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Abstract

In this paper, we consider copositive cones over symmetric cones and show that
they are never facially exposed when the underlying cone has dimension at least 2.
We do so by explicitly exhibiting a non-exposed extreme ray. Our result extends
the known fact that the cone of copositive matrices over the nonnegative orthant
is not facially exposed in general.
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1 Introduction

Let K be a closed cone contained in a finite-dimensional real inner product space. A self-
adjoint linear transformation is said to be copositive over K if the associated quadratic
form is nonnegative over K. We refer to the cone of self-adjoint linear transformations
that are copositive over K as the copositive cone over K.

If K is the usual nonnegative orthant Rn
+, then the corresponding copositive cone

reduces to the cone of copositive matrices in the usual sense [33]. We call the copositive
cone over the nonnegative orthant the standard copositive cone. Standard copositive
cones have been used to reformulate various NP-hard problems as conic linear pro-
grams [2, 4].

Copositive cones over sets beyond nonnegative orthants enable us to convert more
NP-hard problems into equivalent conic linear programs [1, 5, 6]. Previous studies
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have investigated the geometry [12, 13], approximations [6, 18, 25, 26, 38], and the
membership problem [27] for general copositive cones and their duals.

In this paper, we investigate the facial structure, and in particular, the facial ex-
posedness of copositive cones over symmetric cones. Faces and facially exposed convex
sets are basic notations in convex analysis [31, Section 18]. In particular, in the con-
text of optimization, facial exposedness is important for several reasons. First, it arises
when ensuring the invariance of strict complementarity for conic linear programming
under duality [7, Theorem 1]. Second, facial exposedness is a necessary condition for
a number of useful stronger exposure properties such as niceness [28, Theorem 3] (or
facial dual completeness [32]), tangential exposedness [32, Proposition 2.2], amenabil-
ity [19, Proposition 13], and projectional exposedness [3], [36, Corollary 4.4]. See also
[20] for a discussion on some of those properties. It is also a necessary condition for cer-
tain algebraic properties such as spectrahedrality [29, Corollary 1] and hyperbolicity [30,
Theorem 23]. See also [20, Corollary 3.5] and [21, Theorem 1.1] for the connection
between these algebraic properties and amenability. In this way, proving that a cone is
not facially exposed provides an easy way to certify that it is neither spectrahedral nor
hyperbolic.

The facial structure of the standard copositive cone, although not completely un-
derstood, has been a subject of several papers. Findings up to around the year 2021
are covered in the book [33] and references therein. See [14–17, 23, 24] for more recent
results. Of particular importance is that the standard copositive cone of order n ≥ 2
has non-exposed extreme rays generated by the matrix eie

⊤
i for each i = 1, . . . , n [8,

Theorem 4.4], where ei is the vector with the ith element 1 and the others 0. However,
to the best of our knowledge, there is no systematic study on the facial structure of
copositive cones over symmetric cones other than the nonnegative orthant.

Let K be a symmetric cone of dimension at least 2. We will show that for every c
that generates an extreme ray of K, the corresponding rank-1 tensor c⊗ c generates a
non-exposed extreme ray of the copositive cone over K. In particular, the copositive
cone over K is never facially exposed. Our result generalizes [8, Theorem 4.4] to the
case of general symmetric cones. We remark, however, that the proof will not be a
straightforward extension of that of [8, Theorem 4.4].

The organization of this paper is as follows. In Section 2, we introduce and recall
some concepts used in this paper, including copositive cones and symmetric cones. In
Section 3, we provide a non-exposed extreme ray of copositive cones over symmetric
cones.
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2 Preliminaries

2.1 Notation

Let R be the set of real numbers. For an element x in a finite-dimensional real vector
space, we define

Rx := {αx | α ∈ R},
R+x := {αx | α ≥ 0}.

For a subset S of a finite-dimensional real inner product space V , we use spanS and
S⊥ to denote the linear span of S and the space of x ∈ V such that the inner product
between x and y is 0 for all y ∈ S, respectively. For a linear mapping f from a finite-
dimensional real inner product space to another one, we denote by f ∗ its adjoint. For
two functions f and g, we write f ◦ g for the composition of f and g. Note that the
product of Jordan algebras introduced in Section 2.4 is also denoted by the symbol ◦.

2.2 Basic properties of linear mappings

Throughout this subsection, let (V, •) be a finite-dimensional real inner product space
with an orthogonal direct sum decomposition

V =
k⊕

l=1

Vl. (2.1)

Let End(V) be the space of linear transformations on V. The space End(V) is equipped
with the trace inner product denoted by 〈·, ·〉. We define S(V) to be the subspace of
End(V) whose elements are self-adjoint.

For each i = 1, . . . , k, let PVi
: V → Vi be the orthogonal projection onto Vi, i.e.,:

PVi
: V =

⊕k
l=1Vl −→ Vi.

∈ ∈∑k
l=1 xl 7−→ xi

Note that
k∑

l=1

PVl
(x) = x (2.2)

holds for all x ∈ V. In addition, the adjoint P∗
Vl
: Vl → V is the inclusion mapping. For

A ∈ S(V) and for each i, j = 1, . . . , k, we define Ai,j := PVi
◦ A|Vj

, which is a linear
mapping from Vj to Vi.

The following two lemmas justify the notation Ai,j for a self-adjoint linear transfor-
mation A.
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Lemma 2.1. Let A ∈ S(V). For each i, j = 1, . . . , k, Ai,j = (Aj,i)
∗ holds.

Proof. Let xi ∈ Vi and xj ∈ Vj be arbitrary. To prove this lemma, it is sufficient to
show that both xi • Ai,j(xj) and xi • (Aj,i)

∗(xj) agree with xi • A(xj).
First, we have

xi • Ai,j(xj) = xi • PVi
(A(xj)) = xi • A(xj), (2.3)

where we use (2.2) and its orthogonality to derive the second equality.
Second, we have

xi • (Aj,i)
∗(xj) = xj • Aj,i(xi) = xj • A(xi) = xi • A(xj),

where we use the symmetry of the inner product and the definition of the adjoint (Aj,i)
∗

to derive the first equality, the second equality follows for the same reason as in (2.3),
and the third equality holds because of the self-adjointness of A and the symmetry of
the inner product. This completes the proof.

Lemma 2.2. Let A ∈ S(V). For each x ∈ V, we decompose x into
∑k

l=1 xl correspond-
ing to the decomposition (2.1). Then it follows that

x • A(x) =
k∑

i=1

xi • Ai,i(xi) + 2
∑

1≤i<j≤k

xi • Ai,j(xj).

Proof. Since A(x) =
∑k

j=1 A|Vj
(xj), we have

x • A(x) =
k∑

i,j=1

xi • A|Vj
(xj)

=
k∑

i,j=1

xi • (PVi
◦ A|Vj

)(xj)

=
k∑

i,j=1

xi • Ai,j(xj)

=
k∑

i=1

xi • Ai,i(xi) +
∑

1≤i<j≤k

xi • Ai,j(xj) +
∑

1≤j<i≤k

xi • Ai,j(xj), (2.4)

where we use (2.2) and its orthogonality to derive the second equality. The third term
in (2.4) is equal to∑

1≤j<i≤k

xj • (Ai,j)
∗(xi) =

∑
1≤j<i≤k

xj • Aj,i(xi) =
∑

1≤i<j≤k

xi • Ai,j(xj), (2.5)

where the first equality follows from Lemma 2.1. Since (2.5) agrees with the second
term in (2.4), we obtain the desired result.
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Lemma 2.2 implies that for each A ∈ S(V) and for each i, j = 1, . . . , k, Ai,j can
be regarded as the “(i, j)th element” of A when an orthogonal direct sum decom-
position (2.1) is fixed. Therefore, we may write a self-adjoint linear transformation
A ∈ S(V) in the following matrix-like form:

A1,1 A1,2 · · · A1,k

A2,2 · · · A2,k

. . .
...

Ak,k

 , (2.6)

where the strictly lower triangular portion of A can be omitted because of its self-
adjointness. For a subset S in S(Vk), we define

{0} ⊕ S := {P∗
Vk

◦ A ◦ PVk
| A ∈ S} ⊆ S(V). (2.7)

Using the matrix-like notation, we can write the set (2.7) as

0 · · · 0 0

. . .
...

...
0 0

A


∣∣∣∣∣∣∣∣∣ A ∈ S

 .

2.3 Cones and their faces

Let (V, •) be a finite-dimensional real inner product space. A set K ⊆ V is called a
cone if αx ∈ K for all α > 0 and x ∈ K. For a cone K, its dual cone is denoted by K∗

and is the set of x ∈ V such that x • y ≥ 0 for all y ∈ K.
Let K ⊆ V be a closed cone. Then

COP(K) := {A ∈ S(V) | x • A(x) ≥ 0 for all x ∈ K} (2.8)

denotes the copositive cone over K. Clearly, the copositive cone COP(K) is a closed
convex cone. It is known that under the trace inner product induced by •, the dual
cone of (2.8) is

CP(K) = cone({a⊗ a | a ∈ K}), (2.9)

where cone(U) is the convex cone generated by a subset U , see, e.g., [35, Proposition 1
and Lemma 1]. In particular, CP(K) is closed. We also recall that for a, b ∈ V, the
tensor product a ⊗ b corresponds to the linear mapping on V such that (a ⊗ b)(x) =
(b • x)a, for all x ∈ V.

Next, suppose that K is a closed convex cone. A nonempty convex subcone F of K
is called a face of K if for any a, b ∈ K, they belong to F whenever a + b ∈ F. For a
nonzero x ∈ K, if R+x is a face of K, we say that x generates the extreme ray R+x. A
face F of K is said to be exposed if there exists h ∈ K∗ such that F = K ∩ {h}⊥. If all
the faces of K are exposed, then we call K facially exposed.
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2.4 Symmetric cone and Euclidean Jordan algebra

In this subsection, we introduce symmetric cones. We also present Euclidean Jordan
algebras, which are closely related to symmetric cones as mentioned later. The book
written by Faraut and Korányi [9] is a standard textbook on this field, but the papers
written by Faybusovich [10] and Sturm [34] are also good references that are more
focused on optimization aspects.

A closed coneK in a finite-dimensional real inner product space E is called symmetric
if it satisfies the following two conditions:*1

(i) (Self-duality) K∗ = K,

(ii) (Homogeneity) For all x and y belonging to the interior of K, there exists a
bijective linear transformation G ∈ End(E) such that G(K) = K and G(x) = y.

By the self-duality of K, K is full-dimensional in E, i.e., spanK = E.
A Jordan algebra is a finite-dimensional real vector space E equipped with a bilinear

product ◦ : E× E → E satisfying the following two conditions for all x, y ∈ E:

(J1) (Commutativity) x ◦ y = y ◦ x,

(J2) (Jordan identity) x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y).

We assume in this paper that every Jordan algebra (E, ◦) has an identity element,
denoted by e, concerning the product ◦. A Jordan algebra (E, ◦) is Euclidean if there
exists an inner product • : E× E → R satisfying

(J3) (Associativity) (x ◦ y) • z = x • (y ◦ z)

for all x, y, z ∈ E. In this paper, we fix such an associative inner product • and write
a Euclidean Jordan algebra as a triple (E, ◦, •). However, we may merely write E
for (E, ◦, •) if it is clear from the context that E has the Euclidean Jordan algebraic
structure.

Throughout this subsection, let E be a Euclidean Jordan algebra. For convenience,
let x2 := x ◦ x for each x ∈ E. It is known that the cone of squares in E defined as
E+ := {x2 | x ∈ E} is a symmetric cone [9, Theorem III.2.1]. Conversely, for a given
symmetric cone K in a finite-dimensional real inner product space (Ê, •̂), we can define
a bilinear product ◦̂ on Ê, so that (Ê, ◦̂, •̂) is a Euclidean Jordan algebra and K agrees
with the cone Ê+ [9, Theorem III.3.1].

An element c ∈ E is termed an idempotent if c2 = c. Note that any idempotent
c ∈ E belongs to the symmetric cone E+. An idempotent c is said to be primitive if

*1In the book written by Faraut and Korányi [9], symmetric cones are open. In the context of
optimization, however, symmetric cones are often considered closed [27, 34] and we also follow the
latter.
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it is nonzero and cannot be represented as the sum of two nonzero idempotents. Two
idempotents c and d are termed orthogonal if c◦d = 0. The system c1, . . . , cr is called a
Jordan frame if each ci is a primitive idempotent, they are orthogonal to each other with
respect to the product ◦, and

∑r
i=1 ci = e. The value r appearing in a Jordan frame

is called the rank of the Euclidean Jordan algebra and depends only on the algebra [9,
Section III.1].

For an idempotent c ∈ E and λ = 0, 1
2
, 1, we define

E(c, λ) := {x ∈ E | c ◦ x = λx}.

The subspaces E(c, 0) and E(c, 1) are Euclidean Jordan subalgebras of E satisfying
E(c, 0) ◦ E(c, 1) = {0}, see [9, Proposition IV.1.1]. Using the subspaces E(c, λ), the
space E decomposes into the following orthogonal direct sum [9, page 62]:

E = E(c, 0)⊕ E(c, 1
2
)⊕ E(c, 1). (2.10)

We refer to (2.10) as the Peirce decomposition of E with respect to the idempotent c.
Furthermore, we can decompose E more finely. Suppose that the rank of E is r. We fix
a Jordan frame c1, . . . , cr of E and consider the following subspaces of E:

Eii := E(ci, 1) = Rci (i = 1, . . . , r),

Eij := E(ci, 12) ∩ E(cj, 12) (i, j = 1, . . . , r, i 6= j).
(2.11)

Then we can decompose E into the following orthogonal direct sum of the above sub-
spaces [9, Theorem IV.2.1.i]:

E =
⊕

1≤i≤j≤r

Eij. (2.12)

We call (2.12) the Peirce decomposition of E with respect to the Jordan frame c1, . . . , cr.
For each i, j = 1, . . . , r with i 6= j and every x ∈ Eij, we have

x2 = ci ◦ x2︸ ︷︷ ︸
∈Eii

+ cj ◦ x2︸ ︷︷ ︸
∈Ejj

, (2.13)

see [9, Proposition IV.1.1] and its proof.

3 Main result

Lemma 3.1. Let (E, ◦, •) be a Euclidean Jordan algebra. For an idempotent c ∈ E,
consider the Peirce decomposition (2.10) with respect to c. Then {0} ⊕ COP(E(c, 1)+)
is a face of COP(E+).
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Proof. Since COP(E(c, 1)+) is a convex cone, so is {0} ⊕ COP(E(c, 1)+). To prove the
inclusion, let A ∈ {0} ⊕ COP(E(c, 1)+). Then there exists G ∈ COP(E(c, 1)+) such
that A = P∗

E(c,1) ◦ G ◦ PE(c,1). For any x ∈ E+, we decompose it into x = x0 + x1, where

x0 ∈ E(c, 1)⊥ and x1 ∈ E(c, 1). It follows from [19, Proposition 32] that x1 ∈ E(c, 1)+.
Combining it with G ∈ COP(E(c, 1)+) yields

x • A(x) = x • (P∗
E(c,1) ◦ G ◦ PE(c,1))(x)

= x1 • G(x1)

≥ 0,

which implies that A ∈ COP(E+). Therefore, {0}⊕COP(E(c, 1)+) is a convex subcone
of COP(E+).

Let r be the rank of the Euclidean Jordan algebra E. We decompose the idempotent
c into the sum of orthogonal primitive idempotents cp, . . . , cr. We can find c1, . . . , cp−1

such that c1, . . . , cr is a Jordan frame of E. Indeed, since E(c, 0) is a Euclidean Jordan
subalgebra of rank p − 1, we can take a Jordan frame c1, . . . , cp−1 of E(c, 0) by [9,
Theorem III.1.2]. Since the identity element of E(c, 0) is e−c, the Jordan frame satisfies
e− c =

∑p−1
i=1 ci. Then c1, . . . , cr is a Jordan frame of E. See also [22, Lemma 23] for a

related result on frame extension.
Consider the Peirce decomposition (2.12) with respect to the Jordan frame c1, . . . , cr.

We note that cp, . . . , cr is a Jordan frame of the algebra E(c, 1), so we have

E(c, 1) =
⊕

p≤i≤j≤r

Eij, (3.1)

which follows from (2.12) applied to E(c, 1). Let � be the lexicographical order, whence
the elements in the set {(i, j) | 1 ≤ i ≤ j ≤ r} are ordered as (1, 1) � (1, 2) � · · · �
(1, r) � (2, 2) � · · · � (r, r). For simplicity, when there is no danger of confusion,
we write ij for (i, j). In accordance with the orthogonal decomposition (2.12), for
A ∈ S(E), we use the following matrix-like notation:

A = (Aij,kl)1≤i≤j≤r
1≤k≤l≤r
ij⪯kl

.

Recall that Aij,kl = PEij
◦ A|Ekl

is the (ij, kl)th element of A.
For A,B ∈ COP(E+), we suppose that A+ B ∈ {0} ⊕ COP(E(c, 1)+). Then there

exists G ∈ COP(E(c, 1)+) such that

A+ B = P∗
E(c,1) ◦ G ◦ PE(c,1). (3.2)

We see that PE(c,1) ◦ A|E(c,1) belongs to COP(E(c, 1)+). Indeed, let x ∈ E(c, 1)+ be
arbitrary. Then we have

0
(a)

≤ x • A(x)
(b)
= x • A|E(c,1)(x)

(c)
= x • (PE(c,1) ◦ A|E(c,1))(x),
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∗ ∗ ∗
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Figure 1: Illustration of the proof of Lemma 3.1 in the case of r = 4 and p = 3. The
cells marked (i) correspond to Case i for each i = 1, . . . , 11. The 3×3 lower-right block
marked the symbol ∗ corresponds to PE(c,1) ◦ A|E(c,1) and PE(c,1) ◦ B|E(c,1).

where (a) holds because x ∈ E(c, 1)+ ⊆ E+ and A ∈ COP(E+), (b) follows from
x ∈ E(c, 1), and (c) is a consequence of the orthogonality of (2.10). In addition,
PE(c,1) ◦A|E(c,1) is the “principal submatrix” of A obtained by extracting the 1

2
(r− p+

1)(r− p+ 2) rows and columns indexed by (p, p), (p, p+ 1) . . . , (r, r). The same is true
for B.

Thus, to prove A,B ∈ {0} ⊕ COP(E(c, 1)+), it is sufficient to show that

Aij,kl = Bij,kl = 0 (3.3)

for all (i, j, k, l) satisfying 1 ≤ i ≤ p− 1, 1 ≤ i ≤ j ≤ r, 1 ≤ k ≤ l ≤ r, and ij � kl. See
Figure 1 for an illustration of this proof. We also recall that Aij,kl is a linear mapping
between Ekl and Eij, so we have the following characterization:

Aij,kl = 0 ⇐⇒ xij • Aij,kl(xkl) = 0 for all xij ∈ Eij and xkl ∈ Ekl. (3.4)

Moving on, a quadruple (i, j, k, l) satisfying the following three conditions

i ≤ j, k ≤ l, ij � kl (3.5)

must fall into exactly one of the following eleven cases:

Case 1: i = j = k = l;

Case 2: i = j = k 6= l;
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Case 3: i = j 6= k = l;

Case 4: i = k 6= j = l;

Case 5: i 6= j = k = l;

Case 6: i = j and i, k, l are different from each other;

Case 7: i = k and i, j, l are different from each other;

Case 8: k = l and i, j, l are different from each other;

Case 9: j = l and i, k, l are different from each other;

Case 10: j = k and i, j, l are different from each other;

Case 11: i, j, k, l are different from each other.

See A for the reasoning behind this case division. In the following discussion, for each
x ∈ E, we write α(x) := x • A(x) and β(x) := x • B(x). Similarly, we define

γ(x) := x • (P∗
E(c,1) ◦ G ◦ PE(c,1))(x). (3.6)

Note that by (3.2), we have
α(x) + β(x) = γ(x) (3.7)

for all x ∈ E. Also note that α(x) and β(x) are nonnegative for any x ∈ E+ since
A,B ∈ COP(E+).

In what follows, in order to show that (3.3) holds for any (i, j, k, l) satisfying each
of the eleven cases above, we adopt the following convention. Whenever we represent
a linear transformation in the matrix-like form as in (2.6), if the symbol (i) appears
in a matrix entry, then it means that entry is 0 because of Case i. For example, in
(3.8), “(1)” indicates that the corresponding entry is 0 because of Case 1. In (3.10),
four entries are 0 because of Cases 1 to 4.

Case 1 On the one hand, since ci ∈ E+, we have α(ci), β(ci) ≥ 0. On the other
hand, it follows from ci 6∈ E(c, 1) and (3.6) that γ(ci) = 0. Therefore, by (3.7), both
α(ci) = ci • Aii,ii(ci) and β(ci) = ci • Bii,ii(ci) must be 0. Since Eii = Rci (see (2.11)),
we have

(aci) • Aii,ii(bci) = ab(ci • Aii,ii(ci)) = 0

for all a, b ∈ R. In view of (3.4) and since an analogous argument holds for B, we obtain
Aii,ii = Bii,ii = 0.

Case 2 For any xil ∈ Eil and ϵ > 0, let

x(ϵ) := (ci + ϵxil)
2 = ci + ϵ2ci ◦ x2

il︸ ︷︷ ︸
∈Eii

+ ϵxil︸︷︷︸
∈Eil

+ ϵ2cl ◦ x2
il︸ ︷︷ ︸

∈Ell

∈ E+,
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where the last equality holds by (2.11) and (2.13). Then on the one hand, using
Lemma 2.2 and considering the orthogonality between the Eij we have

0 ≤ α(x(ϵ))

= x(ϵ) •


ii il ll

(1) Aii,il Aii,ll

Ail,il Ail,ll

All,ll

(x(ϵ)) (3.8)

= 2ϵci • Aii,il(xil) + ϵ2{xil • Ail,il(xil) + 2ci • Aii,ll(cl ◦ x2
il)}

+ 2ϵ3{(ci ◦ x2
il) • Aii,il(xil) + xil • Ail,ll(cl ◦ x2

il)}+O(ϵ4). (3.9)

The matrix-like notation in (3.8) is for the case i < l, but the calculation is also valid
if l < i. By replacing A in (3.9) with B, we can also calculate β(x(ϵ)), which is greater
that or equal to 0. On the other hand, recalling (2.10), (3.1), and the fact that i ≤ p−1
holds by assumption, we have

PE(c,1)(x(ϵ)) =

{
ϵ2cl ◦ x2

il (if p ≤ l ≤ r),

0 (otherwise),

which implies that γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7), dividing by
2ϵ, and letting ϵ ↓ 0, we obtain

ci • Aii,il(xil) + ci • Bii,il(xil) = 0.

Since α(x(ϵ)) is nonnegative for all ϵ > 0,

ci • Aii,il(xil) = lim
ϵ↓0

α(x(ϵ))

2ϵ

is also nonnegative. Similarly, ci • Bii,il(xil) is nonnegative. Thus, we have

ci • Aii,il(xil) = ci • Bii,il(xil) = 0.

Since Eii = Rci and xil ∈ Eil is arbitrary, we obtain Aii,il = Bii,il = 0, again by (3.4).

Case 3 For any ϵ > 0, let x(ϵ) := ci+ϵcl ∈ E+. Then on the one hand, from Case 1,
we have Aii,ii = 0 so

0 ≤ α(x(ϵ)) = 2ϵci • Aii,ll(cl) + ϵ2cl • All,ll(cl).

On the other hand, we have

PE(c,1)(x(ϵ)) =

{
ϵcl (if p ≤ l ≤ r),

0 (otherwise),
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which implies that γ(x(ϵ)) = O(ϵ2). Therefore, setting x = x(ϵ) in (3.7), dividing by
2ϵ, and letting ϵ ↓ 0, we obtain

ci • Aii,ll(cl) = ci • Bii,ll(cl) = 0.

Recalling that Eii = Rci and Ell = Rcl hold, we obtain Aii,ll = Bii,ll = 0 from (3.4).

Case 4 For any xil ∈ Eil and ϵ > 0, let x(ϵ) be the same as in Case 2. Then on the
one hand, it follows from Cases 1, 2, 3, and a computation analogous to (3.9) that

0 ≤ α(x(ϵ)) = ϵ2xil • Ail,il(xil) +O(ϵ3).

On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by ϵ2, and letting ϵ ↓ 0, we obtain

xil • Ail,il(xil) = xil • Bil,il(xil) = 0.

Since xil ∈ Eil is arbitrary, we obtain Ail,il = Bil,il = 0.

Case 5 For any xil ∈ Eil and ϵ > 0, let

x(ϵ) := (ci + ϵ2xil)
2 + ϵ3cl = ci + ϵ4ci ◦ x2

il︸ ︷︷ ︸
∈Eii

+ ϵ2xil︸︷︷︸
∈Eil

+ ϵ3cl + ϵ4cl ◦ x2
il︸ ︷︷ ︸

∈Ell

∈ E+.

Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •


ii il ll

(1) (2) (3)

(4) Ail,ll

All,ll

(x(ϵ)) (3.10)

= 2ϵ5xil • Ail,ll(cl) +O(ϵ6).

On the other hand, we have γ(x(ϵ)) = O(ϵ6). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ5, and letting ϵ ↓ 0, we obtain

xil • Ail,ll(cl) = xil • Bil,ll(cl) = 0.

Since xil ∈ Eil is arbitrary, we obtain Ail,ll = Bil,ll = 0.

Case 6 For any xkl ∈ Ekl and ϵ > 0, let

x(ϵ) := ci + ϵ(ck + xkl)
2 = ci︸︷︷︸

∈Eii

+ ϵck + ϵck ◦ x2
kl︸ ︷︷ ︸

∈Ekk

+ ϵxkl︸︷︷︸
∈Ekl

+ ϵcl ◦ x2
kl︸ ︷︷ ︸

∈Ell

∈ E+.
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Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii kk kl ll

(1) (3) Aii,kl (3)

Akk,kk Akk,kl Akk,ll

Akl,kl Akl,ll

All,ll

(x(ϵ))

= 2ϵci • Aii,kl(xkl) +O(ϵ2).

On the other hand, we have γ(x(ϵ)) = O(ϵ2). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ, and letting ϵ ↓ 0, we obtain

ci • Aii,kl(xkl) = ci • Bii,kl(xkl) = 0.

Since xkl ∈ Ekl is arbitrary, we obtain Aii,kl = Bii,kl = 0.

Case 7 For any xij ∈ Eij, xil ∈ Eil, and ϵ > 0, let

x(ϵ) := (ci + ϵxij)
2 + (ci + ϵxil)

2

= 2ci + ϵ2ci ◦ x2
ij + ϵ2ci ◦ x2

il︸ ︷︷ ︸
∈Eii

+ ϵxij︸︷︷︸
∈Eij

+ ϵxil︸︷︷︸
∈Eil

+ ϵ2cj ◦ x2
ij︸ ︷︷ ︸

∈Ejj

+ ϵ2cl ◦ x2
il︸ ︷︷ ︸

∈Ell

∈ E+.

Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii ij il jj ll

(1) (2) (2) (3) (3)

(4) Aij,il (5) Aij,ll

(4) Ail,jj (5)

Ajj,jj Ajj,ll

All,ll

(x(ϵ))

= 2ϵ2xij • Aij,il(xil) +O(ϵ3).

On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ2, and letting ϵ ↓ 0, we obtain

xij • Aij,il(xil) = xij • Bij,il(xil) = 0.

Since xij ∈ Eij and xil ∈ Eil are arbitrary, we obtain Aij,il = Bij,il = 0.
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Case 8 For any xij ∈ Eij and ϵ > 0, let

x(ϵ) := (ci + ϵxij)
2 + ϵ2cl = ci + ϵ2ci ◦ x2

ij︸ ︷︷ ︸
∈Eii

+ ϵxij︸︷︷︸
∈Eij

+ ϵ2cj ◦ x2
ij︸ ︷︷ ︸

∈Ejj

+ ϵ2cl︸︷︷︸
∈Ell

∈ E+.

Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii ij jj ll

(1) (2) (3) (3)

(4) (5) Aij,ll

Ajj,jj Ajj,ll

All,ll

(x(ϵ))

= 2ϵ3xij • Aij,ll(cl) +O(ϵ4).

On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ3, and letting ϵ ↓ 0, we obtain

xij • Aij,ll(cl) = xij • Bij,ll(cl) = 0.

Since xij ∈ Eij is arbitrary, we obtain Aij,ll = Bij,ll = 0.

Case 9 For any xil ∈ Eil, xkl ∈ Ekl, and ϵ > 0, let

x(ϵ) := (ci + ϵxil)
2 + ϵ2(ck + xkl)

2

= ci + ϵ2ci ◦ x2
il︸ ︷︷ ︸

∈Eii

+ ϵxil︸︷︷︸
∈Eil

+ ϵ2ck + ϵ2ck ◦ x2
kl︸ ︷︷ ︸

∈Ekk

+ ϵ2xkl︸︷︷︸
∈Ekl

+ ϵ2cl ◦ x2
kl + ϵ2cl ◦ x2

il︸ ︷︷ ︸
∈Ell

∈ E+.

Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii il kk kl ll

(1) (2) (3) (6) (3)

(4) (8) Ail,kl (5)

Akk,kk Akk,kl Akk,ll

Akl,kl Akl,ll

All,ll

(x(ϵ))

= 2ϵ3xil • Ail,kl(xkl) +O(ϵ4).
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On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ3, and letting ϵ ↓ 0, we obtain

xil • Ail,kl(xkl) = xil • Bil,kl(xkl) = 0.

Since xil ∈ Eil and xkl ∈ Ekl are arbitrary, we obtain Ail,kl = Bil,kl = 0.

Case 10 For any xij ∈ Eij, xjl ∈ Ejl, and ϵ > 0, let

x(ϵ) := (ci + ϵxij)
2 + ϵ2(cj + xjl)

2

= ci + ϵ2ci ◦ x2
ij︸ ︷︷ ︸

∈Eii

+ ϵxij︸︷︷︸
∈Eij

+ ϵ2cj + ϵ2cj ◦ x2
ij + ϵ2cj ◦ x2

jl︸ ︷︷ ︸
∈Ejj

+ ϵ2xjl︸︷︷︸
∈Ejl

+ ϵ2cl ◦ x2
jl︸ ︷︷ ︸

∈Ell

∈ E+.

Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii ij jj jl ll

(1) (2) (3) (6) (3)

(4) (5) Aij,jl (8)

Ajj,jj Ajj,jl Ajj,ll

Ajl,jl Ajl,ll

All,ll

(x(ϵ))

= 2ϵ3xij • Aij,jl(xjl) +O(ϵ4).

On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ3, and letting ϵ ↓ 0, we obtain

xij • Aij,jl(xjl) = xij • Bij,jl(xjl) = 0.

Since xij ∈ Eij and xjl ∈ Ejl are arbitrary, we obtain Aij,jl = Bij,jl = 0.

Case 11 For any xij ∈ Eij, xkl ∈ Ekl, and ϵ > 0, let

x(ϵ) := (ci + ϵxij)
2 + ϵ2(ck + xkl)

2

= ci + ϵ2ci ◦ x2
ij︸ ︷︷ ︸

∈Eii

+ ϵxij︸︷︷︸
∈Eij

+ ϵ2cj ◦ x2
ij︸ ︷︷ ︸

Ejj

+ ϵ2ck + ϵ2ck ◦ x2
kl︸ ︷︷ ︸

∈Ekk

+ ϵ2xkl︸︷︷︸
∈Ekl

+ ϵ2cl ◦ x2
kl︸ ︷︷ ︸

∈Ell

∈ E+.
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Then on the one hand, we have

0 ≤ α(x(ϵ))

= x(ϵ) •



ii ij jj kk kl ll

(1) (2) (3) (3) (6) (3)

(4) (5) (8) Aij,kl (8)

Ajj,jj Ajj,kk Ajj,kl Ajj,ll

Akk,kk Akk,kl Akk,ll

Akl,kl Akl,ll

All,ll


(x(ϵ))

= 2ϵ3xij • Aij,kl(xkl) +O(ϵ4).

On the other hand, we have γ(x(ϵ)) = O(ϵ4). Therefore, setting x = x(ϵ) in (3.7),
dividing by 2ϵ3, and letting ϵ ↓ 0, we obtain

xij • Aij,kl(xkl) = xij • Bij,kl(xkl) = 0.

Since xij ∈ Eij and xkl ∈ Ekl are arbitrary, we obtain Aij,kl = Bij,kl = 0.

Corollary 3.2. Let K be a symmetric cone in a finite-dimensional real inner product
space E, and let F be a face of K. Also, let V1 := (spanF)⊥, V2 := spanF, so that
E = V1 ⊕ V2. Then following the definition in (2.7), {0} ⊕ COP(F) is a face of
COP(K).

Proof. Let ◦ be a bilinear product on E such that (E, ◦, •) is a Euclidean Jordan algebra
and K = E+. For a face F of K, there exists an idempotent c in the Euclidean Jordan
algebra E such that F = E(c, 1)+ and spanF = E(c, 1) [11, Theorem 3.1]. Therefore,
the claim follows from Lemma 3.1.

Corollary 3.2 implies that the facial structure of the copositive cone over a symmetric
cone is never simpler than that of the underlying symmetric cone. For a symmetric
cone K, consider faces F1,F2 of K such that F2 ⊆ F1. It follows from Corollary 3.2 that
{0} ⊕ COP(F1), which is isomorphic to COP(F1), is a face of COP(K). In addition,
since F1 is also a symmetric cone on its span and F2 is a face of F1, {0} ⊕ COP(F2) is
a face of COP(F1).

In general, the facial structure of the copositive cone over a symmetric cone is
much more complicated than the underlying symmetric cone. For example, while the
nonnegative orthant is polyhedral, the standard copositive cone is not even facially
exposed. Similarly, although symmetric cones satisfy good properties including facial
exposedness*2, copositive cones over symmetric cones are not facially exposed, as shown
in the following theorem.

*2In fact, symmetric cones satisfy a stronger form of facial exposedness called orthogonal projectional
exposedness, see [19, Proposition 33] and also Propositions 9 and 13 therein.
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Theorem 3.3. Let K be a symmetric cone of dimension greater than or equal to 2 in a
finite-dimensional real inner product space. Then for any c generating an extreme ray
of K, R+c⊗ c is a non-exposed face of COP(K). In particular, COP(K) is not facially
exposed.

Proof. It follows from Corollary 3.2 that {0} ⊕ COP(R+c) is a face of COP(K). In
addition, as a linear transformation, since c ⊗ c is a basis of S(Rc), {0} ⊕ COP(R+c)
is equal to R+c⊗ c. In what follows, we show that the face R+c⊗ c of COP(K) is not
exposed.

We assume that the face R+c ⊗ c is exposed. Then there exists H ∈ CP(K) such
that

R+c⊗ c = COP(K) ∩ {H}⊥. (3.11)

As H ∈ CP(K), there exist h1, . . . , hm ∈ K such that H decomposes into
∑m

i=1 hi ⊗ hi,
see (2.9). We see from (3.11) that c⊗ c is orthogonal to H, i.e.,

0 = 〈c⊗ c,H〉 =
m∑
i=1

〈c⊗ c, hi ⊗ hi〉. (3.12)

Fix an arbitrary orthonormal basis {v1, . . . , vn} of V. For each i = 1, . . . ,m, we have
c •hi =

∑n
j=1(c • vj)(hi • vj). By definition, 〈c⊗ c, hi⊗hi〉 is the trace of the functional

composition of c⊗ c with hi ⊗ hi. Therefore, with our choice of basis, we have

〈c⊗ c, hi ⊗ hi〉 =
n∑

j=1

vj • {(c⊗ c)((hi ⊗ hi)(vj))}

=
n∑

j=1

(vj • c)(c • hi)(hi • vj)

= (c • hi)
2. (3.13)

Therefore, (3.12) and (3.13) imply that c • hi = 0 for all i = 1, . . . ,m.
Since the dimension of K is greater than or equal to 2 and that of R+c is 1, R+c is a

face strictly contained in K. Recalling that symmetric cones are facially exposed, there
exists a supporting hyperplane that exposes the face R+c, i.e., there exists d ∈ K∗ such
that R+c = K ∩ {d}⊥. Since R+c is strictly contained in K and K is self-dual, we have
d 6= 0 and d ∈ K ∩ {c}⊥.

Let A := c⊗ d+ d⊗ c ∈ S(spanK). Note that

‖A‖2 = 2‖c‖2‖d‖2 > 0. (3.14)

For any x ∈ K, we have

x • A(x) = 2(c • x)(d • x) ≥ 0,
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where we use c, d ∈ K and the self-duality of K to derive the inequality. Therefore, we
obtain A ∈ COP(K). In addition, since

〈A,H〉 = 2
m∑
i=1

(c • hi)(d • hi) = 0,

we see that A ∈ COP(K) ∩ {H}⊥. Combining it with (3.11) implies that there exists
α ≥ 0 such that A = αc⊗ c. Therefore, we have

‖A‖2 = 〈c⊗ d+ d⊗ c, αc⊗ c〉 = 2α‖c‖2(c • d) = 0,

which contradicts (3.14). Thus, R+c⊗ c is a non-exposed face of COP(K).

Theorem 3.3 proves the main claim of this paper: that, in general, COP(K) is not
facially exposed. However, the situation for CP(K), the dual of COP(K), is significantly
less clear. Zhang [37, Theorem 3.4] showed that the cone of completely positive matrices
over Rn

+ (i.e., CP(Rn
+)) is not facially exposed for n ≥ 5. Surprisingly, if K is a single

second-order cone, then CP(K) is facially exposed. This is because it can be expressed
as the intersection of a positive semidefinite cone and a half-space [35, page 251] and
the intersection of facially exposed cones is facially exposed. However, if K is a cone
of positive semidefinite matrices, whether CP(K) is facially exposed or not seems to be
unknown and it would be an interesting question to explore.
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Appendix A On the eleven cases in the proof of

Lemma 3.1

In this appendix, we explain the reason why a quadruple (i, j, k, l) satisfying (3.5) must
fall into exactly one of the eleven cases listed in the proof of Lemma 3.1. The case
separation we describe next is based on checking how many among the indices (i, j, k, l)
are equal. First we recall that (i, j, k, l) satisfies (3.5) if and only if one of the following
conditions is satisfied

i ≤ j, k ≤ l, i = k, j ≤ l, (A.1)

or
i ≤ j, k ≤ l, i < k. (A.2)

The first case is when all the indices i, j, k, l are equal, which corresponds to Case 1.
We also note that (i, j, k, l) satisfying (3.5) falls into Case 1 if and only if i = l. In
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order to see that, we assume that i = l. From (A.1) and (A.2), we have i ≤ k which
implies l ≤ k, by assumption. Together with k ≤ l, we obtain i = k = l. In addition, by
ij � kl = ii, we obtain j ≤ i. Combining this with i ≤ j implies that i = j. Therefore,
i, j, k, l are identical. In other words, unless i, j, k, l are identical, i is not equal to l.

Next, we examine what happens when the quadruple (i, j, k, l) is such that exactly
three of i, j, k, l are identical. They must fall into exactly one of the following four cases:

(i-1) j = k = l 6= i (Case 5);

(i-2) i = k = l 6= j;

(i-3) i = j = l 6= k;

(i-4) i = j = k 6= l (Case 2).

If the quadruple (i, j, k, l) satisfies (i-2) or (i-3), as shown in the previous paragraph,
i, j, k, l must be identical, which contradicts the assumption that exactly three indices
are equal. Therefore, (i-2) and (i-3) do not occur.

Our next task is to consider the case where two among the i, j, k, l are identical,
and the remaining indices are also identical, but the two pairs are different from each
other. The quadruple (i, j, k, l) satisfying this condition must fall into exactly one of
the following three cases:

(ii-1) i = j 6= k = l (Case 3);

(ii-2) i = k 6= j = l (Case 4);

(ii-3) i = l 6= j = k.

If the quadruple (i, j, k, l) satisfies (ii-3), i, j, k, l must be identical, which contradicts
the assumption.

Next, the quadruple (i, j, k, l) such that exactly two among the i, j, k, l are identical
must fall into exactly one of the following six cases: Cases 6 through 10, and the case
where i = l and i, j, k are different from each other. However, the last case of i = l
cannot occur since this implies that all the i, j, k, l are equal.

Finally, the quadruple (i, j, k, l) such that all the indices are different from each
other corresponds to Case 11.
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