−w̃i(giy) �T O, then Ml0

N(y), Mli
N−w̃i(giy) can be

formed such thatMl0
N(y) �T O,Mli

N−w̃i(giy) �T O, respectively (the details are described

in the subsequent discussion and Example 15). Thus, for any solution y of (Ql0,l1,...,lr
N ′ )∗, the

adequate truncated vector y′ is a feasible solution of (Ql0,l1,...,lr
N )∗. Since 2N ′ ≥ 2N ≥ d, bα

corresponding to |α| >
(
n+d
d

)
is 0, therefore,

∑
0<|α|≤2N bαyα =

∑
0<|α|≤2N ′ bαy

′
α holds. Then

the objective value in the feasible solution y of (Ql0,l1,...,lr
N )∗ is equal to that in the feasible

solution y′ of (Ql0,l1,...,lr
N ′ )∗. Therefore, inf(Ql0,l1,...,lr

N ′ )∗ ≥ inf (Ql0,l1,...,lr
N )∗ for N ′ ≥ N .

From Assumption 11,

f(x)− p∗K + ε = q0(x) +
r∑
i=1

gi(x)qi(x),

where q0(x) is an l0-block circulant SOS polynomial of degree 2N and qi(x) is an li-block
circulant SOS polynomials of degree 2(N − w̃i). In addition, from the definition of the
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block circulant SOS polynomial, there exist t0 and tk, k = 1, . . . , r, q0, and qi that can be
expressed as

q0(x) =

t0∑
j=1

l0∑
k=1

(
(u0jk)

T[x]N
)2

qi(x) =

ti∑
j=1

li∑
k=1

(
(uijk)

T[x]N−w̃i
)2
, i = 1, . . . , r.

We define

Z0 := bcirc−1l0 (

t0∑
j=1

l0∑
k=1

u0jk(u
0
jk)

T), Z i := bcirc−1li (

ti∑
j=1

li∑
k=1

uijk(u
i
jk)

T), i = 1, . . . , r.

Then, from Theorem 5, we have Z0,Zk �T O. Since

f(x)− p∗K + ε = q0(x) +
r∑
i=1

gi(x)qi(x)

=

〈
t0∑
j=1

l0∑
k=1

u0jk(u
0
jk)

T, [x]N [x]TN

〉
+

r∑
i=1

gi(x)

〈
ti∑
j=1

li∑
k=1

uijk(u
i
jk)

T, [x]N−w̃i [x]TN−w̃i

〉

=
〈
Z0,X 0 ∗ X T

0

〉
+

r∑
i=1

gi(x)
〈
Z i,X i ∗ X T

i

〉
,

holds from Theorem 12, (Z0,Z1, . . . ,Zr) is a feasible solution of (Ql0,l1,...,lr
N ) and [Z0](1,1,1) +∑

k[Zk](1,1,1) = −(p∗K − ε). Thus, we obtain

p∗K − ε ≤ sup(Ql0,l1,...,lr
N ) ≤ inf (Ql0,l1,...,lr

N )∗ ≤ p∗K . (13)

Next, we prove that there is no duality gap between (Ql0,l1,...,lr
N ) and its dual (Ql0,l1,...,lr

N )∗

for any N such that N ≥ N0 where N0 is an initial relaxation level. Let µ be a probability
measure with uniform distribution in K, which has a strictly positive density f with respect
to the Lebesgue measure and satisfies that

yα =

∫
xαdµ < +∞, for all α such that 0 ≤ |α| ≤ 2N0.

Then, from the discussion in Theorem 6 in [32], it follows that Ml0
N(yµ) �T O and

Mli
N−w̃i(giyµ) �T O, i = 1, . . . , r for yµ = {yα}, which is a feasible interior point of

(Ql0,l1,...,lr
N )∗. In addition, (Ql0,l1,...,lr

N )∗ is bounded below by (13). By strong duality of
T-SDP in Theorem 6, this indicates that (Ql0,l1,...,lr

N ) is solvable, together with (Ql0,l1,...,lr
N ) is

feasible, and there is no duality gap between (Ql0,l1,...,lr
N ) and (Ql0,l1,...,lr

N )∗.
(b) If f(x)− p∗K can be expressed as in (6), then we can construct matrices Z0 �T O,

Z i �T O, i = 1, . . . , r to be a feasible solution of (Ql0,l1,...,lr
N ) whose objective value is

−[Z0](1,1,1)−
∑

k[Zk](1,1,1) = p∗K with polynomials q0(x) and qi(x) of degree at most 2N and
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2(N − w̃i), respectively, as in the proof of (a). As a result, from p∗K ≤ sup(Ql0,l1,...,lr
N ) ≤

inf (Ql0,l1,...,lr
N )∗ ≤ p∗K , we have max(Ql0,l1,...,lr

N ) = p∗K = min (Ql0,l1,...,lr
N )∗, and (Z0,Z1, . . . ,Zk)

is an optimal solution of (Ql0,l1,...,lr
N ). Furthermore, since bα are the coefficients corresponding

to each monomial, we clearly see that y∗ is a global optimal solution of (Ql0,l1,...,lr
N )∗. �

For any two third-order tensors A ∈ Rm×n×l and B ∈ Rm′×n′×l, A is called a subtensor
of B if each frontal slice A(i) of A is a principal submatrix of each frontal slice B(i) of B,
respectively.

We illustrate the proof of (a) in Theorem 14 with the following examples.

Example 15. We let n = 2, the relaxation level N = 2 and N ′ = 3. We fix l0 = 2.

In this case, s(N) = 6. We derive T-SDP relaxation by a monomial vector

[x]2 = [1, x1, x2, x
2
1, x1x2, x

2
2]

T.

Then M2
2(y) is a third-order tensor of size 3× 3× 2 whose frontal slices are given by

M2
2(y)(1) =

 1 + y40 y10 + y31 y01 + y22
y10 + y31 y20 + y22 y11 + y13
y01 + y22 y11 + y13 y02 + y04

 , M2
2(y)(2) =

 2y20 y11 + y30 y02 + y21
y11 + y30 2y21 2y12
y21 + y02 2y12 2y03

 .
With s(N ′) = 10, T-SDP relaxation can be derived using a monomial vector

[x]3 = [1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2]

T.

Then, M2
3(y) is a third-order tensor of size 5× 5× 2 whose frontal slices are given by

M2
3(y)(1) =


1 + y04 y10 + y32 y01 + y23 y20 + y14 y11 + y05
y10 + y32 y20 + y60 y11 + y51 y30 + y42 y21 + y33
y01 + y23 y11 + y51 y02 + y42 y21 + y33 y12 + y24
y20 + y14 y30 + y42 y21 + y33 y40 + y24 y32 + y15
y11 + y05 y21 + y33 y12 + y24 y31 + y15 y22 + y06

 ,

M2
3(y)(2) =


2y02 y12 + y30 y03 + y21 y12 + y22 y30 + y13

y12 + y30 2y40 2y31 y22 + y50 y13 + y42
y03 + y21 2y31 2y22 y13 + y41 y04 + y32
y12 + y22 y22 + y50 y13 + y42 2y32 2y23
y03 + y13 y13 + y42 y04 + y32 2y23 2y14

 .

Obviously,M2
2(y) is not a subtensor ofM2

3(y). However, if we derive the T-SDP relaxation
problem by a monomial vector

[x]3 = [1, x1, x2, x
3
1, x

2
1x2, x

2
1, x1x2, x

2
2, x1x

2
2, x

3
2]

T,
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then each frontal slice of M2
3(y) is given by

M2
3(y)(1) =


1 + y40 y10 + y31 y01 + y22 y30 + y32 y21 + y23
y10 + y32 y20 + y22 y11 + y13 y40 + y23 y31 + y14
y01 + y22 y11 + y13 y02 + y04 y31 + y14 y22 + y05
y30 + y32 y40 + y23 y31 + y14 y24 + y60 y51 + y15
y21 + y23 y31 + y14 y22 + y05 y51 + y15 y42 + y06

 ,

M2
3(y)(2) =


2y20 y11 + y30 y02 + y21 y12 + y50 y03 + y41

y11 + y30 2y21 2y12 y22 + y41 y13 + y32
y02 + y21 2y12 2y03 y13 + y432 y04 + y23
y12 + y50 y22 + y41 y13 + y32 2y42 2y33
y03 + y41 y13 + y32 y04 + y23 2y33 2y24

 ,
where M2

2(y) is a subtensor of M2
3(y).

Example 15 illustrates that for any N and N ′ such that N ′ ≥ N , if l0 is fixed, Ml0
N(y)

can be formed to be a subtensor of Ml0
N ′(y) by arranging the monomial vector [x]N ′ for

the derivation of T-SDP relaxation with relaxation level N ′ such that the monomial tensor
foldl0([x]N) is a subtensor of foldl0([x]N ′). Similarly, if li corresponding to each constraint
is fixed,Mli

N(giy) can be formed to be a subtensor ofMli
N ′(giy) by appropriately arranging

the monomial vectors [x]N ′−w̃i . For example, consider a constrained POP in two variables
(n = 2) with the objective function of degree d = 6, the number of constraints r = 2,
and degree wi = 1, i = 1, 2 for each constraint. Let (Q5,2,2

N )∗ denote the T-SDP relaxation
obtained with the relaxation level N = 3. Then s(N) = 10, s(N − w̃i) = 6, l0 = 5 and
li = 2. Furthermore, if the relaxation level N ′ = 4, then s(N ′) = 15, s(N ′ − w̃i) = 10, and
if m′0 = 3, m′i = 5, then s(N ′) = m′0l0 and s(N ′ − w̃i) = m′ili. Thus, we can also derive the
T-SDP relaxation with l0 = 5 and li = 2, denoted by (Q5,2,2

N ′ )∗. In (a) of Theorem 14, we
have claimed that the relation inf(Q5,2,2

N )∗ ≤ inf(Q5,2,2
N ′ )∗ holds. Conversely, if N ′′ = 5, then

s(N ′′) = 21 and s(N ′′ − w̃i) = 15, but there are no positive integers m′′0 and m′′i such that
s(N ′′) = m′′0l0 and s(N ′′ − w̃i) = m′′i li. Therefore, any T-SDP relaxation with relaxation
level N ′′ = 5 has no relation to (Q5,2,2

N )∗ or (Q5,2,2
N ′ )∗. Clearly, if we fix l0 = 1 and li = 1,

then inf(Q1,1,1
N )∗ ≤ inf(Q1,1,1

N ′ )∗ for any N ′ ≥ N .
We have mentioned that “if Ml0

N ′(y) �T O and Mli
N ′−w̃i(giy) �T O, then Ml0

N(y),

Mli
N−w̃i(giy) can be constructed such that Ml0

N(y) �T O, Mli
N−w̃i(giy) �T O, respec-

tively” in the proof of (a) of Theorem 14. As discussed earlier,Ml0
N(y),Mli

N−w̃i(giy) can be

constructed to be subtensors ofMl0
N ′(y),Mli

N ′−w̃i(giy), respectively, in the T-SDP relaxation
with relaxation level N such that N ′ ≥ N , by appropriately arranging the monomial vectors.
Therefore, from the definition of subtensor, bcirc

(
Ml0

N(y)
)

and bcirc
(
Mli

N−w̃i(giy)
)

are the

principal submatrices of bcirc
(
Ml0

N ′(y)
)

and bcirc
(
Mli

N ′−w̃i(giy)
)
, respectively. Now, if we

assume Ml0
N ′(y) �T O and Mli

N ′−w̃i(giy) �T O, then we obtain bcirc
(
Ml0

N ′(y)
)
� O,

bcirc
(
Mli

N ′−w̃i(giy)
)
� O from Theorem 5. A matrix A is positive semidefinite if and only

if the determinants of all principal minors of A are nonnegative, so that the determinant
of all principal minors of bcirc

(
Ml0

N(y)
)
, bcirc

(
Mli

N−w̃i(giy)
)

also are nonnegative, respec-

tively. Therefore, bcirc
(
Ml0

N(y)
)
� O and bcirc

(
Mli

N−w̃i(giy)
)
� O. Thus, by Theorem 5,
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Ml0
N(y) � O and Mli

N−w̃i(giy) � O follows.

4 Numerical experiments

We compare the basic SOS relaxation [8] with the T-SDP relaxation proposed in Section 3.1
for constrained POPs with ten test problems and show that the proposed T-SDP relaxation
is more efficient than the basic SOS relaxation. The test problems are presented in detail
in Appendix, some of which were from [3, 33, 12], and the number of variables of the test
problems ranges from 2 to 19 and the degree from 2 to 40, as shown in Table 2.

For the experiments, the basic SOS relaxation method and the proposed block circulant
SOS relaxation method were applied to obtain the SDP relaxation problem and the T-SDP
relaxation problem, respectively. Then, the T-SDP relaxation problem was transformed into
an equivalent SDP problem as described in Section 2.3. For computation, we used Julia
1.7.3 with Mosek [14] on a PC (Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, 16GB, windows
10 Pro).

Problems 1 [3], 2, 3, 4 [33, Example 2] in Section 4.1 demonstrate that the block circulant
SOS relaxation takes shorter computational time than the basic SOS relaxation method.
Problem 5 [12, st bpaf1b] illustrates a case where the block circulant SOS relaxation problem
is not feasible. With problem 6 [3, Problem 2.9.1], we demostrate that the block circulant
SOS relaxation can be an alternative approach to the basic SOS relaxation for the SDP re-
laxation problem with numerical instability, which can be viewed as an additional benefit of
the proposed T-SDP relaxation to its capability of handling larger-sized problems described
in Section 3.1. For problem 7 [12, st e34], we compare the basic SOS relaxation with the
proposed block circulant SOS relaxation for large size problem. Problems 8, 9, 10 show the
numerical efficiency of the proposed T-SDP relaxation.

Table 2: Test problems. n: the number of variable, d: the degree of f , maxwi: the maximum
of the degree of constraints, N : the relaxation level used to generate the SDP relaxation
and the T-SDP relaxation, s(N) =

(
n+N
N

)
, and s(N − w̃i) =

(
n+N−w̃i
N−w̃i

)
.

No. n d maxi{wi} N s(N) s(N − w̃i)

1 [3] 10 2 1 2 66 11
2 2 40 2 20 231 210
3 2 20 2 10 281 220
4 [33, Example 2] 2 58 2 29 465 435
5 [12, st bpaf1b] 10 2 1 3 286 66
6 [3, Problem 2.9.1] 3 1 2 6 84 56
7 [12, st e34] 6 1 1 5 462 210
8 11 6 2 3 364 78
9 19 4 2 2 210 20
10 19 4 2 2 210 20
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4.1 Numerical results

Tables 3 and 4 report the numerical results on problems 1-5 and 6-10, respectively. In
the tables, “Relax.” denotes the SDP relaxation or T-SDP relaxation. In this subsection,
the SDP relaxation and the T-SDP relaxation correspond to the basic SOS relaxation and
the proposed block circulant SOS relaxation, respectively. “Pn” (pattern) describes the
block sizes, more precisely, the sizes are arranged with the following columns “(m0, l0)” and
“(mi, li)”. For instance, (m0, l0) = (66, 1) and (m0, l0) = (11, 1) indicates that φ0 ∈ Σ1[x]2N
and φi ∈ Σ1[x]2(N−w̃i) in the feasible set Γ of the relaxation problem (P̃K) which results in
the T-SDP relaxation equivalent to the basic SOS relaxation. For (m0, l0) = (11, 6) and
(mi, li) = (11, 1), we have φ0 ∈ Σ6[x]2N and φi ∈ Σ1[x]2(N−w̃i) in Γ. More precisely, the
6-block circulant SOS polynomial is employed to φ0 and an SOS polynomial to φi. Tables 3
and 4 also include the numbers and sizes of positive semidefinite matrices based on Table 1.
“# of var.” and “# of nnz” indicate the number of decision variables in the variable matrix
and the number of nonzero elements of the SDP to be solved, respectively, and “Opt.val”
denotes its optimal value. “CPU1”, “CPU2”, and “Tot.” denote the time for generating
the SDP problem to be solved, the computational time for solving the SDP problem, which
are added to show the total time in seconds, respectively.

4.1.1 Problem 1

In Table 3, we see that the number of decision variables for the proposed T-SDP relaxation
method is 1804 is smaller than 3003 for the SDP relaxation method, resulting in shorter
CPU1 (the computational time to generate the SDP problem). However, the T-SDP relax-
ation took slightly longer computation time in CPU2. This has been caused by the larger
number of nonzero elements shown in the column of “# of nnz.”. Nevertheless, we can see
in the “Tot.” column that the T-SDP relaxation consumed shorter overall computing time.

4.1.2 Problem 2

For problem 2, Table 3 displays the results by the SDP relaxation (Pn 1) and two T-SDP
relaxations (Pn 2 and Pn 3). The difference between Pn 2 and Pn 3 is that the block
circulant SOS relaxation was applied only to φ0 for T-SDP (Pn 2) in the feasible set Γ of
(P̃K) whereas the block circulant SOS relaxation was applied to both φ0 and φi for T-SDP
(Pn 3).

We observe in Table 3 that the number of decision variables is significantly reduced to
97464 and 53364 in T-SDP (Pn 2) and T-SDP (Pn 3), respectively, from 115416 in the SDP
relaxation (Pn 1). As a result, the time for generating the SDP problem to be solved for
both T-SDP relaxations is reduced. However, the computational cost of solving the resulting
T-SDP (Pn 2) is slightly higher than the SDP relaxation for the same reason mentioned in
problem 1. On the other hand, the number of decision variables in T-SDP (Pn 3) is much
smaller than that in T-SDP (Pn 2), and thus the computational time for solving T-SDP
(Pn 3) was shorter than that for the SDP relaxation, even when the number of nonzero
elements is taken into account. Hence, the total time for both T-SDP (Pn 2) and T-SDP
(Pn 3) is less that that of the SDP relaxation (Pn 1).
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4.1.3 Problem 3

The results for problem 3 show that the number of variables in the T-SDP relaxations is
less than that of the SDP relaxation. Consequently, it took less time to solve the T-SDP
relaxations than the SDP relaxation as shown in the last column. As the number of variables
in the T-SDP relaxations decreases, the number of nonzero elements increases from 662596
in the SDP relaxation to 2649828 for T-SDP in the last row. The total times for all T-SDP
relaxations are shorter than that for the SDP relaxation.

4.1.4 Problem 4

As shown in the column CPU1 on problem 4, generating T-SDP relaxation problems con-
sumed shorter computational time than the SDP relaxation. Also, two T-SDP relaxations,
(Pn 2) and (Pn 3), spent less computational time than that of the SDP relaxation, despite
the increase in the number of nonzero elements.

4.1.5 Problem 5

T-SDP relaxation problems may become infeasible depending on the values of mi and li, as
illustrated with this problem. In Table 3, the T-SDP relaxation (Pn 4) is obtained by using
the 2-block circulant SOS polynomial for φ0 and the 2-block circulant SOS polynomial for φi
which corresponds to the constraints for upper and lower bounds on each variable x1, . . . , x10,
and SOS polynomials to φi which is associated with the other inequality constraints in the
feasible set Γ. This is described as (66, 1) and (33, 2) in the (mi, li) column.

As discussed in Section 3, Assumption 11 must hold for the T-SDP relaxation problem
to have a feasible solution, but here we see that Assumption 11 no longer holds. The T-SDP
relaxation (Pn 4) becomes infeasible, as shown in the last row of Table 3, when the number
of blocks l0 or li is increased in the block circulant SOS relaxation. However, the T-SDP
relaxations (Pn 2) and (Pn 3) are still feasible and computationally less expensive than the
SDP relaxation.

4.1.6 Problem 6

We observe the effectiveness of the T-SDP relaxation methods with this problem. It is known
that the optimal value obtained by the SDP relaxation with relaxation order N = 4 is −4 [9].
The optimal value with N = 6, however, is −3.99972, which may contain numerical error.
If the basic SOS relaxations with increasing the degree of the SOS polynomials is employed,
then the optimal value by the SDP relaxation with a larger relaxation level approaches the
optimal value of the original POP. We mention that the results in Table 4 do not follow the
theoretical result, which may be caused by the numerical instability of the SDP relaxation
problem. In such cases, the T-SDP relaxation is still effective, and by changing parameters
such as l0 and li, another T-SDP relaxation problem can be generated. In particular, the
smaller positive semidefinite matrices may improve the numerical accuracy.
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4.1.7 Problem 7

The results by the T-SDP relaxation (Pn 3) and (Pn 4) were obtained by applying the
2-block and 11-block circulant SOS polynomial, respectively. The 2-block circulant SOS
polynomial for φi corresponds to the constraints for upper and lower bounds on each variable
x1, . . . , x6, and the SOS polynomial for φi is associated with the other inequality constraints
in the feasible set K of (P̃K), as in problem 5.

In the rows for problem 7 in Table 4, we see that the number of variables in the T-SDP
relaxation is smaller than that of the SDP relaxation, which results in faster computational
time for CPU1 in all T-SDP cases. In particular, when the block circulant SOS polynomial
was used to φi in the feasible set Γ, a significant reduction in the number of decision variables
and CPU1 can be observed. For CPU2, as in the previous problems, there exists a trade-off
between the increase in the number of nonzero elements and the decrease in the number of
decision variables. Hence, increasing the parameters l0 and li does not necessarily reduce the
computational time. We observe that all T-SDP relaxations outperform the SDP relaxation
in terms of the total time.

4.1.8 Problem 8

We see that the T-SDP relaxation efficiently provides an accurate optimal value for large-
sized problems for this problem. The number of decision variables in the T-SDP relaxation
is smaller that that of the SDP relaxation, which leads to shorter CPU1 time in all cases.
In particular, CPU1 consumed by the T-SDP relaxation (Pn 3) is less than 1

3
of that of the

SDP relaxation. For CPU2, only the T-SDP relaxation (Pn 2) took less time compared to
the SDP relaxation, but all T-SDP relaxations outperform the SDP relaxation in terms of
the total time.

4.1.9 Problem 9

We discuss the performance of the T-SDP relaxation with two similar problems, 9 and 10.
The objective functions of two problems are similar in that they have the same number of
variables n = 19 and degree d = 4. The constraints of the problems are equivalent. The
T-SDP relaxation becomes infeasible for problem 9, while it provides an accurate optimal
value for problem 10.

In Table 4, the optimal value of the T-SDP relaxation (Pn 2) is smaller than that of the
SDP relaxation, indicating that a weak lower bound was attained. In addition, the T-SDP
relaxation (Pn 3) and (Pn 4) were infeasible. Thus, the T-SDP relaxation may not work
effectively for some problems, especially for the cases where the objective function does not
satisfy Assumption 11 on the block circulant SOS polynomials.

4.1.10 Problem 10

We discuss cases where the T-SDP relaxation performs well for the problems with the same
number of variables and degree as problem 9. The objective function of problem 10 contains
a block circulant SOS polynomial.
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In the results for problem 10 in Table 4, we see that the performance of the T-SDP
relaxation is better than the SDP relaxation, unlike problem 9. For CPU1, all T-SDP
relaxations spent shorter computational time than the SDP relaxation. Furthermore, all
T-SDP relaxations perform superior to the SDP relaxation for CPU2.

5 Concluding remarks

We have proposed a relaxation method for constrained POPs using block circulant SOS
polynomials. The proposed block circulant SOS relaxation method is an extension of the
SOS relaxation method proposed by Parrilo [18], and also an extension of T-SDP relaxation
for unconstrained POPs [33] in the sense that it can be transformed into an equivalent
T-SDP using the third-order tensor. Theoretical analysis of the feasibility and global op-
timality of the T-SDP relaxation problem have been studied, and the convergence of the
sequence of T-SDP relaxations with increasing the relaxation level has been established.

The T-SDP relaxation method has shown to perform superior in computation to the
SDP relaxation method from the basic SOS relaxation as it induces smaller-sized problem.
The computational results in Section 4 show that the T-SDP relaxation method provides the
same quality of optimal values as the SDP relaxation method with shorter computational
time under Assumption 11.

For future study, it will be interesting to exploit sparsity for further improving the nu-
merical efficiency. As in [27], the chordal sparsity of the block circulant SOS relaxation
method can be developed for further reducing the computational cost. Another issue is to
develop an SDP solver that directly solves T-SDP, instead of converting the T-SDP relax-
ation to an equivalent SDP relaxation. Then the computational time for the transformation
can be saved. However, as mentioned earlier, the advantage of reducing the size of the
relaxation problem when transforming from T-SDP to SDP may not be achieved in some
case, which may require careful investigation.
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Appendix
Problem 1 [3]

maximize
9∑
i=1

xixi+1 +

9∑
i=1

xixi+2 + x1x7 + x1x9 + x1x10 + x2x10 + x4x7

subject to

10∑
i=1

xi = 1,

xi ≥ 0, i = 1, . . . , 10.

Problem 2

minimize x401 + x181 x202 + x141 x242 + x261 x82 + x221 x122 + x261 x42

+ x221 x82 + x181 x82 + x141 x122 + x21x
20
2 + x201 + x121 x22 + x81x

6
2 + x22

subject to x1, x2 ∈ {−1,+1}

Problem 3

minimize x201 + x22x
2
3 − 2.0x2x

3
3 + x43 − 4.0x2x

2
3 + 4.0x33 + 4.0x23

subject to x1, x2, x3 ∈ {−1,+1}

Problem 4 [33, Example 2]

maximize x101 x42 + x81x
12
2 + x241 x22 + x241 x62 + x321 x22 + x81x

28
2 + x281 x122

+ x101 x322 + x421 x42 + x301 x182 + x201 x302 + x121 x402 + x61x
48
2 + x21x

54
2 + x582

subject to x21 + x22 = 1.

Problem 5 [12, st bpaf1b]

minimize x1x6 + 2x1 − 2x6 + x2x7 + 4x2 − x7 + x3x8

+ 8x3 − 2x8 + x4x9 − x4 − 4x9 + x5x10 − 3x5 + 5x10

subject to −8x1 − 6x3 + 7x4 − 7x5 ≤ 1,

−6x1 + 2x2 + 3x3 − 9x4 − 3x5 ≤ 3,

6x1 − 7x3 − 8x4 + 2x5 ≤ 5,

−x1 + x2 − 8x3 − 5x5 ≤ 4,

4x1 − 7x2 + 4x3 + 5x4 + x5 ≤ 0,

5x7 − 4x8 + 9x9 − 7x10 ≤ 0,

7x6 + 4x7 + 3x8 + 7x9 + 5x10 ≤ 7,

6x6 + x7 − 8x8 + 8x9 ≤ 3,

−3x6 + 2x7 + 7x8 + x10 ≤ 6,

−2x6 − 3x7 + 8x8 + 5x9 − 2x10 ≤ 2,

0 ≤ xi ≤ 20, i = 1, . . . , 10.

Problem 6 [3, Problem 2.9.1]

minimize − 2x1 + x2 − x3

subject to xTBTBx− 2rTBx+ ||r||2 − 0.25||b− v||2 ≥ 0,

x1 + x2 + x3 ≤ 4,

x1 ≤ 2,

x3 ≤ 3,

3x2 + x3 ≤ 6,

xi ≥ 0, i = 1, . . . , 3.
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Here,

B =

 0 0 1
0 −1 0
−2 1 −1

 , b =

 3
0
4

 , v =

 0
−1
−6

 , r =

 1.5
−0.5
−5

 .
Problem 7 [12, st e34]

minimize 4.3x1 + 31.8x2 + 63.3x3 + 15.8x4 + 68.5x5 + 4.7x6

subject to 17.1x1 − 169x1x3 + 204.2x3 − 3580x3x5 + 623.4x5 − 3810x4x6

+212.3x4 + 1495.5x6 − 18500x4x6 + 38.2x2 ≥ 4.97,

17.9x1 − 139x1x3 + 113.9x3 − 2450x4x5 + 169.7x4 + 337.8x5

−16600x4x6 + 1385.2x6 − 17200x5x6 + 36.8x2 ≥ −1.88,

26000x4x5 − 70x4 − 819x5 − 273x2 ≥ −69.08,
159.9x1 − 14000x1x6 + 2198x6 − 311x2 + 587x4 + 391x5 ≥ −118.02,

0 ≤ x1 ≤ 0.31,

0 ≤ x2 ≤ 0.046,

0 ≤ x3 ≤ 0.068,

0 ≤ x4 ≤ 0.042,

0 ≤ x5 ≤ 0.028,

0 ≤ x6 ≤ 0.0134.

Problem 8

minimize
x ∈ R11

∑
0<α≤6

rand(0 : 1)αx
α

subject to

11∑
i=1

x2i = 1,

−1 ≤ xi ≤ 1, i = 1, . . . , 11,

where rand(0 : 1)α is a random number of 0 or 1.
Problem 9

minimize
x ∈ R19

∑
0<α≤4

rand(0 : 1)αx
α

subject to

19∑
i=1

x2i = 1,

−1 ≤ xi ≤ 1, i = 1, . . . , 19,

where rand(0 : 1)α is a random number of 0 or 1 as in Problem 8.
Problem 10

minimize x41 + x21x
2
12 + 2.0x21x12x17 + x21x

2
17 + 2.0x1x2x3x12 + 2.0x1x2x3x17 + x22x

2
3

+ x22x
2
4 + x22x

2
15 + 2.0x2x

2
3x15 + 2.0x2x3x7x15 + x43 + 2.0x3x7 + x23x

2
7 + x23x

2
8

+ x23x
2
19 + 2.0x3x4x8x19 + 2.0x3x4x12x19 + x24x

2
8 + 2.0x24x8x12 + x24x

2
12 + x24x

2
13

+ x25x
2
9 + 2.0x25x9x14 + 2.0x25x9x18 + x25x

2
14 + 2.0x25x14x18 + x25x

2
18 + x25x

2
19

+ x26x
2
16 + 2.0x6x7x8x16 + 2.0x6x7x12x16 + x27x

2
8 + 2.0x27x8x12 + x27x

2
12 + x27x

2
13

+ x28x
2
12 + 2.0x28x12x17 + x28x

2
17 + 2.0x8x9x10x12 + 2.0x8x9x10x17 + x29x

2
10

+ x29x
2
11 + x210x

2
12 + 2.0x210x12x17 + x210x

2
17 + 2.0x10x11x

2
12 + 2.0x10x11x12x17

+ x211x
2
12 + x211x

2
13 + x212x

2
16 + 2.0x12x13x14x16 + 2.0x12x13x16x18 + x213x

2
14

+ 2.0x213x14x18 + x213x
2
18 + x213x

2
19 + x215x

2
19 + 2.0x15x

2
17x19 + 2.0x15x18x

2
19

+ x417 + 2.0x217x18x19 + x218x
2
19 + x419 + x211 + 2.0x11x16 + x216 + 2.0x11 + 2.0x16

subject to
19∑
i=1

x2i = 1,

−1 ≤ xi ≤ 1, i = 1, . . . , 19,
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